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AbstractThis paper addresses an important question of  how to achieve an appropriate and nearly uniform work-load for 
an under-utilized staff  in a waiting line situation by scheduling an appropriate amount of  supplementary work during the 
idle time. We present an M/G/1 queue with a special server’s vacation policy to model this situation. In this system, after 
serving all arriving customers, the server can perform a random maximum number H of  possible supplementary jobs 
before staying idle. The distribution of  H can be determined by a supplementary job assignment policy to reduce the idle 
time proportion. Major performance measures are obtained to evaluate this class of  policies. Numerical examples are 
presented to illustrate the application of  this study. 
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1. INTRODUCTION 

This study is motivated by a real situation as follows: In 
a department store or a supermarket, a customer-service 
-desk (CSD) worker’s primary job is to serve after-sales 
customers with special needs. However, sometimes when 
the CSD worker is less busy, the store manager may ask 
him or her to do some optional jobs. For example, when 
the CSD worker becomes idle, he or she may check if 
other jobs such as restocking empty shelves, cleaning 
floors, or helping customers are available. Of course, there 
are also other employees in charge of these jobs, so it is not 
compulsory for the CSD worker to do them. In other 
words, the CSD worker’s top priority or “must-do” jobs 
are serving CSD customers and his or her secondary or 
optional jobs are these non-CSD jobs. The store manager 
is interested in knowing the appropriate amount of 
optional idle-time duty scheduled to the CSD worker. In 
many practical waiting line systems, managers face the 
same question of how to achieve a uniform work-load by 
appropriately scheduling some supplementary jobs for an 
under-utilized server. 

In this paper, we develop a special queueing model with 
a flexible server’s vacation policy to study the issue of 
work-load adjustment by scheduling supplementary jobs. 
In this model, a queue is formed by randomly arriving 
customers representing the primary jobs and the idle server 
can take vacations representing the durations of performing 

supplementary jobs. We present a set of formulas to 
quantify the performance of a supplementary work 
scheduling policy. In fact, the first study on vacation 
models was motivated by the question of effectively 
utilizing server’s idle time (see Levy and Yachiali, 1975). 

Over the past two decades, queueing systems with 
vacations (or simply called vacation models) have been 
studied by many researchers due to their wide applications 
in manufacturing and telecommunication systems. Several 
excellent and comprehensive surveys on the recent results 
and references for a variety of vacation models can be 
found in Doshi (1986), Doshi (1990), Fuhrmann and 
Cooper (1985), Shanthikumar (1988), Takagi (1991) and 
Takagi (1993). The vacation policy in this paper is more 
general and flexible than most classical vacation policies to 
model the situation of our interest and is called a multiple 
adaptive vacation policy (MAV-policy) which was first studied 
by Tian (1992). The discrete-time system with MAV policy 
was treated by Zhang and Tian (2001). However, in Tian 
(1992), the issues of modeling the supplementary work and 
controlling the server’s utilization level were not addressed. 
In this paper, we focus on these issues and investigate the 
impact of assigning supplementary jobs on the server’s 
utilization level. 

This paper is organized as follows. An MAV vacation 
model has been formulated and the major performance 
measures are developed in section 2. In section 3, 
scheduling the supplementary work-load is modeled as a 
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random maximum number of vacations that the server can 
take before a primary job arrives. Several practical 
situations are discussed. In section 4, numerical examples 
are presented to discuss the idle time utilization via 
scheduling secondary jobs in these “not-so-busy” server 
situations. Finally, the paper concludes with a summary in 
section 5. 
 
2. THE MAV MODEL 

In this section, a simple vacation model is presented to 
represent the system of our interest. Consider an M/G/1 
system with arrival rate λ and an MAV policy in which the 
server will take a random maximum number, denoted by H, 
of vacations after emptying the system. The probability 
mass function (p.m.f.) of H is P(H = j) = cj, j = 1, 2, …, 
and its p.g.f is H(z) = 1 .j

