International Journal of Operations Research Vol. 2, No. 2, 89-100 (2005)

A Polynomial Genetic Based Algorithm to Minimize Maximum Lateness in a Two-Stage Flowshop with Setup Times

Ali Allahverdi^{1,*}, Fawaz S. Al-Anzi², and J.N.D. Gupta³

¹Department of Industrial and Management Systems Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait

²Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat, Kuwait

³Department of Accounting and Information Systems, College of Administrative Science, The University of Alabama in Huntsville

Abstract—The two-stage flowshop scheduling problem with separate setup times to minimize maximum lateness is addressed in this paper. It is well known that this problem is strongly NP-hard and that there exists at least one optimal solution which is a permutation schedule. A polynomial hybrid genetic based algorithm is proposed to find an approximate solution to this problem. The proposed algorithm is compared with the existing heuristics in the literature. Computational experiments show that the proposed hybrid algorithm significantly outperforms the existing ones. More specifically, the computational complexity of the proposed algorithm and the best existing heuristic is the same as $O(n^3)$ while the average error of the best existing heuristic is 16 times that of proposed algorithm.

Keywords-Scheduling, Flowshop, Lateness, Setup times, Genetic algorithm

1. INTRODUCTION

Consider the following scenario: a set of jobs $N = \{1, \dots, N\}$ 2,..., n} is given to be processed on two machines arranged in series, first on machine 1 and then on machine 2. Associated with each job $i \in N$ are the processing times t_{i1} and t_{i2} at machines 1 and 2, respectively, and a due date *di*. In addition, the processing of job *i* requires s_{i1} and s_{i2} units of time at machines 1 and 2, respectively, for setup purposes. If job *i* is completed at time C_i , its lateness L_i is defined as $L_i = C_i - d_i$. It is desired to minimize the maximum lateness $L_{max} = max_{ieN}(L_i)$. Following Lawler et al (1993), we will denote this problem as a $F2 |s_i| L_{max}$ problem where F2 denotes two-machine flowshop, s_i implies there are separated sequence independent setup times, and L_{max} indicates that it is desired to minimize maximum lateness. Since the $F2 | |L_{max}$ problem, a special case of the $F2|s_i|L_{max}$ problem with no setup times, is known be unary NP-hard, it follows that the $F2|s_i|L_{max}$ problem is also unary NP-hard.

The $F2|s_i|L_{max}$ problem was first considered by Dileepan and Sen (1991) who developed a dominance relation and proposed two heuristic algorithms for finding an approximate solution to this problem. Allahverdi and Aldowaisan (1998) also considered the same problem and obtained optimal solutions for special cases. Recently, Allahverdi and Al-Anzi (2002) proposed more heuristic algorithms for the problem and showed that their heuristic algorithms outperform those of Dileepan and Sen. A review of developments in solving flowshop problems involving setup times is provided by Allahverdi, Gupta, and Adowiasan (1999) and Cheng, Gupta, and Wang (2000). A practical application of the $F2|s_i|L_{max}$ problem is discussed by Allahverdi and Al-Anzi (2002).

This paper develops a polynomial hybrid genetic based algorithm to find an approximate solution to the $F2 | s_i | L_{max}$ problem. Our goal is to develop a heuristic algorithm that provides better solutions (closer to their optimal value) than those obtained by the best known heuristics that were proposed by Allahverdi and Al-Anzi (2002). The paper proceeds as follows. Section 2 describes the hybrid genetic algorithm to solve the problem. Computational results are provided in Section 3. These computational results show that the proposed hybrid genetic algorithm provides a much better solution than the best existing heuristics that were proposed by Allahverdi and Al-Anzi (2002) while both of them have the same computational complexity. Finally, Section 4 concludes the paper with some directions for future research.

2. THE PROPOSED POLYNOMIAL HYBRID GENETIC BASED ALGORITHM

In this section, we describe the proposed polynomial hybrid genetic based algorithm (GA) for solving the $F2 |s_i| L_{max}$ problem. It consists of two phases. In the first phase, a schedule is obtained using a polynomial genetic based algorithm. This schedule is then improved in the

^{*} Corresponding author's email: allahverdi@kuc01.kuniv.edu.kw 1813-713X Copyright © 2005 ORSTW

second phase using a greedy insertion algorithm. To describe the proposed algorithm, note that any feasible solution of the problem is represented by an ordered set of all jobs (with no repetition), a sequence.

2.1 The genetic based algorithm

Genetic algorithm has been used for the scheduling problems by many researchers including Ruiz and Maroto (2005, 2006), and Tavakkoli-Moghaddam et al. (2005). Our proposed polynomial genetic based algorithm considers a population (POP) of given sequences, generated randomly and selects two schedules out of POP as parents to produce two offsprings. These two offsprings are produced by swapping subsequences of equal length among two parents. Care must be taken that both offsprings are feasible schedule. To understand this process, consider the following two sequences of X and Ywhere $X = \{x_1, x_2, ..., x_i, ..., x_j, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$ $y_2, ..., y_i, ..., y_j, ..., y_n$. The two segments of $x_1, ..., x_n$ and y_i, \ldots, y_n are said to be compatible if they include the same subset of jobs but not necessarily in the same order. Two sequences X and Y are called compatible if they have two compatible segments. The process of generating off springs from a given population is repeated CP times.

The process of generating the offsprings is repeated for a given number of generations (*GEN*). Then, y schedules of the population (*POP*) are replaced with the best y schedules from the set of offspring schedules. At the same time, each schedule in the population is mutated with a known probability p. At the end of the given number of generations, a schedule with best value of maximum lateness is accepted as the heuristic solution for the first phase of the proposed algorithm.

