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Abstrace—The two-stage flowshop scheduling problem with separate setup times to minimize maximum lateness is
addressed in this paper. It is well known that this problem is strongly NP-hard and that there exists at least one optimal
solution which is a permutation schedule. A polynomial hybrid genetic based algorithm is proposed to find an approximate

solution to this problem. The proposed algorithm is compared with the existing heuristics in the literature. Computational

experiments show that the proposed hybrid algorithm significantly outperforms the existing ones. More specifically, the

computational complexity of the proposed algorithm and the best existing heuristic is the same as O(#%) while the average
error of the best existing heuristic is 16 times that of proposed algorithm.
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1. INTRODUCTION

Consider the following scenatio: a set of jobs N = {1,
2,..., n} is given to be processed on two machines arranged
in series, first on machine 1 and then on machine 2.
Associated with each job 7 € NN are the processing times
#; and 7 at machines 1 and 2, respectively, and a due date
di. In addition, the processing of job 7 requires ;i and sp
units of time at machines 1 and 2, respectively, for setup
purposes. If job 7is completed at time C; its lateness L is
defined as L,= C—d. It is desired to minimize the
maximum lateness L,.=max;N(L;). Following Lawler et al
(1993), we will denote this problem as a F2|s| Ly
problem where F2 denotes two-machine flowshop, s
implies there are separated sequence independent setup
times, and L, indicates that it is desired to minimize
maximum lateness. Since the F2| | L. problem, a special
case of the F2|s;| Ly problem with no setup times, is
known be unary NP-hard, it follows that the F2|s| L
problem is also unary NP-hard.

The F2|si|Lyw problem was first considered by
Dileepan and Sen (1991) who developed a dominance
relation and proposed two heuristic algorithms for finding
an approximate solution to this problem. Allahverdi and
Aldowaisan (1998) also considered the same problem and
obtained optimal solutions for special cases. Recently,
Allahverdi and Al-Anzi (2002) proposed more heuristic
algorithms for the problem and showed that their heuristic
algorithms outperform those of Dileepan and Sen. A
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review of developments in solving flowshop problems
involving setup times is provided by Allahverdi, Gupta, and
Adowiasan (1999) and Cheng, Gupta, and Wang (2000). A
practical application of the F2|s|L,» problem is
discussed by Allahverdi and Al-Anzi (2002).

This paper develops a polynomial hybrid genetic based
algorithm to find an approximate solution to the
F2|5i| Lyux problem. Our goal is to develop a heuristic
algorithm that provides better solutions (closer to their
optimal value) than those obtained by the best known
heuristics that were proposed by Allahverdi and Al-Anzi
(2002). The paper proceeds as follows. Section 2 describes
the hybrid genetic algorithm to solve the problem.
Computational results are provided in Section 3. These
computational results show that the proposed hybrid
genetic algorithm provides a much better solution than the
best existing heuristics that were proposed by Allahverdi
and Al-Anzi (2002) while both of them have the same
computational complexity. Finally, Section 4 concludes the
paper with some directions for future research.

2. THE PROPOSED POLYNOMIAL HYBRID
GENETIC BASED ALGORITHM

In this section, we describe the proposed polynomial
hybrid genetic based algorithm (GA) for solving the
F2|5i| Lyax problem. It consists of two phases. In the first
phase, a schedule is obtained using a polynomial genetic
based algorithm. This schedule is then improved in the
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second phase using a greedy insertion algorithm. To
describe the proposed algorithm, note that any feasible
solution of the problem is represented by an ordered set
of all jobs (with no repetition), a sequence.

2.1 The genetic based algorithm

Genetic algorithm has been used for the scheduling
problems by many researchers including Ruiz and Maroto
(2005, 2006), and Tavakkoli-Moghaddam et al. (2005). Our
proposed polynomial genetic based algorithm considers a
population (POP) of given sequences, generated randomly
and selects two schedules out of POP as parents to
produce two offsprings. These two offsprings are
produced by swapping subsequences of equal length
among two parents. Care must be taken that both
offsprings are feasible schedule. To understand this
process, consider the following two sequences of X and Y

whete X = {x1, 2, co0y X4y ooy Xy ooy xp and Y = {y1,
D2y eV oo Vs oo Inp- The two segments of x;, ..., x, and
Jiy «-+5 9 are said to be compatible if they include the same

subset of jobs but not necessarily in the same order. Two
sequences X and Y are called compatible if they have two
compatible segments. The process of generating off
springs from a given population is repeated CP times.

