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AbstractProcess capability indices are designed to describe how the process of  interest can achieve to meet specification 
limits under a condition of  statistical control. One of  the capability indices is denoted as Cpm proposed by Chan, Cheng and 
Spiring (1988), sometimes termed the Taguchi index. The primary goal of  this paper attempts to construct a confidence 
interval for Cpm, which measures process variability as well as process centering in terms of  the variation of  the process 
mean from the target value. The confidence interval derived herein is based upon the posterior distribution of  Cpm 
combined with the application of  highest posterior density (HPD) arising from the Bayesian decision theory. The developed 
interval for Cpm is compared, via various simulation studies, with the one published in the recent literature obtained by using 
the classical two-sided approach implemented on the sampling distribution of  Cpm. The experimental results demonstrate 
that the improvement achieved by the proposed confidence interval holds provided that the process center deviates from 
the target value. A Bayesian procedure for the hypothesis testing of  the Taguchi process capability is also presented with 
several graphical analyses under a variety of  assumed parameter configurations, illustrating an additional statistical merit of  
the new method while a process deviation from the target value occurs. 
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1. INTRODUCTION 

The process capability analysis (PCA) is a statistical 
technique for quantifying process variability and analyzing 
the relation of  this variability to production requirements 
and/or product specifications under circumstances where 
the measurements of  the quality characteristic (of  interest to 
the process engineer) taken on process operations are 
independent and approximately normally distributed with a 
fixed process mean and a constant process standard 
deviation. With a view to take into account quantitatively 
both the process variability and departure from the target 
value in assessing a process’s capability, Chan et al. (1988) 
and Boyles (1991a, 1991b) separately proposed and 
discussed an alternative process capability index (PCI), Cpm, 
by borrowing the loss function from Taguchi’s (1986) 
philosophies of  quality engineering. Of  late, the Taguchi 
index of  this type has been receiving considerable attention 
in the literature (Zimmer and Hubele, 1997; Shiau et al., 
1999; Deleryd and Vannman, 1999; and Zimmer et al., 
2001). 

There have various other measures available for industrial 
use when conducting PCA. Most recently, a profound 
literature review on the development of  PCIs accompanied 
with a panel discussion is given in Kotz and Johnson (2002). 
To date, the two most widely used PCI’s in common 
practice are Cp and Cpk. Sullivan (1984, 1985) and Kane 
(1986a, 1986b) provided comprehensive insights of  these 
two indices into real-world applications alongside their 

statistical sampling properties. In Pearn, Kotz and Johnson 
(1992), a great deal of  rigorous theoretical efforts have been 
devoted to the distributional developments and inferential 
properties of  some PCI’s (Cp, Ck and Cpm) and their 
estimators, as well as the so-called “third generation” PCI, 
Cpmk. Kotz and Johnson (1993) gave an overview of  the 
grounding work recently developed for the area of  process 
capability. Spiring (1997) suggested the use of  a weight 
function to present a unifying approach (termed Cpw), 
allowing one to examine several statistical properties 
associated with estimators of  the various PCI’s. Capability 
indices are estimated through sample data, often with not 
very large sample sizes; thus sometimes it is of  more 
important interest to compute interval estimators for the 
true capability index given a sample estimate in order to 
properly account for the uncertainty due to the sampling 
variability (see Chou et al., 1990; Kushler and Hurley, 1992; 
Franklin and Wasserman, 1992; Spiring, 1997; Shiau et al., 
1999; and Zimmer et al., 2001;). In Spiring (1991), it has 
also been emphasized that Cpm is one of  several competing 
indices which possess the ability to consider proximity to 
the target value as well as process variability when assessing 
process capability. For the above reasons, the main focus of  
this paper will be on constructing confidence limits for the 
Taguchi capability index Cpm. 

In this research, a Bayesian alternative for Cpm to the 
existing methods presented by Boyles (1991) and Zimmer et 
al. (2001) is derived and its relative performance as 
compared to the classical sampling theory approaches is 
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also reported. Concerning the justification and advantages 
of  the use of  Bayesian statistical techniques over classical 
ones, associated remarks have already been stressed in Chan, 
Cheng and Spiring (1988, pp. 167-168), Cheng and Spiring 
(1989, pp. 97-98), and Shiau et al. (1999, pp. 369-370). In 
short, a general framework for Bayesian solutions assumes 
that the parameter of  interest (herein a function of  the 
process variance, which will be introduced in a later section) 
is probabilistic with an unknown statistical distribution. A 
prior distribution is taken on this parameter and then 
modified in light of  the likelihood function in order to 
reflect the behavior of  the relevant data collected and arrive 
at a posterior distribution (see, e.g., Berger (1988) and Lee 
(1989)). It should first be noted that all developments 
throughout the paper are made assuming the process under 
investigation is free from any assignable cause (i.e., in a state 
of  statistical control) and the quality characteristic under 
study arises approximately from a normal distribution. The 
research motive of  this paper is attributed primarily to the 
pioneering work of  Cpm by Chan et al. (1988). 

For clarity of  presentation, the paper is organized as 
follows. In Section 2 a succinct review of  the Taguchi index 
Cpm is given along with the statistical properties of  the 
measure and its estimators. A Bayes-based procedure is 
developed in Section 3 for providing the posterior 
distribution related to Cpm, and thus a Bayesian confidence 
interval can effortlessly be computed by means of  
univariate search methods. The Newton’s or secant method 
is employed for this purpose (see, e,g., Conte and de Boor 
(1980, pp. 78-79)). Section 4 presents a variety of  
experimental results to underscore the new approach of  
having better statistical performance. In Section 5, a 
Bayesian-based approach for the hypothesis testing of  the 
Taguchi process capability is presented and its statistical 
properties demonstrated through a series of  graphical 
illustrations are thoroughly discussed as well. Finally, we 
conclude the paper and consider opportunities for future 
research in Section 6. 

 
2. TAGUCHI CAPABILITY INDEX, ITS 

ESTIMATOR AND STATISTICAL PROPERTIES 

The process capability index Cpm espoused by Chan et al. 
(1988) is defined as 

 

σ
−

=
′

USL LSL
6pmC                             (1) 

 
where USL, LSL represent the upper and lower 
specification limits, respectively, and σ ′  denotes the 
squared root of  the expected mean squared error (MSE) 
from the target value (T), expressed as 
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where X is a random variable associated with measurements; 
σ 2  and μ are the corresponding process variance and 
process mean for X. The parameter σ ′2  is usually 

unknown and can be estimated from a random sample of  
taking n measurements 1 2,  ,  ...,  nx x x  on the quality 
characteristic of  interest by using 
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Notice that Boyles (1991, pp. 22-23), followed by Johnson 
(1992, p. 212) and Shiau et al. (1999, p. 371), strongly 
suggests using an alternative estimator 
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and shows that σ ′% 2  is an unbiased and also the maximum 
likelihood estimator (MLE) of  σ ′2  with smaller MSE. 
Nevertheless, the choice of  estimator for σ ′2  would not 
affect the derived Bayesian credible interval, which will be 
discussed in Section 3. Hence the resulting estimator of  Cpm 
in (1) can be written as (Chan et al. (1988, pp. 164) 
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Assuming the measurements 1 2,  ,  ...,  nx x x  to be 

distributed as 2( , )N µ σ , ( )σ ′− 2ˆ1n / σ 2   follows a 
non-central chi-square distribution with n degrees of  
freedom and a non-centrality parameter λ  = ( )µ − 2n T  

