
International Journal of Operations Research Vol. 2, No. 2, 81−88 (2005)

PH/PH/1 Queueing Models in Mathematica for Performance
Evaluation

Hsing Luh* and Zheng-Zhong Xu

Department of Mathematical Sciences, National ChengChi University, District Wen-Shan, Taipei, Taiwan, R.O.C.

Abstract⎯A review of queueing applications indicates that many researchers have intelligently adapted its theoretical
results to develop an easy and effective analytical tool that can be applied to manufacturing system planning. In particular,
the PH/PH/1 distribution has been studied extensively for GI/G/1 queue models. We present Mathematica programs that
calculate algebraically the probability distribution of the system states from the Matrix-Geometric solution procedures of a
PH/PH/1 queue with first-come first-served discipline. The advantage in using Mathematica packages (1996) for solving a
general queueing problem is also described.
Keywords⎯Queueing theory, Phase-type distribution, Matrix-geometric solution

* Corresponding author’s email: slu@nccu.edu.tw

1. INTRODUCTION

One of the major factors that affect the efficiency of a
manufacturing system is wasted production capacity
relating to queues forming at the processing centers, or
inadequate service capacity. Indeed, the problem of
inadequate service capacity is especially critical in an
automated environment. This paper is a report of two
subsystems that can exist within an automated factory
described and analyzed using queueing models. The goal is
to compute its performance measure by Mathematica.

There has been a wealth of research results that remark
upon using queueing theory to study the performance of
automated storage/retrieval system design, automated
guided vehicle system design, inventory systems analysis
and assembly line balancing. See Buzacott and
Shanthikumar (1993). However, the majority of the
research on inventory assembly line balancing, material
handling, and other systems assumes deterministic task
times and employs deterministic mathematical
programming techniques. The mathematical modeling
approach often becomes cumbersome as system
complexity increases and provides less opportunity for
studying variations in the governing rules. In contrast,
simulation is preferred as it allows a greater variety of
performance data to be gathered and remains adaptable for
complex system analysis. But, the cost of running an
experiment on simulation in general is much higher than
the cost spent in a mathematical modeling analysis.

On the other hand, reports on the successful application
of basic queueing elements indicate that queueing research
has proven to be a valuable tool. Even the simpler
single-server queueing models prove to be relevant in some
manufacturing subsystems. The computational effort to
manufacturing subsystems provide more accurate models
than those afforded by deterministic Mathematical models

but with the cost less than that taken by simulation
approaches. For this reason, it appears that a worth while
endeavor would be to investigate the effects of
incorporating queueing considerations into Manufacturing
Systems.

2. PROBLEM DESCRIPTION

As an example to illustrate how queueing techniques are
applied to a manufacturing working environment, we
consider a flow-line system with 4 stages numbered as
station 1, 2, 3, 4, respectively. Assume each station i has an
exponential processing time with mean 1 iw , in addition,
w1 =w2 and w3 = w4. Suppose there are two operators who
monitor the process of jobs to ensure the quality of work.
One operator inspects stations 1 and 2; the other operator
inspects stations 3 and 4. Both operators can only monitor
one job on one station at any time. All jobs start from
station 1 and are completed at station 4. After finishing at
station 2, the job is moved forward to stations 3 and 4 in
series. It is clear that jobs can be only accumulated before
station 3 since at any time each operator can not have more
than one job to check. If the raw material for jobs to
process is unlimited, then what is a proper buffer capacity
designed for station 3? In other words, what is the
efficiency production capacity relating to queues forming
at station 3?

Since series stations at process could be represented as
an Erlang distribution, consider this manufacturing system
as a single server queueing model with general service
times. Furthermore, neither the interarrival time
distribution nor the service time distribution are
exponential. It falls into the category of a GI/G/1
queueing model.