The process of generating the offsprings is repeated for
a given number of generations (GEN). Then, y schedules
of the population (POP) are replaced with the best y
schedules from the set of offspring schedules. At the same
time, each schedule in the population is mutated with a
known probability p. At the end of the given number of
generations, a schedule with best value of maximum
lateness is accepted as the heuristic solution for the first
phase of the proposed algorithm.

The steps of the genetic algorithm of the first phase of
the hybrid genetic algorithm are as follows.

Step 1. Initialize a population, POP, of random sequences.
Step 2. Compute the L. of each sequence in POP.
Step 3. Order the sequences in POP according to L. from
the best to the worst.
Step 4. Repeat Steps (i) to (v) for GEN times
(i) Repeat steps (a) to (d) for CP times
(a) Randomly choose two different compatible
patents to mutate;
(b) Select compatible segments in the two
patents;
(c) Swap the segments;
(d) Save the new sequences in CHIL.D and
compute L, of each.
(ii) Order CHILD with respect to L.
(iii) Replace the worst y sequences of POP with the
best y sequences in CHILD.
(iv) Mutate each sequence in POP with the
probability p.
(v) Compute L. and order POP.
Step 5. Store the best solution from POP as 7.

It should be noted that the two parents that are used to
perform the crossover operation are scanned from left to
right. We stop at the earliest position where we can do a
swap. That is, the scan process continues until all the
positions in both sequences (parents) contain the same set
of jobs, not necessarily in the same order. It should also be
noted that if y is less than the total number of offsprings,
then the remaining offsprings are omitted. On the other
hand, if y is greater than the total number of offsprings, we
adjust the value of y temporarily to the number of
offsprings (this will allow more parents to go into the next
generation).

2.2 The insertion algorithm

The solution obtained by the genetic algorithm in the
first phase is improved in the second phase by repeated
applications of an insertion algorithm. While Dileepan and
Sen (1991) used pairwise exchange of jobs to improve the
schedule, we propose to use insertion of jobs. For this
purpose, we take job 7 and insert it at as many places in the
schedule as possible. The steps of the insertion algorithm
of the second stage are as follows:

Step 1. Given an input sequence 7 of 7 jobs.

Step 2. Set r =1 and current solution to be empty

Step 3a. Generate r candidate partial sequences by inserting
the job at the r~#) sequence position into each r
possible positions of the current solution.

Step 3b.Compute the partial I, for the assigned jobs.
Among these candidates, select the one with the
least partial L.

Step 3c.Update the one with the least L. as the current
solution.

Step 41et r = r+ 1. If r < n + 1, return to Step 3a;
otherwise Stop. The best solution is the heuristic
solution.

Note that this is the insertion algorithm proposed by
Nawaz et al. (1983) but adjusted for our objective function.
For example, consider that » = 1 and schedule is (1, 2, 3, 4).
For r = 1, the partial schedule is (1). For » = 2, we have
(1,2) and (2,1) and suppose the partial L. of (2,1) is
smaller, then this partial sequence of (2,1) is chosen in Step
3b. For r = 3, the partial sequences of (2,1,3), (2,3,1) and
(3,2,1) are evaluated and the best with respect to L. is
chosen and it continues.

2.3 The polynomial hybrid genetic based algorithm
(GA)

Our proposed hybrid genetic algorithm uses the
described polynomial genetic based algorithm in the first
phase. The second phase applies the described insertion
algorithm repeatedly for a total of ¢ times to improve the
schedule obtained in the first phase. Thus, the steps of the
proposed hybrid genetic algorithm are as follows:
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Phase 1. Apply the genetic based algorithm described in
section 2.1 to produce an initial solution, 7.

