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AbstractThis paper addresses an inventory control problem when common components are allowed and the goal is to 
minimize the expected units shortage subject to a budget constraint. A two-level assemble-to-order product structure is 
analyzed when the demands for two end products follow independent mixtures of  Erlang distributions. Closed form 
expressions for the objective function under various scenarios are presented and efficient algorithms for computing the 
optimal inventory stock levels are developed. Relative reductions in the expected units shortage under different demand 
patterns and budget availability situations when introducing commonality are evaluated and compared. It is found that, for 
all demand patterns considered, the relative reduction can be substantial when the inventory budget is large. Thus, if  a 
company wants to improve an already high service level for an essential item, introducing commonality may be an option 
without having to increase the inventory to an unbearable level. Also, given a fixed budget, our numerical results suggest 
that the case of  independent and identically distributed demands produces the largest relative reduction in expected units 
shortage. Benefits from employing commonality can be insignificant, however, where the demands are very different. 
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1. INTRODUCTION 

Today’s challenges of  increased globalization and 
customization have led to increased product proliferation, 
which in the face of  uncertain product demands aggravates 
the situation of  high inventory levels and poor customer 
service. Product design incorporating component 
commonality, i.e., a product structure in which at least one 
component is common to two or more end products 
(Baker, 1985), plays an important role in achieving a 
specified service level while maintaining lower inventory 
levels. Thus, investigations of  the effects of  commonality 
are of  interest to both academics and practitioners. 

The extensive literature on inventory stocking models 
under component commonality can be categorized into 
two broad groups: (i) Analytical Studies and (ii) 
Computational Studies. 

(i) Analytical Studies: Studies in this category may be 
classified further into two groups. Studies in the first group 
(Baker, et al., 1986; Gerchak and Henig, 1986; Jönsson and 
Silver, 1989; Bagchi and Gutierrez, 1992; Eynan and 
Rosenblatt, 1996; Mirchandani and Mishra, 2002, among 
others) have focused on obtaining closed form solutions. 
These studies have generally analyzed a prototype 

2-product assemble-to-order (ATO) product structure with 
two unique components and one common component. In 
these studies independent uniform, exponential, geometric 
and normal distributions have been used to model the 
uncertainty in the product demand. The objectives of  these 
studies include: comparing the changes in stock levels with 
or without component commonality, expected profits for a 
single-period commonality model, qualitative 
characterizations of  the changes in stock levels, 
maximizing the expected total of  two end products subject 
to a budget constraint for the components, marginal 
benefits from increasing component commonality, and 
determination of  the cost-minimizing inventory of  the 
components to meet a product-specific service level. 

Studies in the second group (for example, Gerchak et al., 
1988; Gerchak and Henig, 1989, among others) have 
considered single- and multi-period commonality models 
with multiple products and multiple components. These 
studies have sought qualitative insights into the impact of  
component commonality on service levels and inventory 
costs, and the properties of  optimal solutions. An 
interesting finding is that in the absence of  a 
capacity/storage constraint, a myopic, single-period 
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solution is optimal even for multi-period model. 
(ii) Computational studies: Studies in this group (for 

example, Hillier, 1999a, 1999b, 2000) have developed 
mathematical formulations of  commonality models with 
multiple products and multiple components but have relied 
primarily on simulation techniques to explore the effect of  
different degrees of  commonality under different 
parameter specifications (such as cost- and demand 
distribution parameters) on the total inventory cost or 
service level. 

Our goal in this paper is to make a contribution to the 
literature representing the analytical studies of  the first type. 
While we analyze a single-period prototypical 2-product 
model similar to the one used in earlier studies, we model 
the uncertain demands using mixtures of  Erlang 
distributions. From a mathematical perspective, mixtures 
of  Erlang distributions provide a rich class of  distributions 
with great versatility. For example, a mixture of  two Erlang 
distributions already has five parameters, which provides us 
flexibility, even when demand has a bimodal distribution. 
Note that Gamma distribution is often used in the 
literature as the demand distribution and it can be well 
approximated by a mixture of  Erlang distributions. (The 
approximation is exact when the shape parameter is an 
integer or less than 1; see Gleser (1989)). Also, the 
exponential distribution is a special case of  an Erlang 
distribution. 