/σ 2 , and then the probability density function (pdf) of  
ˆ

pmC  can be shown as 
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where ( ) ( )λ= − +2 1 1pma C n n . For further details about 
the mathematical proof  in (6), see Chan et al. (1988, p. 174) 
and Zimmer et al. (2001, pp. 65-66).  As can be seen from 
Equation (6), the shape of  ˆ( )pmf C  depends on the values 
of  pmC , n and λ. For example in Figure 1, given the actual 
value of  = 1.5pmC  and a fixed sample size = 10n  with 
varying λ’s, it shows that the kurtosis increases as λ gets 
larger but the skewness tends to fall off. As such, the rising 
peakedness as a result of  the departure of  the process mean 
from the target value gives rough guidance about the types 
of  processes for which a Bayesian-based confidence interval 
might be advantageous. 
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Figure 1. The probability density functions of  ˆ

pmC  for various non-centrality parameters λ = 1, 3, 5, 10 when Cpm = 1.5 
and n=10. 

 
According to the pdf  of  ˆ( )pmf C , its expected value and 

variance can exactly be found (see Chan et al. (1988, p. 174) 
and Pearn et al. (1992, pp. 218-220)), yet unfortunately, the 
statistical properties of  ˆ

pmC  involving the non-central 
chi-square distribution are very difficult to deal with by 
nature. Under a restricted case of  μ = T where the indices 
Cp and Cpm are essentially equivalent, Chan et al. (1988) 
recommended two analytical procedures to examining 
ˆ

pmC an operating characteristic (OC) curve approach and 
a Bayesian-type approach. The OC curve approach is built 
upon the traditional frequentist theory to investigate the 
sampling distribution of  ˆ

pmC ; however, this approach will 
produce pragmatic unwieldiness while evaluating the 
stochastic properties of  ˆ

pmC . In contrast, the Bayesian 
approach, akin to the one for Cp posed in Cheng and 
Spiring (1989), can find exact (and/or approximate) credible 
intervals for Cpm that are much easier to interpret for a 
general purpose and less restrictive than those generated by 
using the OC curve approach. Following Chan et al.’s (1988) 
work, Shiau et al. (1999) employed a multi-parameter joint 
prior (for μ and σ) and provided a general Bayesian 
procedure for assessing the process capability index Cpm 
without relying on the assumption that μ = T. The section 
that follows will proceed to the development of  a modified 
Bayesian approach where a suitable reference prior about 
the process variance is opted and a closed-form expression 
of  numerical integral is derived to cope with the general 
situations frequently found to occur in ordinary QC 
practice; that is, the process mean μ is not on the target 
value T. 

 
3. A GENERALIZED BAYESIAN APPROACH 

FOR ANALYZING Cpm 

 

3.1 Prior distribution 

Assume that the process measurements of  the quality 
characteristic conform to a normal distribution 

2( ,  )N µ σ , and then due to their independency and being 
identically distributed (i.i.d.), the likelihood function for the 
random sample 1 2{ ,  ,  ...,  }nX x x x=  will be 
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where the process variance σ 2  is our key interest and 
assumed stochastic with an associated statistical distribution.  
The general argument is that Bayesian inferences about 
variances are usually more important concerns than those 
about means if  the underlying distribution turns out to be 
only approximately normal (Lee, 1989). To begin with the 
construction of  a Bayesian approach for analyzing Cpm, we 
must decide on an appropriate prior for the unknown 
parameter 2σ . When there is no obvious prior information 
on hand, the justification of  a particular prior must solely 
rest on the sampling distribution since it is the only available 
information (see, e.g., Berger (1988) and Robert (1994)). 
Therefore, the Jeffreys’ noninformative prior distribution 
depending on Fisher’s information is considered here in the 
form 
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where π denotes the prior distribution and for a detailed 
account regarding the above relation, see Berger (1988) and 
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APPENDIX A. The prior as shown in (8) is improper; 
however, it will turn out that the prior distribution can 
combine with an ordinary likelihood to give a posterior 
which is proper. It is worth while to note that the prior 
provided by Jeffreys’ rule actually satisfies the invariant 
reparameterization requirement that whatever scale is chosen to 
measure the unknown parameter, the same prior results 
hold as the scale is transformed to any particular scale. This 
seems a highly valuable property for a reference prior. 
 
3.2 Posterior distribution 

Combining the prior π σ 2( )  based on the amount of  
information brought by an experiment (or the observations) 
about 2σ  with the likelihood function as in (7), the 
posterior of  σ 2  is (see APPENDIX B) 
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Consequently, the posterior probability of  Cpm lying inside 
the interval [ ,  ]ϖ ω  is 
 

USL LSL
Pr Pr

6
USL LSL USL LSL  Pr

6 6

pmp C X X

X

ϖ ω ϖ ω
σ

σ
ω ϖ

−  = ≤ ≤ = ≤ ≤   ′ 
− − ′= ≤ ≤  

 

( )2

1

  
h

h
X dπ σ σ′ ′= ∫

( ) ( )2

1

22 2ˆ12 
2

2

n

h

h

n n x
n

σ µσ
 
   − + −′
 =  

     Γ    

∫

( )
122 2        

n

Tσ µ
 − + 
  ′× − − 

( ) ( )
( )

22

22

ˆ1
       exp

2

n n x
d

T

σ µ
σ

σ µ

 − + −  ′× −
  ′ − −  

 

2

1

1
21   ,

2

nk y

k
y e dy

n
− −=

 Γ 
 

∫                        (11) 

 
where 

( )1 USL LSL 6h ω= − , ( )2 USL LSL 6h ϖ= −  

( ) ( ) ( )σ µ σ µ′= − + − − −2 22 2ˆ[ 1 ] 2[ ]y n n x T  

( ) ( ) ( ) ( )σ µ σ ϖ µ′= − + − − −2 22 2 2 2
1

ˆˆ ˆ[ 1 ] 2[ ]pmk n n x C T  

and 
( ) ( ) ( ) ( )σ µ σ ω µ′= − + − − −2 22 2 2 2

2
ˆˆ ˆ[ 1 ] 2[ ]pmk n n x C T  

To construct a 100 %p  two-sided Bayesian credible 
interval [ ,  ]ϖ ω  for Cpm, it is first required to calculate the 
values of  k1 and k2 corresponding to desirable credibility p. 
It is then easy to verify that the Bayesian interval limits for 
Cpm are 
 

( ) ( ) ( )

2 2
1

2 22
1

ˆˆ2
ˆ1 2

pmk C

n n x k T

σ
ϖ

σ µ µ

′
=

 − + − + − 
,         

( ) ( ) ( )

2 2
2

2 22
2

ˆˆ2

ˆ1 2
pmk C

n n x k T

σ
ω

σ µ µ

′
=

 − + − + − 
.     (12) 

 
It is obviously to see from Equation (12) that the 

Bayesian interval for Cpm is invariant to any kind of  point 
estimators of  σ ′2  used to provide a point estimator of  
Cpm. The resultant form of  posterior in (11) obeys 

( )2 ,  1Gamma n . The knowledge of  the posterior 
distribution allows for the derivation of  confidence regions, 
via highest posterior density (HPD) regions, as will be 
described shortly. 
 