Phase II: Apply the insertion algorithm described in section
2.2 on the initial solution 7 for a total of ¢ times
to obtain the final solution.

Careful setting of the parameters for our proposed
genetic  algorithm is essential to achieve a good
performance. This is done experimentally. To do so,
various parameter settings were tested with the following
ranges: POP, GEN, and CP from 7z to 5» with the
increment of # y from 1/6 to 5/6 with the increment of
1/6; and p from 0.005 to 0.1 with the increment of 0.005; ¢
from 1 to 15 with the increment of 1. After an extensive
computational analysis, the parameters are set as given in
Table 1 below.

The computational complexity analysis of the first phase
is given in Table 2. Therefore, the overall complexity of
Phase I is O(#?). For the Insertion algorithm (Phase II), the

number of comparisons required for all the jobs is
142+...+n since for every job ; to be inserted in every
possible slot in the partial sequence of size /-1, we have to
compute the cost of every candidate partial sequence of
size j resulting from inserting the job into every possible
slot. This gives the complexity of the insertion algorithm as
O(#?). Hence, the computational complexity of the
proposed hybrid genetic algorithm is O(3).

Table 1. Parameters of the hybrid genetic algorithm

Parameter Value

POP 2n
GEN n
cp 2n
1/3
0.035
10

2 o <

Table 2. The computational complexity analysis of the first phase

1. Initialize a population, POP, of random sequences. O@n?)

2. Compute the L, of each sequence in POP.

O(n)

3. Order the sequences in POP according to L. from

best to worst.

O(1 log n)

4. Repeat Steps (i) to (v) for GEN times

O(n)

(i) Repeat steps (a) to (d) for CP times

O@)

(a)Randomly choose two different
compatible parents to mutate;

o(1)

(b)Select compatible segments in the

two parents;

On)

(c)Swap the segments;

O(n)

(d)Save the new sequences in CHIL.D
and compute L, of each.

O(n)

(i) Order CHILD with respect to L.

O(n log n)

(i) Replace the worst y sequences of POP with

the best y sequences in CHILD.

O(n)

(iv) Mutate each sequence in POP with the

probability p.

0()

(v) Compute L. and order POP.

O(n log n)

5. Select the best solution from POP, and set it to be the

current sequence

O(n)

The computational complexities of the heuristics proposed by Dileepan and Sen (1991) (EDD and Johson), those of the
heuristics presented by Allahverdi and Al-Anzi (2002) (IH1, IH2, IH3, and IH4), and that of the hybrid genetic based

algorithm proposed in this paper (GA) are given in Table 3.

Table 3. The computational complexities of all heuristics

Heuristic Proposed by Computational Complexity
EDD Dileepan and Sen (1991) O(n log n)
Johnson Dileepan and Sen (1991) O(n log n)
IH1 Allahverdi and Al-Anzi (2002) o)
TH2 Allahverdi and Al-Anzi (2002) o)
IH3 Allahverdi and Al-Anzi (2002) o)
1H4 Allahverdi and Al-Anzi (2002) o)

GA This paper O(n3)




Allahverdi, Al-Anzi, and Gupta: .4 Polynomial Genetic Based Algorithm To Minimize Maximum Lateness In A Two-Stage Flowshop With Setup 92

Times

IJOR Vol. 2, No. 2, 89—100 (2005)

3. COMPUTATIONAL EXPERIMENTS

based
algorithm (GA) along with the heuristic algorithms
developed by Dileepan and Sen (1991) (EDD and Johnson)
and by Allahverdi and Al-Anzi (2002) (IH1, IH2, TH3, and
IH4) were implemented in C on a Sun Sparc 20, and

The proposed polynomial hybrid genetic

evaluated with respect to average percentage error,
standard deviation of the error, and the number of times
yielding the best solution.

