
International Journal of  Operations Research Vol. 3, No. 1, 7−15 (2006) 

A General Input Queue with N Policy and Service Rate Depending on 
Bulk Size 

Jau-Chuan Ke1,∗ and Kuo-Hsiung Wang2 
1National Taichung Institute of  Technology, Department of  Statistics No. 129, Sec. 3, Sanmin Rd., Taichung 404, Taiwan, 

Republic of  China 

2Department of  Applied Mathematics, National Chung-Hsing University, Taichung 402, Taiwan, Republic of  China 

Received January 2005; Accepted October 2005 

 

 
AbstractAn embedded Markov chain is used to analyze a G/M/1 queuing system with N policy. When the system is 
empty, the server remains idle (deactivates) and does not start serving the waiting customers in the queue until the number 
of  arrivals reaches N. The service is performed in batches of  min(n, N) if  there are n customers waiting at the completion 
of  service. Service times of  the server depend on the batch sizes. We utilize the matrix-geometric method in the solution 
procedure and solve the stationary probabilities of  the number of  customers in the system by means of  simultaneous linear 
equations. We further obtain a number of  explicit and computationally tractable results such as mean queue length and 
mean waiting time in the queue. A numerical example illustrates the validation of  the solution procedure. 
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1. INTRODUCTION 

The N policy applied to queueing system was originally 
considered by Yadin and Naor (1963). The N policy 
M/G/1 queueing system was first studied by Heyman 
(1968) and was investigated by several researchers such as 
Bell (1971, 1972), Kimura (1981), Tijms (1986), Teghem 
(1987), Gakis et al. (1995), Wang and Ke (2000), and others. 
Recently, Wang and Yen (2003) derived the analytical 
steady-state results for the N policy M/Hk/1 queueing 
system. 

A general bulk-service queue was first introduced by 
Neuts (1967). He considered an ordinary M/G[a,b]/1 queue 
with bulk-service. The bulk-service rule is applied as 
follows; let there be n customers waiting at the completion 
of  a service. If  ≤ <0 n a , a group of  size n gets service 
and if  n > b, a group of  size b is served. Neuts (1979) 
examined model by Neuts (1967) deriving queue length 
distribution. Curry and Feldman (1985) treated a 
bulk-service M/M[a,b]/1 queue with service rate depending 
on its service bulk size. They derived the distribution of  
the number of  customers in service as well as in the queue 
through the matrix geometric solution procedure by Neuts 
(1981). Two good references on the subject are the books 
of  Chaudhry and Templeton (1984) and Medhi (1984). 
Recently, Laxmi and Gupta (1999) investigated finite-buffer 
bulk-service G/M[1,b]/1 queueing system using the 
supplementary variable technique. Baba (1996) used matrix 
geometric solution procedure to study the ordinary 

G/M[1,b]/1 queueing system with bulk-service rule and 
service rate depending on its service size.  

In this paper we study a bulk-service G/M/1 queueing 
system, in which the server operates N policy and service 
rates depending on his service bulk size. The results are 
more general than those of  Baba (1996). The arrivals occur 
according to a renewal process with interarrival time 
distribution A(t) of  finite mean 1/λ and Laplace-Stieltjes 
transform (LST) A*(s). The successive interarrival time 
random variables are denoted by A. The server deactivates 
whenever the system is empty. As soon as there are N 
customers queued in the system, the server reactivates to 
begin serving the waiting customers until the system is 
empty. Customers are served in batches, the sizes of  which 
are not greater than N (i.e., the server can serve in batches 
of  min(n, N) at a time) and they are taken to services in the 
same order as they arrives. Service times depend on the 
batch sizes. The service times of  successive batches are 
mutually independent. The distribution function of  service 
time Hj of  a batch size j ≤ ≤(1 )j N  follows an 
exponential distribution with mean 1/ jµ . Further assume 
that i kµ µ≠  when i k≠ .  