3.3 Computation of  highest posterior density (HPD) 

region 

Unlike classical confidence intervals that can only be 
interpreted in terms of  “coverage probability” in a 
long-run sampling sense, Bayesian credible intervals are 
directly referred to the probability of  the unknown 
parameter being in a pre-assigned interval given the data 
observed in the current experiment since, meaningfully 
speaking, the posterior distribution is an actual pdf  of  the 
parameter. We often use the notion of  highest posterior density 
(HPD) to determine an appropriate credible interval. As 
with choosing a credible interval, it is typically desired to 
try to minimize its size. To achieve this, one should contain 
only those points (in a set) that have the largest posterior 
density, namely the “most likely” values of  the unknown 
parameter. The HPD credible set is defined below (see 
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Berger (1988)). 
 

Definition 1. For a prior distribution ( )π θ  and a 

posterior distribution ( )Xπ θ  of  θ, a set Cx is termed an 
α-credible set if 
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Definition 2. The α−100(1 )%  HPD credible set for θ is 
of  the form 
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where αk  is the largest bound such that 
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xP C X  

 
An application of  HPD regions to this research is 
motivated mainly by the fact that they are “continuous” 
and minimize specifically the volume of  the credible set 
provided that the posterior density is unimodal. The 
concept of  HPD credible set is roughly sketched in Figure 
2. 

 
 

 
 
 
 

 
 

 
 
 
Figure 2. The highest posterior density (HPD) credible set. 

 
Indeed, the posterior distribution of  Cpm is unimodal 

and asymmetric, so equating the two tail probabilities, as 
normally done by classical statistics, is clearly not an 
optimal answer for this case.  HPD regions are not in 
general equal tailed. On that account, we propose utilizing 
the Newton’s or secant method (see, e.g., Conte and de 
Boor (1980, pp. 78-79)) to solve the nonlinear equation 
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where αk  is an initial guess, for 1k  and 2k  that form 
the HPD region for the intermediate parameter y. If  the 
initial guess of  αk  yields the posterior probability short 
of  α−(1 ) , then it indicates that the highest density lower 
bound αk  is set too high and should be lowered; 

otherwise, it should be raised. Until a set of  1 2( ,  )k k  with 
respect to a specific value of  αk  is positioned such that 
the computed posterior probability p in (11) approximately 
equals α−100(1 )%  as specified beforehand. Thus, the 
HPD credible interval ϖ ω[ ,  ]  for Cpm can readily be 
located in terms of  Equation (12). It turns out to be 
surprisingly simple from our earlier experience to carry out 
the univariate search procedures for the root-seeking 
problem (as mentioned previously) in a spreadsheet 
application. For an algorithmic presentation, the searching 
procedure is summarized in the following. 
 
Algorithm 1. (HPD Searching Procedure) 

Initialization. Choose an initial value α< < −00 ( 2 1)k n  
in that for ( , )Gamma a b  with > 1a  the maximum value 
of  the density occurs at the point −( 1)a b . Set the upper 
bound : ( 1)U a b= −  and the lower bound =: 0L  for 

αk . Set =: 0j  and choose a tolerance δ > 0  (say, 
−× 61 10 ) for halting the algorithm. Given an α level. 

Step 1. Solve the nonlinear equation 
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by using the Newton’s method (with derivative) or 
the secant method (without derivative). Denote the 
incumbent solution as α = 1 2: ( ,  )xC k k . Notice that 
each pair of  roots for Equation (14) can be found 
without undue difficulty if  the starting point 
employed is defaulted to zero for searching k1 and a 
larger value (say, 10) for searching k2. 

Step 2. Calculate the probability 
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Step 3. If  α α δ− − ≤( ) (1 )xP C , then stop and return the 

solution α = 1 2( ,  )xC k k ; otherwise go to Step 4. 
Step 4. If  α α> −( ) (1 )xP C , then update α 'sk  lower 

bound by α=: jL k , set α α
+ = +1 : ( )/ 2j jk k U  and 

= +: 1j j , and go to Step 1. 

Step 5. If  α α< −( ) (1 )xP C , then update α 'sk  upper 

bound by α=: jU k , set α α
+ = +1 : ( )/2j jk k L  and 

= +: 1j j , and go to Step 1.  
 

In the preceding algorithm, the bisection method is 
employed for the outer loop to solve the nonlinear 
equation 
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which is a convex and monotone decreasing function. 
Algorithm 1 is only a crude but effective implementation, 
and a more efficient bracketing procedure, such as the 
method of  modified regula falsi (see, e.g., Conte and de 
Boor (1980)), may be used instead. To be illustrated next 
are some interesting experimental results of  the proposed 
HPD credible interval for Cpm based on a wide variety of  
simulations as compared to those of  an analog by using 
classical sampling statistics. 
 
4. PERFORMANCE OF AN HPD CREDIBLE 

INTERVAL FOR Cpm 

We now analyze the comparative performance of  the 
Bayesian HPD credible interval addressed in Section 3. 
The whole comparison report is divided into two 
subsequent scenarios. To avoid ambiguity, henceforth the 
“confidence interval” refers to the interval estimator 
founded on the classical sampling distribution and the 
“credible interval” relates to the interval estimator based 
upon the Bayesian posterior distribution. 