Problem data were randomly generated from a uniform
distribution with processing times from [1; 100]. In the
scheduling literature, most researchers have used this
distribution in their experimentation, e.g., Wang et al.
(1997), Pan and Chen (1997). The reason for using a
uniform distribution with a wide range is that the variance
of this distribution is large and if a heuristic performs well
with such a distribution, it is likely to perform well with
other distributions. The setup times are generated from [0;
100£] as described in Allahverdi and Al-Anzi (2002). The
parameter £ is the expected ratio of setup to processing
times. We generated due dates from a discrete uniform
distribution in a range (Px; P3) following the method by
Potts and Van Wassenhove (1982) and Kim (1993) where
P is set to the sum of the setup plus processing times of all
the jobs on the second machine. The parameters x and y
are defined as: x = (1 = T—R/2), = (1 = T+ R/2) whete
R is called due date range whereas T is called tardiness
factor.

Problem data were generated for different combinations
of £, T'and R values (£ = 0.2, 0.8; T'= 0.3, 0.6, 1.0; R = 0.3,
0.6,1.0). The experiments are performed for the number of
jobs of 30, 40, 50, 60, 70, and 80. We compare the
performance of the heuristics for 50 replicates using three
average percentage error (Avg), standard
deviation (Std), and the number of times the best solution

measures:

30

25 A

20

15 4

Avg. Error

10

5 |
: -
GA IHL H2 H3

EDD

IH4

Figure 1. Overall Avg, error.

is obtained (NOS). The percentage etror is defined as 700*
(La: of the heuristic — L of the best solution)] (L of the worst
solution — Loy of the best solution).

Tables 4-9 show petformance of all of the seven
heuristics from n = 30 to n = 80 in the increment of 10 for
all combinations of £, T, and R. The overall Avg., Std, and
NOS over all #» are summarized in Figures 1, 2, and 3,
respectively. 1t is clear that the proposed GA performs
much better than all the existing heuristics (Johnson was
removed from some of the figures in order to make the
figures more readable since it has high etror value). More
specifically, the overall average percentage errors of EDD,
Johnson, IH1, IH2, IH3, IH4, and GA are 28.4150,
98.9550, 9.5582, 14.1575, 3.9356, 8.6509, and 0.2391,
respectively. Among the existing heuristics IH3 and IH4
are the best ones. The error of the best existing one (IH3)
is more than 16 times that of the proposed GA. Moreover,
both TH3 and GA have the
complexity. Therefore, GA is superior to the existing
heuristics.

Figure 4 shows the average error of the heuristics for the
two values of £, which is the ratio of setup to processing
times. The figure shows that when the ratio of setup to

same computational

processing times is small, the error is more for all the
heuristics. Figure 5 shows the effect of T on the
performance of the heuristics. It seems that the T value
does not affect the performance of the heuristics. The
effect of R on the performance of the heuristics is shown
in Figure 6. The figure shows that as R increases the error
increases in general for all heuristics except for IH3. Finally,
Figure 7 shows the effect of n on the error. Initially, as n
increases the error decreases for all existing heuristics to a
level, then it remains unchanged except EDD.

0.009 4
0.008 4
0.007 4
0.006 4
0.005 4
0.004 4
0.003 4

0.002 -
0.001 ﬂ ﬂ
0 —=— T T
TH2

Figure 2. Overall Avg, std.

Std

Johnson
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4. CONCLUSIONS

A two-stage hybrid genetic based algorithm is proposed
to solve the two-machine flowshop scheduling problem of
minimizing maximum lateness with separate and sequence
independent setup The performance of the
proposed hybrid genetic based algorithm and those of the
existing heuristic algorithms in the literature are compared.
The computational complexity of the proposed genetic
algorithm is the same as that of the best existing heuristic
in the literature while the error of the best existing heuristic
is about 16 times that of the new proposed hybrid genetic

times.

algorithm. This shows the superiority of the proposed
algorithm over the existing ones.

Since the proposed algorithm performs so well for the
considered problem, it can be tested for the same problem
but with different objective functions. Moreover, the
proposed algorithm can be assessed for multi-machine
flowshop problems containing more than two stages. In
general, it can be tested for all other related scheduling
problems.
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