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AbstractWe consider n M/M/1 queues in series. At queue one the arrival and service rates are chosen in pair from a 
finite set whenever there are arrivals or service completions at any queue. Customers arriving to queue k (k = 1, 2, …, n − 1) 
must go on to queue k + 1 after finishing service at server associated queue k. Customers arriving to queue n leave the 
system after finishing service at the last server. Arrival and service rates are fixed at queues 2 to n. The objective is to 
minimize the expected discounted cost of  the system over finite and infinite horizons. We show that there is a monotone 
hysteretic optimal policy in which the arrival and service rates are decreasing and increasing, respectively, in the queue length. 
In order to establish the result, we formulate the optimal control problem with an equivalent Linear Programming. We 
believe that many optimal control queueing problems, in which the dynamic programming formulation fails, can be treated 
successfully via Linear Programming techniques. 
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1. INTRODUCTION 

In last decade, many authors considered the optimal 
control of  systems with more than one server. Rosberg, 
Varaiya and Walrand (1982) considered two M/M/1 
service stations in tandem with uncontrollable arrival 
process and control of  service rate [0, ]aµ ∈  at first 
station only. They have showed that the optimal policy is 
characterized by switching curves. A generalization of  the 
model given by Rosberg, Varaiya, and Walrand (1982) for 
controlling the service rates in a cycle of  m queues has 
been considered by Weber and Stidham (1987). They also 
studied the control of  arrivals to the first queue only and 
service rates at each queue of  m queues in series. 

Hajek (1984) has considered a general two-node model. 
Nodes 1 and 2 have Poisson arrivals at rates λ1 and λ2 
respectively. A third stream of  Poisson arrivals at rate λ can 
be routed to either queue. The nodes have fixed 
exponential service rates μ1 and μ2 respectively. There are 
two additional exponential servers, with rates v12 and v21. 
The first of  which serves queue 1 and sends jobs to queue 
2. The second of  which serves queue 2 and sends jobs to 
queue 1. Service completions by these servers can be 
“accepted” or “rejected”. The jobs arriving at rate λ must 
be routed to one of  the two nodes. All decisions are made 
dynamically as a function of  the number of  jobs in the two 
queues. Hajek (1984) uses an inductive proof  to establish 
the existence of  a monotonic switching curve. 

Ghoneim and Stidham (1985) studied two exponential 
servers in series (with mean service rates μ1 and μ2), each 
with an infinite capacity queue. Arrivals to queue i are from 

a Poisson process with mean rate λi, i = 1, 2. Jobs arriving 
to queue 1 must go on to queue 2 after finishing service at 
server 1. Jobs arriving to queue 2 leave the system after 
finishing service at server 2. They have showed that λi are 
nonincreasing in the number of  customers in either queue. 

Moustafa (1992) considered two M/M/1 queues in 
series. At queue 1, the arrival and service rates are chosen 
in pair from a finite set. He showed numerically that the 
optimal policy is characterized by a switching curve, but he 
could not apply the induction proof  to construct this 
structure of  the optimal policy. The model considered by 
Moustafa (1992) is two node version of  the model studied 
by Lu and Serfozo (1984). They used an inductive proof  to 
show that there is a monotone hysteric optimal policy in 
which the arrival and service rates are decreasing and 
increasing respectively in queue length. A monotone 
hysteretic optimal policy defines a set of  optimal policies 
which are specified by a range of  queue sizes but its 
bounds are different when the number of  customers is 
increasing or decreasing. The “hysteresis” refer to decisions 
that depend both on the current queue length and the 
current rates. For example, assuming there are only two 
pairs of  arrival and service rates, it is optimal to choose the 
first pair of  arrival and service rates when the queue size 
decreases to 7 from 10, but to choose the second pair 
when the queue size increases to 4 from 0. It mean that the 
bounds of  the optimal policy are different when the 
number of  customers is increasing or decreasing. 

Typically, the control problem is formulated as a 
Markovian decision process and the tool of  Dynamic 
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Programming is used to establish the structure of  the 
optimal policy. However, arguments based on Linear 
Programming (see Luh and Rieder, 2001) may be used in 
models where Dynamic Programming technique fails. 
Bertsimas and Nino% -Mora (1999) presented new lower 
bounds on the achievable cost that emerge as the values of  
nonlinear programming problems over relaxed 
formulations of  the system’s achievable performance 
region.  

