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AbstractIn this paper, we investigate the multiple attribute decision making (MADM) in uncertain linguistic setting 
where the information about attribute weights is incompletely known and the attribute values are uncertain linguistic 
variables, and the decision maker (DM) has preferences on alternatives. We establish two optimization models, which 
minimize deviations between the overall attribute values of  alternatives and the overall preference values. Based on these 
two models and a formula of  possibility degree for the comparison between uncertain linguistic variables, we propose a 
method for MADM with preference information on alternatives in uncertain linguistic setting. The method can sufficiently 
meet the DM’s requirements and can also be performed on computer easily. Finally, we apply the method to evaluate 
university faculty for tenure and promotion. 
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1. INTRODUCTION 

Multiple attribute decision making (MADM) with 
preference information on alternatives is an interesting 
research topic having received a great deal of  attention 
from researchers (Kruskal, 1964a, 1964b; Srinivasan and 
Shocker, 1973; Hwang and Yoon, 1981; Malakooti and 
Zhou, 1994; Xu, 2004a). Up to now, many methods have 
been proposed for dealing with the MADM problems with 
numerical preference information on alternatives, such as 
the multidimensional scaling method with ideal point 
(Kruskal, 1964a, 1964b), linear programming techniques 
for multidimensional analysis of  preference (Srinivasan and 
Shocker, 1973), interactive simple additive weighting 
method (Hwang and Yoon, 1981), artificial neural network 
method (Malakooti and Zhou, 1994), nonlinear 
programming method based on fuzzy preference relation 
(Fan et al., 2002), interval numbers based optimization 
approach (Xu, 2004a). In some situations, however, the 
decision information takes the form of  uncertain linguistic 
variables rather than numerical ones because of  time 
pressure, lack of  knowledge, and the decision maker 
(DM)’s limited attention and information processing 
capabilities (Xu, 2004b). All these methods are unsuitable 
for solving the MADM problem, in which the information 
about attribute weights is incompletely known and the 
attribute values are uncertain linguistic variables, and the 
DM has also uncertain linguistic preferences on alternatives. 
To overcome this limitation, in this paper, we shall propose 
a practical method for MADM with preference 

information on alternatives in uncertain linguistic setting. 
In order to do so, the remainder of  this paper is structured 
as follows. In Section 2 we introduce some basic concepts, 
and several operational laws of  uncertain linguistic 
variables. In Section 3 we give a representation of  the 
problem. In Section 4 we shall establish two optimization 
models. Based on the models and a formula of  possibility 
degree for the comparison between uncertain linguistic 
variables, we propose a method for ranking alternatives. In 
Section 5 we apply the method to evaluate university 
faculty for tenure and promotion, and in Section 6, some 
concluding remarks are pointed out. 
 
2. PRELIMINARIES 

In decision making with linguistic information, the DM 
generally provides his/her assessment information by 
mean of  linguistic variables (Delgado et al., 1993; Herrera, 
1995; Herrera et al., 1996; Torra, 1996; Bordogna et al., 
1997; Zadeh and Kacprzyk, 1999; Herrera and Martínez, 
2000; Herrera and Martínez, 2001; Xu and Da, 2003; Xu, 
2004c, 2004d). For example, when evaluating the comfort 
or design of  a car, labels like good, fair, poor can be used; 
when evaluating a car’s speed linguistic labels like fast, very 
fast, slow can be used (Bordogna et al., 1997). Suppose that 

{ | ,  ...,  }iS s i t t= = −  is a finite and totally ordered 
discrete label set. Any label, is , represents a possible value 
for a linguistic variable, and it requires that <i js s  iff  

<i j . To preserve all the given information, we extend the 
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discrete label set S  to a continuous label set 
{ | [ ,  ]}aS s a q q= ∈ − , where >( )q q t  is a sufficiently 

large positive integer. If  α ∈s S , then we call αs  an 
original label, otherwise, we call αs  a virtual label. In 
general, the DM uses the original linguistic labels to 
evaluate alternatives, and the virtual linguistic labels can 
only appear in calculation (Xu, 2005). 

Let [ ,  ]s s sα β=% , where ,  s s Sα β ∈ , αs  and βs  are 
the lower and the upper limits, respectively, we then call %s  
an uncertain linguistic variable (Xu, 2004a). Let %S  be the 
set of  all the uncertain linguistic variables. 