As a practical application fitting our general model is the 
following produce to order system for a product which 
based on the work of  Zhang et al. (2001). Assume that the 
interarrival times of  production orders follow a general 
distribution. It is desirable that the production begins 
whenever the number of  orders reaches a critical value N 
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(the minimum set-up lot size satisfied benefit). In other 
words, if  the number of  orders is less than N the 
production waits until the accumulated orders are reached 
N. The management policy is to set up the facility and 
begins production when there are N orders in the queue. 
Arriving production orders form a single waiting line at the 
facility based on the order of  their arrival. When n orders 
present in the queue after beginning production, the facility 
processes min(n, N) orders at a time, which its production 
(processing) time follows an exponential distribution with 
rate nµ . Whenever the production ends and no orders 
arrive, the production facility is shut down (turned off). 
The tuned-off  period of  the facility may be referred to 
machine maintenances and other secondary works. 
Another interesting examples of  bulk service can be found 
in the operation of  an unscheduled car ferry or a single 
ground floor station of  an elevator, or the control of  a 
traffic flow (Neuts, 1967).  

The purpose of  this paper is threefold. The first is to 
show the queue size and the service batch size at points of  
arrivals form an embedded Markov chain. The second is to 
present the matrix geometric form for the steady-state 
probabilities of  this Markov chain. The third is to develop 
explicit analytic expressions for the steady-state queue 
length distribution at points of  arrivals as well as the LST 
of  the stationary waiting time distribution of  an arbitrary 
customer. 

 
2. EMBEDDED MARKOV CHAIN 

We consider a N policy G/M/1 queueing system with 
service rates depending on its service batch size. Suppose 
that rI  denotes the queue length immediately prior to the 
r-th arrival and Lr the number of  customers in service 
immediately prior to the r-th arrivals, respectively. Further, 
suppose that τ r  denotes the time between −( 1)r st and 
r-th arrivals. For convenience, we choose the time origin at 
an epoch of  arrival and set τ =0 0 . Then, it is easily seen 
that the sequences τ, : ≤ <{( ) 0 }r rI r N  and 

τ, , : ≤{( ) 0 }r r rI L r  are two Markovian renewal sequences 
on the state spaces {( ) 0  0}i t i N t, : ≤ < , ≥  and 
{(   ) 0  1 0}i t i N t, , : ≤ , ≤ ≤ , ≥l l , respectively. 

Because the service time have memoryless property, we 
have  
 

µ µ
∞ − ∗≡ > = = ,∫0

Pr[ ] ( ) ( )j t
j j ja H A e dA t A       (1) 

 
where µ∗( )jA  besides being the LST of  the interarrival 
time, also represents the probability that a service is longer 
than an interarrival.  

Let , ,li jb ( 1,  2,  ,  ; 0,  1,  ; 1,  2,  ,i N j= = =K l K K  
)N  be the probability that when the customers of  batch 

size j are served immediately prior to an arrival, the service 
of  batch size j finishes, the service of  batch size N finishes 
l  times and the customers of  batch size i are served 
immediately prior to next arrival. It follows from 
APPENDIX A that we have 
Case 1: = =i j N ,  
 

µµ∞ −
, − , = , ≥

!∫
l

l l
l

1 0

( )
( ) for 1N tN

N N
t

b e dA t          (2) 

 
Case 2: ≤ ≤ −1 1i N  and =j N ,  
 

µ µµ
µ

∞ − − −
, , = ,

!
≥

∫ ∫
l

l
l

l

( )

0 0

( )
( )

for 0

i N
t t x xN

i N N
x

b dA t e e dx        (3) 

 
Case 3: ≤ ≤ −1 1j N  and =i N ,  
 

µ µµ
µ

∞ − − −
, , = ,

!
≥

∫ ∫
l

l
l

l

( )

0 0

( )
( )

for 0

j N
t t x xN

N j j
x

b dA t e e dx        (4) 

 
Case 4: ≤ = ≤ −1 1i j N ,  
 

0 0
( )  for 0i t

i i ib te dA tµµ
∞ −

, , = , =∫ l                 (5) 

 
µ µ µµ

µ µ
−

∞ − −= − ,
− !

≥

∫ ∫
l

l
l

l

1
( )

, , 0 0

( )
( ) ( )

( 1) 
for 1

i i N
tt xN

i i i N
x

b e dA t t x e dx
(6) 

 
Case 5: ≤ ≠ ≤ −1 1i j N ,  
 

µ µµ
∞ − − −

, , = , =∫ ∫ l( )
0 0 0

( ) for 0j i
t x t x

i j jb dA t e e dx       (7) 

 
1

0 0
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0

( )
( )
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j i

t xN
i j N

t x y t x y
j

x
b dA t e dx

e e dy

µ

µ µ

µ
µ

µ

−
∞ −

, ,

− − − − −

=
− !