A review of queueing applications illustrates that many
researchers have intelligently adapted its theoretical results

International Journal of
Operations Research

1813-713X Copyright © 2005 ORSTW

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

82

over a decade ago to develop an easy and effective
analytical tool that can be applied to Manufacturing System
planning. The stationary (steady-state) probability
distribution is one of the most common elements
characterizing a queueing system. Every standard textbook
on queueing theory, for example, Gross and Harris (1985)
and Kleinrock (1975), shows the stationary probability
distribution solved from the state balance equations
transforms and derives the expressions for mean values of
the queue size and other performance measures. However,
it is very difficult in the sense of methodology and
numerical computation to obtain the steady-state
probability in a GI/G/1 queue. The reason is easily found
in every textbook.

Neuts (1981) has developed the Matrix-Geometric
solutions method to solve a particular GI/G/1 queue in
which the interarrival and service time distributions are
both of phase type, i.e., an exponential distribution at each
phase. It is so called the PH/PH/1 queue in such a case.
The phase-type distribution has been studied extensively
for the last ten years. Particular features of the interarrival
or service time distributions may be better exploited in
treating one embedded Markov process by discussing the
PH/PH/1 queue in the frame work of
Quasi-Birth-and-Death (Q.B.D.) process. The main thrust
of this paper is to apply Mathematica programs to calculate
algebraically the probability distribution of the system
states from the Matrix-Geometric solution procedures of
an PH/PH/1 queue. Thus, it easily characterizes the basic
queueing system structures that occur in a manufacturing
subsystems, showing the effects of variability in the task
times at each station, and queue lengths between indicating
preferred buffer sizes.

Queueing techniques that are particularly developed for
this type of distributions are presented in next section.

3. MODEL DESCRIPTION

In this section we review a general PH/PH/1 queueing
system. Let us first introduce the notation for the
PH/PH/1 queueing system presented in this paper.

We denote the interarrival time distribution by F(.); as its
representation (,)Tα where α is a row vector of
dimension m and T is a square matrix of dimension m. The
distribution function is given by () 1 exp() tF t Tt eα= − ,
≥ 0t , and its mean is λ . The service time distribution

H(.) has mean µ and the representation (,)Sβ of
dimension n. The distribution is given by

() 1 exp() tH t St eβ= − , 0t ≥ . Both representation are
irreducible, and α and β are initial probabilities so
that 1 1e and eα β= = , where e is a column vector of all

ones. The traffic intensity is defined as : λρ µ= , which is

assumed to be less than unity for the stability of the queue.
We consider the stationary PH/PH/1 queue at a

departure epoch in which the queue becomes empty. The
PH/PH/1 queue may be studied as a QBD process on the
state space,

{ } { }(0,), 1 (, ,), 1, 1 , 1 .
E

j j m i j k i j m k n= ≤ ≤ ∪ ≥ ≤ ≤ ≤ ≤

The index ≥ 1i denotes the number of customers in

the system; the index j, 1 j m≤ ≤ , represents the phase of
the PH-renewal process of arrivals, and the index k,
1 k n≤ ≤ , indicates the phase of the service in course. The
states are labeled in the lexicographic order, that is, (0,
1), …,(0, m), (1, 1, 1), …(1, 1, n), (1, 2, 1), …(1, 2, n), …
The infinitesimal generator Q is given by

0 0

0
1 0

2 1 0

2 1 0

0 0
0

T T A
I S A A

A A A
Q

A A A

β⎡ ⎤⊗
⎢ ⎥⊗⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where

0 0

0 []A T A I= ⊗ , (1)

1A T I I S= ⊗ + ⊗ , (2)

0 0

2A I S B= ⊗ , (3)

0 [, ...,]m mT Te Te ×= − − , (4)

0

1[]mA diag α α= , (5)

0

1[]nB diag β β= , (6)

1[]mα α α= , (7)

1[]nβ β β= . (8)

Here the tensor product ⊗C D is a formalism that

transforms bilinear problems into linear ones; that
property is exploited to write the balance equations of the
PH/PH/1 system. This is explained in the following. Let C,
D be two linear spaces (say over the real line). From a
computational point of view, assume C, D to be finitely
dimensional, with bases 1 1() ,()i i m j j nc d≤ ≤ ≤ ≤ . Then ⊗C D
is another linear space with a basis of C D⊗ which is

1 , 1()i j i m j nc d ≤ ≤ ≤ ≤⊗ .