The steps of the genetic algorithm of the first phase of the hybrid genetic algorithm are as follows.

Step 1. Initialize a population, POP, of random sequences.

- *Step* 2. Compute the L_{max} of each sequence in *POP*.
- Step 3. Order the sequences in POP according to L_{max} from the best to the worst.
- Step 4. Repeat Steps (i) to (v) for GEN times
 - (i) Repeat steps (a) to (d) for CP times
 - (a) Randomly choose two different compatible parents to mutate;
 - (b) Select compatible segments in the two parents;
 - (c) Swap the segments;
 - (d) Save the new sequences in *CHILD* and compute *L_{max}* of each.
 - (ii) Order *CHILD* with respect to L_{max} .
 - (iii) Replace the worst y sequences of POP with the best y sequences in CHILD.
 - (iv) Mutate each sequence in *POP* with the probability *p*.
 - (v) Compute L_{max} and order POP.

Step 5. Store the best solution from *POP* as π .

It should be noted that the two parents that are used to perform the crossover operation are scanned from left to right. We stop at the earliest position where we can do a swap. That is, the scan process continues until all the positions in both sequences (parents) contain the same set of jobs, not necessarily in the same order. It should also be noted that if y is less than the total number of offsprings, then the remaining offsprings are omitted. On the other hand, if y is greater than the total number of offsprings, we adjust the value of y temporarily to the number of offsprings (this will allow more parents to go into the next generation).

2.2 The insertion algorithm

The solution obtained by the genetic algorithm in the first phase is improved in the second phase by repeated applications of an insertion algorithm. While Dileepan and Sen (1991) used pairwise exchange of jobs to improve the schedule, we propose to use insertion of jobs. For this purpose, we take job r and insert it at as many places in the schedule as possible. The steps of the insertion algorithm of the second stage are as follows:

- *Step* 1. Given an input sequence π of *n* jobs.
- *Step 2.* Set r = 1 and current solution to be empty
- Step 3a. Generate r candidate partial sequences by inserting the job at the *r*-th sequence position into each r possible positions of the current solution.
- Step 3b.Compute the partial L_{max} for the assigned jobs. Among these candidates, select the one with the least partial L_{max} .
- Step 3c.Update the one with the least L_{max} as the current solution.
- Step 4.Let r = r + 1. If r < n + 1, return to Step 3a; otherwise Stop. The best solution is the heuristic solution.

Note that this is the insertion algorithm proposed by Nawaz et al. (1983) but adjusted for our objective function. For example, consider that r = 1 and schedule is (1, 2, 3, 4). For r = 1, the partial schedule is (1). For r = 2, we have (1,2) and (2,1) and suppose the partial L_{max} of (2,1) is smaller, then this partial sequence of (2,1) is chosen in Step 3b. For r = 3, the partial sequences of (2,1,3), (2,3,1) and (3,2,1) are evaluated and the best with respect to L_{max} is chosen and it continues.

2.3 The polynomial hybrid genetic based algorithm (GA)

Our proposed hybrid genetic algorithm uses the described polynomial genetic based algorithm in the first phase. The second phase applies the described insertion algorithm repeatedly for a total of q times to improve the schedule obtained in the first phase. Thus, the steps of the proposed hybrid genetic algorithm are as follows:

- *Phase I.* Apply the genetic based algorithm described in section 2.1 to produce an initial solution, π .
- *Phase II*: Apply the insertion algorithm described in section 2.2 on the initial solution π for a total of q times to obtain the final solution.

Careful setting of the parameters for our proposed genetic algorithm is essential to achieve a good performance. This is done experimentally. To do so, various parameter settings were tested with the following ranges: *POP*, *GEN*, and *CP* from *n* to 5n with the increment of *n*, *y* from 1/6 to 5/6 with the increment of 1/6; and *p* from 0.005 to 0.1 with the increment of 0.005; *q* from 1 to 15 with the increment of 1. After an extensive computational analysis, the parameters are set as given in Table 1 below.

The computational complexity analysis of the first phase is given in Table 2. Therefore, the overall complexity of Phase I is $O(n^3)$. For the Insertion algorithm (Phase II), the number of comparisons required for all the jobs is 1+2+...+n since for every job *j* to be inserted in every possible slot in the partial sequence of size *j*-1, we have to compute the cost of every candidate partial sequence of size *j* resulting from inserting the job into every possible slot. This gives the complexity of the insertion algorithm as $O(n^2)$. Hence, the computational complexity of the proposed hybrid genetic algorithm is $O(n^3)$.

Table 1. Parameters of the hybrid genetic algorithm

Parameter	Value
POP	2n
GEN	п
CP	2n
y	1/3
Þ	0.035
9	10

Table 2. The computational complexity analys	is of the mst ph	ase	
1. Initialize a population, POP, of random sequences.	$O(n^2)$		
2. Compute the L_{max} of each sequence in POP.	O(n)		
 Order the sequences in POP according to L_{max} from best to worst. 	O(n log n)		
4. Repeat Steps (i) to (v) for GEN times	O(n)		
(i) Repeat steps (a) to (d) for <i>CP</i> times		O(n)	
(a)Randomly choose two different compatible parents to mutate;			<i>O</i> (1)
(b)Select compatible segments in the two parents;			O(n)
(c)Swap the segments;			O(n)
(d)Save the new sequences in CHILD and compute L_{max} of each.			O(n)
(ii) Order CHILD with respect to L_{max} .		O(n log n)	
(iii) Replace the worst y sequences of POP with the best y sequences in <i>CHILD</i> .		O(n)	
(iv) Mutate each sequence in <i>POP</i> with the probability <i>p</i> .		<i>O(n)</i>	
(v) Compute L_{max} and order POP.		O(n log n)	
5. Select the best solution from <i>POP</i> , and set it to be the current sequence	<i>O(n)</i>		

