
International Journal of Operations Research Vol. 3, No. 2, 76-89 (2006)

An Intelligent Movement Sequence in Production Process for Real
Time Robot Control in a Multi-Machine Manufacturing Cell

L. Hathout and S. Balakrishnan∗

Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Manitoba, Canada,
R3T 2N2

Received November 2005; Revised April 2006; Accepted July 2006

AbstractMaterial handling robots are routinely used for transferring parts in an interconnected multi-machine cell. The
sequence of robot movements between machines is arrived at by the operator, either intuitively or by the use of some form
of off-line analysis. It would be extremely beneficial if robots can be provided with additional intelligence to automatically
sequence their control programs thereby optimizing production. This paper presents a decision support system that
provides a real time control of a robot to meet the stated objective. The developed methodology permits the user to analyze
a batch production process by considering a number of parameters that affect the throughput of parts and generates in
real-time, the best sequence for a given production. This adds considerable intelligence to a standard robot controller. The
parameters currently considered are: sequential versus non-sequential processing of parts; consideration of processing times
on machines; the size of buffers in each machine; and the travel time of the robot. A batch production is considered to
demonstrate the methodology. To the best of knowledge of the authors, robot controllers have never been provided with
this kind of control intelligence. The system developed was tested on a four machine cell serviced by a single robot. The
computational time required by the control software is minimal thereby facilitating real-time processing as well as control in
a dynamic environment. Robot movements that prioritizes ‘unloading of machines first’ proved to be superior in
comparison to other strategies. The number of buffers beyond a certain limit did not increase the throughput time of the
batch. Non-sequential processing reduces throughput time. Loading sequence has a greater impact on sequential processing.
KeywordsRobot control, Decision support system, Flexible manufacturing cell

∗ Corresponding author’s email: balakri@cc.umanitoba.ca
1813-713X copyright © 2006 ORSTW

1. INTRODUCTION

A manufacturing cell is a cluster of machines or
processes that are located in close proximity and dedicated
to the manufacturing of a family of parts. Robots are being
increasingly employed as material handling systems in
many manufacturing cells. The scheduling problem at the
cell level is characterised by a short lead-time, dynamically
changing environments, the versatility of the machines, and
the need for real-time decision making. Cell level
scheduling needs to be: (i) responsive to changing
environments; (ii) flexible in accommodating different
scheduling needs; and (iii) intelligent for implementing
decision support systems. With increases in computing
speeds, complex control algorithms for real-time
optimisation of manufacturing tasks are becoming a reality.

This paper focuses on the development of a
methodology for sequencing of robot moves and
sequencing of parts in a manufacturing cell by using a
dynamic hierarchical decision making support system. The
system is structured for a generic machine cell
environment which can look at questions of buffer size,
number of machines, machining times, robot move times,
part processing requirements, part loading orders, and the

impact of non-sequential versus sequential processing in
order to improve the productivity.

The problem is one of dynamically sequencing both
parts and robot moves without operator intervention. The
purpose is to develop a better understanding of how the
batch manufacturing time can be reduced by exploring
generally occurring batch production situations. It is then
extended to the development of functional control
software that adds additional intelligence to the standard
robot controller. The decision hierarchy has the capability
to examine the effects of various control parameters and
automatically restructure the sequence of loading/
unloading of machines for greater batch throughput.