× , ≥

∫ ∫

∫

l

l
l

l

      (8) 

 
Equation (2) to (8) can be calculated using a readily 
computable form. For example, (5) is equivalent to  
 

(1)
0 ( )i i i ib Aµ µ∗

, , = − .  
 

The transition probability matrix %P  of  the embedded 
Markov chain , ≥ ∪ , , ≥{ 0} {( ) 0}r r rI r I L r , displayed for 

= 3N , is then of  the form as 
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We see that, in general, for the present model, the square 
matrices are given 
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where A is a N×N square matrix with ( )i ia A µ∗=  

≤ ≤(1 ),i N (1  0)iB i N≤ ≤ , ≥l l are N×N square 
matrices with nonzero elements only in the ith column, 

1 2 3( ) ,t
i i i i i Nb b b b b, , , , , , , , ,= , , , ,l l l l lL  the appropriate 

dimensional column vectors kc  are determined to satisfy 
that each row sum of  %P  is equal to unity and they are 
assumed to zero in blank of  matrices. Furthermore, let 

(1,  0,  0,  ,  0)=1 K  be a N-dimensional row vector and  
 

µµ µ
α µ

−
∞ ∗−

= =
! !∫ ( )

0

( ) ( )
( ) ( ).

N tn n
nN N

n N
t e

dA t A
n n

      (9) 

 

Using the results of  Neuts (1981), it is trivial to obtain 
the equilibrium condition ρ λ µ= / <( ) 1NN . In this case, 
the Markov chain represented by the transition matrix %P  
is positive recurrent.  

Let q = (p0, p1, …, pN-1, q1, q2, …, qN-1, qN, qN+1, …) be 
the steady-state probability vector of  %P . That is, q is the 
solution to P =q q% , qe = 1. Note that ip  (i = 0, 1, 2, …, 
N－1) are the steady-state probabilities corresponding to 
state i when the server is idle, and the vectors of  order N, 

( 1  2  )i i = , ,q L , are the steady-state probability vectors 
corresponding to the states {( 1)   ( )}i i N, , , ,L  when the 
server is working. qi is partitioned as qi = 

1 2(   ...  )i i i Nq q q, , ,, , , .  
Applying the results of  Neuts (1981) and Baba (1996), 

when λ µ< NN , we have  
 

,  for , 1, 2, ,n N
n Nq q R n N N N−= = + + L          (10) 

 
where the sub rate matrix R is now the minimal 
nonnegative solution to the equation  
 

∞

, −
=

= + ∑ 1
1

,nN
N n

n

R A R B                       (11) 

 
where  
 

1 1

2 2

3 3

4 4

2 2

1 1

,

N N

N N
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a r
a r

R

a r
a r
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− −

− −

 
 
 
 
 
 =  
 
 
 
  
 

O M
  (12) 
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with Nr  being the unique real root between 0 and 1 of  
the equation  
 

( (1 )),N
Nz A zµ∗= −  

 
and  
 

( ) [ ( ) ][ ( (1 ( ) ))

      ( )] [ ( ) ][ ( )

      ( (1 )) ( (1 ( ) ))].

N N
i i i i N N i

N
i i N N i i N

N N
N N N i

r A A r A A

A A A r

A r A A

µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

= − −

− ÷ − + −

+ − − −

 

 
The derivations of  ir  can be referred to Baba (1996). 
 
3. STATIONARY QUEUE LENGTH AT ARRIVAL 

In this section, we derive explicit expressions for the 
steady-state probability vector q  of  %P . There are a 
number of  obvious simplifications, which the particular 
structure of  %P  induces into the computation of  the 
vector 0 1 1 1 2(        )N Np p p −, , , , , , ,q q qL L , which is given 
by the system of  linear equations  

 
1 2 1  ,Np p p −= = =L                         (13) 
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0
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α, − − ,= + , ≤ ≤1 0 1 1 1  for 2k N k kq p q a k N            (17) 
 

, − ,= , ≤ ≤ ≤ ≤ −1  for 2 and 2 1  k i k i iq q a k N i N     (18) 
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It is to be noted that  
 

,0 ,0,1 ,0,2 ,0,3 ,0,( ,  ,  ,  ,  ),   for
1,  2,  ,  1,

i i i i i Nb b b b b
i N

=

= −

K

K
         (20) 