Table 2. The computational complexity analysis of the first phase

The computational complexities of the heuristics proposed by Dileepan and Sen (1991) (EDD and Johson), those of the heuristics presented by Allahverdi and Al-Anzi (2002) (IH1, IH2, IH3, and IH4), and that of the hybrid genetic based algorithm proposed in this paper (GA) are given in Table 3.

	able 5. The computational complexities of al	l neuristics
Heuristic	Proposed by	Computational Complexity
EDD	Dileepan and Sen (1991)	$O(n \log n)$
Johnson	Dileepan and Sen (1991)	$O(n \log n)$
IH1	Allahverdi and Al-Anzi (2002)	$O(n^3)$
IH2	Allahverdi and Al-Anzi (2002)	$O(n^3)$
IH3	Allahverdi and Al-Anzi (2002)	$O(n^3)$
IH4	Allahverdi and Al-Anzi (2002)	$O(n^3)$
GA	This paper	$O(n^3)$

Table 3. The computational complexities of all heuristics

<u>____</u>

3. COMPUTATIONAL EXPERIMENTS

The proposed polynomial hybrid genetic based algorithm (GA) along with the heuristic algorithms developed by Dileepan and Sen (1991) (EDD and Johnson) and by Allahverdi and Al-Anzi (2002) (IH1, IH2, IH3, and IH4) were implemented in C on a Sun Sparc 20, and evaluated with respect to average percentage error, standard deviation of the error, and the number of times yielding the best solution.

Problem data were randomly generated from a uniform distribution with processing times from [1; 100]. In the scheduling literature, most researchers have used this distribution in their experimentation, e.g., Wang et al. (1997), Pan and Chen (1997). The reason for using a uniform distribution with a wide range is that the variance of this distribution is large and if a heuristic performs well with such a distribution, it is likely to perform well with other distributions. The setup times are generated from [0; 100k] as described in Allahverdi and Al-Anzi (2002). The parameter k is the expected ratio of setup to processing times. We generated due dates from a discrete uniform distribution in a range (Px; Pz) following the method by Potts and Van Wassenhove (1982) and Kim (1993) where P is set to the sum of the setup plus processing times of all the jobs on the second machine. The parameters x and yare defined as: x = (1 - T - R/2), z = (1 - T + R/2) where R is called due date range whereas T is called tardiness factor.

Problem data were generated for different combinations of k, T and R values (k = 0.2, 0.8; T = 0.3, 0.6, 1.0; R = 0.3, 0.6, 1.0). The experiments are performed for the number of jobs of 30, 40, 50, 60, 70, and 80. We compare the performance of the heuristics for 50 replicates using three measures: average percentage error (Avg), standard deviation (Std), and the number of times the best solution is obtained (NOS). The percentage error is defined as 100^* (L_{max} of the heuristic – L_{max} of the best solution)/ (L_{max} of the worst solution – L_{max} of the best solution).

Tables 4-9 show performance of all of the seven heuristics from n = 30 to n = 80 in the increment of 10 for all combinations of k, T, and R. The overall Avg., Std, and NOS over all *n* are summarized in Figures 1, 2, and 3, respectively. It is clear that the proposed GA performs much better than all the existing heuristics (Johnson was removed from some of the figures in order to make the figures more readable since it has high error value). More specifically, the overall average percentage errors of EDD, Johnson, IH1, IH2, IH3, IH4, and GA are 28.4156, 98.9550, 9.5582, 14.1575, 3.9356, 8.6509, and 0.2391, respectively. Among the existing heuristics IH3 and IH4 are the best ones. The error of the best existing one (IH3) is more than 16 times that of the proposed GA. Moreover, both IH3 and GA have the same computational complexity. Therefore, GA is superior to the existing heuristics.

Figure 4 shows the average error of the heuristics for the two values of k, which is the ratio of setup to processing times. The figure shows that when the ratio of setup to processing times is small, the error is more for all the heuristics. Figure 5 shows the effect of T on the performance of the heuristics. It seems that the T value does not affect the performance of the heuristics. The effect of R on the performance of the heuristics is shown in Figure 6. The figure shows that as R increases the error increases in general for all heuristics except for IH3. Finally, Figure 7 shows the effect of n on the error. Initially, as n increases the error decreases for all existing heuristics to a level, then it remains unchanged except EDD.

Figure 1. Overall Avg. error.

Figure 2. Overall Avg. std.

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 93 Times

IJOR Vol. 2, No. 2, 89-100 (2005)

Figure 5. The effect of T.

Figure 6. The effect of R.

Figure 7. The effect of n.

4. CONCLUSIONS

A two-stage hybrid genetic based algorithm is proposed to solve the two-machine flowshop scheduling problem of minimizing maximum lateness with separate and sequence independent setup times. The performance of the proposed hybrid genetic based algorithm and those of the existing heuristic algorithms in the literature are compared. The computational complexity of the proposed genetic algorithm is the same as that of the best existing heuristic in the literature while the error of the best existing heuristic is about 16 times that of the new proposed hybrid genetic algorithm. This shows the superiority of the proposed algorithm over the existing ones.

