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Abstract⎯A review of  queueing applications indicates that many researchers have intelligently adapted its theoretical 
results to develop an easy and effective analytical tool that can be applied to manufacturing system planning. In particular, 
the PH/PH/1 distribution has been studied extensively for GI/G/1 queue models. We present Mathematica programs that 
calculate algebraically the probability distribution of  the system states from the Matrix-Geometric solution procedures of  a 
PH/PH/1 queue with first-come first-served discipline. The advantage in using Mathematica packages (1996) for solving a 
general queueing problem is also described. 
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1. INTRODUCTION 

One of  the major factors that affect the efficiency of  a 
manufacturing system is wasted production capacity 
relating to queues forming at the processing centers, or 
inadequate service capacity. Indeed, the problem of  
inadequate service capacity is especially critical in an 
automated environment. This paper is a report of  two 
subsystems that can exist within an automated factory 
described and analyzed using queueing models. The goal is 
to compute its performance measure by Mathematica. 

There has been a wealth of  research results that remark 
upon using queueing theory to study the performance of  
automated storage/retrieval system design, automated 
guided vehicle system design, inventory systems analysis 
and assembly line balancing. See Buzacott and 
Shanthikumar (1993). However, the majority of  the 
research on inventory assembly line balancing, material 
handling, and other systems assumes deterministic task 
times and employs deterministic mathematical 
programming techniques. The mathematical modeling 
approach often becomes cumbersome as system 
complexity increases and provides less opportunity for 
studying variations in the governing rules. In contrast, 
simulation is preferred as it allows a greater variety of  
performance data to be gathered and remains adaptable for 
complex system analysis. But, the cost of  running an 
experiment on simulation in general is much higher than 
the cost spent in a mathematical modeling analysis. 

On the other hand, reports on the successful application 
of  basic queueing elements indicate that queueing research 
has proven to be a valuable tool. Even the simpler 
single-server queueing models prove to be relevant in some 
manufacturing subsystems. The computational effort to 
manufacturing subsystems provide more accurate models 
than those afforded by deterministic Mathematical models 

but with the cost less than that taken by simulation 
approaches. For this reason, it appears that a worth while 
endeavor would be to investigate the effects of  
incorporating queueing considerations into Manufacturing 
Systems. 

 
2. PROBLEM DESCRIPTION 

As an example to illustrate how queueing techniques are 
applied to a manufacturing working environment, we 
consider a flow-line system with 4 stages numbered as 
station 1, 2, 3, 4, respectively. Assume each station i has an 
exponential processing time with mean 1 iw , in addition, 
w1 =w2 and w3 = w4. Suppose there are two operators who 
monitor the process of  jobs to ensure the quality of  work. 
One operator inspects stations 1 and 2; the other operator 
inspects stations 3 and 4. Both operators can only monitor 
one job on one station at any time. All jobs start from 
station 1 and are completed at station 4. After finishing at 
station 2, the job is moved forward to stations 3 and 4 in 
series. It is clear that jobs can be only accumulated before 
station 3 since at any time each operator can not have more 
than one job to check. If  the raw material for jobs to 
process is unlimited, then what is a proper buffer capacity 
designed for station 3? In other words, what is the 
efficiency production capacity relating to queues forming 
at station 3? 

Since series stations at process could be represented as 
an Erlang distribution, consider this manufacturing system 
as a single server queueing model with general service 
times. Furthermore, neither the interarrival time 
distribution nor the service time distribution are 
exponential. It falls into the category of  a GI/G/1 
queueing model. 

A review of  queueing applications illustrates that many 
researchers have intelligently adapted its theoretical results 
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over a decade ago to develop an easy and effective 
analytical tool that can be applied to Manufacturing System 
planning. The stationary (steady-state) probability 
distribution is one of  the most common elements 
characterizing a queueing system. Every standard textbook 
on queueing theory, for example, Gross and Harris (1985) 
and Kleinrock (1975), shows the stationary probability 
distribution solved from the state balance equations 
transforms and derives the expressions for mean values of  
the queue size and other performance measures. However, 
it is very difficult in the sense of  methodology and 
numerical computation to obtain the steady-state 
probability in a GI/G/1 queue. The reason is easily found 
in every textbook. 