From a practical perspective, a mixture of  Erlang 
distributions also has an advantage over the popular 
normal distribution in that it is always nonnegative. In 
many practical settings, the demand for a product is driven 
by several distinct underlying variables, heterogeneous 
markets, diverse customer needs, etc. In modeling the 
demand, one first captures the demand in each market 
segment by estimating a demand distribution for each 
market segment, and then combining them appropriately in 
proportion to the firm’s share in each market segment. In 
other words, the product demand is more meaningfully 
modeled as a mixture of  the conditional demand 
distributions. For example, consider that the product under 
consideration is a spare part whose demand is driven by 
failure of  the products in service. Often failure can occur 
for more than one reason and the failure distribution for 
each reason can be adequately modeled by a suitable 
density function. The overall failure distribution, and hence 
the demand distribution for the product is a mixture of  
Erlang distributions. 

In this paper we present the analysis and computational 
results for a prototypical 2-product model similar to that 
considered in Jönsson and Silver (1989), but using mixtures 
of  Erlang distribution for the demand. We assume simple 
cost and demand scenarios in which the cost of  the 
common component is the same as that of  the unique 
components and the demand distributions are independent. 
We also discuss some avenues for further research to 
exploit the versatility of  the Erlang distributions and seek 
further extensions to the literature. 

Our basic model consists of  two end products, and each 
end product comprises two different components that are 

normalized so that one component of  each type is needed 
to make one end product. The structure of  the basic 
model is illustrated in Figure 1a. We call it Model N, a 
model that does not have a common component. 
 

 
Figure 1. Structures of  models N and C. 

 
When a common component, say Component 7, is used 

to replace Components 4 and 5, we have product structure 
as illustrated in Figure 1b, which we call Model C, a model 
that has one common component. 

Our objective function is to minimize the expected units 
storage (EUS) (or equivalently to maximize the expected 
units sold) subject to a budget constraint. Recognizing that 
the objective function is convex for any unbounded 
continuous demand distributions, we show that it can be 
evaluated in closed form for the class of  mixtures of  
Erlang distributions and develop an efficient algorithm to 
compute the optimal stock levels. 

The rest of  the paper is organized as follows: In Section 
2, we describe a mixture of  two Erlang distributions and 
introduce some notation. In Section 3, we present the 
results for Model N. In Section 4, we develop a closed 
form expression for the objective function and provide an 
efficient algorithm to compute the optimal stock levels for 
Model C. In Section 5, we evaluate the benefits from 
employing commonality under different demand scenarios. 
Finally, in Section 6 we present our conclusions and 
avenues for further research. Section 7 lists references. 

 
2. NOTATION 

The density function of  an Erlang distribution with 
parameters 0α >  and 0β >  is 

 
1 exp( )
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α is taken to be an integer. Note that the mean for this 
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Erlang distribution becomes an exponential distribution. 
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The density function of  a mixture of  two Erlang 
distributions is 

 
α β α β+ −1 1 2 2( , ) (1 ) ( , )r f x r f x , 

 
where 0 ≤ r ≤ 1, and for i = 1, 2, β i > 0 and α i  is a 
positive integer. The mean and the variance of  the mixture 
are respectively given by 

 
21 2 1 2

2 2
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Note that there are five parameters in this distribution, thus 
it allows great flexibility to model demand with a given 
mean and variance. In general, a finite mixture of  Erlang 
distributions is given by ( , ) where i i i ir f x α β∑  i ir∑  = 

1 and ri ≥ 0. 
Let X and Y be the demand for products 1 and 2. To 

make a clear presentation, we only consider mixtures with 
two components here. When the densities of  X and Y are 
needed for calculations in this paper, they are given by 
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These functions are all continuous and differentiable. 
The following notation will also be used in this paper: 
SNi : stock level for component i in Model N, i = 3, 4, 5, 6 

Si : stock level for component i in Model C, i = 3, 6, 7 

EUSN : expected units shortage for Model N 
The superscript * will be used to denote the optimal 

values of  the variables. T is the budget limit (total number 
of  units available among all components) 

 
3. OPTIMAL INVENTORY LEVELS FOR MODEL N 

Referring to Figure 1a, it is obvious that, in an optimal 
allocation, the inventory stock levels for components 3 and 
4 are the same and those for components 5 and 6 are the 
same. The optimization formulation for Model N is 

 
(P1) Minimize 

 

3 6
3 6( ) ( ) ( ( ) ,

N N
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= − + −∫ ∫
     (1) 

 
such that SN3 + SN6 ≤ T/2, SNi ≥ 0, i = 3, 6, and T is fixed. 
Since both demands X and Y are continuous and 
unbounded from above, all the available budget will be 
used up in an optimal allocation. So we have SN3 + SN6 = 
T/2. Substituting this into the objective function (1) we get 
Equation (2): 
 

3
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               (2) 

 
It is easy to prove that EUSN in Equation (2) is a convex 

function of  SN3 , implying that any local minimum is also a 
global minimum. 
 