Since the proposed algorithm performs so well for the considered problem, it can be tested for the same problem but with different objective functions. Moreover, the proposed algorithm can be assessed for multi-machine flowshop problems containing more than two stages. In general, it can be tested for all other related scheduling problems.

REFERENCES

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 94 Times

IJOR Vol. 2, No. 2, 89-100 (2005)

- 1. Allahverdi, A., and Aldowiasan, T. (1998). Job lateness in flowshops with setup and removal times separated. *Journal of Operational Research Society*, 49: 1001-1006.
- 2. Allahverdi, A., and Al-Anzi, F. (2002). Using two-machine flowshop with maximum lateness objective to model multimedia data objects scheduling problems for WWW applications. *Computers and Operations Research*, 29: 971-994.
- Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. OMEGA The International Journal of Management Sciences, 27: 219-239.
- Cheng, T.C.E., Gupta, J.N.D., and Wang, G. (2000). A review of flowshop scheduling research with setup times. *Production and Operations Management*, 9: 283-302.
- Dileepan, P. and Sen, T. (1991). Job lateness in a two-machine flowshop with setup times separated. *Computers and Operations Research*, 18: 549-556.
- 6. Kim, Y.D. (1993). A new branch and bound algorithm for minimizing mean tardiness in two-machine flowshops. *Computers and Operations Research*, 20: 391-401.
- Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B. (1993). Sequencing and Scheduling: Algorithms and Complexity, in S. C. Graves et al. (eds), Handbooks in Operations Research and Management Science, vol. 4, Elsevier Science Publishers, Amsterdam, Holland, pp. 445-552.
- 8. Nawaz, M., Enscore, E., and Ham, I. (1983). A heuristic algorithm for the m-machine, *n*-job flowshop sequencing problem. *OMEGA The International Journal of Management Sciences*, 11: 91-95.
- Pan, C.H., and Chen, J.S., (1997). Scheduling alternative operations in two-machine flow-shops. *Journal of the Operational Research Society*, 48: 533-540.
- 10. Potts, C.N. and Van Wassenhove, L.N. (1982). A decomposition algorithm for the single machine total tardiness problem. *Operations Research Letters*, 1: 177-181.
- 11. Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. *European Journal of Operational Research*, 165: 479-494.
- Ruiz, R., and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. *European Journal of Operational Research*, 169: 781-800.
- Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N., and Azaron, A. (2005). Solving a dynamic cell formation problem using metaheuristics. *Applied Mathematics and Computation*, 170: 761-780.
- Wang, M.Y., Sethi, S.P., and Van De Velde, S.L. (1997). Minimizing makespan in a class of reentrant shops. *Operations Research*, 45: 702-712.

J -		,	o. _, o		-) **																		_
		SON		73	76	63	76	73	70	86	76	56	86	86	92	90	83	92	86	90	90	78.4	
	IH4	Std		0.00163	0.00272	0.00277	0.00165	0.00274	0.00307	0.00134	0.00444	0.00417	0.00118	0.00029	0.00298	0.00139	0.00055	0.00196	0.00121	0.00101	0.00100	0.00200	
		Avg		21.556	17.960	6.869	22.689	21.838	13.872	12.623	31.078	17.952	10.817	1.913	6.168	14.972	3.452	6.957	11.425	3.848	1.691	12.6488	
		SON		96	93	83	96	90	83	100	86	76	100	90	83	96	96	92	93	90	93	90.0	
	IH3	Std		0.00010	0.00185	0.00557	0.00020	0.00150	0.00335	0.00000	0.00140	0.00308	0.00000	0.00030	0.00320	0.00047	0.00020	0.00323	0.00015	0.00056	0.00439	0.00164	
		Avg		0.523	5.774	10.670	1.180	6.982	9.035	0.000	6.085	10.431	0.000	1.566	5.679	3.415	0.578	9.973	1.560	1.882	7.489	4.60126	
		SON		13	26	20	46	23	23	36	26	20	33	10	10	36	13	9	30	33	9	22.8	
	hnson	Std		0.00315	0.00800	0.01838	0.00433	0.00723	0.01398	0.00344	0.00736	0.00979	0.00355	0.00590	0.01382	0.00301	0.00555	0.00884	0.00248	0.00817	0.01032	0.00763	
n=30)	Jo	Avg		100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	
ristics (SON		63	73	70	56	70	53	99	60	63	76	93	92	93	90	83	83	76	93	74.3	
the Heu	IH2	Std		0.00147	0.00218	0.00342	0.00213	0.00344	0.00323	0.00421	0.00390	0.00431	0.00068	0.00037	0.00310	0.00063	0.00047	0.00180	0.00150	0.00161	0.00038	0.00216	
esults for		Avg		25.431	16.016	7.434	45.311	27.067	20.102	64.907	34.949	21.383	10.003	1.585	4.605	5.044	2.119	4.481	20.784	8.630	0.772	17.8123	
ional R		SON		80	80	70	99	73	46	83	76	99	92	80	80	90	86	86	86	83	80	77.1	
Computat	IH1	Std		0.00058	0.00181	0.00252	0.00233	0.00234	0.00317	0.00109	0.00242	0.00579	0.00097	0.00129	0.00351	0.00207	0.00216	0.00258	0.00075	0.00166	0.00307	0.00223	
Table 4.		Avg		7.073	11.098	5.880	36.918	17.697	21.429	12.250	15.856	24.118	12.956	8.179	5.349	23.431	8.189	7.244	7.884	7.054	7.489	13.3386	
		SON		50	63	56	60	56	40	60	53	43	70	76	73	86	83	76	76	70	76	64.8	
	EDD	Std		0.00538	0.00306	0.00424	0.00431	0.00349	0.00352	0.00441	0.00592	0.00609	0.00271	0.00198	0.00579	0.00207	0.00216	0.00356	0.00187	0.00239	0.00329	0.00368	
		Avg		85.455	25.765	13.750	88.000	38.809	30.019	83.012	61.923	38.258	25.038	11.384	13.145	24.742	8.574	13.844	28.415	13.746	9.473	34.0751	
		SON		100	100	100	100	93	100	100	100	100	100	100	100	100	100	100	96	100	100	99.4	
	GA	Std		0.00000	0.00000	0.00000	0.00000	0.00041	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00007	0.00000	0.00000	0.00003	
		Avg		0.000	0.000	0.000	0.000	1.541	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.506	0.000	0.000	0.11374	
		В		0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	Jerage	
		Τ		0.3	0.3	0.3	0.6	0.6	0.6	-	-	-	0.3	0.3	0.3	0.6	0.6	0.6	-	-	-	srall Av	
		k		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Ove	