 

where  
 

*(1)

0 * *

( )   ,

[ ( ) - ( )]   .
-

i i

i l l
i l

l i

A i l
b

A A i l

µ µ
µ

µ µ
µ µ
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 − =
=  ≠


 

 
Let e be the N dimensional column vectors with all 

elements equal to one and I be the identity matrix of  order 
N. Using the normalizing equation, it finally yields 

  
−

−

=

+ + + − = .∑
1

1
0 1

1

( ) 1
N

n N
n

p Np Rq e q I e             (21) 

 
Since the sub rate matrix R is completely determined in (12) 
and (13)-(21) form a system of  simultaneous linear 
equations with × +( ) 1N N , we can solve these equations 
if  we can calculate  
 

1
1 2

0

( )

1  2   

t nN i
i i i i N N n

n

R b

i N

ϕ ϕ ϕ ϕ
∞

+ −
, , , ,

=
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         (22a) 

 

1 2 1
0

( )

1  2   .

t nN i
i i i i N i n

n

R b
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φ φ φ φ
∞

+
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          (22b) 

 
First, we calculate ϕi . For notational convenience, we 

denote µ µ∗ ∗=( ) [ ( )]m m
k kA A , ∗ =(1) *( ) ( )/A s dA s ds  

and ( )m
kr  the ,( )k N  element of  mR .  

(i) For ≤ ≤1 i N  and ≤ ≤ −1 1j N , using (2) and (4), 
the calculations of  ϕ ,i j  are given by  

 
1 ( 1)

0
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n
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(ii) For ≤ ≤1 i N  and j = N, from (2), the calculations of  

ϕ ,i N  are as follows  
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Finally, we calculate φi .  

(i) For =i N  and ≤ ≤ −1 1j N , it follows from (2) and 
(4) that the calculations of  φ ,N j  are given by  
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(1)   ( )].NA µ∗+                               (25) 
 
(ii) For = =i j N , using (2), the calculations of  φ ,N N  

are given by  
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(iii) For ≤ ≤ −1 1i N  and =j N , from (3), we have the 

calculations of  φ ,i N  as follows  
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(iv) For ≤ = ≤ −1 1i j N , since it follows from (3) and (6) 

that the calculations of  φ ,i i  are given by  
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µ µ
µ µ µ µ

µ

µ µ µ µ µ
µ µ µ µ µ µ

µ µ µ
µ µ µ µ

∗ ∗ ∗

∗ −
∗

∗

∗ ∗ ∗ ∗ ∗

∗

− ∗ ∗

∗

+ − + − 

− + +
−

− − −
× +

− + −

− −
− ×

− − +

(1)

2

   ( ( ) ) ( ) ( )

( )
    /[ ( ) ]

( )

[ (1 ( ) )] ( ) ( ) ( )
   [ ]

( )

[ (1 )] ( )
   [

( )

N
i N N i i i

i N
N i N i

i N N i
i N

N
N i i N i

N
i N N i N i
i N N

i N N N N i

i N i N

A A A

r A
A

A r

A A A A A
A

r r A r A
A r N

N Nr

( ) ( )
  ].N i

N i

A Aµ µ
µ µ

∗ ∗−
+

−
                        (28) 

 
(v) For ≤ ≠ ≤ −1 1i j N , using (3) and (8), the 

calculations of  φ ,i j  are given by  
 
φ ,i j  

( )
1 1

0

[ ]nN i nN i
j i n j j i n N

n

a b r b
∞

+ +
, + , , + ,

=

= +∑

0 0
0

( ) 1

0 0
1

1
( )

0

( )
[ ( )

    ( )

( )
   ]
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N

j i

N i

nt xnN i N
j N

n
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j j j N
k

nt x t xN
N

x
a dA t e dx

n

e e dy r a r dA t

x
e e dx

n

µ

µ µ

µ µ

µ
µ

µ

µ
µ

∞ ∞ −+

=

+− ∞− − − − + − −

=

+
− − −

=
!

× +

×
+ !