Neuts (1981) has developed the Matrix-Geometric 
solutions method to solve a particular GI/G/1 queue in 
which the interarrival and service time distributions are 
both of  phase type, i.e., an exponential distribution at each 
phase. It is so called the PH/PH/1 queue in such a case. 
The phase-type distribution has been studied extensively 
for the last ten years. Particular features of  the interarrival 
or service time distributions may be better exploited in 
treating one embedded Markov process by discussing the 
PH/PH/1 queue in the frame work of  
Quasi-Birth-and-Death (Q.B.D.) process. The main thrust 
of  this paper is to apply Mathematica programs to calculate 
algebraically the probability distribution of  the system 
states from the Matrix-Geometric solution procedures of  
an PH/PH/1 queue. Thus, it easily characterizes the basic 
queueing system structures that occur in a manufacturing 
subsystems, showing the effects of  variability in the task 
times at each station, and queue lengths between indicating 
preferred buffer sizes. 

Queueing techniques that are particularly developed for 
this type of  distributions are presented in next section. 
 
3. MODEL DESCRIPTION 

In this section we review a general PH/PH/1 queueing 
system. Let us first introduce the notation for the 
PH/PH/1 queueing system presented in this paper. 

We denote the interarrival time distribution by F(.); as its 
representation ( ,  )Tα  where α  is a row vector of  
dimension m and T is a square matrix of  dimension m. The 
distribution function is given by ( ) 1 exp( ) tF t Tt eα= − , 
≥ 0t , and its mean is λ . The service time distribution 

H(.) has mean µ  and the representation ( ,  )Sβ  of  
dimension n. The distribution is given by 

( ) 1 exp( ) tH t St eβ= − , 0t ≥ . Both representation are 
irreducible, and α  and β  are initial probabilities so 
that 1 1e and eα β= =  , where e is a column vector of  all 

ones. The traffic intensity is defined as : λρ µ= , which is 

assumed to be less than unity for the stability of  the queue. 
We consider the stationary PH/PH/1 queue at a 

departure epoch in which the queue becomes empty. The 
PH/PH/1 queue may be studied as a QBD process on the 
state space, 

 

{ } { }(0,  ),  1 ( ,  ,  ), 1,  1 ,  1 .
E

j j m i j k i j m k n= ≤ ≤ ∪ ≥ ≤ ≤ ≤ ≤

 
The index ≥ 1i  denotes the number of  customers in 

the system; the index j, 1 j m≤ ≤ , represents the phase of  
the PH-renewal process of  arrivals, and the index k, 
1 k n≤ ≤ , indicates the phase of  the service in course. The 
states are labeled in the lexicographic order, that is, (0, 
1), …,(0, m), (1, 1, 1), …(1, 1, n), (1, 2, 1), …(1, 2, n), … 
The infinitesimal generator Q is given by 

 
0 0

0
1 0

2 1 0

2 1 0

0 0
0

T T A
I S A A

A A A
Q

A A A

β⎡ ⎤⊗
⎢ ⎥⊗⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
where 

 
0 0

0 [ ]A T A I= ⊗ ,                             (1) 

 

1A T I I S= ⊗ + ⊗ ,                            (2) 

 
0 0

2A I S B= ⊗ ,                                (3) 

 
0 [ , ..., ]m mT Te Te ×= − − ,                           (4) 

 
0

1[ ]mA diag α α= ,                            (5) 

 
0

1[ ]nB diag β β= ,                             (6) 

 

1[ ]mα α α= ,                                (7) 

 

1[ ]nβ β β= .                                (8) 
 
Here the tensor product ⊗C D  is a formalism that 

transforms bilinear problems into linear ones; that 
property is exploited to write the balance equations of  the 
PH/PH/1 system. This is explained in the following. Let C, 
D be two linear spaces (say over the real line). From a 
computational point of  view, assume C, D to be finitely 
dimensional, with bases 1 1( ) ,( )i i m j j nc d≤ ≤ ≤ ≤ . Then ⊗C D  
is another linear space with a basis of  C D⊗  which is 

1 ,  1( )i j i m j nc d ≤ ≤ ≤ ≤⊗ . 