* *
1 3 3 3( ) ( / 2 ) 0N NS T Sφ φ− − =                      (3) 

 
Note that from strict convexity, there is at most one 
solution for (3). Also, since 0 ( ) 1 for 0 i S Sφ< < >  
and ( ) 1i Sφ =  ≤ =for 0, 1, 3,S i a solution always exists 
and it will satisfy the constraint 0 ≤ *

3NS ≤ T/2. Given 
*

3NS  
 
S*N6 = T/2 – S*N3,                              (4) 
 
EUS*N = φ2 (S*N3) + φ4 (T/2 – S*N3) – T/2φ 1 (S*N3)    (5) 

 
For the mixtures of  Erlang demand distributions, we 

have 
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The derivation is given in Appendix A. We solve 
Equation (3) using a subroutine called DZREAL from the 
IMSL Math/Library (Software Edition 1.1, pp. 773-775). 

 
4. OPTIMAL INVENTORY LEVELS FOR MODEL C 

Referring to Figure 1b, Component 7 is the common 
component. From Jönsson and Silver (1989), we want to 
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3 7 3

3

7 6 7

7

7

( ) ( ) ( )

( ) ( ) ( )

C X YS S S

S

X YS S S x

EUS x y S f x f y dydx

x y S f x f y dydx

∞ ∞

−

∞

− −

= + −

+ + −

∫ ∫

∫ ∫
 

7 6

6
60

( ) ( ) ( )
S S

X YS
y S f x f y dydx

− ∞
+ −∫ ∫          

7 3

3
30

( ) ( ) ( )
S S

X YS
x S f x f y dydx

∞ −
+ −∫ ∫       (6) 

 
such that S3 + S6 + S7 ≤ T, S3 ≤ S7, S6 ≤ S7, S3 + S6 ≥ S7, Si 
≥ 0, i = 3, 6, 7, and T is fixed. 

The four terms in the Equation (6) pertain to all 
different possible regions of  the two-product demand 
space for any given set of  component stocking levels. 
These regions are illustrated in Figure 2, in which the 
numbers designating the shortage region correspond to the 
terms in Equation (6). 
 
 

 

 
Figure 2. Shortage regions corresponding to the terms in (6). 

 
Also, because X and Y are continuous and unbounded 

from above, all the available budget will be used up in an 
optimal allocation and so S7 = T – S3 – S6. (Here we 
observe that if  the demand is bounded from above, it 
would imply that the value of  β would be large. When 
demands are independent and identical, Result 3 in Section 
5 that follows indicates that the relative savings from 
commonality are independent of  β. Consequently, the 
findings of  our analysis hold, even when the demand is 
bounded from above.) Substituting S7 = T – S3 – S6 into 
Equation (6) and simplifying, we get 
 
(P3) Minimize 
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with (S3, S6) ∈ K = {(S3, S6) : 2S3 + S6 – T ≤ 0, S3 + 2S6 – 

T ≤ 0, T – 2S3 – 2S6 ≤ 0}. 
To find the optimal solution to Problem P3, we first 

observe that the objective function (7) is convex. Then, we 
provide an algorithm to find the optimal solution. 

 
Result 1 The objective function (7) is a convex function for any 
unbounded continuous demand distributions over its feasible region K. 

For proof  of  this result, see Fu and Fong (1998). 
Also, we have, 
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Result 2 The optimal solution to Problem P3 can be obtained from 
the following steps: 
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1. Set the first order partial derivatives in Equation (8) to zero. If  
the root ( * *

3 6,S S ) belongs to the set K, then it is the optimal 
solution. Otherwise, go to step two. 

2. Solve the following set of  equations: 

3 6

2 0,  2 0,C CEUS EUS
S S

µ µ
∂ ∂

− = − =
∂ ∂

T – 2S3 – 2S6 = 0, 

and µ ≥ 0. If  a solution exists, it is the optimal solution. 
Otherwise, compare EUSC evaluated at (S3 = 0, S6 = T/2), . 