j jc z∞
=∑  The random variable H 

may represent the maximum number of tasks or jobs 
available for the server to work on during his or her idle 
time. The vacations are general independent and identically 
distributed (i.i.d.) random variables, denoted by V. At each 
vacation completion instant, the server checks the system 
state to decide an action to take. There are three cases at 
this instant. Case 1: if there are some waiting customers, 
the server will resume serving the queue immediately; Case 
2: if there is no waiting customer and the total number of 
vacations taken is still smaller than H, the server will take 
another vacation; Case 3: if there is no waiting customer 
and the number of vacations taken is equal to H, the server 
will stay idle and wait for the next arrival. Note that this 
MAV policy is appropriate for modeling two main 
characteristics of a situation in which the server can 
perform some supplementary work during his or her idle 
time. These are (1) any arriving customer to an empty 
system will not wait for more than a residual vacation time; 
and (2) the proportion of the server’s idle time is 
controllable by adjusting the parameters of the distribution 
of H. We assume that the random variables - time between 
arrivals, T, service times, S, maximum number of vacations, 
H, and vacation duration, V, are mutually independent and 
ρ = λE(S) < 1. 

Let J represent the actual number of vacations taken by 
the server in a cycle, then  

 
{ }−=  < Τ <( 1) ( ) min , :  k kJ H k V V , 

 

where V (k) stands for the sum of k vacations, with V(0)≡ 
0. To reflect the fact that the primary jobs receive higher 
service priority, the server continues serving the queue 
until the queue is empty (also called an exhaustive service 
type). 

Let AI and AV denote the event that the first customer 
arrival to an empty system occurs in a server’s idle state 
and in a server’s vacation state, respectively. We have  
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where V% (s) is the Laplace Transform (LST) of V. 

Let Ln be the number of customers left behind by n th 
customer departure. Then the queue-length process {Ln, 
n ≥ 1} is an embedded Markov chain and 
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where A denotes the number of customers arriving during 
the service of a customer and Qb the number of customers 
present when the busy period begins. Because A and Qb 
are i.i.d random variables, we omit the subscript n. In 
addition, we introduce the following probabilities - 
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where aj (or vj) is the probability that j customers arrive 
during a service time (or a vacation time). 

We first determine the probability distribution of Qb 
which is needed in developing the performance measures 
of a vacation model. Event {Qb = 1}occurs in either of the 
two mutually exclusive cases: (a) the first arrival to an 
empty system occurs in an idle period because the 
maximum number of vacations have been finished; and (b) 
the first arrival to an empty system occurs during a server 
vacation period and only one arrival happens until the 
completion of this vacation. Therefore, 
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Similarly, Event {Qb = j}(j ≥  2) represents 
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For this type of vacation model, the elements in the first 

row of the transition probability matrix of the M/G/1 type 
embedded Markov chain 
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It is easy to find the expected number of customers 

present when the server resumes serving the queue as 
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and it is used in the following development of the major 
performance measures. We present the stochastic 
decomposition property on the stationary performance 
measures. This property shows the net effects of using the 
server’s idle time for supplementary work. 

The stationary queue length and the waiting time for an 
M/G/1 queue with the MAV policy, denoted by Lv, and 
Wv, respectively, can be decomposed into the sum of two 
independent random variables as 

 
v d

v d
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= +
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                                (3) 

 
where L and W are the queue length and the waiting time 
(with a FIFO discipline), respectively, of a classical M/G/1 
queue and Ld and Wd are the additional queue length and 
the additional delay, respectively, due to the MAV policy 
with the following LST and the z-transform as 
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Proof. See APPENDIX. 
 

Let Dv be the busy period of the M/G/1 queue with 
MAV policy and note that the only difference between Dv 

and the busy period of a classical M/G/1 queue, denoted 
by D is that Dv starts with Qb customers. Thus ( )vD s =%  

( ( ))bQ D s% . Using the z-transform of Qb which is derived in 
APPENDIX, we obtain the LST and the mean of Dv as 
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The z-transform of the number of vacations taken at a 
time, J, can be obtained as follows: 
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The derivation of (6) can be found in Tian (1992). 

Based on (6), the total length of vacations taken at a 
time, denoted by VG, has the LST and the mean as 

1 ( )
( ) ( ( )) 1 (1 ( ) ( ) ),

1 ( ) ( )G
V sV s J V s H V V s

V V s
λ

λ
−

 = = − −  −

%
% % % %

% %
 

1 ( ( ))
( ) ( ).