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 95 Times IJOR Vol. 2, No. 2, 89-100 (2005)

<i>J</i> -		,	- , -			,																
		SON		99	50	86	76	73	50	53	56	70	96	83	80	83	93	86	93	90	83	75.9
	IH4	Std		0.00188	0.00381	0.00182	0.00089	0.00143	0.00433	0.00229	0.00143	0.00170	0.00011	0.00113	0.00147	0.00073	0.00066	0.00123	0.00036	0.00056	0.00068	0.00147
		Avg		42.920	21.514	5.180	13.654	14.928	13.973	46.443	21.887	7.969	0.627	9.337	5.970	9.982	2.674	4.435	3.100	2.411	1.996	12.722
		SON		96	83	83	90	96	76	93	100	86	96	93	73	96	96	83	100	100	83	90.2
	IH3	Std		0.00015	0.00027	0.00114	0.00034	0.00007	0.00328	0.00032	0.00000	0.00245	0.00005	0.00014	0.00265	0.00005	0.00028	0.00280	0.00000	0.00000	0.00157	0.00086
		Avg		1.327	1.371	3.456	3.809	0.310	8.607	3.357	0.000	7.490	0.297	0.834	9.425	0.398	1.070	8.439	0.000	0.000	4.167	3.0198
		SON		26	20	23	30	23	9	23	10	23	20	30	16	26	20	20	26	10	16	20.4
	Johnson	Std		0.00252	0.00800	0.01085	0.00304	0.00350	0.01157	0.00249	0.00387	0.00966	0.00296	0.00472	0.00970	0.00224	0.00597	0.00959	0.00258	0.00422	0.00957	0.00595
()		Avg		100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000
s (n=40		SON		63	09	63	90	63	56	53	09	70	90	20	90	76	83	90	83	83	80	73.5
neuristic	IH2	Std		.00254	.00381	.00263	.00171	.00211	.00212	.00174	.00239	.00190	.00093	.00114	.00115	66000.	.00198	.00048	.00063	.00059	.00055	.00163
for the l		Vvg		.459 0	.094 0	.949 0	.457 0	.416 0	764 0	.968 0	.930 0	812 0	614 0	280 0	215 0	.403 0	240 0	078 0	331 0	725 0	943 0	9822 0
results f		A SC		0 49	3 21	6 10	3 16	0 29	6 9.	6 39	0 33	6 8.	6 8.	0 12	0 3.	0 17	3 12	.1	0 7.	6 3.	6 1.	.9 15.
tional 1		NC		58	5	47 80	88	71 70	15 70	33 70	42 7(5	9	01 8(00 10	8	98	55 8.	00 10	57 80	36 80	20 81
omputa	IH1	Std		0.0015	0.0035	0.0024	0.008	0.0017	0.001	0.001(0.001_{4}	0.0016	0.000	0.000	0.000	0.000	0.0011	0.001	0.000	0.000	0.000	0.0012
able 5. C		Avg		23.451	15.586	5.769	11.139	22.030	3.912	13.429	14.395	5.670	4.257	8.202	0.000	13.339	8.229	5.882	0.000	3.113	1.068	8.8596
T_i		SON		56	36	63	66	56	46	40	43	63	90	73	86	80	80	80	90	80	80	67.1
	EDD	Std		0.00247	0.00664	0.00375	0.00237	0.00381	0.00287	0.00330	0.00348	0.00256	0.00071	0.00182	0.00060	0.00088	0.00223	0.00275	0.00085	0.00060	0.00096	0.00237
		Avg		63.225	60.640	19.041	39.813	55.553	15.457	89.448	54.871	13.132	5.479	17.725	1.983	13.737	15.593	10.461	7.289	4.211	2.906	27.2535
		SON		100	100	100	100	100	96	100	96	96	100	100	100	100	100	100	100	100	100	99.3
	GA	Std		0.00000	0.00000	0.00000	0.00000	0.00000	0.00016	0.00000	0.00008	0.00007	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00002
		Avg		0.000	0.000	0.000	0.000	0.000	0.221	0.000	0.384	0.125	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.04049
	ļ	R		0.3	0.6 .	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	erage
		Т		0.3	0.3	0.3	0.6	0.6	0.6	1	1	1	0.3	0.3	0.3	0.6	0.6	0.6	1	1	1	rall Av
		k		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Ove