4.1 The equal-tailed confidence interval versus the 
HPD credible interval when μ = T 

The condition that μ = T indicates λ = 0  in the 
sampling distribution of  ˆ

pmC  as exhibited in Equation (6). 
Adapting Zimmer et al.’s (2001, p. 52) two-sided 
100(1−α)% confidence interval on Cpm with λ = 0  to the 
point estimator of  σ ′2ˆ  defined in (3) yields 
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where χ 2
n  follows a “central” chi-square distribution with 

n degrees of  freedom. In fact, the above confidence 
interval depends only on the value of  ˆ

pmC  and the 
sample size n. The confidence length 1R  of  Equation (16) 
is defined as 
 

α αχ χ
−

= −
− −1

2 2

1 ; ;
2 2

ˆ ˆ

1 1
pm pm

n n

C C
R

n n
                        (17) 

 
Consider also a two-sided α−100(1 )%  HPD credible 

interval of  Cpm when μ = T. During Step 1 of  Algorithm 1, 

the Newton’s method is selected for use to look for the 
roots ′ ′1 2( ,  )k k  inasmuch as the derivative of  Equation 
(13) is accessible. Consequently, the HPD credible interval 
limits for Cpm are reduced to 
 

ϖ

ω

′ ′= −

′ ′= −

2
1

2
2

ˆ2 ( 1)

ˆ2 ( 1) ,

pm

pm

k C n

k C n
                        (18) 

 
and the credibility length 2R  is defined by 
 

′ ′= − − −2 2
2 2 1

ˆ ˆ2 ( 1) 2 ( 1)pm pmR k C n k C n .          (19) 

 
Likewise, the above HPD credible interval depends only on 
the value of  ˆ

pmC  and the sample size n. 
To compare these two types of  interval estimators 

presented in (16) and (18) for the situation where μ = T, 
suppose that =ˆ 1.3pmC  (resulting from the process being 
very likely capable) and α− =1 0.95 , and then we 
compute the performance measure given by 
 

( )= − ×1 2 1 2 100%,P R R R                      (20) 
 
the improving percentage of  the confidence interval in (16) 
relative to the HPD credible interval in (18).  [It is 
noteworthy that Juran et al. (1979) ever suggested a 
minimum value of  the process potential, = 1.33pC , 
generally used for an ongoing process.] The numerical 
results of  P1 corresponding to various sample sizes from 

= 3n  to n = 100 are listed in Table 1. 
As can apparently be seen from Table 1, while assessing 

the process capability by means of  building an interval 
estimate on the Taguchi index Cpm for the case where μ = T 
and α = 0.05 , the two-sided classical confidence interval 
is always slightly shorter than the two-sided Bayesian 
credible interval. Whilst the sample size n becomes larger, 
the improving percentage P1 diminishes, ranging from 
5.50% to 0.19% in the scale of  R2. To be more precisely, 
the maximum length difference between R1 and R2 is 
merely 0.134529 occurring at = 3n . 

To gain a better understanding of  the interval estimates’ 
location, Figure 3 plots the upper and lower limits for both 
interval estimates of  Cpm from = 3n  to = 100n  using 
the same data as computed in Table 1. It reveals that, in 
essence, the two interval estimators are virtually identical 
and asymptotically approaching each other for larger 
samples. In this instance where μ = T, these two intervals 
are nearly symmetric to the center line of  point estimate 
( =ˆ 1.3pmC ) and noticeably reduced to the right as more 
observational data is collected. 

 



Fan and Kao: Development of  Confidence Interval and Hypothesis Testing for Taguchi Capability Index Using a Bayesian Approach 
IJOR Vol. 3, No. 1, 56−75 (2006) 
 

62 

Table 1. The improving percentage of  the confidence interval in (16) relative to the credible interval in (18) when 1−α = 
0.95 and μ = T 

n  2p  n  2p  n  2p  n  2p  n  2p  n  2p  
3 5.342519 21 1.085549 39 0.570050 57 0.354072 75 0.295128 93 0.213715 
4 5.501611 22 1.000491 40 0.538438 58 0.380519 76 0.278976 94 0.208100 
5 4.647851 23 0.989305 41 0.559535 59 0.366341 77 0.269158 95 0.224764 
6 3.931649 24 0.932785 42 0.553114 60 0.357462 78 0.290116 96 0.212275 
7 3.355450 25 0.897576 43 0.538415 61 0.367048 79 0.258988 97 0.188890 
8 2.917394 26 0.867604 44 0.535350 62 0.321048 80 0.275545 98 0.216711 
9 2.594895 27 0.837334 45 0.522166 63 0.365454 81 0.261834 99 0.215726 
10 2.338870 28 0.788154 46 0.477852 64 0.329700 82 0.268382 100 0.191907 
11 2.129601 29 0.764841 47 0.485100 65 0.347591 83 0.277350   
12 1.914338 30 0.784795 48 0.479777 66 0.320674 84 0.261493   
13 1.752642 31 0.727864 49 0.462065 67 0.323536 85 0.247999   
14 1.638307 32 0.692420 50 0.431223 68 0.305753 86 0.251623   
15 1.505809 33 0.693290 51 0.429865 69 0.317103 87 0.223902   
16 1.439206 34 0.662417 52 0.436857 70 0.307731 88 0.235801   
17 1.350390 35 0.630559 53 0.417910 71 0.328346 89 0.241548   
18 1.251091 36 0.624464 54 0.384025 72 0.274023 90 0.214836   
19 1.207011 37 0.616433 55 0.390382 73 0.302465 91 0.226040   
20 1.144950 38 0.576549 56 0.399427 74 0.282564 92 0.236573   

 

               
Figure 3. The 95% two-sided confidence and HPD credible intervals for Cpm when =ˆ 1.3pmC  and μ = T 

( 3,  4,  ,  100)n = K . 
 

4.2 The equal-tailed confidence interval versus the 
HPD credible interval when μ ≠ T 

When μ = T (which is a more realistic circumstance for 
regular QC practice) and if  the point estimator σ ′2ˆ  in (3) is 
utilized instead of  σ ′% 2  in (4), Zimmer, Hubele and 
Zimmer’s (2001, p. 52) two-sided α−100(1 )%  confidence 
interval for Cpm becomes 

α α
λ λ

λ λ
χ χ

−

≤ ≤
− −

+ +2 2

; , 1 ; ,
2 2

ˆ ˆ

1 11 1

pm pm
pm

n n

C C
C

n n
n n

         (21) 

 
where λχ 2

,n  obeys a non-central chi-square distribution 
with n degrees of  freedom and a non-centrality parameter 

λ. The confidence interval for the case of  μ ≠  T depends 
on the value of  ˆ

pmC , the sample size n and the 
non-centrality parameter λ. It is of  great importance to 
note from Equation (21) that, regardless of  the location of  
process mean (i.e., μ = T or μ ≠  T), the confidence 
intervals for Cpm as demonstrated in Equations (16) and (21) 
are invariant to the employment of  different point 
estimators of  σ ′2  as well, such as σ ′2ˆ  and σ ′% 2 .  The 
confidence length 3R  of  Equation (21) is given by 
 

α α
λ λ

λ λ
χ χ

−

= −
− −

+ +
3

2 2

1 ; , ; ,
2 2

ˆ ˆ

1 11 1

pm pm

n n

C C
R

n n
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          (22) 
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Again, consider a two-sided α−100(1 )%  HPD credible 
interval on Cpm when μ ≠  T. For this situation, Algorithm 
1 is applied to searching for the roots 1 2( ,  )k k  in 
Equation (12) and then the credibility length 4R  is 
defined by 4   R ω ϖ= − . 