2. LITERATURE REVIEW

Robot movement and part scheduling questions are
known to be NP-hard, making them computationally
intensive and challenging to solve. The optimal robot move
sequence for a Flexible Manufacturing Cell (FMC)
environment for manufacturing a batch of parts in the
shortest time has been investigated (Sethi et al., 1992).
However, the solution is limited to a flow line
manufacturing system where parts have to visit all the three

International Journal of
Operations Research

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

77

stations considered and the solutions are based on cyclic
scheduling. Extension of this work to parallel machines
(Geismar et al., 2004) with multiple robots as well as robots
with a dual-gripper has also been investigated (Sethi et al.,
2004). A minimum part set (MPS) required to attain a
desired production schedules has also been presented (Hall
et al., 1998). The objective has been to minimize the time
to produce one MPS in a cyclic production environment. A
robotic cell with ‘m’ machines was considered (Crama and
Klundert, 1997) with an objective to find a sequence of
robot moves for arriving at the minimum cycle time. A
situation of no-wait constraint in which a part is moved
immediately to the next machine as soon as the previous
machine completes the work on the part has also been
considered (Agentis, 2000). No-wait processing is typical in
the steel industry and some electro-plating processes. An
algorithm for improving the cycle time in a robotic cell
with two machines for processing non-identical parts has
also been analyzed (Aneja and Kamoun, 1999). An
extension of this work (Agentis and Pacciarelli, 2000)
compared the situation of identical part types in a no-wait
robotic cell to a no-wait non-identical part types. The
algorithm employed the travelling salesman problem’
technique. Genetic algorithm based techniques have also
been proposed to scheduling problems in robotic cells
(Kenne and Gharbi, 2004) and (Chen et al., 2001) and
presented a methodology for scheduling multiple part
types for two machine cells and concluded that the
problem-solving technique becomes cumbersome when
the number of machines is more than two. A multiple-part
type production problem on four machines by using a
branch and bound technique has also been proposed
(Chen et al., 2001). The technique is to first find an optimal
robot cycle, and then choose a part sequence that produces
the lowest cycle time. Some success was achieved when
adapting the heuristics and algorithms to three machines.
However, they concluded that further investigation was
required to adapt the solution proposed to larger size
problems.

Results from a simulation based approach for a dynamic
FMC optimisation for two machines that employs different
movement control logic did not reveal any new insights
that could be generalized (Niemi and Davies, 1989). A
two-machine cell, with buffers at each machine, for
processing a batch of parts needing different processing
times on each machine has been investigated (King et al.,
1993). The objective is to determine the optimal sequence
of robot moves to minimise the make-span of the batch.
The study concluded that a branch and bound technique
becomes ineffective as the number of parts increases past
ten. The approach taken is to treat the problem as an open
flow shop. This type of open flow-shop problem deals
with non-pre-emptive shop scheduling that addresses
routing of parts. It usually has the objective of minimising
the make-span of a part. Moreover, a part’s route is not
given in advance although a predetermined processing time
is known at each machine. Routes are determined by
queues in front of machines and by the remaining process
requirements. A linear time algorithm to find the optimal

schedule for a two-machine, open-shop configuration with
parts having different transportation times has also been
proposed (Rebaine and Strusevich, 1999).

There has been a lot of work in modelling flexible
manufacturing cells by using advanced simulation and
modelling tools. The application of a Timed Place
Petri-Net (TPPN) or a Coloured Petri Net (CPN) has
proven to be most useful. A TPPN for solving resource
allocation questions in a FMS job shop scenario using
automated guided vehicles (AGV) employs a heuristic
search method to determine the near optimal schedule of
part processing (Cheng et al., 1994). Further work (Yalcin
and Boucher 1999) used CPN to solve a FMC problem
with alternative machining and alternative part sequencing
and confirmed that Petri nets can be used as an effective
modelling tool. An object oriented modelling approach to
create open-ended simulation software for flexible
manufacturing focuses on object definition and actions
occurring during state transitions (Lin et al., 1994).

In these modelling studies, very little work to explore the
capabilities of a tool to gain insight for improving robot
move times has been demonstrated. The assumption in
these papers of an infinite incoming buffer also leads to
the objective of optimising the make span of a part rather
than a batch of parts. The framework developed by Petri
net modelling adapted to address FMC questions, promises
to provide the type of information architecture for any
modelling software. The papers reviewed dealing with Petri
nets provide an example of how a net can be structured to
handle time and place data related to objects moving
through a model. These ideas proved to be valuable in
developing the simulation software reported in this paper.
This is equally true for observations made about
implementation of object oriented coding for flexible,
manufacturing related simulations.