Consider
1 1

,
m n

i i j j
i j

a a c d b d
= =

= =∑ ∑ then by bilinearity:

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

83

1
1

 i j i j
i m
j n

a d a b c d
≤ ≤
≤ ≤

⊗ = ⊗∑

where a d⊗ is called the kronecker product of a and d,
and is defined as a Mathematica function whose procedure is
described in the appendix. The steady-state probabilities in
a stable PH/PH/1 queue are matrix-geometrically
distributed with geometric generator R. This matrix is
usually given as the minimal solution to a quadratic matrix
equation.

+ + =2

2 1 0 0R A RA A

A straightforward iterative procedure to obtain R is

given below:

1
0 0 1R A A−= , (9)

1 2 1

1 0 1 2 1 , 0, 1, 2,k kR A A R A A k− −
+ = − − = , (10)

1k kR R ε+ ∞
− < , (11)

where

∞
. is an infinite norm referred to Horn(1988) and

ε is a preset value. The computation of matrix R may
involve a high number of iterations. Lucantoni and
Ramaswamy (1985) have studied the more general
algorithm for solving R efficiently.

The stationary probability vector z of Q is of the form
2

0 1 1 1[, , , ,]z z z R z R . The vector 0z and 1z are of
dimensions m and m× n respectively. They are obtained by
solving the equations

0
0 1z z () 0+ ⊗ =T I S , (12)

0 0

1 1 2 0z [] z () 0A RA T A β+ + ⊗ = , (13)

1
0 1z z () 1e I R e−+ − = . (14)
Matrix operations are intensively taken for solving the

stationary probability in this approach. Many results for
queues with phase-type interarrival and/or service times
are available in the literature, see e.g. Neuts(1981).
Calculating the result in matrix product forms is
straightforward in principle, because it only involves the
evaluation of the basic matrix operations of given matrices.
However the expressions for these operations soon
become so complicated as the number of phases goes up.

It is clear that sparsity of the matrix T plays a significant
role in simplifying these equations further. In contrast,
special features of the matrix S only affect the algorithm to
a minor extent. In order to solve the problem described in
previous section and illustrate the use of particular
structure features of T, we shall consider 2 2/ /1E E
where both the interarrival times and the service times are

2-phase Erlang, which is to be described in the next
section.

4. AN E2 / E2 / 1 QUEUE

Consider an 2 2/ /1E E queue. Assume the average
arrival rate λ equals to 0.2 and the average service rate µ
equals to 1. Their probability distributions are both Erlang
with 2 phases. With the notations introduced before, we let

T // MatrixForm =
−⎛ ⎞
⎜ ⎟−⎝ ⎠

0.4 0.4
0 0.4

α //MatrixForm = ()1 0

and

T0 //MatrixForm = ⎛ ⎞
⎜ ⎟
⎝ ⎠

0 0
0.4 0.4

.

Let A0 be a diagonal matrix consisting of α , i.e.,

A0// MatrixForm =
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

Regarding the service time representation β(,)S , we let

S //MatrixForm =
2 2

0 2
−⎛ ⎞
⎜ ⎟−⎝ ⎠

β //MatrixForm = ()1 0

and

S0 //MatrixForm =
0 0
2 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and S’=
0
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Let

B0 //MatrixForm =
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

By equations (1), (2) and (3), we have A0, A1, and A2, i.e.,

A0 // MatrixForm =

0 0 0 0
0 0 0 0

0.4 0 0 0
0 0.4 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

84

A1 // MatrixForm =

2.4 2 0.4 0
0 2.4 0 0.4
0 0 2.4 2
0 0 0 2.4

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

and

A2 // MatrixForm =

0 0 0 0
2 0 0 0
0 0 0 0
0 0 2 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