To compare the confidence interval in (21) and the HPD 
credible interval in (12) for the case that μ ≠  T, assume 
that =USL 125 , =LSL 75 , α = 0.05  and the process 
measurements taken are approximately distributed as 

(100,  5)N ; define the performance measure given by 

( )= − ×2 3 4 3P 100%R R R                   (23) 

the improving percentage of  the HPD credible interval in 
(12) relative to the confidence interval in (21). The scale of  
deviations from the target value is dictated by the 
non-centrality parameter λ. The experimental results of  P2, 
created from single sampling data, for various sample sizes 
( 5,  10, 20, , 100n = K ) and deviations from the target 
value ( 1, 2, , 10λ = K ) are exhibited in Table 2. 

 
Table 2. The improving percentage of  the credible interval in (12) relative to the confidence interval in (21) when 1−α = 

0.95 and μ ≠  T 
 5n =  10n =  20n =  30n =  40n =  50n =  60n =  70n =  80n =  90n =  100n =  

1λ =  -4.2424 1.0309 6.9336 -2.4890 4.3422 1.5337 0.7505 0.0842 0.3547 -0.2462 2.0906 
2λ =  1.6818 8.7962 12.8417 -2.0789 7.8879 3.3180 1.9524 1.0470 1.2454 0.4319 3.6394 
3λ =  5.7395 15.1368 17.6896 -1.4033 10.9883 4.9917 3.1236 2.0669 2.1514 1.2045 5.0299 
4λ =  8.5747 20.2879 21.7774 -0.6332 13.7670 6.5698 4.2557 3.0957 3.0502 2.0123 6.3208 
5λ =  10.6248 24.5451 25.2879 0.1706 16.2882 8.0624 5.3473 4.1159 3.9341 2.8328 7.5364 
6λ =  12.1548 28.1292 28.3457 0.9806 18.5944 9.4777 6.3994 5.1194 4.7997 3.6548 8.6904 
7λ =  13.3305 31.1971 31.0401 1.7828 20.7169 10.8224 7.4134 6.1024 5.6457 4.4720 9.7914 
8λ =  14.2596 33.8610 33.4375 2.5703 22.6801 12.1025 8.3912 7.0628 6.4716 5.2807 10.8456 
9λ =  15.0136 36.2028 35.5885 3.3393 24.5035 13.3231 9.3345 7.9997 7.2773 6.0785 11.8578 

10λ =  15.6416 38.2835 37.5324 4.0880 26.2031 14.4889 10.2452 8.9129 8.0631 6.8640 12.8318 
 5n =  10n =  20n =  30n =  40n =  50n =  60n =  70n =  80n =  90n =  100n =  

1λ =  -4.2424 1.0309 6.9336 -2.4890 4.3422 1.5337 0.7505 0.0842 0.3547 -0.2462 2.0906 
2λ =  1.6818 8.7962 12.8417 -2.0789 7.8879 3.3180 1.9524 1.0470 1.2454 0.4319 3.6394 
3λ =  5.7395 15.1368 17.6896 -1.4033 10.9883 4.9917 3.1236 2.0669 2.1514 1.2045 5.0299 
4λ =  8.5747 20.2879 21.7774 -0.6332 13.7670 6.5698 4.2557 3.0957 3.0502 2.0123 6.3208 
5λ =  10.6248 24.5451 25.2879 0.1706 16.2882 8.0624 5.3473 4.1159 3.9341 2.8328 7.5364 
6λ =  12.1548 28.1292 28.3457 0.9806 18.5944 9.4777 6.3994 5.1194 4.7997 3.6548 8.6904 
7λ =  13.3305 31.1971 31.0401 1.7828 20.7169 10.8224 7.4134 6.1024 5.6457 4.4720 9.7914 
8λ =  14.2596 33.8610 33.4375 2.5703 22.6801 12.1025 8.3912 7.0628 6.4716 5.2807 10.8456 
9λ =  15.0136 36.2028 35.5885 3.3393 24.5035 13.3231 9.3345 7.9997 7.2773 6.0785 11.8578 

10λ =  15.6416 38.2835 37.5324 4.0880 26.2031 14.4889 10.2452 8.9129 8.0631 6.8640 12.8318 
 
 

Evidently from Table 2, when investigating the process 
capability by means of  constructing an interval estimate on 
the Taguchi index Cpm for the case where μ ≠  T and 
α = 0.05 , the two-sided Bayesian credible interval is 
considerably shorter than the two-sided classical 
confidence interval, except six unpredicted instances 
indicated by a negative value in Table 2. The improving 
percentage P2 decreases as the sample size n gets larger, but 
increases as more serious departures of  the process mean 
from the target value take place. To attain to more 
precision results, nine additional samplings are performed 
and the “averaged” improving percentages, 

=
= ∑10

2 21
P P 10ii

, are reported in Table 3. 
It is probably manifest that when µ ≠ T  the credible 

interval generated by using the Bayesian HPD approach 
outclasses the classical confidence interval at the interval 
length in that no negative entry appears in Table 3. Current 
industry practice tends to favor smaller samples in the 
stage of  control charting, particularly in high-volume 

manufacturing processes (Montgomery (2001)). The 
sample sizes ≤ 20n  are typically chosen for economical 
usage in designing a variable control chart, in which cases 
the value of  2P  varies from 2.97% to 37.71% in the scale 
of  R3. In the extreme case with ≈2P 37%  when = 5n  
and λ = 10 , the target value T is sited at a position about 
1.414 standard deviations away from the process mean, viz. 

µ σ λ= ± /T n , which should still be within the 
specification limits in normal practice. Nonetheless, much 
effort must additionally be made on account of  
adjustments necessary by these departures from the target 
value. 

In order to pictorially reflect the differentiation between 
the HPD credible and classical confidence intervals for the 
situations where μ ≠  T, the interval limits of  these two 
interval estimates for = 5, 10, 20n  through the same data 
illustrated in Table 2 are sketched in Figures 4-6. 

 



Fan and Kao: Development of  Confidence Interval and Hypothesis Testing for Taguchi Capability Index Using a Bayesian Approach 
IJOR Vol. 3, No. 1, 56−75 (2006) 
 

64 

 
Table 3. The averaged improving percentage of  the credible interval in (12) relative to the confidence interval in (21) when  

1−α = 0.95 and μ ≠  T 
 5n =  10n =  20n =  30n =  40n =  50n =  60n =  70n =  80n =  90n =  100n =  

1λ =  15.49772 3.79589 2.97416 1.97653 1.46277 1.35634 1.28042 0.80720 0.98863 1.02188 1.10991 
2λ =  23.97212 10.17758 6.89076 4.71353 3.56914 3.16216 2.77036 2.04068 2.14073 2.16285 2.17820 
3λ =  28.60888 15.14189 10.31399 7.21993 5.56326 4.88083 4.17744 3.25050 3.24101 3.25644 3.18301 
4λ =  31.46827 19.10780 13.32239 9.51346 7.43983 6.51145 5.51324 4.42553 4.29751 4.30939 4.14230 
5λ =  33.38009 22.36242 15.98865 11.61863 9.20502 8.05870 6.78513 5.56317 5.31466 5.32542 5.06392 
6λ =  34.74005 25.09374 18.37149 13.55830 10.86722 9.52829 7.99881 6.66329 6.29556 6.30728 5.95249 
7λ =  35.75587 27.42873 20.51733 15.35234 12.43489 10.92587 9.15897 7.72674 7.24278 7.25719 6.81122 
8λ =  36.54568 29.45600 22.46313 17.01786 13.91609 12.25677 10.26975 8.75483 8.15849 8.17707 7.64251 
9λ =  37.18122 31.23931 24.23853 18.56945 15.31806 13.52593 11.33470 9.74897 9.04449 9.06858 8.44833 

10λ =  37.70848 32.82574 25.86747 20.01960 16.64745 14.73785 12.35704 10.71067 9.90260 9.93327 9.23033 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. The 95% two-sided HPD credible and confidence intervals for Cpm when = 5n  and μ ≠  T 
( 1, 2, ,  10λ = K ). 