1 ( )G
H VE V E V

V
λ

λ
−

=
−

%

%
 

 
Other useful performance measures include the expected 
server idle time, E(Iv), the expected cycle time, E(Bc), and 
probabilities of the server being busy, on vacation, or idle, 
denoted by PB, PV, PI, respectively, and they are obtained 
easily as follows. 
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Note that the special cases of H = 1 and ∞ correspond to a 
single vacation model and a multiple vacation model, 
respectively, (see Fuhrmann and Cooper (1985) for the 
details about these models). 
 
3. MODELING THE LEVEL OF SCHEDULING 

SUPPLEMENTARY WORK 

In this study, we consider two types of supplementary 
work with random availability. Type 1 is the sum of 
Geometric random variables and of type 2 is the sum of 
Bernoulli random variables. 

These forms of  H are flexible to model the level of  
supplementary work for different situations. As an example 
of  type 1 supplementary work, consider an employee 
whose primary task is to answer “inbound phone” calls 
from customers. If  the volume of  such calls is low, then 
the employee could be assigned the secondary task of  
making “outbound calls” to potential customers to attempt 
to sell them a product or service. Usually, the employee will 
need to make several calls to reach a successful sale. 
Suppose that each call has an exponentially distributed 
duration and a success probability p of  making a sale. Then 
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the total time until a sale is made will be a sum of  
geometrically distributed number of  exponential random 
variables. Assume that the employee follows a policy where 
after each call (regardless of  the cutcome - success or 
failure), he or she checks the queue of  holding inbound 
calls, if  there are no waiting calls, continue making 
outbound calls to potential customers until he or she has 
made ng sales - the maximum number of  sales made when 
no calls are waiting. If  no inbound calls arrive until ng sales 
are made, the employee will become idle and wait for the 
next inbound call. It is also worth noting that multiserver 
call centers with both inbound and outbound calls have 
been studied in the past (see Deslauriers et al., 2005; Gans 
et al., 2003; Koole and Mandelbaum, 2002). 

For type 2 supplementary work, consider a customer 
service desk (CSD) of  a supermarket. In such a situation, 
the idle CSD employee may check nb possible 
supplementary jobs (e.g. checking nb shelves) and each job 
has a probability p to be available (empty shelf  found). He 
will do these jobs (restock the empty shelf) as long as no 
customer arrives at the service desk. In this case the 
maximum number of  supplementary jobs is a binomial 
random variable. 

In fact, the advantage of  this model is that the 
supplementary work level and the server’s work-load can 
be controlled by the decision variables nb and ng as 
described above. These two cases are presented below for 
the numerical illustrations 

 
Case 1: H = the sum of  i.i.d. Geometric random variables. 

Let Gi be the i.i.d. Geometric random variables. In this 
case, we have 
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where p is the parameter of  the geometric distribution. 
This type of  H can be used to model the situation that the 
server must search with certain success probability for the 
secondary jobs to do (like the example described above). 

That is, Gi represents the number of  attemps made to 
complete the ith job successfully. In other words, 
completing ith job requires Gi  activities and the duration 
of  each activity is modeled as a vacation in the MAV model 
with an exponential distribution of  rate θ. Immediately, we 
get 
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Case 2: H = the sum of  i.i.d. Bernoulli random variables. 

In this case, H is a Binomial random variable and is 

more appropriate for the customer service desk (CSD) 
employee in a supermarket. Each available job is treated as 
an exponentially distributed vacation with rate of θ. Thus, 
we have 
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Note that this case is also appropriate for modeling the 

machine maintenance problem in which H represents the 
number of  machines inspected during the idle time and the 
customer arrivals represent the failure machines requesting 
repairs. 