Consider 
1 1

,  
m n

i i j j
i j

a a c d b d
= =

= =∑ ∑  then by bilinearity: 
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1
1

 i j i j
i m
j n

a d a b c d
≤ ≤
≤ ≤

⊗ = ⊗∑  

 
where a d⊗  is called the kronecker product of  a and d, 
and is defined as a Mathematica function whose procedure is 
described in the appendix. The steady-state probabilities in 
a stable PH/PH/1 queue are matrix-geometrically 
distributed with geometric generator R. This matrix is 
usually given as the minimal solution to a quadratic matrix 
equation.  

 
+ + =2

2 1 0 0R A RA A  
 
A straightforward iterative procedure to obtain R is 

given below: 
 

1
0 0 1R A A−= ,                                  (9) 

 
1 2 1

1 0 1 2 1 ,  0,  1,  2,k kR A A R A A k− −
+ = − − = ,          (10) 

 

1k kR R ε+ ∞
− < ,                             (11) 

 
where 

∞
.  is an infinite norm referred to Horn(1988) and 

ε  is a preset value. The computation of  matrix R may 
involve a high number of  iterations. Lucantoni and 
Ramaswamy (1985) have studied the more general 
algorithm for solving R efficiently. 

The stationary probability vector z of  Q is of  the form 
2

0 1 1 1[ , , , , ]z z z R z R . The vector 0z  and 1z  are of  
dimensions m and m× n respectively. They are obtained by 
solving the equations 
 

0
0 1z z ( ) 0+ ⊗ =T I S ,                          (12) 

 
0 0

1 1 2 0z [ ] z ( ) 0A RA T A β+ + ⊗ = ,               (13) 
 

1
0 1z z ( ) 1e I R e−+ − = .                         (14) 
Matrix operations are intensively taken for solving the 

stationary probability in this approach. Many results for 
queues with phase-type interarrival and/or service times 
are available in the literature, see e.g. Neuts(1981). 
Calculating the result in matrix product forms is 
straightforward in principle, because it only involves the 
evaluation of  the basic matrix operations of  given matrices. 
However the expressions for these operations soon 
become so complicated as the number of  phases goes up. 

It is clear that sparsity of  the matrix T plays a significant 
role in simplifying these equations further. In contrast, 
special features of  the matrix S only affect the algorithm to 
a minor extent. In order to solve the problem described in 
previous section and illustrate the use of  particular 
structure features of  T, we shall consider 2 2/ /1E E  
where both the interarrival times and the service times are 

2-phase Erlang, which is to be described in the next 
section. 

 
4. AN E2 / E2 / 1 QUEUE 

Consider an 2 2/ /1E E  queue. Assume the average 
arrival rate λ equals to 0.2 and the average service rate µ  
equals to 1. Their probability distributions are both Erlang 
with 2 phases. With the notations introduced before, we let 

 

T // MatrixForm = 
−⎛ ⎞
⎜ ⎟−⎝ ⎠

0.4 0.4
0 0.4

 

 
α //MatrixForm = ( )1 0  
 
and 
 

T0 //MatrixForm = ⎛ ⎞
⎜ ⎟
⎝ ⎠

0 0
0.4 0.4

. 

 
Let A0 be a diagonal matrix consisting of  α , i.e., 
 

A0// MatrixForm = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

 

 
Regarding the service time representation β( , )S , we let 
 

S //MatrixForm = 
2 2

0 2
−⎛ ⎞
⎜ ⎟−⎝ ⎠

 

 
β //MatrixForm = ( )1 0  
 
and  
 

S0 //MatrixForm = 
0 0
2 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and S’=
0
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Let      
 

B0 //MatrixForm = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

 

 
By equations (1), (2) and (3), we have A0, A1, and A2, i.e., 

 

A0 // MatrixForm = 

0 0 0 0
0 0 0 0

0.4 0 0 0
0 0.4 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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A1 // MatrixForm = 

2.4 2 0.4 0
0 2.4 0 0.4
0 0 2.4 2
0 0 0 2.4

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

 

 
and  

 

