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AbstractPortfolio optimization is an important research field in modern finance. The most important characteristic 
within this optimization problem is the risk of  the returns. In this paper, a non-linear stochastic optimization algorithm 
named Stochastic Portfolio Genetic Algorithm (SPGA) is proposed to determine a profitable portfolio selection planning 
plan under risk. The algorithm improves a conventional two-stage stochastic programming by integrating a genetic 
algorithm into a stochastic sampling procedure to solve this large-scale portfolio selection optimization. The tradeoff  
between returns and risks is evaluated under different settings of  algorithmic and hedging parameters. Finally, the historical 
data from Taiwan Stock Exchange are used to evaluate SPGA’s performance. Results show that a practical problem can be 
efficiently solved and the expected return of  SPGA outperforms the one in the market. 
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1. INTRODUCTION 

Stochastic portfolio selection deals with the problem of  
how to find an optimal portfolio under uncertain demands. 
Originally proposed by Markowitz (1952), the 
mean-variance theory for the portfolio selection problem 
has served as a basis for modern financial theory 
development during the past decades. Efforts in revising, 
extending and improving this model have led to a large 
number research outputs in the forms of  textbooks, 
monographs, and journal papers (Kato and Shillheim, 1985; 
Konno and Wijayanayake, 1999). They have helped 
investment agents to measure risk and develop economic 
strategies. 

In general, investors always aim for the highest return on 
investment and the least risk. However, in most cases the 
complexity of  calculation is too great. For practical 
purposes, it may be desirable to limit the complexity of  the 
algorithm, and transform the risk function from covariance 
into mean absolute deviation (MAD). Konno and 
Yamazaki (1991) proposed a well-known MAD model to 
solve a large-scale portfolio optimization problem, and 
modified the MAD models according to the characteristics 
of  stochastic portfolio selection problem. 

In terms of  stochastic returns, most of  the related 
studies use the scenario optimization technique only. 
However, the technique cannot precisely reflect the 
situations of  continuous distribution in real returns and 

other scenarios. This paper presents a modified algorithm 
for portfolio selection under uncertainty.  The algorithm 
is a revision of  an existing algorithm that combines both 
stochastic sampling procedure and systematic search. The 
core concept of  the proposed algorithm is that the 
stochastic return of  each sampling asset is based on 
random variables in the historical data (from 1995Q1 to 
2003Q3). The resulting portfolio is optimal when 
convergence is achieved in the sampling procedure. The 
proposed algorithm is then evaluated by comparing the 
results from the Taiwan Stock Exchange (TAIEX) market 
in the forthcoming return (2003Q4 to 2004Q3). 

The rest of  this paper is organized as follows. In section 
2, the modified MAD model and two-stage stochastic 
program are reviewed. The stochastic portfolio genetic 
algorithm (SPGA) and corresponding procedure for the 
nonlinear stochastic optimization portfolio problem are 
designed in section 3. In section 4, the algorithm is shown 
to converge quickly to a near optimal solution. Comparing 
to the results in TAIEX, the proposed algorithm 
outperforms the expected returns in the market. Section 5 
is the conclusions and suggestions for further studies. 

 
2. REVIEW OF MODIFIED MAD MODEL AND 

TWO-STAGE STOCHASTIC PROGRAM 

In this section, the mean absolute deviation (MAD) 
model and two-stage stochastic program are reviewed. 
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Finally the conventional concept of  two-stage stochastic 
program is explained. 
 
2.1 Mean absolute deviation model 

In the portfolio selection model proposed by Markowitz 
(1952), statistic mean and variance are used to represent 
the expected return and risk of  the portfolio. Let xi be the 
proportion invested in stock i (i = 1, …, k), where 
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= 1∑ . S= (x1, x2, …, xk) is called a portfolio. The 

random variable Pi denotes the return on stock j. The 
expected return ps  and the risk σs  of  portfolio ζ are 
given by mean and variance of Pj. respectively. 
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where ijσ  is covariance representing the expected risk of  
returns on stock i and j. The mean-variance model can then 
be formulated as follows: 
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where (0 1)λ λ≤ ≤  is the tradeoff  factor between return 
and risk. For instance, when λ = 0, the investor prefers the 
highest returns without considering the risk of  investment. 
Conversely, when λ = 1, the investor is very conscious of  
the risk of  investment while paying no attention returns. 