Consider any three uncertain linguistic variables 
[ ,  ]s s sα β=% , 

1 11 [ ,  ]s s sα β=% , and 
2 22 [ ,  ]s s sα β=% , then 

their operational laws are defined as follows (Xu, 2004b):  
 

(i) 
1 1 2 2 1 2 1 21 2 [ ,  ] [ ,  ] [ ,  ]s s s s s s s s s sα β α β α α β β⊕ = ⊕ = ⊕ ⊕% % ; 

 
(ii) [ ,  ] [ ,  ] [ ,  ]s s s s s s sα β α β λ α λ βλ λ λ λ= = =% , 

where [0,  1]λ ∈ . 
 
In what follows, we introduce a simple formula for 

comparing two uncertain linguistic variables 
1 11 [ ,  ]s s sα β=%  

and 
2 22 [ ,  ]s s sα β=% , that is, 

 

{ }
1 2

1 2 1 2 1 2

1 2 1 2

( )
min ( ) ( ), max( , 0)

( ) ( )

p s s
β β α α β α

β β α α

≥

+ − + −
=

+ − +

% %

       (1) 

 
where ≥% %1 2( )p s s  is called the degree of  possibility of  

≥% %1 2s s . Especially, if  both the linguistic variables %1s  and 
%2s  express precise information (that is, both %1s  and %2s  
are reduced to linguistic variables with α β=

1 1
s s  and 

α β=
2 2

s s , in this case, α β=1 1  and 2 2 ,α β=  i.e., 
α α β β+ = +1 2 1 2 ), then we define the degree of  
possibility of  >% %1 2s s  as 
 

α α
α α
α α

>
> = =
 <

% %
1 2

1 2 1 2

1 2

1,
( ) 1 2 ,

0,

if
p s s if

if
                   (2) 

 
Obviously, the possibility degree ≥% %1 2( )p s s  satisfies 

the following properties: 
 
≤ ≥ ≤% %1 20 ( ) 1p s s , ≥ + ≥ =% % % %1 2 2 1( ) ( ) 1p s s p s s ,  

≥ = ≥ =% % % %1 1 2 2( ) ( ) 0.5p s s p s s  
 

Below we define the distance between the linguistic 
variables 

1 11 [ ,  ]s s sα β=%  and 
2 22 [ ,  ]s s sα β=%  as: 

 

1 2 2 1 2 1
1

( ,  )
2

D s s α α β β= − + −  % %                 (3) 

 
3. REPRESENTATION OF THE PROBLEM 

The MADM problem considered in this paper can be 
represented as follows: 

Let 1 2{ , , ...,  }nX x x x=  be a finite set of  alternatives 
and 1 2{ , , ..., }mG G G G=  be a finite set of  attributes, and 

1 2{ ,  ,  ...,  }mw w w w H= ∈  be the weight vector of  

attributes, where 
=

≥ =∑
1

0, 1
m

i i
i

w w , H is the set of  the 

known weight information, which can be constructed by 
the following forms (Park and Kim, 1997; Kim and Ahn, 
1999 ), for ≠i j :  
(i) A weak ranking: { }i jw w≥ ;  
(ii) A strict ranking: { }i j iw w α− ≥ ; 
(iii) A ranking with multiples: { };i i jw wα≥  

(iv) An interval form: { }α α ε≤ ≤ +i i i iw ; 
(v) A ranking of  differences: { }i j k lw w w w− ≥ − , for 

≠ ≠j k l ,  
where { }iα  and { }iε  are non-negative constants. Let 

( )ij m nA a ×=% %  be the uncertain linguistic decision matrix, 

where ∈ %%ija S , which is an attribute value, given by the 
DM for the alternative ∈jx X  with respect to the 
attribute ∈iG G . The DM has also an overall preference 
for the alternative ∈jx X , and let the overall preference 

value be ∈ %% jv S . 
Based on the uncertain linguistic decision matrix 

( ) ij m nA a ×=% % , the overall attribute value of  the alternative 

jx  can be expressed as 
 

1 1 2 2( )j j j m mjz w w a w a w a= ⊕ ⊕ ⊕% % % L % , 1,  2,  ...,  j n=     
(4) 

 
Obviously, the greater the value ( )jz w% , the better the 

alternative xj will be.  
In the situation where the information about attribute 

weights is completely known, we can rank all the 
alternatives by Eq. (4). To do so, the following steps are 
involved: 