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 96 Times

IJOR Vol. 2, No. 2, 89–100 (2005)

IJОв	C VOL	. 2, N	IO. Z,	89-1	100 (.	2005)																
		SON		93	83	63	86	73	76	83	76	80	93	83	86	86	93	83	100	83	83	83.5	
	IH4	Std		0.00013	0.00131	0.00206).00048	0.00084	0.00124	0.00086	0.00098	0.00085	0.0000	0.0003	0.00091).00046	0.0000	0.00071	0.00000	0.00050	0.00144	0.00077	
		Avg		1.376 (8.922 (8.845 (5.196 (11.475 (4.648 (17.346 (9.972 (4.872 (1.088 (4.842 (3.348 (5.288 (0.302 (3.054 (0.000	4.283 (5.099 (5.55310 (
		SON		100	93	73	96	93	80	100	93	92	96	90	93	96	86	86	100	86	80	89.8	
	IH3	Std		0.00000	0.00009	0.00206	0.00013	0.00067	0.00329	0.00000	0.00009	0.00336	0.00009	0.00078	0.00100	0.00016	0.00115	0.00136	0.00000	0.00095	0.00255	0.00098	
		Avg		0.000	0.451	9.992	0.854	4.890	14.176	0.000	0.470	17.675	0.757	3.178	2.797	1.128	8.243	6.322	0.000	6.025	9.678	4.81314	
		SON		20	23	13	16	30	9	36	33	10	16	20	20	10	16	ŝ	40	26	13	19.5	
	Johnson	Std		0.00198	0.00608	0.00900	0.00258	0.00421	0.00854	0.00182	0.00479	0.00762	0.00216	0.00473	0.00731	0.00256	0.00438	0.00495	0.00146	0.00433	0.00773	0.00479	
((Avg		100.000	100.000	100.000	100.000	100.000	100.000	88.544	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	99.3635	
s (n=5(SON		70	73	66	66	66	63	70	73	60	93	86	96	83	86	83	86	83	86	77.2	
heuristic	IH2	Std		0.00104	0.00130	0.00183	0.00127	0.00159	0.00098	0.00192	0.00119	0.00109	0.00012	0.00057	0.00008	0.00072	0.00038	0.00086	0.00033	0.00066	0.00165	0.00098	
s for the		Avg		21.711	11.451	8.654	21.423	20.922	5.337	70.680	13.688	9.395	1.420	2.413	0.212	10.070	2.533	3.295	9.581	5.081	4.626	12.3606	
al result		SON		83	83	63	66	80	73	80	73	60	93	80	93	83	73	90	90	80	90	79.6	
mputation	IH1	Std		0.00087	0.00173	0.00194	0.00126	0.00158	0.00131	0.00072	0.00160	0.00122	0.00012	0.00092	0.00048	0.00093	0.00050	0.00037	0.00034	0.00176	0.00208	0.00110	
ble 6. Cor		Avg		12.038	11.353	8.490	25.302	16.560	4.949	16.828	14.755	11.153	1.420	6.839	1.596	13.880	4.624	1.487	7.528	14.130	6.602	9.97417	
T_a		SON		56	63	46	53	60	43	09	60	40	90	73	76	80	70	83	90	76	73	66.2	
	EDD	Std		0.00251	0.00295	0.00299	0.00215	0.00169	0.00221	0.00253	0.00224	0.00182	0.00134	0.00093	0.00142	0.00130	0.00053	0.00106	0.00034	0.00176	0.00236	0.00178	
		Avg		57.137	28.667	21.176	42.562	26.007	17.213	100.000	28.700	18.400	13.062	7.854	8.548	20.879	5.529	5.090	7.528	14.300	12.151	24.1556	
		SON		100	100	100	100	96	96	100	100	100	100	100	100	100	96	100	100	100	100	99.3	
	GA	Std		0.00000	0.00000	0.00000	0.00000	0.00019	0.00006	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00011	0.00000	0.00000	0.00000	0.00000	0.00002	
		Avg		0.000	0.000	0.000	0.000	0.972	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.422	0.000	0.000	0.000	0.000	0.08341	
		R		0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	erage	
		Τ		0.3	0.3	0.3	0.6	0.6	0.6	-	-	1	0.3	0.3	0.3	0.6	0.6	0.6	-	-	-	all Av	
		k		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Ovei	

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 97 *Times* IJOR Vol. 2, No. 2, 89–100 (2005)

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Se	<i>tup</i> 98:
Times	
IJOR Vol. 2, No. 2, 89–100 (2005)	