∑ ∫ ∫

∑∫ ∫

∫
( ) [ ( ( ) ) ( )]

( )
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( )( ( ) )

( ) ( ) [ (1 ( ) )]
  [ ]
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i N N
j j i N j i

j i

i N
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N
j i j i N j

i N N
j N j i N j

N
j N N i N j

A A A A

A A A A
A

r A A A A
A r A
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µ µ

µ µ µ µ µ µ µ
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∗ ∗ ∗ ∗

∗

∗ − ∗ ∗ ∗
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=

−

− −
−
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+
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( ) [ (1 )]
  [ ].
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N
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− ∗ ∗

∗
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+

− − −
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From (23)-(29), we can easily calculate ϕi  and φi  



Ke and Wang: A General Input Queue with N Policy and Service Rate Depending on Bulk Size 
IJOR Vol. 3, No. 1, 7−15 (2006) 
 

12 

( 1  2   )i N= , , ,L  by using the LST of  the interarrival 
distribution, θ∗( )A , and its first derivative, θ∗(1)( )A , the 
service rate µi  and the sub rate matrix R. Calculating 

,lib  in (20), and αn  in (9), and ϕ ,i j  and φ ,i j  in 
(23)-(29), the steady-state probability distribution at points 
of  arrivals can be determined by means of  solving a linear 
system of  equations (14)-(19) and (21). 

4. SYSTEM CHARACTERISTICS 

In this section, we develop the steady-state 
characteristics of  this system, such as mean queue length, 
the expected waiting time in the queue, and so on.  

 
Mean queue length 

Let L0 be the steady-state queue length at points of  
arrivals while the server is turned off. From (13), we have  
 

1

0
0

[ ] .
N

n
n

E L np
−

=

= ∑                              (30) 

 
Let Lw be the steady-state queue length at points of  arrivals 
while the server is working and ( )G z  be its generating 
function. Using ( 1,  2,  )n n =q K  and R, ( )G z  is 
expressed as  

1

1

1 0

1
1

1

( )

( ) .

n
n

n
N

n n N n
n N

n n
N

n N
n N

n

G z z

z R z

z z Rz

∞

=

− ∞
+

= =

−
−

=

=

= +

= + −

∑

∑ ∑

∑

q e

q e q e

q e q I e

              (31) 

 
The mean of  Lw is given by  
 

1

1
2 1

1

( )
[ ]

( ) ( ) .

w z

N

n N N
n

dG zE L
dz

n R R N R

=

−
− −

=

=

= + − + −∑ q e q I e q I e
  (32) 

 
Let LS be the mean queue length for the N policy 

G/M/1 queue system with bulk-services depending its 
service size. Using (30) and (32), it finally yields  

 
1 1

2

0 1
1

[ ] ( )

             ( ) ,

N N

s n n N
n n

N

E L np n R R

N R

− −
−

= =

−

= + + −

+ −

∑ ∑ q e q I e

q I e
         (33) 

 
where p0 and ( 1  2   )n n N= , , ,q L are obtained through 
solving linear equations of  (13)-(19) and (21).  
 
Waiting Time Distribution 

Let W  and ∗( )W s  denote the steady-state waiting 
time and its LST, respectively.  

If  upon arrival a customer finds that the server is idle, 
then the test customer needs to wait queue length of  

− 1N . Further if  upon arrival a customer finds that the 
number of  waiting customers is iN j+ ( 0i ≥ ,  
0 1)j N≤ ≤ −  and the number in service is k then the 
conditional waiting time has LST as  

 

( ) .ik N

k Ns s
µ µ

µ µ+ +
 

 
Hence ∗( )W s  is given by  
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∑ ∑

∑ ∑

1 1
1

0 0 0 1

1 1
1

0 0 0

1 1
1

0 0

1
( 1)

1 0

( ) [ ( )]
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N N
N n

n j
n j

N
i N j iN
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s
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s
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−
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1 1

1
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1
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   ( )( ) ( )

N N
N n
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N NN N
N

N N

p A s s
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s s
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q I I

  

1               ( ) ( ),R s−× −I u                       (34) 
 
where  
 

µ µ µ µ µ µ= + , + , , +L1 1 2 2( ) ( /( ) /( ) /( ))t
N Ns s s su and 

−= , , ,K0 0 1 1( )Np p pq .  
 