 
(Algorithm I) 
Step 1. By Eq. (4), we calculate the overall attribute values 

( ) ( 1,  2,  ...,  )jz w j n=% . 
Step 2. Compare each ( )jz w%  with all the ( )jz w%  (j = 1, 

2, …, n) by using (1). For simplicity, let 
pij = ≥% %( ( ) ( ))i jp z w z w , then we develop a 
complementary matrix (Chiclana et al., 2001; Xu 
and Da, 2002, 2005; Xu, 2004e) as ×= ( )ij n nP p , 
where ≥ 0ijp , + = 1ij jip p , = 1 2iip , i, j = 1, 
2, …, n. 
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Summing all elements in each line of  the matrix P, we 
have  

 

1

,  1,  2,  ...,  
n

i ij
j

p p i n
=

= =∑ ,                      (5) 

 
Step 3. Rank the overall attribute values ( )jz w% (j = 1, 2, …, 

n) in descending order in accordance with the values 
of  ip  ( 1,  2,  ...,  i n= ).  

Step 4. Rank all the alternatives ( 1,  2,  ...,  )jx j n=  and 
select the most desirable one(s) in accordance with 
the overall attribute values ( ) ( 1,  2,  ...,  )jz w j n=% . 

Step 5. End. 
 
However, in this paper, the information about the 

attribute weights in the problem considered is incompletely 
known. Thus, we need to determine the attribute weights 
in advance. In the next section, we shall develop two 
models to determine the attribute weights. 
 
4. A METHOD FOR RANKING ALTERNATIVES 

In the real life, there always exist some differences 
between the overall attribute values ( ) ( 1,  2,  ...,  )jz w j n=%  
and the corresponding overall preference value 
% jv ( 1,  2,  ...,  )j n=  given by the DM for the alternative 

jx ( 1,  2,  ...,  )j n= . We introduce the following deviation 

between ( )% jz w  and % jv : 
 

1

( ) ( , ) ,  1,  2,  ...,  
m

j ij j i
i

D w D a v w j n
=

= =∑ % %              (6) 

 
To determine the attribute weights, we shall minimize 

the sum of  all deviations between the overall attribute 
values and the corresponding overall preference values for 
alternatives. Therefore, by Eq. (3) and (6), we can establish 
the following linear programming model: 
 

(M-1) 
= = =

= =∑ ∑∑ % %
1 1 1

min ( ) ( ) ( , )
n m n

j ij j i
j i j

D w D w D a v w  

=

∈

 ≥ =

∑
1

,
. .

0, 1.
m

i i
i

w H
s t

w w
 

 
By solving the model (M-1), we can get the optimal 

solution =* * * *
1 2( , , ..., )T

mw w w w . 
If  the information about attribute weights is completely 

unknown, and Eq. (6) is replaced with the following 
deviation function: 
 

2

1

( ) ( , ) , 1,  2,  ...,  
m

j ij j i
i

D w D a v w j n
=

= =∑ % %            (7) 

 

where ( ) 2 2
1 2 2 1 2 1

1
,  ( ) ( ) ,

2
D s s α α β β = − + − % % , for any 

1 11 [ ,  ]s s sα β=%  and =%2s
2 2

[ ,  ]s s Sα β ∈ % . Then, we can 
establish the following optimization model: 
 

(M-2) 
= = =

= =∑ ∑∑ % % 2

1 1 1

min ( ) ( ) ( , )
n m n

j ij j i
j i j

D w D w D a v w  

=

≥ =∑
1

. .  0, 1.
m

i i
i

s t w w  

 
To solve this model, we construct the Lagrange function 

 

( )λ λ
=

 
= + − 

 
∑

1

( , ) 2 1
m

i
i

L w D w w                  (8) 

 
where λ  is the Lagrange multiplier. 