In order to simplify the complexity of  calculation and 
information requirement of  covariance, Konno and 
Yamazaki (1991) introduced the MAD model to transform 
the risk function from covariance into MAD. The term 

σ
= =
∑∑

1 1

k k
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i j

x x  in the mean-variance model can be 

replaced by MAD. The risk of  a scenario (sample set) is 
defined as 
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where ip  is the expected return. 
Therefore, the objective function of  MAD model can be 

reformulated as  
 

1

(1 ) (| | )
k k

i i i i i
i i

p x p p x
k
λ

=1 =

 
− λ − − 

 
∑ ∑  

 
However, transaction cost is another important factor 

for an investor to take into consideration in portfolio 
selection. Chang et al. (2002) considered the transaction 
cost of  the investor. The modified multiple periods (N 
period) model for portfolio selection, called the modified 
MAD model, can be formulated as  
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where ai and bi are the lower bound and upper bound on 
the proportion of  stock, respectively. ri is the transaction 
cost of  stock i. 
 
2.2 Two-stage stochastic program 

Solving approaches of  portfolio selection optimization 
can be roughly divided into two categories: mathematical 
programming and soft-computing methods. Two-stage 
stochastic program as typical forms of  the exact methods 
are used to model stochastic portfolio selection problems. 

The two-stage stochastic program mentioned originally 
by Higle and Sen (1996) has been justified to represent a 
stochastic model with randomness in sampling effectively. 
The purpose of  the decomposition procedure applied in 
two-stage program is to approximate the expected 

( )ηMAD T  generated by T cutting planes where each 
cutting plane is obtained by a scenario realization. For the 
first T realizations, ( )ηT x is the point estimate of  MAD 
under first T scenarios, the model is solved as  
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The corresponding “optimal solution” under first T 

scenarios (sample sets), denoted by xT, will review whether 
T+1th cutting plan is necessary through sampling for the 
next estimated η +1MAD T . It can be shown that xT, as 
T → ∞ , will converge to the optimal portfolio. The 
decomposition procedure applied in the two-stage program 
approximates the expected risk generated by cutting planes 
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where each cutting plane is obtained by a return realization 
(Chang et al., 2002). The original decomposition procedure 
of  the two-stage sampling-based stochastic program is 
shown in Figure 1. 

 

 
Figure 1. Basic steps of  two-stage stochastic program. 

 
To design a proper solution method for the addressed 

problem, one must consider the trade-off  between solution 
efficiency and quality. Soft computing methods have 
rapidly emerged to solve the portfolio selection problem. 
As compared with simulated annealing and tabu search, 
genetic algorithm is the most popular one in solving the 
problem. Holland (1975) first proposed a simple genetic 
algorithm. Certain concerns exist regarding when a genetic 
algorithm (GA) methodology should be used, including the 
representation of  a chromosome structure, initial 
population, population size, selection probabilities, genetic 
operators, and termination conditions. A fitness function is 
then used to screen for good chromosomes. The survey of  
a genetic algorithm can be found in numerous studies (e.g., 
Goldberg, 1989; Mitsuo and Runwei, 2000). With respect 
to tradeoffs between the risk and return, several scholars 
proposed heuristic methods for solving stochastic 
optimization portfolio problems using genetic algorithm 
(e.g., as Xia et al., 2000; Xia et al., 2001; Chang et al., 2000 
and Ehrgott et al., 2004). 

In summary, most of  the above studies dealing with 
stochastic optimization portfolio problems are based on 
the probability of  occurrence and scenario optimization. 
However, when potential scenarios are numerous or of  
continuous distributions, a sampling-based stochastic 
programming has higher precision than a scenarios-based 
one. Furthermore, the sampling-based approach can 
conduct plan dynamically by continuously updating 
information. Although soft-computing-based methods can 
solve the portfolio selection problem more efficiently, 
much computational effort is needed due to poor 
algorithm design. 

 

3. STOCHASTIC PORTFOLIO GENETIC 
ALGORITHM (SPGA) 

Genetic algorithm is a systematic search method for 
optimization problem based on the mechanics of  natural 
selection and natural evolution. In this section, the 
proposed stochastic portfolio genetic algorithm (SPGA) 
extends conventional stochastic programming and uses the 
concept of  two-stage stochastic programming to solve the 
modified MAD model. The SPGA for deriving an optimal 
portfolio is composed of  three components: the structure 
of  chromosomes, the sampling procedure for stochastic 
return and the operators of  genetic algorithm. 
 