In cases where the part loading sequence can be
changed, most flexible production plans solve the loading
problem first and then separately select a fixed cyclical
robot move schedule based on the loading results (Moreno
and Ding, 1993). Concurrently selecting and sequencing
jobs in an FMS proves far more effective. The optimal
assembly time for a printed circuit board (PCB) assembly
where the sequence of operations is not critical has also
been investigated (Kumar and Li, 1994). This work
attempts to solve the problem of the robot movement as a
“travelling salesman” problem. This scenario relates closely
to the one presented here. However, the authors present an
optimal solution for the manufacturing of just one type of
PCB.

It was confirmed from the literature that concurrent
loading and robot move decision-making is preferable in a
dynamic FMC environment. In a specific PCB case, the
implementation of non-sequential processing takes fuller
advantage of the available machine capacity and results in a
significant reduced throughput time. The approach used
here in the development of the control program and
simulation incorporates ideas from the structure proposed
by prior research using Petri net modelling and object
oriented programming. The methodology for

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

78

implementing the robot movement decision hierarchy also
partially stems from these approaches. The hierarchy of
decisions attempts to concurrently select parts for loading
into the system and to sequence robot moves based on the
current status of the overall system. Based on the review,
the effect of variables like buffers, as well as the number of
parts contained in them, loading part orders, and
non-sequential processing merit further investigation. The
decision support system developed as part of this work
incorporates several ideas generated as a result of the
literature review. The software and hardware is designed to
answer issues related to optimising the batch size, number
of parts and to identify sequencing aspects for real-time
control.

3. LAYOUT OF EXPERIMENTAL SYSTEM

The flexible manufacturing system consists of a FMC
cell and a control computer that runs custom designed
software. A five degrees-of-freedom robot is used for
material handling. There are four processing or machining
stations, each with gravity feed buffer which can hold up to
five parts as shown in Figure 1. A machine, and the buffer
behind it, is occasionally called a station when the location
of both is being referenced. The processing or machining
times in the cell are simulated through timers in a
programmable logic controller (PLC) which are triggered
through sensors located on each of the four buffers. There
is one input buffer for parts entering the cell and a
drop-off location for the finished parts. The robot
controller has the ability to store up to ninety-nine unique
programs that are controlled by a master program. This
master program responds to commands from the
input/output (I/O) board located in the external personal
computer. The board will be controlled by the decisions
from the support system software.

Figure 1. Cell layout.

The I/O board reads the status of the timers in the PLC

and the status of the sensors at the processing stations. The
latter indicate whether each station is occupied. Based on
the information read by the I/O interface, the software
determines what the robot’s next move should be and sets
the corresponding output bit on the I/O board. The
master program for the robot controller reads the status of

the input bit, which controls the use of one of the many
subprograms. The subprograms correspond to different
tasks that the robot is required to perform. A single
program written in C++ language controls the FMC both
in an on-line/real time environment as well as in an
off-line/simulation mode. The program was written to test
the effect of different variables on the total throughput.
The program makes decisions as to which task to perform
next based on input criteria, the decision hierarchy, FMC
variables and the existing feedback from the FMC. The
custom program developed has the ability to read user
input batch data for production through the FMC and then
simulate or run the process. User can step through the
simulation one step at a time and run all possible sequences
for a batch. At the end of each program, statistics are
displayed that indicate each station’s utilization; it’s
occupied and free times. The program has the option to
save data in a user-defined file at the end of each run.
When multiple tests are conducted, data is filed
automatically in a pre-specified file. All variables related to
the given test are also included in this file and can be
selected for real-time robot implementation.