 
φ φ= − +1 4 3( / 2) / 2 ( / 2) ( ),CEUS T T T E X  

 
with that evaluated at (S3 = T/2, S6 = 0), 
 

φ φ= − +2 2 1( / 2) / 2 ( / 2) ( ),CEUS T T T E Y  
 

where 1 1 1 2

1 2
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( )
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E X

α α
β β

−
= +  and 2 3

( )
3

rE Y α
β
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2 4

4

(1 )r α
β

−
+  are the means of  X and Y, respectively. The 

one that gives the smaller value is the optimal solution. 
 
Proof. See Appendix B. 
 

To solve the equations 
∂

=
∂ 3

0CEUS
S

 and 
∂

=
∂ 6

0CEUS
S

, 

a subroutine called DNEQNJ from the IMSL  
Math/Library (Software Edition 1.1, pp. 780-783) is 

used. For the mixtures of  Erlang demand distributions, 
φi(S), i = 1, 2, 3, 4 are given in Section 3, F1(S3, S6, T − S3 − 
S6) and F2(S3, S6, T − S3 − S6) are given in Appendix C. All 
are in closed forms. Thus, we have closed form expressions 
for the objective function EUSC as well as the first order 
partial derivatives in Equation (8). 
 
5. REDUCING SHORTAGE USING COMMONALITY 

We now explore the role of  commonality in reducing 
expected units shortage under different demand patterns. 
We also examine how the benefits of  employing 
commonality change when the budget availability is 
changed for the base system, i.e., the one without 
commonality. Since different demand patterns and budget 
levels may have different impact on the benefits from 
commonality, this exploration should provide insights into 
the effects of  commonality under various situations, and 
guide practitioners with helpful guidelines on when and 
which unique components should be replaced by a 
common one. 

For each demand pattern, suppose a service level π is 
achieved in Model N for a fixed budget T: 
 
p(X ≤ SN3)= π, p(Y ≤ SN6) = π, and T = 2SN3 + 2SN6. 
 

We compute the expected units shortage for Model N 
*( )NEUS  and Model C *( )CEUS  for this T value. The 

relative reduction in expected units shortage is  

 
−* *

*
N C

N

EUS EUS
EUS

. 

 
The following two demand scenarios are considered: 

independent and identical Erlang distributions (IIR) of  
which independent and identical exponential distributions 
(IIE) are a special case; and independent but non-identical 
Erlang distributions (INR) of  which independent but 
non-identical exponential distributions (INE) are a special 
case. 
 
5.1 Independent and identical erlang distributions 

(IIR) 

There are two parameters for the IIR case, namely α and 
β of  an Erlang distribution. To investigate the benefits 
from introducing one common component to the base 
model, we find that, for the same π and α, the relative 
reduction in expected units shortage is a constant for all β 
values. 

 
Result 3 For a given π, the relative reduction in expected units 
shortage achieved in Model C versus Model N, at fixed α, is a 
constant for all β values when the demands are IIR. 
 
Proof. See Appendix D. 
 

The numerical results for different α values are 
summarized in Table 1 and they display similar patterns as 
observed in IIE case. 
 
Table 1. Relative reductions (%) in expected units shortage 

for the IIE case 
π\α 1 2 4 5 10 

0.8 6.2 6.7 7.2 7.3 7.6 
0.9 15.4 16.4 17.2 17.5 18.1 
0.95 25.8 27.1 28.2 28.5 29.4 
0.99 48.6 50.1 51.5 51.9 53.0 

 
Result 3 indicates that when the demand for the 

products can be adequately represented by independent 
and identical Erlang (IIR) distributions, the relative 
reduction in expected units shortage is independent of  the 
scale parameter of  the distribution, β, which determines 
the level of  demand. All we need is an estimate of  α, the 
shape parameter. Once we are satisfied that the demands 
can be adequately represented by identical and independent 
Erlang distributions, and an estimate of  the parameter α, 
we can ascertain the percentage relative reduction in the 
expected units shortage (which is a surrogate for the cost 
savings from the commonality strategy), corresponding to 
any specified service level, π. Since higher values of  α 
imply a distribution with a smaller coefficient of  variation, 
it is interesting to observe (from Table 2) that benefits 
from a commonality strategy (i.e., relative reduction in the 
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expected unit shortage) are higher when the demand 
distributions have smaller coefficients of  variation. We 
offer an intuitive explanation for this as follows: When the 
demand coefficient of  variation is lower, the stringency 
imposed on the optimization models by the uncertain 
demand environment will be less. This in turn implies that 
the two optimization models will be operating at a level 
where the diminishing marginal returns to commonality 
will be lower than otherwise. Therefore, the relative 
benefits from commonality would be higher. 