Based on the exponential vacations (supplementary jobs) 

with the mean of  1/θ and the LST of  ( )V s
s

θ
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% , we 

can also obtain the major performance measures below: 
 

1 (1 ( ( )))H Vλ
λ

θ
Θ = + − %  

( ( ))
(1 ) ,

1+ (1 ( ( ( )))
I

H VP
H V

λ
ρ

λ
λ

θ

= −
−

%

%
 

( ) 1 ( ( ))1E W (1 ) ,
1+ (1 ( ( ( )))

d
H V

H V

λλ
λθ θ λ
θ

−
= +

−

%

%
 

( ) 1E (1 )(1 ( ( ( ))) .GV H Vλ
λ

θ θ
= + − %  

 
With these formulas and the expression for ( ( ))H V λ% , 

we can also obtain the variations of  the performance 
measures with respect to the decision variable ng or nb. For 
example, we can obtain the rate of  change of  PI with 
respect to ng for case 1 as 
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Note that other vacation distributions such as 

deterministic or phase type can be treated in the MAV 
model. 
 
4. CONTROL OF IDLE TIME UTILIZATION- 

COMPUTATIONAL RESULTS 

Using these two special cases, we numerically 
demonstrate that the server’s average utilization level can 
be effectively controlled by choosing an appropriate 
parameter nb or ng for a given environment. In the 
geometric H case, ng is the required number of  successful 
supplementary jobs completed during the idle time before 
the server can stay idle and in the binomial H case, nb is the 
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number of  potential jobs with random availability to be 
inspected during the idle time. Some numerical examples 
are presented below to illustrate the impact of  changing ng 

or nb on the server’s idle time proportion. The system 
parameters of  the four cases are in Table 1. 

The main reason for choosing this system parameter 
dataset is because these cases are all low traffic load of  
ρ=1/4. Therefore, scheduling some supplementary work 
help improve the server’s utilization. 
 
Some Observations from the Numerical Examples:  

(1) In the Geometric type H cases, the idle time 
proportion reduction decreases more rapidly with n when p 
is small or “more-difficult-to-be-successful” type 
supplementary jobs are scheduled. For example, in Case 1 
shown in Figure 1, requesting the idle server to complete 
one successful search before becoming idle (n = 1) will 
reduce the idle time proportion from 75% to 31% for p = 

0.1 case compared to 75% to 65% for p = 0.9 case. It is not 
surprising that smaller p values result in the idle time 
reduction being more sensitive to increase in n, because as 
p decreases each geometric random variable in the sum is 
becoming stochastically larger. This also means that the 
server checks to see if  a primary job has arrived less 
frequently, and so primary jobs may have to wait longer. In 
contrast, for the Binomial type H cases, the idle time 
proportion drops more significantly as n increases for 
bigger p values or “easier-to-occur” type secondary jobs. 
For example, in Case 3 of  Figure 3, an n = 5 policy cuts the 
idle time proportion from 75% to 24% for p = 0.9 
compared to 75% to 66% for p = 0.1.  

(2) Comparing Figure 1 to Figure 2 or Figure 3 to Figure 
4 indicates that scheduling larger supplementary jobs (or 
smaller θ) to idle servers is more effective in reducing the 
idle time proportion than scheduling smaller 
supplementary jobs (or larger θ). 

 
Table 1. The system parameters of  the four cases 

 λ  
(arrival rate) 

μ 
(service rate) 

θ 
(vacation rate) H type 

Case1 1 4 8 Geometric 
Case2 1 4 4 Geometric 
Case3 1 4 8 Binomial 
Case4 1 4 4 Binomial 

 
Figure 1. The proportion of  idle time v.s. policy parameter ng − θ = 4 case. 

 
Figure 2. The proportion of  idle time v.s. policy parameter ng − θ = 4 case. 
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Figure 3. The proportion of  idle time v.s. policy parameter nb − θ = 8 case. 

 

 
Figure 4. The proportion of  idle time v.s. policy parameter nb − θ = 4 case. 

 
 

(3) There are other important performance measures 
that might interest practitioners implementing MAV type 
policies. One of  them is the additional expected waiting 
time of  arriving customers due to performing the 
supplementary jobs, E(Wd), and the other is the expected 
number of  vacations taken (or supplementary jobs done) 
each time- E(NV ). Both of  them are increasing in the 
policy parameter n as shown in Figures 5 and 6 for Case 1. 
Because randomly arriving customers are top priority jobs 
which trigger an immediate server’s returning at the 
completion of  the next supplementary job and the queue 
service is exhaustive, both E(Wd) and E(NV) are upper 
bounded by the finite limits. The upper limit for E(Wd) is 
the well-known additional expected delay due to a classical 
multiple vacation policy (that is an n = ∞ case of  this MAV 
model) − V(2)/2E(V ) and the upper limit for E(NV ) is 

1/(1 − ( )V λ% ). In the exponential supplementary job case 
with θ as the processing supplementary job rate, these two 
limits are 1/θ and 1+θ/λ, respectively. These values are 
useful in assessing the performance effects of  utilizing 
server’s idle time. 