3.1 Structure of cell program

The cell program was designed to provide the user with
the option of choosing two types of production cycles.
The first type prioritises loading parts into the system; and
the second prioritises unloading. One of the following
actions is taken during each cycle: load, shift part from one
station to the next, unload, or move the robot and wait at
the next station needing unloading or shift a part to its next
operation. The order in which these choices are presented
depends on whether unload or load priority is selected.
Unload priority first looks at the option of unloading a part.
If this is not possible, then it considers shifting a part from
one station to the next. If shifting is not an option, then it
may load a part. If all else is impossible the final choice is
to move the robot to a station that has almost finished
machining and waiting. The load priority first looks at the
option of loading a part, then shifting a part from one
station to the next, followed by unloading, and lastly the
moving and waiting command is considered.

During each cycle, the program’s clock is incremented
by the total time it takes for the robot to move. When the
move and wait action is called, the clock is incremented by
the time it takes the robot to move plus the time remaining
for processing the part at the station to which the robot
moves. As the main clock is incremented, the timers
(representing the appropriate machining times)
corresponding to the stations processing parts decrements.
There are also two queues, the ‘done station’ queue and the
‘almost done station’ or ‘working station’ queue. These
queues keep track of which part is done first and which
parts are to be done next. In the case of a station finishing
processing when the clock is incremented, the station
number gets added to the ‘done station queue’, and that
station number is removed from the working station queue.
For example, if the ‘working station queue’ indicates that

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

79

machine 3 is done machining first, followed by stations 1
and 4, the working queue is 314. If machine 2 is holding a
finished part, the ‘done’ queue is 2. If the timer is
incremented by an amount which is equal or more than the
time required to finishing machining the part at machine 3,
then the done queue is 23 and the working queue becomes
14.

Each part moving through the system is entered in a
matrix as shown in Figure 2. An individual part has an
identification number and nine variables of information
defined when the part enters the system. The first five
variables are Boolean variables that identify the stations
that a particular part needs to visit. These variables could
also be turned into integer variables and used to store
unique machining times for each station.

 As the part visits each station for processing, the
integer value representing the status changes, and binary
numbers 0 and 1 are used to represent the state. The sixth
variable monitors how many stations that the robot still has
to visit by reading the binary number created by the first
five Boolean variables. For example, if the first five
variables describing a part are [0, 1, 1, 0, 1], then the sixth
variable is 2 + 4 + 16 = 22. If the third operation is
complete, the sixth variable is 18. The seventh variable

indicates the part number, which would be used if the part
needs to be unloaded to a part-specific buffer. The eighth
variable gives the current station at which the part is
located. The ninth variable indicates whether the part is in
transition (i.e. held by the robot), in a buffer, being worked
on, waiting for unloading or is out of the system. Each of
these states has a number affiliated to it. There is also a
buffer matrix that keeps track of the part queues at each
station. Figure 3 provides a graphical representation of
these matrices. Of the four operations that can be
performed in each cycle, the load operation is the most
complicated. The load operation triggers a subroutine that
determines whether there is any part that can enter the
system. The primary requirement for loading a part into
the cell is the availability of space to load the part onto a
required machine, or into a limited capacity buffer. The
program has been developed to accommodate two types
of part processing, sequential and non-sequential
processing. The loading rules for both these processes are
the same. However, when parts are loaded sequentially, the
option of which part to choose is more restricted. The
following paragraph explains the hierarchy of the part
selection priorities.

Figure 2. Job matrix.

Figure 3. Matrix example.

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

80

In the sequential case, a part can be loaded only if the
first machine in the series of machines that the part needs
to go to is free. Given that there may be more than one
part that is a suitable candidate for loading, there is an
order of priority for selecting a part. The first priority is
given to the first part in the order of feasible parts which
needs the currently least occupied station (e.g. a station
having the fewest waiting parts). If there is more than one
station with the fewest parts (e.g. two stations that are
occupied by one part while the other stations have two or
more), priority goes to the station that is most in demand
by the parts in the current batch. If no clear priority is
found, then the same search is performed for stations that
have one more occupancy.