 
Figure 5. The 95% two-sided HPD credible and confidence intervals for Cpm when = 10n  and µ ≠ T  

( 1, 2, ,  10λ = K ). 
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Figure 6. The 95% two-sided HPD credible and confidence intervals for Cpm when = 20n  and µ ≠ T  

( 1, 2, ,  10λ = K ). 
 

In this situation, the HPD credible interval is no longer 
symmetric to the center line of  ˆ

pmC ; both intervals 
decrease as the sample size n becomes larger, and also 
become shorter when the process mean is remote from the 
target value. The last statement concurs partly with the 
illustration in Figure 1 that the rising peakedness of  

ˆ( )pmf C  due to λ will very likely render a condensed 
confidence interval that is shifted to the left, so does the 
posterior distribution of  Cpm to which the HPD credible 
set is applied. Interpretatively speaking, the more widely μ 
is separated from T, the more assured that the process 
capability will definitely be getting worse, leading to a 
shorter and left-shifted interval estimate on Cpm. Since the 
HPD credible interval excels to a certain extent when 
µ ≠ T , it is not unreasonable to allude that the posterior 
distribution of  Cpm possesses a shape with a higher kurtosis 
than ˆ( )pmf C . 

5. STATISTICAL PROPERTIES OF BAYESIAN 
HYPOTHESIS TESTING 

Besides the interval estimators aforementioned, another 
useful tool to investigate the sampling variation of  ˆ

pmC  in 
(5) is to test the statistical right-tailed hypothesis: 
 

≤

>
0 0

1 0

:   (process is not capable)

:   (process is capable),
pm

pm

H C c

H C c
            (24) 

 
where >0 0c . In a similar manner to the test procedures 
posed in Kane (1986, pp. 43-44) and Chan et al. (1988, pp. 
166-170), the P-value (or power function) of  the test (24) 
can be computed as a yardstick to evaluate both the 
classical and Bayesian test statistics under a number of  
process configurations. 

5.1 Test statistic via sampling distribution for μ ≠ T 

Consider the hypothesis testing in (24) and the relation 
(see, e.g., Zimmer et al. (2001, p. 52)) 
 

λ

λ
χ

−
+ 2

,

1ˆ ~ 1pm pm
n

nC C
n

                       (25) 

 
Therefore, the test statistic based on the sampling 
distribution of  ˆ

pmC  is 
 

λ
λ

χ
 −  +    

2 2
, 2

1~ 1 ˆn pm
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n C

                     (26) 

 
In consequence of  the fact that 
 

( )σλ
σ

  ′−−  + =    

2
2

22

ˆ111 ,ˆpm
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nnC
n C

                (27) 

 
the hypothesis test in (24) is equivalent to the left-tailed test 
for the process variance (σ >2

0 0 ) 
 

σ σ σ σ≥ <  2 2 2 2
0 0 1 0: vs.      :H H              (28) 

 
giving the P-value for the test as follows 
 

( )
λ

σ
χ

σ

′ −
= ≤ 

 

2
2
, 2

0

ˆ1
- Pr n

n
P value                  (29) 

 
5.2 Test statistic via posterior distribution for μ ≠ T 

Recall that the posterior distribution is deemed as an 
actual pdf, so the corresponding critical region is defined as 
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{ }= > 0: pmc c C c  and the probability of  rejecting the null 

hypothesis in (24) by using the posterior distribution of  
Cpm is given by 
 

0

 

1 0  
Pr ;  ,  1  

2pm c

nC c X Gamma y dyα
∞

′

  = > =     ∫      (3

0) 
 

where 
 

( ) ( )
( )

σ µ

σ µ

− + −
=

 ′ − − 

22

22

ˆ1

2

n n x
y

T
                     (31) 

 
and 
 

σ µ
σ

− + −′ =
2 2

0 2
0

ˆ( 1) ( )
2

n n xc                       (32) 

 
In more detail, see APPENDIX C. The probability of  
failing to reject 0H  in (24) is 
 

α α
′  = − =  

 ∫
0 

0 1  0
1 ;  ,  1  

2
c nGamma y dy             (33) 

 
Note that α0  and α1  are a pair of  test statistic used in 
Bayesian hypothesis testing. 
 
5.3 Computational experience using P-value and α0 

For the moment, it makes sense to compare the two 
different types of  significance probability (i.e., P-value and 
α0 ) associated with the classical and Bayesian procedures 
as noted previously whilst conducting significance testing 
for the process capability index Cpm.  A large P-value will 
cause us to favor 0H  and we should reject 0H  due to a 
very small P-value, so does α0  in Bayesian hypothesis 
testing. 

When μ = T, the P-value as shown in (29) is reduced to 
 

( )µ
χ

σ
=

 − 
 = ≤
 
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∑ 2

2 1
2
0

- Pr

n

i
i

n

x
P value                 (34) 

 
where χ 2

n  conforms to a chi-square distribution with n 
degrees of  freedom. It can be shown that when μ = T (i.e., 
λ = 0 ) the P-value in (34) is exactly equivalent to α0 . See 
the proof  in APPENDIX D, from which it is fully 
understood that α0  is invariable with respect to the target 
value. On the contrary, the P-value in (29) normally varies 
with the non-centrality parameter λ  that characterizes 
the locality of  T. When μ ≠  T, the comparison results are 
reported under the following six process configurations. 