Special Case: Independent and Identical 
Exponential demand distributions – For a given π, the 
relative reductions in expected units shortage are not 
dependent on the parameter of  the independent and 
identical exponential demand distributions. The relative 
reductions in expected units shortage for different π 
ranging from 0.8 to 0.99 are given in the first column of  
Table 1, which shows that the relative reduction rises from 
6.2% to 48.6% as π increases. This implies that a 
substantial relative reduction is possible when the 
inventory budget is big (the larger the value of  T, the 
higher the value of  π). We provide a formal proof  of  this 
observation in Appendix E. 

A practical implication of  the above observation is that 
if  a firm wants to improve an already high service level (in 
terms of  expected units shortage) for an item, 
commonality may be a viable option. Also, when the 
demands are IIE, since the relative reduction in expected 
units shortage is independent of  the demand parameter, β, 
it implies that, to get an idea of  the economic benefits of  
commonality, we don’t need an estimate of  the parameter 
β of  the distribution. From column 1 of  Table 1, we can 
estimate the percentage relative reduction in the expected 
units shortage, corresponding to any desired target service 
level, π. 
 
5.2 Independent, non-identical Erlang distributions 

Suppose X ~ Er (α1,β1) and Y ~ Er(α2,β2). We fix α1 = 
α2 = 5, β1 = 1 and vary β2 for our calculation here. The 
relative reductions in expected units shortage for Model C 
over Model N are summarized in Table 2. 
 
Table 2. Relative reductions (%) in expected units shortage 

for the IIR case (α1 = α2 = 5, and β1 = 1) 
π \ β2 0.2 0.5 1 2 5 

0.8 3.9 6.4 7.3 6.4 3.9 
0.9 9.0 15.2 17.5 15.2 9.0 
0.95 14.6 24.8 28.5 24.8 14.6 
0.99 27.4 45.3 51.9 45.3 27.4 

 
Numerical results from Table 2 also suggest that the case 
of  independent and identically distributed demands (IIR) 
produces the largest relative reductions compared to cases 
with independent but non-identical demands (INR). The 
relative reduction drops quickly when β2 is moving away 
from the fixed β1 (= 1). 

Special Case: Independent, non-identical exponential 
distributions - Let X ~ Exp(β1) and Y ~ Exp(β2). We fix 
the mean of  X at 5 (i.e., β1 = 0.2) and vary the mean of  Y 
from 0.5 to 100. The relative reductions in expected units 
shortage for Model C over Model N are summarized in 
Table 3. 
 
Table 3. Relative reductions (%) in expected units shortage 

for the INE case (β1 = 0.2) 

π \ β2 0.01 0.02 0.1 0.2 0.5 1 2 

0.8 1.0 1.9 5.4 6.2 4.9 3.3 1.9 
0.9 2.4 4.4 13.3 15.4 12.0 7.8 4.4 
0.95 3.9 7.2 22.1 25.8 19.9 12.7 7.2 
0.99 7.5 13.9 41.5 48.6 37.3 24.1 13.9 

 
In both INE and INR cases, we find that the benefits 

from a commonality strategy (defined as the percentage 
relative reduction in the expected units shortage), are 
highest when the demand distributions for the two 
products have the same β (i.e., β1 = β2). Since we have set 
α1 = α2, in our numerical example, this situation and the 
results are the same as for IIE and IIR. The finding that 
the benefits from commonality decreases as β2 moves away 
from β1, indicates that as the product demand distributions 
become non identical, the relative savings from 
commonality will reduce. 