In this paper, we use Linear Programming (LP) 
arguments to generalize the model considered by Moustafa 
(1992) and establish the structure of  the optimal policy. We 
show that there is a monotone hysteretic optimal policy in 
which the arrival and service rates are decreasing and 

increasing, respectively, in the queue length. We formulate 
the optimal control problem with an equivalent Linear 
Programming, exploring the structure of  optimal policies 
by studying its dual solutions. Our approaches extend Lu 
and Serfozo’s (1984) results to more general cases and 
provide powerful new methodologies to optimal load 
distribution across a network of  interconnected stations. 

The paper is organized as follows: In section 2 we 
describe the queueing model of  the system. In section 3 we 
provide the Linear Programming formulation of  the 
optimal control problem. In section 4 we discuss the 
structure of  the optimal policy. Finally, conclusion and 
future research are given in section 5. 

 

 
Figure 1. A series of  queues in tandem where ( ,  )i iλ µ  is selected at station 1. 

 
2. THE SYSTEM MODEL 

We consider n M/M/1 queues in series as depicted in 
Figure 1. Customers arriving to queue k (k = 1, 2, …, n－1) 
must go on to queue k + 1 after finishing service at server 
k. Customers arriving to queue n leave the system after 
finishing service at the last server. At the first queue, the 
arrival and service rates are chosen in pair ( ,  )i iλ µ  from 
a finite set 1 1 2 2{( ,  ),( ,  ), ..., ( ,  )}m mφ λ µ λ µ λ µ= with 

1 0mλ λ≥ ≥ >L  and 10 mµ µ< ≤ ≤L . 
A switching cost si occurs when the i-th pair is 

substituted by another pair. We assume that si is increasing 
of  i and λ1 + μ1, …, λm + μm are positive but not identical. 
At queues 2 to n, the service rates are fixed to vj, j = 2, 
3, …, n. We consider selection decisions that are stationary 
and nonidling which means decisions have to be made at 
each decision point. Thus, the rates may be adjusted at 
decision epoch whenever the system state changes. 

Our objective is to minimize the expected holding cost 
over finite and infinite horizons. Let l

kx  be the number 
of  customers at queue l, l = 1, 2, …, n, when the k-th 
transitions (i.e., arrival or service completion) occurs. 
However, since there exists m classes of  customers at 
queue 1, l

kx  is a total number of  customers with 
different classes. Now, with abusing a bit of  notation, let 

i
kx  denote the number of  customers at queue 1 for 

different class i, i = 1, 2, …, m but denote the number of  
customers at queue i

kx  for  i = m + 1, m + 2, …, m + n − 
1. For finite horizon N, we consider the discounting factor 
0 < β < 1, the objective is given by 
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where αi (i = 1, 2,…, m + n) are the holding costs per 
customer with respect to each i. For infinite horizon, we 
consider 
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We can use success approximations in (1) and establish 

these properties for both (1) and (2). It follows from the 
theory of  Markov decision processes that Gf  → Gi as N → 
∞ and β → 1. See, e.g., Puterman (1994). In this paper, we 
only consider the case of  αi = 1 for all i to concentrate on 
the methodology itself. 
 
3. LINEAR PROGRAMMING FORMULATION 

Now, we describe the LP formulation whose construction 
is sampled on system at the times corresponding to either 
arrivals, real service completions, or virtual service 
completions. Let 
 

{ }1 2 1 2 1 2 1, , ..., , , , ..., , , , ...,m m m m m nA A A D D D U U U+ + + −Ω =  
 

be the set of  all transitions. Here Ai and Di (i = 1, 2, …, m) 
represent the arrival and departure respectively at queue 1 
as the i-th pair of  arrival and service rates are chosen. For j 
= m + 1, m + 2, …, m + n − 1, Uj represent the event of  
departure at queue j − m + 1. Because we assume no idle 
between departure at queue j − 1 and the arrival at queue j, 
the event of  departure at queue j − 1 is equivalent to arrival 
at queue j. Thus the event of  arrival at queue j is not 
included in Ω. 