Differentiating (34) once and inserting = 0s , we have  
 
[ ]E W  

λ µ

− −
−

= =

− −
= + + −∑ ∑

1 1
1

1
0 0

( 1) 1[ ( )
N N

N N
n j N

n j N

N n p R Rq u q I  

1 1 1
1

1
   ( ) ( ) ( ) ],

N

R R R
µ

− − −× − + − + −I e I u I e        (35) 

 
where 
 

1
1 2

1 1 1
( ) .t

Nµ µ µ
= , , ,u L  

 
5. NUMERICAL EXAMPLE 

As an example, suppose = 2N , λ = .0 8 , µ = .1 1 0 , 
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µ = .2 2 0 , and µ = .3 3 0 .  
From the definition of  ja  in (1) and (9), we get  
 

λ λ
λ µ λ µ

λ λ
α

λ µ λ µ

λµ λµ
α α

λ µ λ µ

= = . , = = . ,
+ +

= = . , = = . ,
+ +

= = . , = = . .
+ +

1 2
1 2

3 0
3 3

2
3 3

1 22 3
3 3

0 44444 0 28571

0 21053  0 21053

0 1662  0 13121
( ) ( )

a a

a  

 
From (12), we have = .0 21212z , = .1 0 011744r , 

= .2 0 003691r  and then the sub matrix is given by 
 

. . 
 = . . . 
 . 

0 44444 0 0 011744
0 0 28571 0 003691
0 0 0 21212

R  

 
From (23) and (29), we obtain  
 
ϕ ϕ ϕ, , ,= . , = . , = . ,1 1 1 2 1 30 12623 0 15329 0 16747  
ϕ ϕ ϕ, , ,= . , = . , = . ,2 1 2 2 2 30 058069 0 04415 0 035523  
ϕ ϕ ϕ, , ,= . , = . , = . ,3 1 3 2 3 30 026226 0 012821 0 0075352  
φ φ φ, , ,= . , = . , = . ,1 1 1 2 1 30 096782 0 745 0 059205  
φ φ φ, , ,= . , = . , = . ,2 1 2 2 2 30 10747 0 047588 0 0080734  
φ φ φ, , ,= . , = . , = . .3 1 3 2 3 30 24155 0 15487 0 0012619  
 
From (20), we have 1 0b , (0 24691  0 31746  0 35088)= . , . , .  
and 2 0 (0 15873  0 20408  0 22556).b , = . , . , .  Thus, it finally 
follows from (14)-(19) and (21) yielding the following 
system of  simultaneous linear equations  
 

1 1 0 1 1 1 2 1 3

3 1 3 2 3 3

0 13121 0 24691 0 31746 0 35088
 0 096782 0 745 0 059205

q p q q q
q q q

, , , ,

, , ,

= . + . + . + .

+ . + . + . ,

1 2 2 1 2 2 2 3 3 1

3 2 3 3

0 15873 0 20408 0 22556 0 10747
 0 047588 0 0080734

q q q q q
q q

, , , , ,

, ,

= . + . + . + .

+ . + . ,

1 3 3 1 2 3 3 3

2 1 0 1 1

0 12623 0 15329 0 16747
0 1662 0 44444

q q q q
q p q

, , , ,

, ,

= . + . + . ,

= . + . ,

2 2 1 2

2 3 1 2 3 1 3 2 3 3

3 1 0 2 1

3 2 2 2

3 3 2 2 3 1 3 2 3 3

0 28571
0 21053 0 058069 0 044415 0 035523
0 21053 0 44444
0 28571
0 21053 0 026226 0 012821 0 0075352

q q
q q q q q
q p q
q q
q q q q q

, ,

, , , , ,

, ,

, ,

, , , , ,

= . ,

= . + . + . + . ,

= . + . ,

= . ,

= . + . + . + . ,

0 1 1 1 2 1 3 2 1 2 2 2 3

3 1 3 2 3 3

3
1 8268 1 4066 1 2692 1
p q q q q q q

q q q
, , , , , ,

, , ,

+ + + + + +

+ . + . + . = .
 

 
Solving the equations listed above yields 
 

= . = . = .0 1 20 224298,   0 224298,   0 224298,p p p     

, , ,= . = . = .1 1 1 2 1 30 065303,   0 022288,   0 010529,q q q     
, , ,= . = . = .2 1 2 2 2 30 066301,   0 006368,   0 009347,q q q   
, , ,= . = . = .3 1 3 2 3 30 076689,   0 001819,   and 0 003401.q q q   

 
It follows from (10) that we have the steady-state 

probabilities >( ).nq n N  Inserting (33) and (35), we obtain 
= .[ ] 1 492852sE L  and = .[ ] 2 651378E W .  