A2 // MatrixForm = 

0 0 0 0
2 0 0 0
0 0 0 0
0 0 2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
To compute R, we first set an initial value of  R0 in 

equation (9), that is  

 

R0 // MatrixForm 

=

0 0 0 0
0 0 0 0

0.166667 0.138889 0.0277778 0.462963
0 0.16667 0 0.0277778

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟

− −⎝ ⎠

 

 
By the iterative procedures (9), (10) and (11), we have  

 

R1 // MatrixForm 

=

0 0 0 0
0 0 0 0

0.182742 0.152285 0.0322431 0.05225
0.0231481 0.185957 0.00450103 0.0347437

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

R2 // MatrixForm 

=

0 0 0 0
0 0 0 0

0.185992 0.154994 0.0332738 0.0535604
0.0288166 0.190681 0.0058087 0.0366207

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

up to  

 

R20 // MatrixForm 

=

0 0 0 0
0 0 0 0

0.186877 0.155731 0.0335698 0.0539299
0.0308365 0.192364 0.00629946 0.0373102

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
which satisfies equation (11) with ε  equal to 0.0000001. 

Thus we let k = 20 and 
 

R //MatrixForm 

=

0 0 0 0
0 0 0 0

0.186877 0.155731 0.0335698 0.0539299
0.0308365 0.192364 0.00629946 0.0373102

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
After obtaining R, we shall solve the stationary 

probabilities denoted by (z0, z1), where z0 is a 
2-dimensional vector corresponding to states (0, 1) and (0, 
2), and z1 four-dimensional corresponding to states (1, 1, 
1), (1, 1, 2), (1, 2, 1), (1, 2, 2). Let  

z0={z01, z02} 
and             z1={z11, z12, z13, z14} 
which is associated with (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), 
respectively 

Let eq1, eq2, and eq3 represent equations (12), (13) and 
(14).  After algebraically computing in Mathematica, we 
have 
 
eq1=z0.T+z1.(Id[2]⊗ S’) 

={-0.4 z01+2. z12, 0.4 z01-0.4 z02+2. z14} 
( )( ) ( )1 2eq2=z0. T0.A0 β +z1. A +R.A⊗  

{0. z01 + 0.4 z02-2.4 z11 + 0. z12 + 0.311461 z13 + 
0.384728 z14,2. z11 - 2.4 z12 + 0. z13 + 0. z14,0. z01 + 0. 
z02 + 0.4 z11 + 0. z12 - 2.29214 z13 + 0.0746204 z14,0. 
z11 + 0.4 z12 + 2. z13 - 2.4 z14} 
eq3=z0.e[2]+z1.Inverse[Id[4]-R].e[4]  

{z01+z02+1. z11+1. z12+1.46068 z13+1.28016 z14}, 
where Id[2] and e[4] are user-defined functions denoting a 
2x2 identity matrix and a vector e of  size 4 respectively. 

By using a library function Solve, we write the following 
statements to solve (z0, z1) 

 
Solve[{  
eq1[[1]]==0,  
eq1[[2]]==0,  
eq2[[1]]==0,  
eq2[[2]]==0,  
eq2[[3]]==0,  
eq3[[1]]==1},{z01, z02, z11, z12, z13, z14}]. 
 
The output is  

{{z01=0.341095,02=0.457141,z11=0.0818627, 
z12=0.0682189, z13=.0150414, z14=.0232093}} 

Let the average number of  jobs in the buffer including 
the one in service be written in the formula as 

 

[ ] [ ]( )
np

n-1

n=2

L[np_] :=z1.e 4 + n*z1.R .e 4∑  

 
Since R approaches to the limit as k=20, L[20] will also 

reaches its limit such that 
L[20]= {0.22093},  

which explicitly suggests the preferred buffer sizes. The 
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mean processing time of  a job in this system is calculated 
by 

 

λλ
+ = + =

1 5 1.10465 6.10465L . 