Let kω ∈Ω  represent the k-th transition of  the 
queueing system. Denote by ....kΩ = Ω× Ω× ×Ω  the 
sample space of  the system having k transitions, 
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1 k N≤ ≤ . Define 1 2 ...k k
kω ω ω ω= ∈Ω  as k transitions 

and Pr( kω ) as the probability distribution over kΩ . Let 
( )i

k kξ ω  represent the change in the system state incurred 
by transition kω  with 1 1i m n≤ ≤ + − . If  i m≤ , then 
the transition is either Ai or Di, which denotes the change 
at queue 1. If  i > m, then it denotes the state change at 
queue i − m + 1. The function ( )i k

kξ ω  is given by for i = 
1, 2, …, m (at the first queue) 
 

1    
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It is given at queue 2 that 
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and for queue i − m+1, m + 1 < i < m + n, 
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Let i

kz (wk-1wk) denote the control variable that represents 
selection of (λi, μi) taken at the k-th transition instant, i = 1, 
2, …, m. We define 
 

( ) {0,1},   ,  1,  2,  ...,  .i k i
k k j k jz w w A or w D j m∈ = = =  

 
When Aj or Dj occurs we set ( )i k

kz w = 1 if the i-th pair is 
chosen at queue 1. For other queues, it is assigned to 1 
since we did not specify any control action on transitions at 
queue l (l = 2, 3, …, n). This shall be explained in detail in 
next section. The evolution of the system is described by 
the following equation: 
 

1 1 1
1 1 1( ) ( ) ( ) ( ),i k i k i k i k

k k k kx w x w w z wξ+ + +
+ + +=
1, 2, ..., 1.i m n= + −  

 
Note both state variables x and control variables z are 
integer-valued. Principally, we shall construct an integer 
programming for this model. Instead, we derive a relaxed 
Linear Programming problem where all integer 
requirements are relaxed. The reason may be found in Luh 
and Viniotis (2002) in which the optimal solution of a 
similar formulation has been proved integer-valued. 
Suppose that the initial queue length is x0, we may rewrite 
the cost incurred by policy z as  
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and z must be satisfied with the following three 
constraints. 
 
(i) Nonnegative queue sizes 
For every queue, we have nonnegative queue size 
constraints as follows. 
 

0 ( , )i k
kx w z≤

∆
= 0

1

( ) ( )
k

i i j i j
j j

j

x w z wξ
=
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for all i, j, and k. 
 
(ii) Non-idling policy 
A non-idling policy means that the server should not be 
idled whenever the associated queue is not empty. Namely, 
for all i, 
 

1if ( ) 0 then ( ) 0i k i k
k k ix w z w U+> >                  (5) 

 
(iii) Assignment 
For Dr∈Ω at queue 1, r = 1, 2, …, m, set 
 

1

1

( ) 1
m

i j
j r

i

z w D−

=

=∑                              (6) 

 
Since the initial queue sizes are given as parameters in the 
formulation, constraints (4) may be rearranged to place 
variables z on the left hand side and 0

ix  on the right hand 
side of the inequality. Under the stability condition λi < μ, i 
= 1, 2, …, m, the queue sizes never blow up in a finite time. 
Therefore, it is easy to check constraints (4)-(6) are 
bounded and feasible. 
 
Lemma 3.1 The solution set of constraints (4)-(6) is consistent, and 
the optimal solution exists. 
 
Proof. Because N < ∞ and (3) is piecewise linear which 
was proved in Luh and Viniotis (2002), it is immediately 
clear. 
 
Lemma 3.2 The optimal solutions of minimizing (3) subjecting to 
(4)-(6) are integer valued. 
 
Proof. The proof may be found in Luh and Viniotis (2002). 
Therefore, we omit it here. 
 
Lemma 3.3 The optimal solutions 1 ( )i

rz D  correspond to the 
optimal policies which assign customers to queue 1 from pair i when 
Dr occurs, Dr∈Ω. 
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Proof: From definition of z, we know the possible values 
of 1 ( )i

rz D  is either zero or one. In constraints (iii), the 
optimal solution must have 1( ) 1i

rz D =  for only one i. 
From (i), it is obvious that the optimal values of 1 ( )i

rz D , 
Dr ∈ Ω, have direct relationship with the assignments 
associated with pairs (λi, μi). 
 