We provide an intuitive explanation for this observation 
as follows. When the demand distributions for the two 
products are identical, the commonality model has the best 
scope to exploit the benefits from the pooling effect, and 
offers the best relative reduction in the expected units 
short compared to the non-commonality model. When the 
demand distributions for the two products are not identical, 
the structural uncertainty in the demand process will be 
greater, by which we mean operating in a more 
heterogeneous environment. This situation is analogous to 
the reduction in the flow rate or throughput capacity in 
physical systems, when the flow units are of  dissimilar size. 
While this imposes a greater stringency on the optimal 
solutions in both models, the deterioration in the 
commonality model will be relatively less compared to the 
non-commonality model due to the pooling benefits from 
commonality. Thus, while we do derive relative savings 
from commonality, it is lower compared to the case in 
which the distributions are identical. 

 
6. CONCLUSIONS 

In this paper we provide analytical results for the 
product commonality problem in the context of  a 
proto-typical, single-period two-product model when the 
demand distributions are mixtures of  Erlang distributions. 
We propose efficient algorithms to compute the optimal 
stock levels. Relative reductions in expected units shortage 
by employing commonality under different demand 
patterns for a fixed budget are computed and compared. In 
general, we find that the relative reduction is small when 
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the budget level is low relative to the demand requirements 
for the end products but it is substantial when the budget 
level is high. The case of  independent and identically 
distributed demands appears to produce the largest relative 
reduction compared to cases with independent but 
non-identical demands. Also, the relative reduction drops 
quickly when the two demands vary further away from 
each other. In our simple model, we have assumed that the 
costs of  the components are all the same. In practice, the 
cost of  the common component is likely to be higher, and 
in such cases, we anticipate that the relative benefits from 
commonality would be lower. 

We note that our analysis of  the simple model with 
mixtures of  Erlang distributions provides an impetus for 
several interesting avenues for further research. For 
example, from the cost perspective, it would be interesting 
to consider (a) different costs for the unique and the 
common components, and (b) different shortage costs or 
different margins for the two products. Also, from the 
demand perspective, it would be interesting to consider (a) 
correlated demands and (b) non-unimodal demand 
distributions. 
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APPENDIX A: φi (S) FOR A MIXTURE OF TWO ERLANG DISTRIBUTIONS 

Because of  similarities, it suffices to derive the results for φ1 (S), and φ2 (S): 
 

1 1 2 2

1 2

1 1
1 1 1 1 2 2

1
1 2

1 1
1 2

1 1 1 2
0 0

 exp( ) (1 )  exp( )
( ) ( ) ( )

( 1)! ( 1)!

 exp( ) (1 ) exp  ( ) ,
! !

XS S

m m m m

m m

r x x r x x
S f x dx dx

S S
r S r S

m m

α α α α

α α

β β β β
φ

α α

β β
β β

− −∞ ∞

− −

= =

− − −
= = +

− −

= − + − −∑ ∑

∫ ∫
 

1 1 2 2

1 2

1 1
1 1 1 1 2 2

2
1 2

1 1 2 2
1 1 1 2

0 01 2

 exp( ) (1 )  exp)( )
( ) ( ) ( )

( 1)! ( 1)!

 exp( ) (1 )  exp  ( ) .
! !

XS S

m m m m

m m

r x x r x xS xf x dx x dx

S S
r S r S

m m

α α α α

α α

β β β β
φ

α α

α β α β
β β

β β

− −∞ ∞

= =

− − −
= = +

− −

= − + − −∑ ∑

∫ ∫
 

 
To obtain the above equations, we make use of  the following result about the complementary incomplete gamma 

function 
α

αα α
−∞ − −

=

Γ = − = − ∑∫
1

1

0

( , ) exp ( ) ( 1)!
!

m
s

s
m

ss u u du e
m

 

 
and that 



Fu, Ramasesh, and Fong: Component Commomality and Shortage Reduction under a Mixed Erlang Distributed Demand 
IJOR Vol. 3, No. 1, 36−46 (2006) 
 

43 

 
α α

α
α αβ

α β β
β

β β

− −∞ ∞−

=

− −
− = − = ∑∫ ∫

1 1
1

0

( 1)!  exp ( )
 exp ( )  exp ( ) .

!

m m

s S
m

Su Sz z dz u du
m

 

 
APPENDIX B: PROOF OF RESULT 2 

From Result 1, the objective function (7) is convex. Since the constraints of  P3 are all linear, the Karush-Kuhn-Tucker 
(KKT) conditions are both necessary and sufficient (Bazaraa, Sherali, and Shetty (1993, pp. 162-164). Thus, for any optimal 
solution (S3, S6), there exist parameters µ1, µ2, µ3 such that 
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Because the objective function (7) is continuous over the feasible region K, which is a compact set, there exists a 

minimizing solution to Problem P3 (Bazaraa, Sherali, and Shetty (1993, p. 41). Noting that the objective function is strictly 
convex, the optimal solution * *

3 6( , )S S is actually unique, which should occur either inside or on the boundary of  triangle 
ABC in Figure 3. 