The above bulk-service M/M/1 system with N (=2) 
policy with dependent service rates is presented 
numerically to demonstrate the implement and efficiency 
of  the proposed procedure (Section 3). Once the matrix R 
has been constructed, we easily calculate the probability 
distributions at points of  arrivals by solving a linear system 
of  equations. This example is different from the ordinary 
M/Mr/1 queuing system (by Kleinrock (1975)) in that 
when the system is empty the server deactivates and does 
not provide a varying bulk-service rate until the number of  
customers reaches N. Kleinrocks’ results are obtained by 
solving the equation of  the r-th order. Note that when 
interarrival time is not exponential, the matrix geometric 
procedure yields an efficient computational method for 
obtaining the steady-state probabilities (see Neuts (1981)). 

 
6. CONCLUSIONS 

For the bulk service G/M/1 (or M/G/1) queuing 
systems with dependent service rate, the mathematical 
modeling is not easily tractable. Although embedded 
Markovian process is frequently used to model G/M/1 (or 
M/G/1) systems (see Neuts (1967), Baba (1996)), it should 
be noted that Neuts’ (1967) approach is unsuitable for 
computational purpose. In this paper, we study a variant 
bulk service G/M/1 queuing system with an N policy. We 
show that the queue size and the service batch size at 
points of  arrivals form an embedded Markov chain and the 
steady-state probabilities of  this Markov chain have the 
matrix geometric form. By the arguments of  Neuts (1981), 
the rate matrix R of  the matrix geometric solution 
procedure is derived in a readily computable form. We also 
obtain some explicit and computationally tractable results 
such as mean queue length and mean waiting time in the 
queue. Once R is obtained, we easily find the steady-state 
results. A variant M/M/1 example is demonstrated 
numerically to verify the validation of  the solution 
procedure.  

Bulk-service queuing models arise naturally in many 
applications. For example, transportation processes 
including buses, airplanes, etc., and industrial applications 
such as heat treatments and metal plating operations, all 
have a common feature of  bulk service. For efficient 
purposes, the control of  such system may have certain 
advantages in some practical applications. In future, the 
work can be generalized for other policies (such as T policy 
and D policy) or triadic policies (such as NT policy and 
ND policy). 
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APPENDIX A: THE DERIVATION OF , ,i jb l  

First, we let Tn denote the time between the (r－1)-st 
and the r-th customers. Since the interarrival times are 
assumed independent, the random variable Tn can be 
denoted by T, and we denote its CDF by A(t) (see Section 
1). 
Case 1:  For ,i j N= =  , 1,N Nb −l  is corresponding to the 

probability that l  services with rate Nµ  
progress during an interval time T. Then 

 
µµ∞ −

, − , = , ≥
!∫

l

l l
l

1 0

( )
( )  for 1N tN

N N
t

b e dA t  (A-1) 

 
Case 2: For 1 1i N≤ ≤ − and j N= , , ,i Nb l can obtained 

as follows; (see Chaudhry and Templeton, 1984)  
After the r-th customer arrives, a time X has 

elapsed when the service of  batch size N has 
been served 1+l  times with rate Nµ . This 
case when the time X has elapsed, departures 
from the system can refer to a Poisson process. 
The time X, then, is Erlang-distributed, being the 
sum of  1+l  exponential random variables with 

Nµ . Thus the p.d.f. of  X is given by 
 

( )
!

N xN N x
e µµ µ −

l

l
.                     (A-2) 

 
When the time required for the waiting customers 
of  batch size i to enter into service is less than the 
interarrival time, that is when X < T, then there is 
time T－X remaining to have the customers of  
batch size i will start their services. The probability 
that exactly i size of  batch will be served before 
time T－X expires is given by  

 
( )T Xie

µ− −

.                            (A-3) 
 

From (A-2) and (A-3), , ,i Nb l  is expressed as 
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( )

0 0

( )
( ) i N

t t x xN
i N N

x
b dA t e e dxµ µµ

µ
∞ − − −

, , = ,
!∫ ∫

l

l
l

 

for 0≥l                           (A-4) 
 

Case 3: For ≤ ≤ −1 1j N  and i = N, similar to the 
analysis for Case 2, N jb , ,l  is given by 