To compute R, we first set an initial value of R0 in

equation (9), that is

R0 // MatrixForm

=

0 0 0 0
0 0 0 0

0.166667 0.138889 0.0277778 0.462963
0 0.16667 0 0.0277778

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟

− −⎝ ⎠

By the iterative procedures (9), (10) and (11), we have

R1 // MatrixForm

=

0 0 0 0
0 0 0 0

0.182742 0.152285 0.0322431 0.05225
0.0231481 0.185957 0.00450103 0.0347437

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

R2 // MatrixForm

=

0 0 0 0
0 0 0 0

0.185992 0.154994 0.0332738 0.0535604
0.0288166 0.190681 0.0058087 0.0366207

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

up to

R20 // MatrixForm

=

0 0 0 0
0 0 0 0

0.186877 0.155731 0.0335698 0.0539299
0.0308365 0.192364 0.00629946 0.0373102

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

which satisfies equation (11) with ε equal to 0.0000001.

Thus we let k = 20 and

R //MatrixForm

=

0 0 0 0
0 0 0 0

0.186877 0.155731 0.0335698 0.0539299
0.0308365 0.192364 0.00629946 0.0373102

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

After obtaining R, we shall solve the stationary

probabilities denoted by (z0, z1), where z0 is a
2-dimensional vector corresponding to states (0, 1) and (0,
2), and z1 four-dimensional corresponding to states (1, 1,
1), (1, 1, 2), (1, 2, 1), (1, 2, 2). Let

z0={z01, z02}
and z1={z11, z12, z13, z14}
which is associated with (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
respectively

Let eq1, eq2, and eq3 represent equations (12), (13) and
(14). After algebraically computing in Mathematica, we
have

eq1=z0.T+z1.(Id[2]⊗ S’)

={-0.4 z01+2. z12, 0.4 z01-0.4 z02+2. z14}
()() ()1 2eq2=z0. T0.A0 β +z1. A +R.A⊗

{0. z01 + 0.4 z02-2.4 z11 + 0. z12 + 0.311461 z13 +
0.384728 z14,2. z11 - 2.4 z12 + 0. z13 + 0. z14,0. z01 + 0.
z02 + 0.4 z11 + 0. z12 - 2.29214 z13 + 0.0746204 z14,0.
z11 + 0.4 z12 + 2. z13 - 2.4 z14}
eq3=z0.e[2]+z1.Inverse[Id[4]-R].e[4]

{z01+z02+1. z11+1. z12+1.46068 z13+1.28016 z14},
where Id[2] and e[4] are user-defined functions denoting a
2x2 identity matrix and a vector e of size 4 respectively.

By using a library function Solve, we write the following
statements to solve (z0, z1)

Solve[{
eq1[[1]]==0,
eq1[[2]]==0,
eq2[[1]]==0,
eq2[[2]]==0,
eq2[[3]]==0,
eq3[[1]]==1},{z01, z02, z11, z12, z13, z14}].

The output is

{{z01=0.341095,02=0.457141,z11=0.0818627,
z12=0.0682189, z13=.0150414, z14=.0232093}}

Let the average number of jobs in the buffer including
the one in service be written in the formula as

[] []()
np

n-1

n=2

L[np_] :=z1.e 4 + n*z1.R .e 4∑

Since R approaches to the limit as k=20, L[20] will also

reaches its limit such that
L[20]= {0.22093},

which explicitly suggests the preferred buffer sizes. The

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

85

mean processing time of a job in this system is calculated
by

λλ
+ = + =

1 5 1.10465 6.10465L .

Now, suppose the system is renovated in order to reduce

the processing time. As an example, we will consider a
flow-line system with 6 stages. Similarly, assume each
station i has an exponential processing time with its mean
1 iw , moreover, 1w = 2w and 3w = 4w = 5w = 6w . There
are two operators who monitor the process of jobs to
ensure the quality of work. One operator inspects stations
1 and 2; the other operator inspects stations 3 through 6.
After finishing at station 1, this job is assigned to rework at
station 2 with probability p, and moved forward to station
3 with probability 1 − p. Starting from station 3, this job is
processed at station 4, 5 and 6 in series. Again, if the raw
material for jobs to process is unlimited, then what would
be a proper buffer capacity designed for station 3?
Furthermore, would this new system yield a mean
processing time which is less than that given by the

2 2/ /1E E queueing model? We shall apply the PH/PH/1
approach to this case again, though it becomes a

2 4/ / 1K E queueing model with slightly different arrival
process and service time distribution. This will be
described in the next section.