4. THE OPTIMAL SELECTION 

The linear program (3), with constraints (4), (5), and (6) is 
the basis for the results we present in this section. To 
simplify the discussion, we first start to investigate the 
redundant constraints among (4). Since the state trajectory 
has to satisfy with (4), we have 
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Consider for i = 1 and any 1 1k kω + +∈Ω , (4) becomes 
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That is 
 

1 1 1 1
1 1( ) ( ) ( ) 0 k k k

k k k jx x z Aω ω ω+
+ += + ≥  

 
and 
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1 1( ) ( ) ( ) 0k k k
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Hence, if 
 

1 1 1 1
1( ) 0 for all k k k

kx ω ω+ + +
+ ≥ ∈ Ω  

 
then it implies 
 

1 ( ) 0 for all k k k
kx ω ω≥ ∈ Ω  

 
because of 1

1( ) 0k
k jz Dω+ ≥  

 
By induction from k = 1 to k = N − 1, we know 

constraint (4) with k = 1, 2, …, N − 2 is redundant if  k = 
N − 1 is satisfied by (4). Furthermore, among the 
constraints (4) with k = N − 1, there are some other 
redundant constraints. Consider for any N Nω ∈Ω , 

 
1 1 1 1 1
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If  we have 
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then it is immediately satisfied with 
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because of  1 1( ) 0.N

N jz Dω − ≥  Therefore, instead of  

considering 1 ( ) 0N
Nx ω ≥ for every N Nω ∈ Ω , we 

consider only 
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for every r rω ∈ Ω , 1 1r N≤ ≤ − ,1 i m≤ ≤ . 

In order to characterize the optimal solutions satisfying 
(4)-(7), its dual variables is introduced. Let dual variables y 
= (y1, y2, …, yN) in which y’s components ( ) 0i k

ky ω ≥ , i = 
1, 2, …, m + n − 1, k = 1, 2, …,N − 1 be defined 
associated with constraints (7). Rewrite the LP as 
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subject to (4) and (6). 
The cost function may be rewritten as 
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where 
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and C is a constant independent of z. In order to find the 
set of optimal solutions, we apply the complementary 
slackness theorem, namely, z is an optimal solution of 
(3)-(6) if and only if there exists y  such that (a), (b) and 
(c) below hold. 
 
(a) z is an optimal solution of (8) subjecting to (5) and 

(6). 
(b)  (Feasibility): ( , ) 0i k

kx zω ≥ , for all i and k. 
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(c)  (Complementary slackness): If ( )i k
ky ω >0, then 

( , )i k
kx zω 0= , for all i and k. 

 
1         if ( ) 0

( ) 0         if ( ) 0
[0,1]  if ( ) 0

i k
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i k i k
k k

i k
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c
z c

c

ω
ω ω

ω

 <
= >
∈ =

 

 
Clearly, (8) with constraints (6) has become an 

assignment problem with variables z and associated linear 
cost functions c depending on pairs of service and arrival 
rates as well as the switching cost. Because of 

1 ... 0mλ λ≥ ≥ >  and 10 ... mµ µ< ≤ ≤ , if si = 0, we have 
 

1
0 0... mc c≤ ≤ . 

 
With constraints (6) and discussion above, the optimal 
solution is clearly decided from pair 1 to pair m one by one. 
In addition, based on sensitivity analysis of (8), every 
optimal solution of z  has a correspondent interval 
associated with its coefficient c. When the initial queue size 
vector is large enough so that all constraints (7) satisfy with 
strict inequality, it implies y  = 0 by complementary 
slackness conditions (c). In this case, c is not changed 
according to (9) and the optimal solution z  remains the 
same for x0 > L, with some L > 0. It suffices to establish 
the following lemma. 
 
Lemma 4.1 The optimal solution will remain the same if the initial 
queue size is greater than constants Ll , l = 1, 2, …, n, for every 
queue l . 
 
The proof is omitted because it is clear from the previous 
statement. 
 
Lemma 4.2 The optimal solution will remain the same if the initial 
queue size belongs to the interval [ , ]L Ll l , l  = 1, 2, …, n, for 
every queue l . 
 