 
Now, suppose the system is renovated in order to reduce 

the processing time. As an example, we will consider a 
flow-line system with 6 stages. Similarly, assume each 
station i has an exponential processing time with its mean 
1 iw , moreover, 1w = 2w  and 3w = 4w = 5w = 6w . There 
are two operators who monitor the process of  jobs to 
ensure the quality of  work. One operator inspects stations 
1 and 2; the other operator inspects stations 3 through 6. 
After finishing at station 1, this job is assigned to rework at 
station 2 with probability p, and moved forward to station 
3 with probability 1 − p. Starting from station 3, this job is 
processed at station 4, 5 and 6 in series. Again, if  the raw 
material for jobs to process is unlimited, then what would 
be a proper buffer capacity designed for station 3? 
Furthermore, would this new system yield a mean 
processing time which is less than that given by the 

2 2/ /1E E  queueing model? We shall apply the PH/PH/1 
approach to this case again, though it becomes a 

2 4/ / 1K E  queueing model with slightly different arrival 
process and service time distribution. This will be 
described in the next section. 

 
5. A K2 / E4 / 1 QUEUE 

Consider a 2 4/ /1K E  queue. Assume the interarrival 
time distribution and the service time distribution are both 
phase type. The service time distribution is Erlang and has 
4 phases where each phase has an exponential distribution 
with rate 4. Thus, the average service rate is 1. The 
interarrival time distribution is a 2-phase Coxian 
distribution. Its probability density function is 

1
2

2
1( )
4

t
K t e

−
=  ≥ 0t , and its average arrival rate is 1

3
. 

according to the definition of  (α ,T ), we have 
 

T//MatrixForm =
−⎛ ⎞
⎜ ⎟−⎝ ⎠

0.5 0.25
0 0.5

 

and 
　　 

α//MatrixForm = ( )1 0  

 

By (4) and (5), it computes 
 

T0//MatrixForm = ⎛ ⎞
⎜ ⎟
⎝ ⎠

0.25 0.25
0.5 0.5

 

and  

A0 //MatrixForm = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

. 

 
Since the service time is Erlang-4, we have 

 

S // MatrixForm =

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

4 4 0 0
0 4 4 0
0 0 4 4
0 0 0 4

 

 
and 
 
β // MatrixForm = ( )1 0 0 0  

 
Again by (4) and (5) for the service time distribution, we 

have 
 

S0 // MatrixForm=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0 0 0 0
0 0 0 0
0 0 0 0
4 4 4 4

, S’=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0
0
0
4

 

 
and 
 

B0 //MatrixForm=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. 

 
From (1), we compute 
 

A0 // MatrixForm 

=

0.25 0 0 0 0 0 0 0
0 0.25 0 0 0 0 0 0
0 0 0.25 0 0 0 0 0
0 0 0 0.25 0 0 0 0

0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0
0 0 0 0.5 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

, 

 
A1 // MatrixForm 

=

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

4.5 4 0 0 0.25 0 0 0
0 4.5 4 0 0 0.25 0 0
0 0 4.5 4 0 0 0.25 0
0 0 0 4.5 4 0 0 0.25
0 0 0 0 4.5 4 0 0
0 0 0 0 0 4.5 4 0
0 0 0 0 0 0 4.5 4
0 0 0 0 0 0 0 4.5

 

 
and 
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A2 //MatrixForm=.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0

 

 
To compute R, we start from (9) with initial R0, i.e. R0 = −A0A1-1 // MatrixForm 

 
0.056 0.049 0.044 0.039 0.0031 0.0055 0.0073 0.0087

0 0.056 0.049 0.044 0 0.0031 0.0055 0.0073
0 0 0.056 0.049 0 0 0.0031 0.0055
0 0 0 0.056 0 0 0 0.0031

0.11 0.099 0.088 0.078 0.0062 0.011 0.015 0.017
0 0.11 0.099 0.088 0 0.0062 0.011 0.015
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

.11 0.099 0 0 0.0062 0.011
0 0 0 0.11 0 0 0 0.0062

 