5. A K2 / E4 / 1 QUEUE

Consider a 2 4/ /1K E queue. Assume the interarrival
time distribution and the service time distribution are both
phase type. The service time distribution is Erlang and has
4 phases where each phase has an exponential distribution
with rate 4. Thus, the average service rate is 1. The
interarrival time distribution is a 2-phase Coxian
distribution. Its probability density function is

1
2

2
1()
4

t
K t e

−
= ≥ 0t , and its average arrival rate is 1

3
.

according to the definition of (α ,T), we have

T//MatrixForm =
−⎛ ⎞
⎜ ⎟−⎝ ⎠

0.5 0.25
0 0.5

and
　　

α//MatrixForm = ()1 0

By (4) and (5), it computes

T0//MatrixForm = ⎛ ⎞
⎜ ⎟
⎝ ⎠

0.25 0.25
0.5 0.5

and

A0 //MatrixForm =
⎛ ⎞
⎜ ⎟
⎝ ⎠

1 0
0 0

.

Since the service time is Erlang-4, we have

S // MatrixForm =

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

4 4 0 0
0 4 4 0
0 0 4 4
0 0 0 4

and

β // MatrixForm = ()1 0 0 0

Again by (4) and (5) for the service time distribution, we

have

S0 // MatrixForm=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0 0 0 0
0 0 0 0
0 0 0 0
4 4 4 4

, S’=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0
0
0
4

and

B0 //MatrixForm=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.

From (1), we compute

A0 // MatrixForm

=

0.25 0 0 0 0 0 0 0
0 0.25 0 0 0 0 0 0
0 0 0.25 0 0 0 0 0
0 0 0 0.25 0 0 0 0

0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0
0 0 0 0.5 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,

A1 // MatrixForm

=

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

4.5 4 0 0 0.25 0 0 0
0 4.5 4 0 0 0.25 0 0
0 0 4.5 4 0 0 0.25 0
0 0 0 4.5 4 0 0 0.25
0 0 0 0 4.5 4 0 0
0 0 0 0 0 4.5 4 0
0 0 0 0 0 0 4.5 4
0 0 0 0 0 0 0 4.5

and

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

86

A2 //MatrixForm=.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0

To compute R, we start from (9) with initial R0, i.e. R0 = −A0A1-1 // MatrixForm

0.056 0.049 0.044 0.039 0.0031 0.0055 0.0073 0.0087

0 0.056 0.049 0.044 0 0.0031 0.0055 0.0073
0 0 0.056 0.049 0 0 0.0031 0.0055
0 0 0 0.056 0 0 0 0.0031

0.11 0.099 0.088 0.078 0.0062 0.011 0.015 0.017
0 0.11 0.099 0.088 0 0.0062 0.011 0.015
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

.11 0.099 0 0 0.0062 0.011
0 0 0 0.11 0 0 0 0.0062

After the first iteration, we have

R1 //MatrixForm

=

0.0569088 0.0505856 0.044965 0.0399689 0.00322843 0.00568003 0.00754697 0.00892891
0.00171274 0.057078 0.050736 0.0450987 0.000142729 0.00329787 0.00575011 0.00761669
0.00216769 0.00192684 0.0572683 0.0509052 0.000147189 0.000237881 0.00339302 0.00584408
0.00274348 0.00243865 0.00216769 0.0574824 0.000160883 0.000278488 0.000367972 0.00352055
0.116524 0.103577 0.0920685 0.0818387 0.00674088 0.0117462 0.015556 0.0183741

0.00685097 0.117201 0.104179 0.0926032 0.000570915 0.00701864 0.0120265 0.0158348
0.00867076 0.00770735 0.117962 0.104855 0.000588756 0.000951524 0.00739925 0.0124024
0.0109739 0.00975461 0.0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠0867076 0.118818 0.000643533 0.00111395 0.00147189 0.00790937