3.1 Design of  chromosome structure in SPGA 

Chromosome structure is crucial to solving the optimal 
simultaneous resource portfolio planning problem when 
using GA. Each valid chromosome represents a unique 
solution to the problem given a set of  returns. The 
chromosome of  SPGA, as shown in Figure 2, is composed 
of  all decision variables. Given a set of  decision variables, 
each valid gene xi represents a proportion of  the 
investment in stock i. 
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x2 … xk 

Figure 2. Structure of  chromosome. 
 

In the initialization, a set of  chromosomes with each 
component has a value within the domain of  xi 

( ≤ ≤i i ia x b ). Note that the values of  chromosome genes 
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According to the stochastic returns, the evaluation 
procedure of  fitness is applied to calculate the objective 
values. A suitable portfolio to fit T scenarios (sample set) is 
found to determine the expected returns. The fitness 
function of  SPGA may unsettle initially due to small 
scenario, but will converge to a steady state as the size of  
sample increases. In the evaluation and design of  
chromosome, we ensure that SPGA will handle sampling 
procedure and respond to the stochastic return. 
 
3.2 Sampling procedure for stochastic return 

In order to reduce the search effort of  the two-stage 
program in real nonlinear stochastic portfolio problems, 
SPGA performs the search systematically. That is, in each 
sample, SPGA finds a suitable portfolio for all realized 
scenarios under an uncertain environment through “finite 
solutions” with perspicacity. The stochastic search 
procedure is explained as follows: 

For each sample of  the realized return set (1, 2, …, T), a 
total of  ×i N  random variables of  Pin (a realized return 
of  stock i in period n) represent the realization of  the 
returns scenario. The objective value of  a portfolio S = (x1, 
x2, …, xk) is evaluated when computing the expected 
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returns of  all scenarios (i.e., the fitness). Usually, the 
chromosome with higher fitness for all sampled scenarios 
has more chance to produce offspring by using roulette 
wheel selection. Following selection, crossover and 
mutation, the new population is ready for evaluation as 
new generation. 

The sampling procedure will be triggered after Y 
generations. SPGA generates the next scenario, T+1, to 
realize the stochastic return of  nth period in ith stocks. On 
the ground, the new objective function is derived to 
calculate the fitness of  chromosome. 

It is reasonable for the same portfolio to produce a 
different fitness value due to the increased scenario in 
different generation. Although the initially achieved 
portfolio is still not optimal (due to an instable objective 
function and insufficient sample), SPGA can guide the 
search along the direction to derive a suitable portfolio for 
all scenarios. Finally, the results will converge as the size of  
samples increase. Thus, the optimal portfolio can be 
obtained. The procedure of  SPGA is summarized in 
Figure 3. 

 

 
Figure 3. Overview of  stochastic portfolio genetic 

algorithm. 
 

The pseudo-code of  SPGA is such that F(M) and S(T) 
in the SPGA are parents and offspring in the current 
generation M, respectively. 

 
Pseudo-Code: Stochastic Portfolio Genetic Algorithm 
(SPGA) 
Preliminary  

← 0M ; 
← 1 T ; //the number of  sample 

Initialize F(M) and realization Tst pin ; 
Evaluate F(M); 
While (not a termination condition) do 

If  (sampling condition is True) 
← + 1 T T  
realize T th pin  

end If 

Crossover: recombine F(M) to yield ′( ) S M ; 
Mutation: alter the values of  the genes of  F(M) to 

yield ′′( ) S M , and ( ) ( ) ( )S M S M S M′ ′′= + ; 
Evaluate the best solution of  S(M ) for all scenarios 

(1…T); 
Repair: repair the infeasible solutions S(M) 

(chromosomes) to be feasible solutions; 
Select +( 1) F M  from F(M) and S(M); 

← + 1 M M ; 
End 

Termination 
 

3.3 The operator of  SPGA 

The SPGA applies a uniform crossover (Chambers, 
1995), and a uniform mutation to diversify the 
chromosomes (Haupt and Haupt, 1998; Gen and Cheng, 
2000). Chromosomes are reproduced by roulette wheel 
method. The fitness is calculated using the objective 
function  
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of  the modified MAD model, where pin is a random 
variable obtained from the scenarios. SPGA is 
implemented by using C++ language. 