 
After the first iteration, we have 

 
R1 //MatrixForm 

=

0.0569088 0.0505856 0.044965 0.0399689 0.00322843 0.00568003 0.00754697 0.00892891
0.00171274 0.057078 0.050736 0.0450987 0.000142729 0.00329787 0.00575011 0.00761669
0.00216769 0.00192684 0.0572683 0.0509052 0.000147189 0.000237881 0.00339302 0.00584408
0.00274348 0.00243865 0.00216769 0.0574824 0.000160883 0.000278488 0.000367972 0.00352055
0.116524 0.103577 0.0920685 0.0818387 0.00674088 0.0117462 0.015556 0.0183741

0.00685097 0.117201 0.104179 0.0926032 0.000570915 0.00701864 0.0120265 0.0158348
0.00867076 0.00770735 0.117962 0.104855 0.000588756 0.000951524 0.00739925 0.0124024
0.0109739 0.00975461 0.0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠0867076 0.118818 0.000643533 0.00111395 0.00147189 0.00790937

 

 
Then, after 11 iterations, the algorithm converges and results in 
 

R11 //MatrixForm 

=

0.0569791 0.0506481 0.0450205 0.0400182 0.00323659 0.00569075 0.00755959 0.00894287
0.00181358 0.0571676 0.0508157 0.0451695 0.000152576 0.0033116 0.00576674 0.00763541
0.00231263 0.00205567 0.0573828 0.051007 0.000159102 0.000255628 0.00341516 0.00586942
0.00295208 0.00262407 0.00233251 0.0576289 0.000175239 0.000301549 0.000397628 0.00355505
0.117126 0.104112 0.0925441 0.0822615 0.00681103 0.0118383 0.0156642 0.0184938

0.00772378 0.117977 0.104868 0.0932162 0.000656574 0.00713788 0.0121708 0.0159972
0.00993984 0.00883542 0.118965 0.105747 0.000693889 0.00110765 0.00759373 0.0126248
0.0128253 0.0114003 0.0101336 0.12

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠0119 0.000772532 0.00132005 0.00173635 0.00821669
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It converges in every element in the matrix. So, we have 
R = 11R  

Let 
z0={z01, z02} 

and       z1={z11, z12, z13, z14, z15, z16, z17, z18} 
By (12), (13) and (14), we let respectively, 
eq1=z0.T+z1.(Id[2]⊗ S’) i.e 
{-0.5 z01+4 z14,0.25 z01-0.5 z02+4 z18}, 
 

( ) ( )β⊗ + 1 2eq2=z0. T0.A0 z1. A +R.A , i.e.,  
 
{0.25 z01 + 0.5 z02 - 4.33993 z11 + 0.180678 z12 + 

0.204028 z13 + 0.230516 z14 + 0.329046 z15 + 0.372865 
z16 + 0.422986 z17 + 0.480475 z18,4. z11 - 4.5 z12 + 0. 
z13 + 0. z14 + 0. z15 + 0. z16 + 0. z17 + 0. z18,0. z11 + 4. 
z12 - 4.5 z13 + 0. z14 + 0. z15 + 0. z16 + 0. z17 + 0. z18,0. 
z11 + 0. z12 + 4. z13 - 4.5 z14 + 0. z15 + 0. z16 + 0. z17 
+ 0. z18,0. z01 + 0. z02 + 0.285771 z11 + 0.0305416 z12 
+ 0.0234777 z13 + 0.0142202 z14-4.42602 z15 + 
0.0639886 z16 + 0.0504992 z17 + 0.0328668 z18,0. z11 + 
0.25 z12 + 0. z13 + 0. z14 + 4. z15-4.5 z16 + 0. z17 + 0. 
z18,0. z11 + 0. z12 + 0.25 z13 + 0. z14 + 0. z15 + 4. 
z16-4.5 z17 + 0. z18,0. z11 + 0. z12 + 0. z13 + 0.25 z14 + 
0. z15 + 0. z16 + 4. z17-4.5 z18} 

 
and 

eq3=z0.e[2]+z1.Inverse[Id[8]-R].e[8], i.e., 
{z01 + z02 + 1.2603 z11 + 1.19875 z12 + 1.1376 z13 + 