Then, after 11 iterations, the algorithm converges and results in

R11 //MatrixForm

=

0.0569791 0.0506481 0.0450205 0.0400182 0.00323659 0.00569075 0.00755959 0.00894287
0.00181358 0.0571676 0.0508157 0.0451695 0.000152576 0.0033116 0.00576674 0.00763541
0.00231263 0.00205567 0.0573828 0.051007 0.000159102 0.000255628 0.00341516 0.00586942
0.00295208 0.00262407 0.00233251 0.0576289 0.000175239 0.000301549 0.000397628 0.00355505
0.117126 0.104112 0.0925441 0.0822615 0.00681103 0.0118383 0.0156642 0.0184938

0.00772378 0.117977 0.104868 0.0932162 0.000656574 0.00713788 0.0121708 0.0159972
0.00993984 0.00883542 0.118965 0.105747 0.000693889 0.00110765 0.00759373 0.0126248
0.0128253 0.0114003 0.0101336 0.12

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠0119 0.000772532 0.00132005 0.00173635 0.00821669

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

87

It converges in every element in the matrix. So, we have
R = 11R

Let
z0={z01, z02}

and z1={z11, z12, z13, z14, z15, z16, z17, z18}
By (12), (13) and (14), we let respectively,
eq1=z0.T+z1.(Id[2]⊗ S’) i.e
{-0.5 z01+4 z14,0.25 z01-0.5 z02+4 z18},

() ()β⊗ + 1 2eq2=z0. T0.A0 z1. A +R.A , i.e.,

{0.25 z01 + 0.5 z02 - 4.33993 z11 + 0.180678 z12 +

0.204028 z13 + 0.230516 z14 + 0.329046 z15 + 0.372865
z16 + 0.422986 z17 + 0.480475 z18,4. z11 - 4.5 z12 + 0.
z13 + 0. z14 + 0. z15 + 0. z16 + 0. z17 + 0. z18,0. z11 + 4.
z12 - 4.5 z13 + 0. z14 + 0. z15 + 0. z16 + 0. z17 + 0. z18,0.
z11 + 0. z12 + 4. z13 - 4.5 z14 + 0. z15 + 0. z16 + 0. z17
+ 0. z18,0. z01 + 0. z02 + 0.285771 z11 + 0.0305416 z12
+ 0.0234777 z13 + 0.0142202 z14-4.42602 z15 +
0.0639886 z16 + 0.0504992 z17 + 0.0328668 z18,0. z11 +
0.25 z12 + 0. z13 + 0. z14 + 4. z15-4.5 z16 + 0. z17 + 0.
z18,0. z11 + 0. z12 + 0.25 z13 + 0. z14 + 0. z15 + 4.
z16-4.5 z17 + 0. z18,0. z11 + 0. z12 + 0. z13 + 0.25 z14 +
0. z15 + 0. z16 + 4. z17-4.5 z18}

and

eq3=z0.e[2]+z1.Inverse[Id[8]-R].e[8], i.e.,
{z01 + z02 + 1.2603 z11 + 1.19875 z12 + 1.1376 z13 +

1.07702 z14 + 1.53582 z15 + 1.41676 z16 + 1.29982 z17 +
1.18578 z18},
where Id[8] and e[8] are user-defined functions denoting a
8x8 identity matrix and a vector e of size 8 respectively.
The most beneficial part of using Mathematica is to solve
those equations algebraically. Using the command Solve,
we have
Solve[{
eq1[[1]]==0,
eq1[[2]]==0,
eq2[[1]]==0,
eq2[[2]]==0,
eq2[[3]]==0,
eq2[[4]]==0,
eq2[[5]]==0,
eq2[[6]]==0,
eq2[[7]]==0,
eq3[[1]]==1},
{z01, z02, z11, z12, z13, z14, z15, z16, z17, z18}]
{{z01　0.380356, z02　0.300124, z11　0.0676951,
z12　0.0601735, z13　0.0534875, z14　0.0475445,
z15　0.00556234, z16　0.00828727, z17　0.010338,
z18　0.0137433}}