(4) Using Case 3 with p = 0.6, we investigate the issue of  
achieving a target idle time proportion, PI, at different 
traffic load ρ = λ/μ. For example, in Figure 7, to achieve a 
target PI = 15%, we adjust n value from 0 to 22 when the 
arrival rate λ changes from 3.5 to 1.0. Specifically, n = 0, 2, 
5, 8, 13, and 22 for λ = 3.5, 3.0, 2.5, 2.0, 1.5, and 1.0, 
respectively, to approximately achieve this target idle time 
proportion which might be the organization-wide standard 
or average level for employees. 
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Figure 5. The expected waiting time due to performing the secondary jobs v.s. policy parameter ng for θ= 8. 

 

 
Figure 6. The expected waiting time due to performing the secondary jobs v.s. policy parameter ng for θ = 8. 

 
 

 
Figure 7. The proportion of  idle time v.s. policy parameter nb for different arrival rates in Case 3. 
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5. CONCLUDING REMARKS 

This paper presents a useful quantitative model for 
practitioners to adjust the server’s work-load level and 
other performance measures of  a queueing system by 
scheduling an appropriate amount of  supplementary work 
during the server’s idle time. Because all random variables 
are generally distributed except for the Poisson arrivals, this 
model provides a general analytical framework for 
answering the important and practical question of  how to 
improve the server’s time utilization in a queueing situation 
with a low traffcintensity. With this model, queueing 
managers are able to develop an appropriate 
“idle-time-work” assignment policy for effectively utilizing 
server’s idle time and maintaining a fast service response to 
primary customers. For example, a desired constant 
average work-load or time utilization level can be achieved 
in the situation where ρ = λ/μ varies significantly. The 
uniform work-load is measured in terms of  either the 
proportion of  idle time or the proportion of  busy time and 
is usually the average employee work-load level for the 
whole organization. In classical multiple vacation models 
and single vacation models (see Shanthikumar, 1988) which 
are two special cases of  our model, the server’s idle time 
proportion is fixed and is not controllable. In our model, 
the server’s idle time proportion is completely controllable. 

Although in this paper we only present two types of H’s, 
other types of  H distributions fitting different real-life 
situations can be studied similarly. In this model, different 
values of  p’ or p may represent different success 
probabilities in the Geometric H case or different random 
availability in the Binomial H case for different types of  
supplementary jobs. Hence, this model can help managers 
schedule different amounts of  supplementary work for 
different types to the idle employee to achieve an 
appropriate utilization level. 

In this study, we assume that the arriving customers have 
higher service priority than the supplementary jobs during 
the idle time for the server. Note that this type of  queue 
service resumption is a special case of  the threshold policy 
(or the N-policy). A direction of  future study is to combine 
the MAV policy with a general N-threshold policy for 
resuming the queue service. For some past work on the 
threshold policy vacation models, see Levy and Yachiali 
(1975), Takagi (1993), and Zhang et al. (1997). Another 
future research topic is to extend this MAV policy model to 
a multi-server queueing system by using different methods 
such as matrix geometric solution approach. 
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APPENDIX: A BRIEF PROOF OF THE THEOREM 

Based on the stochastic decomposition theorem for the 
M/G/1 queue with general vacations (see Doshi, 1986 ; 
Doshi, 1990; Fuhrmann and Stochastic, 1985; Levy and 
Yachiali, 1975; Shanthikumar et al., 1988), we have 
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Furthermore, we find the z-transform of Qb(z) and E(Qb) 
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Substituting these expressions into the expression of Lv(z) 
gives (4). Similarly, for the waiting time, we have 
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Substituting Qb(z) and E(Qb) into ( )vW s%  gives (5). It is 
easy to prove that Lv is also the stationary queue length 
distribution at any time due to PASTA. 

 