 
4. RESULTS 

In this section, computational results are demonstrated 
with 48 risky and one non-risky asset in the TAIEX. The 
historical data from 1995 Q1 to 2003 Q3 for these stocks 
are used to realize the returns. Furthermore, the 
performances of  portfolios are then evaluated in 2003 Q4 
to 2004 Q3. N is set to four to represent the four quarters 
under consideration. 

The effect of  different SPGA parameters on objective 
values is reported in Table 1. As can be seen, a low 
population, low crossover rate and low mutation rate 
design can obtain the highest objective value. Based on the 
results shown in Table 1, the best parameters are applied in 
the experiments of  model parameters. Figures 4 to 8 show 
the SPGA performances with respect to different risk 
factors, λ  = 0.00, 0.25, 0.50, 0.75 and 1.00 (note that a 
lower λ  represents an investor’s higher preference in 
return). A double P4 CPU 512 RAM personal computer is 
used; it took about 600 CPU-SEC for each run. Thus, the 
SPGA we developed outperforms the one in the market. 
To illustrate the convergence, consider the left of  those 
figures which show a continuous converge toward the 
steady-state in a short time. On the right-hand side, 
performances of  the portfolios are demonstrated from 
2003 Q4 to 2004 Q3. Worthy to mention, the portfolio 
obtained under risk factor λ  = 1.00 suggests that the 
investor should select the unique non-risky asset (displayed 
in Figure 8) 
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Table 1. Sensitivity experiments of  SPGA parameters to the expected maximal objective value 

Crossover Rate (0.95) Crossover Rate (0.75) 
SPGA Parameters Mutation Rate 

(0.10) 
Mutation Rate 

(0.03) 
Mutation Rate 

(0.10) 
Mutation Rate 

(0.03) 
CPU Time 
(300 sec.) 0.461642 0.442809 0.423245 0.513318 Population Size 

(30) CPU Time 
(600 sec.) 0.431952 0.488149 0.431807 0.522145 

CPU Time 
(300 sec.) 0.506313 0.463790 0.466505 0.525794 Population Size 

(60) CPU Time 
(600 sec.) 0.498577 0.482853 0.463684 0.514346 

Figure 4. Convergence and performance of  portfolios with 0.00.λ =  

 
Figure 5. Convergence and performance of  portfolios with 0.25.λ =  

 

Figure 6. Convergence and performance of  portfolios with 0.50.λ =  
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Figure 7. Convergence and performance of  portfolios with 0.75.λ =  

 
Figure 8. Convergence and performance of  portfolios with 1.00.λ =  

 
As λ  increases, the profitability also changes (as 

shown in Figures 4 to 8); a poor performance results if  the 
investment is considered to be without any risk (as shown 
in Figures 5 and 6). An analysis of  two-stage program and 
SPGA show that a portfolio using two-stage program 
causes an exponential computational complexity, while in 
SPGA, only a polynomial computational complexity is 
needed. The complexity analysis implies that the efficiency 
of  SPGA is better than that of  the two-stage program in 
practice. 

 
5. CONCLUSION 

In this article, an effective Stochastic Portfolio Genetic 
Algorithm is proposed for solving a non-linear stochastic 
portfolio optimization problem. Based on two-stage 
program, an algorithm is developed to support the 
sampling procedure for portfolio selection. To facilitate 
stochastic evaluation procedures, SPGA derives the 
solution applying a sampling procedure. As compared with 
the two-stage program with many what-if  analyses in a 
large-scale nonlinear stochastic optimization problem, this 
algorithm reduces the computational complexity. The 
convergence of  SPGA is also demonstrated using a real 

numerical example. The proposed algorithm can guide the 
search to derive a suitable portfolio for all sampled 
scenarios. Finally, the performance of  SPGA is investigated 
using historical data obtained from the Taiwan Stock 
Exchange. The results show that SPGA outperforms the 
procedures in the market. This algorithm is currently under 
investigation for its application to the other domains with 
similar uncertain environments. 
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