It yields the solution corresponding to the stationary
probability at each system state as follows:

z01 = 0.380355645465741876`
z02 = 0.300123862158583998`

z11 = 0.06769511331895815755`
z12 = 0.0601734517240724997`
z13 = 0.0534875126436200076`
z14 = 0.0475444556832177767`
z15 = 0.00556233542007625914`
z16 = 0.00828726769140514463`
z17 = 0.0103379886503390183`
and
z18 = 0.0137432549282141303`

Define the average number of jobs in the buffer
including the one in service as

[] []()
np

n-1

n=2

L[np_] : z1.e 8 n z1.R .e 8= + ∗∑

Compute the average number of jobs in the buffer, i.e.,

L[11] = {0.366433}
In average, a process time for each job is

3 + 0.366433/(1/3) = 4.09929.

6. CONCLUDING REMARKS

This paper discusses and, to some extent, identifies
manufacturing sub-systems that can be represented using
accepted queueing models. Aggregate performance
measures can be obtained through application of these
models. Depending on the complexity of the congestion
characteristics of the system, the standard results from
queueing theory texts may yield guidelines for selection of
optimal operational parameters.

In this paper, we show several Mathematica functions that
greatly simplify the manipulation of symbolic matrices for
computing the stationary probability distribution. We first
review the formula of the stationary probability
distribution in the first-come first-served system the
average queue size. Then, we consider two fundamental
numerical cases, i.e., 2 2/ /1E E and 2 4/ /1K E . In each
case, we start to write the equations for computing the
stationary probability distribution. We have also provided a
Mathematica program that symbolically calculates the
quantity and rearranges the terms for better appearance.

REFERENCES

1. Buzacott, John A., and J. George Shanthikumar. (1993).
Stochastic Models of Manufacturing Systems. Pretice-Hall.

2. Lucantoni, D.M. and Ramaswamy, V. (1985). Efficient
algorithms for solving the non-linear matrix equations
arising in phase type queues. Stochastic Models, 1: 29-52.

3. Gross, D. and Harris, C.M. (1985). Fundamentals of
Queueing Theory 2nd. JohnWiley＆Sons.

4. Kleinrock, L. (1975). Queueing Systems Vol I.
Wiley-interscience.

5. Mathematica. Microsoft Windows Version 3.0, Wolfram
Research, (1996).

6. Neuts, M.F. (1981). Matrix-Geometric Solutions in Stochastic
Models. An Algorithmic Approach, Balimore; Johns
Hopkins University Press.

Luh and Xu: PH/PH/1 Queueing Models in Mathematica for Performance Evaluation
IJOR Vol. 2, No. 2, 81−88 (2005)

88

7. Horn, R.A. and Johnson. (1988). Matrix Analysis.
Cambridge.

APPENDICES
(1) Kronecker product
 First, we give a small example of a Kronecker product as
follows:

e f e f
a c

g h g ha c e f
b d g h e f e f

b d
g h g h

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎡ ⎤ ⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎢ ⎥⊗ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Symbolically, ⊗ is defined by　

(x_) ⊗ (y_) := Kronecker[x, y].
 where,
Kronecker[x_, y_] :=
Module[i, j, k, l, r, s, bM, bN, bP, bQ, m, n, t,temp,Pp,

bP = Dimensions[y][[1]]; bQ = Dimensions[y][[2]];

Pp = Table[0, i, bM*bP, j, bN*bQ];

For[i = 1, i <= bM, i++,

For[j = 1, j <= bN, j++,

For[k = 1, k <= bP, k++,

For[l = 1, l <= bQ, l++,

r = (i − 1)*bP + k;

s = (j − 1)*bQ + l;

temp=Pp[[r]];

temp[[s]] = x[[i]][[j]]*y[[k]][[l]];

Pp[[r]]=temp;

]

]

]

];

Kronecker[x,y]=Pp;

Print[x//MatrixForm," ",　

y//MatrixForm,"=",Pp//MatrixForm]

]

(2) e[n_] := Table[1,i,1,n,j,1,1]

(3) d[n_] := IdentityMatrix[n]