 

Case I: Probability under varied target values when 
x µ=  

Suppose that µ= = 100x , σ =2
0 5  and n = 5, 10, 20, 30; 

the P-value (in dash line) and α0  (in bold-dash line) are 
plotted against varying target values for σ =2ˆ 6,  5,  4  in 
Figures 7-9, respectively.  Looking at these three graphs 
provides some following further insights into the favorable 
results gained from the use of  the Bayesian approach 
addressed in this section 
 
l The level of  α0  remains constant for each illustration 

in Figures 7-9. 
l As the sample size n is fixed, the level of  α0  decreases 

in the same way as σ 2ˆ . The reduction in σ 2ˆ  brings 
about smaller values of  ′0c , causing α0  to decline. The 
P-value behaves like α0  which drops with smaller σ 2ˆ . 
l It can evidently be verified from these figures that the 

P-value and α0  coincide only at a single point where 
µ = T . In Figure 7 where σ σ>2 2

0ˆ , it should be in 
quite more support of  the null hypothesis in a sense of  
potential capability when the departure from the target 
value is negligible or not noticeable. Moreover, when the 
discrepancy between μ and T grows larger, α0  is 
progressively greater than the P-value, intensely pointing 
out that α0  has much more preference to 

≤0 0: pmH C c  (or σ σ≥  2 2
0 0:H ) than the P-value. All 

the probabilities in Figure 7 fall in the range 
(0.50,  0.76) . The occurrence of  an increasing deviation 
from the target value naturally lessens the process 
capability, so the Bayesian approach with the significance 
probability α0  performs better in this situation.  The 
larger the sample size is, the better testing performance 
is offered by using α0  when the deviation from the 
target value is significantly present.  
l In Figure 8 where the sample variance confirms the 

conjectured null value (i.e., σ σ= =2 2
0ˆ 5 ), the largest 

difference among the P-value and α0  is purely around 
0.05; therefore we allude that it is of  little consequence 
to a choice between the classical and Bayesian methods 
for this instance.  
l Figure 9 illustrates another example where σ σ<2 2

0ˆ  
and all the probabilities fall inside the range 
(0.19,  0.50) , implying preference to the alternative 
hypothesis >1 0: pmH C c  (or σ σ<2 2

1 0:H ). In a word, 
the Bayesian procedure with α0  will be a better 
alternative (having a smaller significance probability) to 
the hypothesis testing in case σ σ<2 2

0ˆ  and the 
deviation of  μ from T is negligible.  For those instances 
where the process mean is greatly deviated from the 
target value, the classical test statistic ought to be 
adopted instead (due to its larger probability) to properly 
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reflect these departures from the target value in assessing 
the process capability.  

 

 
Figure 7. The P-value and α0  under different target values when µ= = 100x , σ =2ˆ 6 , σ =2

0 5  and = 5, 10, 20, 30n . 
 

 
Figure 8. The P-value and α0  under different target values when µ= = 100x , σ =2ˆ 5 , σ =2

0 5  and = 5, 10, 20, 30n . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
. 

Figure 9. The P-value and α0  under different target values when µ= = 100x , σ =2ˆ 4 , σ =2
0 5  and = 5, 10, 20, 30n . 
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Case II: Probability under varied target values when 
x µ≠  and 2 2

0σ̂ σ=  

Assume that µ = 100 , σ σ= =2 2
0ˆ 5  and 5, 10,n =  

 20, 30 ; the P-value (in dash line) and α0  (in bold-dash 
line) are plotted versus varying target values for x  = 
100.5, 99.5 in Figures 10-11, respectively. The analyses are 
outlined below. 
l With the process configurations in Figures 10-11, the 

decision is unsettled if  the deviation from the target 
value becomes irrelevant; that is, the target value is close 
to the process mean or nearby.  
l When the process mean is overestimated ( = 100.5x ) as 

in Figure 10 and the target value is located far right to 
the process mean, α0  is increasingly greater than the 

P-value, meaning that there is a stronger tendency for 
α0  to conclude 0 0: pmH C c≤  than the P-value. Thus, 
the performance improvement made by the Bayesian 
procedure exists only if  the shift on x  from the 
process mean is incurred in the same direction as the 
target value. Likewise, in instances where the process 
mean is underestimated ( = 99.5x ) as in Figure 11, the 
Bayesian approach should be a better choice as the target 
value is located far left to the process mean.  
l It is of  particular importance to note that, in situations 

where the Bayesian method returns an inferior result, 
α0  is still kept a constant and “insensitive to the target 
value” level. 
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Figure 10. The P-value and α0  under different target values when 100.5,x =  100,µ =  2 2

0ˆ 5,σ σ= =  and 
= 5, 10, 20, 30n . 
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Figure 11. The P-value and α0  under different target values when 99.5,x =  100,µ =  2 2

0ˆ 5,σ σ= =  and 
= 5, 10, 20, 30n . 
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Case III: Probability under varied sample variances 
when Tµ ≠  and x µ=  

Suppose further that µ= = 100x , = 102 (or 98)T  
and σ =2

0 5 ; the P-value (in dash line) and α0  (in solid 
line) are depicted versus varying sample variances for 

= 5, 10, 20, 30n  in Figure 12. As evidenced by these four 
illustrations, the Bayesian approach with α0  shows 
considerable improvement (as compared to the classical 
test statistic) that α0  is greater than the P-value when 
σ σ>2 2

0ˆ , and α0  is less than the P-value when σ σ<2 2
0ˆ .  

This advantage gradually vanishes as the target value is 
approaching the process mean. According to Corollary 1, 
the curves of  α0  and P-value are joined when 
µ = T ( Figure 12) 
 
Case IV: Probability under varied sample variances 
when Tµ ≠  and x µ≠  

Consider the following process configurations that 
µ = 100 , σ =2

0 5 , = 101T  and = 5, 10, 20, 30n .  The 
P-value (in dash line) and α0  (in solid line) are displayed 

versus varying sample variances for = 100.2, 99.8x  in 
Figures 13-14, respectively.  The computational results are 
reported as follows. 

 
l When the process mean is overestimated ( = 100.2x ) as 

in Figure 13 and σ >2ˆ 5 , α0  is greater than the 
P-value, thus indicative of  slight merit by the Bayesian 
procedure. 
l When the process mean is underestimated ( = 99.8x ) as 

in Figure 14 and σ <2ˆ 5 , α0  is less than the P-value, 
suggesting a little merit of  the Bayesian procedure over 
the classical one.  
l To sum up, when the process mean is a little 

overestimated and σ σ>2 2
0ˆ , the Bayesian method will 

be advantageous to statistical decision making of  
≤0 0: pmH C c ; on the other hand, when the process 

mean is slightly underestimated and σ σ<2 2
0ˆ , the 

Bayesian method will be advantageous to statistical 
decision making of  >1 0: pmH C c . (Figures 13-14)  
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Figure 12. The P-value and α0  under various sample variances when 100,x µ= =  102,T =  2

0 5,σ =  and (a) 5;n =  
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Figure 13. The P-value and α0  under various sample variances when 100.2,x =  100,µ =  101,T =  2

0 5,σ =  and (a) 
5;n =  (b) 10;n =  (c) 20;n =  (d) 30.n =  
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Figure 14. The P-value and α0  under various sample variances when 99.8,x =  100,µ =  101,T =  2
0 5,σ =  and (a) 

5;n =  (b) 10;n =  (c) 20;n =  (d) 30.n =  
 
Case V: Probability under varied sample means when 

Tµ ≠  and 2 2
0σ̂ σ=  

Consider the process configurations where µ = 100 , 
σ σ= =2 2

0ˆ 5  and = 5, 10, 20, 30n . The P-value (in dash 
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line) and α0  (in bold-dash line) are exhibited versus 
varying sample means for = 101,  99T  in Figures 15-16, 
respectively. As seen from Figure 15 where the departure 
from to the right takes place ( = 101T ), the Bayesian 
method has a larger significance probability to support the 
null hypothesis in (24) than the classical one given that the 
process mean is overestimated, presenting an improvement 
on making an adequate decision. 