		SON	73	93	86	90	90	73	76	76	83	86	83	83	93	90	90	76	80	86	83.7
	IH4	Std	.00079	.00050	.00052	.00060	.00078	.00158	.00038	.00040	.00067	.00046	.00059	.00060	.00011	.00016	.00029	.00034	00070	.00052	.00055
		lvg	.626 0	397 0	630 0	025 0	419 0	721 0	.130 0	411 0	470 0	225 0	304 0	824 0	103 0	044 0	727 0	455 0	813 0	719 0	5795 0
		√ S	18	6	6	0 8.	×.	6	0 13	6.	5	0	.5	.3.	-1	.1	0	7.	.3.	1.	5 5.5
		Z	90	93	90	10	93	90	10	93	70	10	96	83	96	83	80	96	80	90	88.
	IH3	Std	0.00024	0.00054	0.00061	0.00000	0.00032	0.00392	0.00000	0.00011	0.00231	0.00000	0.00042	0.00108	0.00039	0.00038	0.00141	0900060	0.00045	0.00111	0.00077
		Avg	4.208	2.419	2.940	0.000	2.426	17.573	0.000	1.039	15.092	0.000	1.768	4.389	3.089	2.753	5.567	5.943	3.050	3.993	4.23609
		SON	23	16	16	26	30	10	33	26	10	10	10	16	10	16	3	13	9	3	15.4
	hnson	Std 1	00169	00380	00596	00202	00283	00762	00148	00312	00691	00147	00285	00589	00175	00429	00661	00188	00410	00616	00391
	Jol		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0.0
(0)		Avg	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
s (n=6		NOS	63	99	70	73	73	70	99	53	99	83	80	80	80	93	73	80	80	83	74.0
neuristic	IH2	Std	0.00132	0.00171	0.00067	0.00087	0.00113	0.00076	0.00127	0.00160	0.00111	0.00084	0.00076	0.00080	0.00026	0.00045	0.00063	0.00038	0.00088	0.00085	0.00090
tor the l		Avg	88.738	9.400	5.643	20.782	6.801	3.379	6.107	31.196	6.566	4.330	6.935	3.614	4.722	2.089	3.588	5.835	5.447	4.021	3.2884
esults		os	9	0	3	3	6	0	0	3	0	3	9	9	0	9	9	3	9	9	0.6 1
ional i		Ž	8	9	-1	1	8	5	3	1	3	33	8	8	5	3 8	5 8	5 20	1	9	3 79
omputat	1H1	Std	0.0003	0.0014	0.0024	0.0004	0.0010	0.0011	0.0003	0.0013	0.0007	0.008	0.004	0.008	0.0003	0.000	0.0004	0.000	0.0010	0.0011	0.008
ble /. Co		Avg	9.653	16.107	12.929	5.453	18.419	6.224	10.153	16.583	4.443	14.062	3.972	3.098	3.751	4.225	1.453	0.918	5.610	5.269	7.90680
Ia		NOS	60	53	56	63	60	53	73	53	99	76	73	76	80	86	83	86	73	83	59.6
	EDD	Std N	.00139	.00201	.00381	.00250	.00161	.00125	.00131	.00174	62000.	.00142	.00114	.00165	.00062	00070	.00046	.00022	.00164	.00237	.00148
		50	19 0.	47 0.	82 0	57 0.	58 0	0	36 0.	35 0.	8	0	20	3	47 0.	9	0	0 9	20	0 0	39 0
		$_{\rm VA}$	49.3	30.8	33.3	57.70	27.8	7.51	36.3	34.6	5.49	26.6	12.50	9.29	10.5°	4.67	1.78	3.83	11.4	9.13	20.72
		SON	96	100	100	100	96	100	96	100	100	100	100	100	100	100	100	100	100	100	99.3
	GA	Std	0.00006	0.0000	0.0000	0.0000	0.00016	0.0000	0.00005	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.00000	0.00001
		Avg	0.619	0.000	0.000	0.000	1.103	0.000	0.687	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.13382
		ч К).3).6	-	.3).6	1	.3).6	-	.3).6	-	.3).6	-	.3).6	1	age
		Т	0.3 (0.3 (0.3	0.6 (0.6 (0.6	1 (1 (-	0.3 (0.3 (0.3	0.6 (0.6 (0.6	1 (1 (1	all Aver
		k	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Overa

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flows	hop With Setup 99
Times	
IJOR Vol. 2, No. 2, 89–100 (2005)	

NOS 86.2 83 8 86 8 96 86 76 83 86 83 80 83 8 8 83 86 96 93 0.00066 0.00069 0.000160.00008 0.000260.00057 0.000800.000340.000870.000200.000110.000130.000400.000470.000410.00032 0.00047 0.00016 0.00044IH4 Std 3.91802 10.5060.4733.0894.058 2.878 5.892 1.5674.460 8.625 4.117 0.422 6.135 0.774 4.652 t.935 l.080 5.2611.601 Avg NOS 90.4 100100 100 1008 86 83 93 8 96 80 93 86 8 76 93 86 86 0.00012 0.00115 0.000330.000240.00035 0.000160.00072 0.000600.00000 0.00000 0.00087 0.00006 0.00000 0.00000 0.00077 0.00006 0.00030 0.000310.00034IH3 Std 2.35964 0.0001.315 1.5086.636 5.0840.9174.914 0.932 2.806 0.0000.0003.8400.818 3.539 0.000 2.435 6.709 1.021Avg NOS 16.31023 1013 26 23 33 1323 1623 20 10 23 13Ś Ś 3 0.00172 0.001520.00337 0.003420.00600Johnson 0.001770.00197 0.00323 0.00323 0.00426 0.00537 0.001890.003080.00297 0.00664 0.00601 0.00149 0.003540.00582 Std 100.000100.000100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 000.000 Avg Table 8. Computational results for the heuristics (n=70) 78.4 NOS 99 20 3 83 83 76 2 3 2 8 83 80 22 93 83 93 93 80 0.001010.001000.000300.00117 0.001140.000550.00037 0.00057 0.000080.000180.00012 0.000180.00127 0.000280.001060.000220.000640.00079 0.00128IH2 Std 10.492813.142 29.512 10.315 11.41020.142 17.348 43.291 16.0661.8069.108 3.423 4.026 3.325 0.4530.958 1.0201.227 2.301 Avg NOS 86.9 83 22 8 83 83 22 93 00 8 86 83 86 86 86 93 8 96 83 0.00032 0.00115 0.00115 0.00025 0.00045 0.00073 0.00038 0.00025 0.00025 0.000000.00058 0.000170.000410.000310.000510.00051 0.000480.00006 0.00044Std Η 4.19412 10.696 4.819 2.092 2.242 7.547 7.400 3.846 3.527 3.749 4.116 9.382 1.245 0.0001.005Avg 4.777 4.631 0.511 3.907 74.4 NOS 63 99 53 73 66 80 63 56 20 83 02 86 83 86 86 93 86 76 0.001510.000890.00222 0.001060.00119 0.00152 0.00134 0.001790.00121 0.00176 0.00056 0.00065 0.00063 0.000340.001070.00062 0.000410.00022 0.00136 EDD Std 15.9672 25.462 13.345 55.886 10.07820.055 31.081 21.454 38.854 20.403 12.311 6.546 8.936 2.936 8.176 3.2102.505 2.1873.985 Avg NOS 100100100100100100100100100100100100100001 001 1001001001000.000000.000000.000000.000000.000000.00000 0.000000.00000 0.000000.000000.000000.000000.000000.000000.00000 0.000000.00000 0.00000 0.00000 GA Std 0.00000 0.0000.0000.0000.0000.0000.0000.0000.0000.000 0.0000.0000.0000.0000.0000.000 0.0000.0000.000Avg Overall Average 0.6 0.30.60.30.60.30.6 0.3 0.60.30.6Ľ 0.3 . . . --0.30.30.30.60.60.60.30.30.30.60.60.6Н --. . 0.20.20.20.20.20.20.20.80.80.80.80.80.80.80.80.80.20.24