Differentiating Eq. (8) with respect to ( 1,  2,  ...,  )iw i m=  
and λ , and setting these partial derivatives equal to zero, the 
following set of  equations is obtained: 

 

( )λ
λ

λ
λ

=

=

∂ = + = ∂


∂ = − = ∂

∑

∑

% %
1

1

( , )
2 , 2 0

( , )
1 0

n

ij j i
ji

m

i
i

L w D a v w
w

L w w
            (9) 

 
By solving Eq. (9), we get the optimization solution 
 

( ) ( )
11 1

*

1 1 1

, , ,

 1,  2,  ...,  

m n n

i ij j ij j
i j j

w D a v D a v

i m

−− −

= = =

    
 =         

=

∑ ∑ ∑ %% % % %     (10) 

 
Obviously, ≥* 0iw , for all i . 
From the above analysis, we know that both Eqs. (6) and 

(7) reflect the deviation between the overall attribute value 
( )jz w%  and the corresponding preference value % jv  given 

by the DM for the alternative xj. For convenience of  
calculation, we utilize Eq. (6) to establish a simple linear 
programming model (M-1), and utilize Eq. (7) to establish 
a nonlinear programming model (M-2). It is worth pointing 
out that by solving the nonlinear programming model 
(M-2), we can obtain the simple formula (10), by which an 
exact solution of  the weight vector of  attributes can be 
obtained. 

Based on the above results, in the following, we shall 
propose a method for MADM with preference 
information on alternatives under uncertain linguistic 
environment. 
Step 1. Let 1 2{ , , ..., }nX x x x=  and G= 1 2{ , , ..., }mG G G  

be the finite sets of  alternatives and attributes, 
respectively, and 1 2( ,  ,  ...,  )mw w w w H= ∈  be the 
weight vector of  attributes, where ≥ 0,iw  
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=

=∑
1

1
m

i
i

w , H  is the set of  the known weight 

information, which can be constructed by the 
forms (i)~(v). Let ( )ij m nA a ×=% % ∈ %%( )ija S  be the 
uncertain linguistic decision matrix, and the DM 
provides also an overall preference value ∈ %% jv S  
for the alternative ∈jx X. 

Step 2. If  the information about the attribute weights is 
partly known, then we solve the model (M-1) to 
obtain the attribute weights. If  the information 
about the attribute weights is completely unknown, 
then we solve the formula (10) to determine the 
attribute weights. 

Step 3. Utilize the algorithm I to rank alternatives and get 
the most desirable one(s). 

Step 4. End. 
 

5. ILLUSTRATIVE EXAMPLE 

In this section, a MADM of  evaluating university faculty 
for tenure and promotion (adapted from Bryson and 
Mobolurin, 1995) is used to illustrate the proposed 
method. 

A practical use of  the proposed method involves the 
evaluation of  university faculty for tenure and promotion. 
The criteria (attributes) used at some universities are 1G : 
teaching, G2: research, and G3: service. Five faculty 
candidates (alternatives) ( 1, 2, 3, 4, 5)jx j =  are to be 
evaluated using the label set 

 
S = {s-4 = extremely poor, s-3 = very poor, s-2 = poor, s-1 = 
slightly poor, s0 = fair, s1 = slightly good, s2 = good, s3 = 
very good, s4 = extremely good} 
 
by the DM under these three attributes, as listed in Tables 
1.  

 
Table 1. Uncertain linguistic decision matrix %A  

Gi x1 x2 x3 x4 x5 
G1 [s-2, s0] [s2, s3] [s-1, s1] [s3, s4] [s1, s3] 
G2 [s2, s4] [s3, s4] [s-3, s-1] [s1, s3] [s2, s3] 
G3 [s0, s1] [s2, s4] [s1, s3] [s-2, s0] [s0, s2] 

 
Suppose that the DM provides his/her overall 

preference values for the alternatives =( 1, 2, 3, 4, 5)jx j  
as follows: 

 
%1v =[s0, s2], %2v =[s2, s3], %3v =[s0, s1], %4v =[s1, s2], %5v =[s1, s3], 
 
(i) If  the known weight information is as follows: 
 

1 2 3 2 1 3{0.40 0.42, 0.26 0.30, ,  H w w w w w w= ≤ ≤ ≤ ≤ ≥ −

1 2 3 10.10, }w w w w≥ − ≥ −  
 
then by the model (M-1), we establish the following linear 

programming model: 
 

= + +1 2 3min ( ) 4.5 6 6D w w w w  
. .s t   

≤ ≤10.40 0.42w ,  
≤ ≤20.26 0.30w ,  

≥3 2w w , − ≥1 3 0.10w w ,  
− ≥ −1 2 3 1w w w w , ≥ =0, 1, 2, 3,iw i  
+ + =1 2 3 1w w w  

 
Solving this model, we get the weight vector of  

attributes: * (0.42, 0.26, 0.32)w =  
By Eq. (4), we obtain the overall attribute values 