 
( )

0 0

( )
( ) j N

t t x xN
N j j

x
b dA t e e dxµ µµ

µ
∞ − − −

, , = ,
!∫ ∫

l

l
l

 

for 0≥l                           (A-5) 
 
Case 4: For ≤ = ≤ −1 1i j N ,  

(1). Consider 0=l  case, ,0,i ib = Pro[the 
service of  batch size i during the period T] is 
given by 

 
µµ

∞ −
, , = , =∫ l0 0

( ) for 0i t
i i ib te dA t    (A-6) 

 
(2). Consider 0≠l  case, , ,i ib l  is derived from 

the following: After the r-th customer arrives, 
a time X has elapsed when the service of  
batch size N has been served l  times with 
rate Nµ . Similar to the analysis Case 2, we 
get p.d.f. of  X is given by 

 
1( )

( 1)!
N xN N x

e µµ µ −
−

−

l

l
.                (A-7) 

 
The time is again elapsed Y when the service 
of  batch size i has been processed. Similar 
arguments, we have  

 
i y

i e
µµ − .                         (A-8) 

 
In contrast, the probability that exactly i size 
of  batch will be served before time T－X－Y 
expires is given by  

 
( )T X Yie µ − −− .                       (A-9) 

 
From (A-7) - (A-9), , ,i ib l  is expressed as 

 
i ib , ,l  

1

0 0

( )

0

1

0 0

( )
( )

( 1)

   

( )
( ) ( )

( 1)

N

i i

i

t xN
N

t x y t x y
i

tt N
i N

x
dA t e dx

e e dy

x
e dA t t x

µ

µ µ

µ

µ
µ

µ

µ
µ µ

−∞ −

− − − − −

−∞ −

=
− !

×

= −
− !

∫ ∫

∫

∫ ∫

l

l

l

l

 

( )     for 1i N xe dxµ µ−× , ≥l         (A-10) 
 

Case 5: For 1 1i j N≤ ≠ ≤ − , , ,i ib l  is obtained by the 
same procedure as Case 4. 

 
APPENDIX B: EQUATION (13) IS DERIVED BY 
SUPPLEMENTARY VARIABLE TECHNIQUE  

The state of  the system at time t is given by 
≡( )X t number of  customers in the system, and  
≡( )V t remaining interarrival time for the customer who 

is arriving.  
Let us define  
 

( , ) Pr{ ( ) ,  ( ) },  0,  
0,  1,  2,  ...,  1

np v t dv X t n v V t v dv v
n N

= = < ≤ + ≥
= −

 

 
, ( , ) Pr{ ( ) ,  ( ) },  0,

1,  2,  ...,  ,  1, 2, ... .
i nq v t dv X t n v V t v dv v

n N i
= = < ≤ + ≥

= = ∞
 

 
Relating the state of  the system at time t and t+dt, we easily 
set up the following partial differential equations for server 
idle as follows 

 

0 1 1,1 2 1,2

1,

( ) ( , ) ( , ) ( , )

( , ),N N

p v t q v t q v t
t v

q v t

µ µ

µ

∂ ∂
− = + +

∂ ∂
+

L
     (B-1) 

 

1( ) ( , ) ( ) (0; ),

1 1

n n
dp v t A v p t

t v dv
n N

−

∂ ∂
− =

∂ ∂
≤ ≤ −

.            (B-2) 

 
In steady-state, (B-1) and (B-2) becomes  

 

µ µ µ− = + + +L0 1 1,1 2 1,2 1,( ) ( ) ( ) ( )N N
d p v q v q v q v
dv

,  (B-3) 

1( ) ( ) (0),   1 1n n
d dp v A v p n N
dv dv −− = ≤ ≤ − .       (B-4) 

 
We introduce the following Laplace-Stieltjes transforms: 
 

*

0
( ) ( )v

n np e p v dvθθ
∞ −= ∫ ,  

*

0
(0) ( )n n np p p v dv

∞
= = ∫ . 

 
Similar to the analysis by Ke and Wang (2002), It follows 
from (B-4) that  
 

1 2 1 ... Np p p −= = =                          (B-5) 
 

Note that the partial differential equations for server 
busy are constructed in this manner. In this case, their 
solution is not easily tractable. Thus, this paper develops 
the queue size distribution using embedded Markov chain.  
 