Proof. Following Lemma 4.1, we only show 1

0x  shall be 
greater than a constant 1L  to satisfy the constraint (6). 
Consider constraints (6), i.e., for every 1 1N Nω − −∈ Ω , 
 

1
1 1 1 1 1
0

1

( ) ( ) ( ) 0.
N

j j N
j j N

j

x z zξ ω ω ω
−

−
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Suppose 1 2 1...N N iDω ω ω ω −=  is given as a specific 
transition path such that 1( ) 0j

jz ω ≠ , for some j, 

1 j N≤ ≤ . Since the sum of some 1( )j
j iz Dω −  is equal 

to 1, we have 
 

1
1 1 1 1
0 1

1

( ) ( ) ( ).
N

j j
j j N N i

j

x z z Dξ ω ω ω
−

−
=

≥ − −∑  

 
To restrict l  only to denote i = 1, 2, …, m, we have 
showed that with an optimal policy an interval corresponds 
to each class i of a pair (λi, μi). Combining with the fact that 
(8) is piecewise linear, it completes the proof. 

Notice that these intervals may be ordered by a 
monotonic property of (λi, μi) but there maybe exists 
overlaps between adjacent intervals, e.g., i j iL L L< < , 

and j i jL L L< < , for j = i + 1. 
 
Theorem 4.1 The optimal policy for finite horizon in (1) has a 
monotone hysteretic structure. 
 
Proof. From Lemma 4.2, it suffices to show that the 
optimal policy will be switched from (λi, μi) to (λi+1, μi+1) 
and switched back from (λi+1, μi+1) to (λi, μi) with different 
bounds respectively. Since the coefficient of 1 ( )i

rC D , 

rD ∈ Ω , is a function of λi or μi depending on the event at 
the decision epoch, the optimal policy may be assigned 
when the initial queue size is increasing to 1iL +  or 
decreasing to iL  which depends on the initial queue size 
and the current service and arrival rates. 
 

By induction on N, the results are easy to extend to a 
case of infinite horizon. We state the following theorem. 
 
Theorem 4.2 The optimal policy for infinite horizon in (2) has a 
monotone hysteretic structure. 
 
Proof. Applying Lippman (1975), Kumar and Meyn (1996), 
the result of finite horizon is able to extend to the case of 
infinite horizon. 
 
5. DISCUSSION 

The major contribution of  this paper lies in the 
development of  a new methodology for studying controlled 
queueing systems. We strongly believe that the LP based 
methodology has significantly higher potential than the 
traditional Dynamic Programming (DP) and Stochastic 
Dominance techniques. Since the proof  is not possible to be 
provided by the DP approach, the strength of  the approach 
stems from the following facts: 
(a)  It captures the essence of  the dynamics and cost structure 

of  the system (linear), without the burden of  the 
(state-dependent) statistical descriptions; 

(b) The sample path constraints of  the system are 
conveniently ordered in the constraint matrix. 

In general, the way the system parameters affect the 
parameters of  the linear program are the key to the success of  
this approach. The parameters of  the LP are very easily 
derived from the system parameters. 

The second contribution of  this paper is the derivation of  
the structure of  the optimal policy in the important queueing 
problems, namely scheduling policies. With the study that has 
been done on deriving the necessary conditions of  optimality 
and on reducing the original problem to a trivial assignment 
problem, the methodology presented in the paper is very 
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general. One can use the approach to develop the structure of  
optimal policies for other abstract queueing network models 
as well. 
6. CONCLUSIONS AND FURTHER RESEARCH 

We have shown that the optimal selection of  arrival and 
service rates at the first queue of  n queues in series has a 
monotone hysteretic structure. We applied the linear 
programming arguments to establish this result. If  our 
assumption of  αi for i = 1, 2, …, m is relaxed to consider more 
general cases it is clear that 0

ic  may not have a monotonous 
property when the queue length increases, i.e., the monotone 
hysteretic optimal policies may not exist. However, this should 
be studied for future research. 

We believe that many optimal control queueing problems, 
in which the dynamic programming formulation fails, can be 
treated successfully via Linear Programming techniques. It is 
an effective analysis tool for obtaining performance structure 
in stochastical optimization problems. 
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