*( )jz w% (j = 1, 2, 3, 4, 5) of  alternatives xj(j = 1, 2, 3, 4, 5): 
*

1 0.32 1.36( ) [ ,  ]z w s s−=% , *
2 2.26 3.58( ) [ ,  ]z w s s=% ,  

*
3( )z w% 0.88 1.12[ ,  ]s s−= , *

4 0.88 2.46( ) [ ,  ]z w s s=% ,  
*

5( )z w% 0.94 2.68[ ,  ]s s=  
Comparing each ( )jz w%  with all the ( )jz w%  (j = 1, 2, 3, 

4, 5) by using Eq. (1), we develop a complementary matrix 
as 

 
 
 
 
 =
 
 
  

0.5 0 0.6087 0.1472 0.1228
1 0.5 1 0.9310 0.8627

0.3913 0 0.5 0.0670 0.0481
0.8528 0.0690 0.9330 0.5 0.4578
0.8772 0.1373 0.9519 0.5422 0.5

P  

 
Summing all elements in each line of  the matrix P , we 

have p1 = 1.3787, p2 = 4.2937, p3 = 1.0064, p4 = 2.8126, p5 
= 3.0086 then, we rank the overall attribute values 

( ) ( 1,  2,  3,  4,  5)jz w j =%  in descending order in 
accordance with the values of  pi (i = 1, 2, 3, 4, 5):  

2 5 4 1 3( ) ( ) ( ) ( ) ( )z w z w z w z w z w> > > >% % % % %  and thus the 
ranking of  all alternatives ( 1,  2,  ...,  )jx j n=  is 

f f2 5x x f f4 1 3x x x . Therefore, the most desirable 
alternative is 2x . 

 
(ii) If  the information about the attribute weights is 
completely unknown, then by Eq. (10), we have *w  = 
(0.385, 0.271, 0.344) 

By Eq. (4), we obtain the overall attribute values 
*( ) ( 1, 2, 3, 4,5)jz w j =%  of  alternatives xj (j = 1, 2, 3, 4, 5): 
*

1 0.228 1.428( ) [ ,  ]z w s s−=% , *
2 2.271 3.615( ) [ ,  ]z w s s=% ,  

*
3( )z w% 0.854 1.146[ ,  ]s s−= , *

4 0.738 2.353( ) [ ,  ]z w s s=% ,  
*

5( )z w% 0.927 2.656[ ,  ]s s=  
Comparing each ( )jz w%  with all the ( )jz w%  (j = 1, 2, 3, 

4, 5) by using Eq. (1), we develop a complementary matrix 
as 
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 
 
 
 =
 
 
  

0.5 0 0.624 0.211 0.148
1 0.5 1 0.972 0.865

0.376 0 0.5 0.113 0.059
0.789 0.028 0.887 0.5 0.426
0.852 0.125 0.941 0.74 0.5

P  

 
Summing all elements in each line of  the matrix P, we 

have p1 = 1.483, p2 = 4.347, p3 = 1.048, p4 = 2.630, p5 = 
2.992 then, we rank the overall attribute values ( )jz w%  (j = 
1, 2, 3, 4, 5) in descending order in accordance with the 
values of  ip  ( = 1, 2, 3, 4, 5i ): 

2 5 4 1 3( ) ( ) ( ) ( ) ( )z w z w z w z w z w> > > >% % % % % and thus the ranking 
of  all alternatives ( 1,  2,  ...,  )jx j n=  is 2x 5xf 4xf  

1xf 3xf . Therefore, the most desirable alternative is 

2x . 
 

6. CONCLUDING REMARKS 

At present, many methods have been proposed for 
dealing with the MADM problems with numerical 
preference information on alternatives. However, the 
increasing complexity of  the socio-economic environment 
or time pressure, lack of  knowledge or data, and his/her 
limited expertise related to the problem domain usually 
make a DM provides his/her decision information within 
uncertain linguistic variables. In this paper, we have 
investigated the MADM with preference information on 
alternatives in uncertain linguistic setting. We have 
established two optimization models, which minimize 
deviations between the overall attribute values of  
alternatives and the overall preference values, and proposed 
a method for ranking alternatives. The method can 
sufficiently meet the DM’s requirements and can also be 
performed on computer easily. A practical application has 
also been given to illustrate the proposed method. 
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