IJOF	R Vol	. 2, N	Jo. 2,	89–1	100 (2005)																
		SON		83	76	63	83	90	73	86	80	80	93	96	90	83	93	76	90	86	90	84	
	IH4	Std		0.00028	0.00037	0.00115	0.00085	0.00018	0.00058	0.00031	0.00077	0.00127	0.00020	0.00005	0.00045	0.00028	0.00013	0.00049	0.00027	0.00020	0.00021	0.00045	
		Avg		5.687	4.507	6.875	17.315	1.894	4.163	7.861	6.987	7.034	3.180	0.335	2.254	6.055	0.926	3.178	5.350	1.187	1.240	0.00016	
		SON		90	90	73	93	93	76	93	93	86	96	90	83	100	90	80	90	86	86	88	
	IH3	Std		0.00015	0.00074	0.00041	0.00024	0.00119	0.00057	0.00020	0.00022	0.00051	0.00003	0.00014	0.00045	0.00000	0.00072	0.00078	0.00004	0.00029	0.00029	0.00039	
		Avg		2.843	4.840	3.132	3.199	8.220	3.346	3.470	1.724	2.729	0.353	1.375	2.044	0.000	5.172	3.632	1.152	2.177	1.878	0.00011	
		SON		20	10	10	20	23	9	23	10	9	13	13	9	9	9	9	23	3	13	12	
	ohnson	Std		0.00156	0.00279	0.00539	0.00162	0.00326	0.00540	0.00134	0.00241	0.00483	0.00118	0.00245	0.00512	0.00130	0.00239	0.00482	0.00125	0.00345	0.00490	0.00308	
		Avg		100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	0.00370	
n=80)		NOS		76	53	60	66	66	66	73	99	73	90	86	73	83	83	93	83	80	86	75	
euristics (IH2	Std N		0.00089	0.00113	0.00116	0.00093	0.00074	0.00122	0.00054	0.00050	0.00084	0.00007	0.00057	0.00065	0.00038	0.00019	0.00044	0.00024	0.00103	0.00028	0.00066	
for the he		Avg		21.053	18.119	10.172	24.780	14.367	9.914	17.139	8.341	5.702	1.625	5.428	5.409	8.535	2.203	1.245	7.160	5.211	1.495	0.00029	
results		SON		76	70	70	76	80	73	76	80	70	96	90	80	86	90	90	90	93	80	81	
outational	IH1	Std N		0.00059	0.00035	0.00077	0.00026	0.00089	0.00074	0.00066	0.00076	0.00106	0.00005	0.00030	0.00076	0.00027	0.00016	0.00050	0.00028	0.00023	0.00111	0.00054	
ole 9. Com		Avg		16.455	5.505	5.384	7.716	10.758	5.581	19.547	9.234	8.041	0.707	3.048	4.620	4.441	1.501	2.153	6.667	1.187	6.966	0.00021	
Tał		SO		99	53	36	53	63	53	99	53	46	86	86	73	83	83	73	86	86	76	68	
	EDD	Std N		0.00098	0.00101	0.00136	0.00101	0.00152	0.00350	0.00119	0.00136	0.00141	0.00047	0.00040	0.00079	0.00027	0.00028	0.00179	0.00047	0.00103	0.00111	0.00111	
		Avg		32.184	17.695	16.779	38.582	25.733	24.931	38.881	28.593	16.553	9.399	4.981	5.779	4.960	3.480	11.687	12.593	5.013	7.403	0.00056	
		SON		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
	GA	Std N		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
		Avg		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00000	
		К		0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	1	0.3	0.6	-	ge	
		H		0.3	0.3	0.3	0.6	0.6	0.6	1	1	1	0.3	0.3	0.3	0.6	0.6	0.6	1	1	1	Avera	
		k		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	Overall	

Allahverdi, Al-Anzi, and Gupta: A Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 100 Times