If  the optimal solution * *
3 6( ,  )S S  is on the line BC (excluding points B and C), then * *

3 6( ,  )S S can be obtained by solving 
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∂ 1 1 2 0 with 0.µ µ+ = ≥  So the optimal solution could not be on the line BC (excluding points B and C).  

Using the same argument, the optimal solution could not be on the line AC (excluding point A). If  the optimal solution 
* *
3 6( ,  )S S occurs inside the triangle ABC, then 0,  1, 2, 3,i iµ = = and * *

3 6( ,  )S S is obtained by solving 
 
                                  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Feasible Region for Model C. 
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APPENDIX C: DISTRIBUTION FUNCTIONS OF ERLANG MIXTURES 
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F2 can be computed in closed form. 
 
APPENDIX D: PROOF OF RESULT 3 

Let X, Y ~ Er (α, β), independently, then p(X ≤ S) = 1-φ1(S) = π. Because 1- φ1 (SN3) = 1-φ3 (SN6) = π and T = 2SN3 + 
2SN6 , it is easy to check that SN3 β, SN6 β, and thus Tβ, are independent of  β  
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which is independent of  β as Tβ is independent of  β. 
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For Model C, we expect =* *
3 6S S  because of  identical demands. In this case,  
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If  S31 is the optimal solution when β = β1, it is easy to check that S32 is the optimal solution when β = β2 where S32 = 

β1S31/β2. Thus the optimal solution ( * *
3 6,  S S ) has the following property: β β=* *

3 6S S  is independent of  β. 
 

The optimal value of  expected units shortage for the IIR case is 
 

* * *1 1
* * * *3 3 3

3 3 3
0 0 0

* * *1
* * *3 3 3
3 3 3

0 0

( 3 ) ( 3 )
 exp( ( 2 )) ( 3 )exp( ( 2 ))

! ! !

( 3 )
         2 exp  ( )  exp  (- ( - 2 ))

! !

m m m m m m

C
m m m

m m m m m m

m m

S T S T SEUS T S T S T S
m m m

T S S S
S T S S

m m

α α α

α α

β β βα
β β

β

β β βα
β β

β

− −

= = =

−

= =

 − −
= − − − − − − × 

 
 −

+ − − × − 
 

∑ ∑ ∑

∑ ∑
*1 1 1
3

0 0 0

1 1  *
*( 1) * 1 * *3 3
3 3 3 3

exp  (- ( - 2 ))
! ( 1)!

( 1)( 2 ) ( 1) exp( ( 2 ))
[ ( 3 ) ] [ ( 3 ) ].

!( 1 )!( 1) ( 1)!

m

m m i

m i m i
m i m i

T S
m

m T S T SS T S S T S
i m i m i

αα α

α
α α α α

β β
α

β α β β
α α

− − +

= = =

+ − −
− + + − + +

 
+  − 

 − − − − − −
× − − + − − 

+ − − + + − 

∑ ∑∑

 
The expression for β*( )CEUS  as a function of  β only has terms like β*

3S  and Tβ, which are independent of  β. 

Since β*( )EUS  is independent of  β for both Model N and Model C, the ratio 
* *

*
N C

N

EUS EUS
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−
 is independent of  β. 

 
APPENDIX E: PROOF THAT UNDER IIE, LARGER THE BUDGET, BIGGER THE SAVINGS 

When demands are IIE distributed, with parameter β, then, for Model N, it is easy to get the optimal value  
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For Model C, due to symmetry, we have =* *

3 6S S . By taking the first order derivative when calculating optimal value EUS, 
we can have the following relationship for optimal value *

3S and T as follows:  
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and the corresponding objective function is: 
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Taking the first order derivative of  A with respect to T, we get 
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Taking derivatives of  both sides of  Equation (E2) with respect to T, we get 
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Now, from (E3) and (E4), we obtain 0dA
dT

>  which implies that A increases with T, and hence larger the budget T, 

bigger will be the relative benefit from using commonalty t. 
 
 