1.07702 z14 + 1.53582 z15 + 1.41676 z16 + 1.29982 z17 + 
1.18578 z18},  
where Id[8] and e[8] are user-defined functions denoting a 
8x8 identity matrix and a vector e of  size 8 respectively. 
The most beneficial part of  using Mathematica is to solve 
those equations algebraically. Using the command Solve, 
we have 
Solve[{ 
eq1[[1]]==0,  
eq1[[2]]==0, 
eq2[[1]]==0, 
eq2[[2]]==0, 
eq2[[3]]==0, 
eq2[[4]]==0, 
eq2[[5]]==0, 
eq2[[6]]==0, 
eq2[[7]]==0, 
eq3[[1]]==1}, 
{z01, z02, z11, z12, z13, z14, z15, z16, z17, z18}] 
{{z01　0.380356, z02　0.300124, z11　0.0676951, 
z12　0.0601735, z13　0.0534875, z14　0.0475445, 
z15　0.00556234, z16　0.00828727, z17　0.010338, 
z18　0.0137433}} 
 

It yields the solution corresponding to the stationary 
probability at each system state as follows: 
 
z01 = 0.380355645465741876`  
z02 = 0.300123862158583998`  

z11 = 0.06769511331895815755`  
z12 = 0.0601734517240724997`  
z13 = 0.0534875126436200076`  
z14 = 0.0475444556832177767`  
z15 = 0.00556233542007625914`  
z16 = 0.00828726769140514463`  
z17 = 0.0103379886503390183`  
and 
z18 = 0.0137432549282141303`  
 

Define the average number of  jobs in the buffer 
including the one in service as 
 

[ ] [ ]( )
np

n-1

n=2

L[np_] : z1.e 8 n z1.R .e 8= + ∗∑  

 
Compute the average number of  jobs in the buffer, i.e., 

L[11] = {0.366433} 
In average, a process time for each job is  

3 + 0.366433/(1/3) = 4.09929. 
 

6. CONCLUDING REMARKS 

This paper discusses and, to some extent, identifies 
manufacturing sub-systems that can be represented using 
accepted queueing models. Aggregate performance 
measures can be obtained through application of  these 
models. Depending on the complexity of  the congestion 
characteristics of  the system, the standard results from 
queueing theory texts may yield guidelines for selection of  
optimal operational parameters. 

In this paper, we show several Mathematica functions that 
greatly simplify the manipulation of  symbolic matrices for 
computing the stationary probability distribution. We first 
review the formula of  the stationary probability 
distribution in the first-come first-served system the 
average queue size. Then, we consider two fundamental 
numerical cases, i.e., 2 2/ /1E E  and 2 4/ /1K E . In each 
case, we start to write the equations for computing the 
stationary probability distribution. We have also provided a 
Mathematica program that symbolically calculates the 
quantity and rearranges the terms for better appearance. 
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APPENDICES 
(1) Kronecker product 
 First, we give a small example of  a Kronecker product as 
follows: 
 

e f e f
a c

g h g ha c e f
b d g h e f e f

b d
g h g h

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎢ ⎥⊗ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
Symbolically, ⊗ is defined by　  

(x_) ⊗ (y_) := Kronecker[x, y]. 
          where, 
Kronecker[x_, y_] :=   
Module[i, j, k, l, r, s, bM, bN, bP, bQ, m, n, t,temp,Pp, 

bP = Dimensions[y][[1]]; bQ = Dimensions[y][[2]]; 

Pp = Table[0, i, bM*bP, j, bN*bQ]; 

For[ i = 1, i <= bM, i++, 

For[ j = 1, j <= bN, j++, 

For[ k = 1, k <= bP, k++, 

For[ l = 1, l <= bQ, l++, 

r = (i − 1)*bP + k; 

s = (j − 1)*bQ + l; 

temp=Pp[[r]]; 

temp[[s]] = x[[i]][[j]]*y[[k]][[l]]; 

Pp[[r]]=temp; 

] 

] 

] 

]; 

Kronecker[x,y]=Pp; 

Print[x//MatrixForm," ",　  

y//MatrixForm,"=",Pp//MatrixForm] 

] 

(2) e[n_] := Table[1,i,1,n,j,1,1] 

(3) d[n_] := IdentityMatrix[n] 
 