In contrast, when the deviation from to the left occurs 
( = 99T ) as shown in Figure 16, the Bayesian method 
takes an advantage of  a larger significance probability to 
favor the null hypothesis on condition that the process 
mean is underestimated. For this situation, it is beneficial to 
choose the Bayesian procedure only when the shift on the  

 
target value from the process mean is in the same way as 
the sample mean. If  the deviation from the process mean 

is aggravated, the Bayesian method remains a preferable 
alternative. It is worth noting that the P-value turns out to 
be zero while the deviation from the process mean exceeds 
3.0. 
 
Case VI: Probability under varied sample means when 

Tµ ≠  and 2 2
0σ̂ σ≠  

At last, suppose that µ = 100 , σ =2
0 5  and = 101T ; 

the P-value (in dash line) and α0  (in bold-dash line) are 
shown against varying sample means for σ =2ˆ 6,  4  in 
Figures 17-18, respectively.  It can clearly be seen from 
these two illustrations that the Bayesian approach shows 
substantial improvement with a larger significance 
probability (as compared to the classical one) when the 
process mean is overestimated. 

 
Figure 15. The P-value and α0  under various sample means when 101,T =  100,µ =  and 2 2

0ˆ 5.σ σ= =  
 

 
Figure 16. The P-value and α0  under various sample means when 99,T =  100,µ =  and 2 2

0ˆ 5.σ σ= =  
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Figure 17. The P-value and α0  under various sample means when 101,T =  100,µ =  2

0 5,σ =  and 2ˆ 6.σ =  
 

 
Figure 18. The P-value and α0  under various sample means when 101,T =  100,µ =  2

0 5,σ =  and 2ˆ 4.σ =  
 
6. CONCLUSIONS AND FURTHER RESEARCH 

Summary 

Of  late, process capability analysis has become one of  
the most rapidly growing segments of  quality and 
productivity improvement and been coming into 
widespread use in practice. The process capability index 
Cpm was initially introduced by Chan et al. (1988), 
followed by Boyles (1991), which is one of  the process 
capability measures that enable to evaluate the ability of  a 
process to arrive at a pre-specified target value and to fall 
within the production specification simultaneously. In the 
first part of  the paper, attention is restricted to the 
construction of  credible intervals for the Taguchi 
capability index so that a noninformative prior belief  
depending on Fisher’s information is assumed on the 
process variance to derive the posterior distribution 

( )Xπ σ ′ , and subsequently the posterior probability of  

Cpm can conveniently be expressed as a gamma distribution. 
Based upon the notion of  HPD regions in the Bayesian 
context, the Newton’s method is utilized for univariate 
root-finding to anchor the HPD credible set (i.e., k1 and k2 
in Figure 2), and via the variable transformation in (12), the 
HPD credible interval for Cpm is numerically obtained. The 
experimental study of  the developed Bayesian HPD 
credible intervals for Cpm in comparison with classical 
confidence intervals demonstrates that the Bayes’ interval 
estimator performs considerably better than the classical 
one pertaining to the sampling theory when the departures 
of  the process mean from the target value are taking place. 
If  the process center is located right on the target value, 
then the Bayesian and classical interval estimators are 
almost identical in all shapes and sizes (see Figure 3). The 
relevant computational results of  these two interval 
estimators under a range of  degrees of  departure and 
numerous sample sizes are also reported in detail. 

Furthermore, a Bayesian procedure established by the 
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posterior distribution of  Cpm for hypothesis testing of  the 
Taguchi process capability is addressed as well. For 
comparison purposes, the significance probability α0  
provided by the Bayesian method is compared with the 
P-value generated by the classical sampling distribution 
approach while testing the process capability hypothesis 
(24). It has been proved that the P-value equals α0  when 
the process mean is on the target value. To envision the 
competitive edges of  these two testing procedures, a series 
of  pictorial illustrations plotted under a wide variety of  
process parameter configurations are presented. The 
computational experience posed in Section 5 clearly advises 
us when and under what circumstances the Bayesian 
testing alternative should be adopted instead of  the 
classical testing procedure. Another valuable facet of  the 
proposed Bayes’ solution (to interval estimate building 
and/or hypothesis testing) is due to its straightforward 
numerical computation, simply involving the gamma 
distribution and Newton’s method. The well-known 
distributions and engineering techniques that the general 
engineers are more familiar with can readily be calculated 
and implemented in ordinary spreadsheet packages. 
 
Directions for future research 

Building upon this research, there are a number of  
interesting topics that deserve further research in this area. 
For instance, it would be challenging but very useful to 
investigate the Bayesian alternative means for constructing 
the interval estimate on the Taguchi process capability 
index when the normality assumption made on the process 
measurement data is seriously violated. Of  practical 
relevance is the case of  the process measurements being 
lognormal, which should belong to a separate study. The 
discussion in this paper is centered on the index Cpm. It is 
of  interest to study the performance of  the Bayesian-based 
approach on more advanced indices, such as Cpmk discussed 
in Pearn et al. (1992) and Jessenberger and Weihs (2000). 
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APPENDIX A: JEFFREYS’ NONINFORMATIVE 
PRIOR DISTRIBUTION π σ 2( )  

For the unknown normal variance 2 with constant mean, 
the log-likelihood is 
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Hence, the Jeffreys’ prior for 2σ is 
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APPENDIX B: THE POSTERIOR DISTRIBUTION 
π σ 2( )X  

From Bayes’ Theorem, the posterior distribution of  2σ  
is given as 
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In order to ensure that π σ 2( )X  is normalized to unit 

probability, it needs to compute the following integration 
by letting σ −= 2t  
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Accordingly, the posterior distribution π σ 2( )X  in (9) 
follows from noting that 
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APPENDIX C: THE DERIVATION OF 1α  
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where λχ σ σ′ ′= −2 2 2
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APPENDIX D 

Corollary 1. When µ = T , P-value in (29) is equal to α0  
in (33). 
 
Proof. Rearranging terms in ′0c  gives 
 



Fan and Kao: Development of  Confidence Interval and Hypothesis Testing for Taguchi Capability Index Using a Bayesian Approach 
IJOR Vol. 3, No. 1, 56−75 (2006) 
 

75 

( ) ( )

( ) ( ) ( )

22

0 2
0

2 22

1 1
2 2
0 0

ˆ1
2

    .
2 2

n n

i i
i i

n n x
c

x x n x x

σ µ
σ

µ µ

σ σ
= =

− + −
′ =

− + − −
= =

∑ ∑
 

 
By letting = 2t y , α0  in (33) can be written as 
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which completes our proof. 
 

 