The process of part selection for the non-sequential
case goes through the same order of priorities as in the
previously defined sequential process. However, in this case,
a part is a candidate providing one of its machining
requirements is met. There are two additional criteria in the
case of non-sequential processing. The part to be loaded,
after having met all the other requirements, must go
through a conflict check. The conflict check is a subroutine
that ensures that, if a part is loaded into the system, it will
not cause a blockage to the further processing of parts. For
example, consider a situation when two parts of the same
type need to visit two machines, and both machines have
no buffers. If the parts are loaded consecutively on
machines 1 and 2, there is no way for either part to
proceed to the other station. This scenario is defined as a
conflict situation, which needs to be avoided or resolved.

The other unique feature of non-sequential loading is
that the cell can be loaded to capacity. This feature means
that all the free buffer space in the cell can be loaded in
such a way that no process is in conflict. This is not
desirable because it tends to reduce the number of options
available for the movement of parts and it usually leaves
only one free buffer space for manoeuvring. Consequently,
the total batch time is increased greatly. This situation does
not arise in sequential processing. However, capping
current machining requirements of parts in the system by
making it a part loading condition solves the problem of
insufficient manoeuvring room. The number of parts,
requiring a particular machine, permitted to enter into the
cell, is fixed as the number of buffers at that machining
station plus two. For example: if there are two buffers at
each of three stations, then the current requirements of
the parts in the cell cannot be more than four requests for
processing on machine 1, four requests on machine 2, and

four requests on machine 3. The choice of setting the cap
at the number of buffers plus two was determined based
on numerical experimentation performed by using an
exhaustive search algorithm. Values greater or less than two
proved to be unsatisfactory for reasons given below. The
first arrangement, where no cap was imposed, allowed the
cell to be loaded to its maximum capacity. This
arrangement made it possible to load the cell to the point
where any additional part would completely block the
system. It made shifting parts difficult and led to the
conclusion that loading the system to maximum capacity
resulted in buffers being used more as storage locations
than temporary transfer points. The chosen cap of the
number of buffers plus two provided the best compromise
between overloading the system and switching to an
‘unload always’ rule, regardless of the number of buffers.
In conclusion, to benefit from the buffers, the time spent
by parts in the buffers should be minimal.

The shift load, and unload routines are the other places
in the program in which a part selection hierarchy is used.
In both cases a decision needs to be made as to which of
‘x’ number of finished parts is to be unloaded or shifted
first. Here, again, priority is given to the parts at a station
that is in high demand. If demand among stations with
finished parts is equal, then the ‘done parts queue’ is
referred to, in order to see which part will be finished first.
Based on these criteria, a decision is made as to which part
to unload next. In the case of shifting a part from station
to station, the same two criteria are examined. First, the
part being shifted can be shifted only to a station that has
free buffer space. Second, a conflict check is performed in
the case of non-sequential processing.

3.2 Hierarchy of decisions

Having stated the basic criteria for making decisions
regarding robot moves and part selection rules, this section
provide a clear understanding of how these decisions
affect the batch processing time. This section also
demonstrates the differences between the loading and
unloading rules, as well as the non-sequential and
sequential loading rules. The differences are demonstrated
in four step-by-step analyses of state changes in one
particular robot loading and sequencing example. The
example considered consists of three part types A, B, and
C to be produced in the cell. The data for batch considered
(Batch #1) is shown in Table 1.

Table 1. Data for batch #1
Station 1 Station 2 Station 3 Station 4

Part type Number to be
produced

Processing
time=15 s

Processing
time= 15 s

Processing
time=15 s

Processing
time=15 s

A 2 X X
B 2 X X
C 2 X X

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

81

The robot’s move times are each 5 seconds between
stations. The stations that the part has to visit are indicated
by an ‘X’. A step by step account of the processing of this
batch with an objective to highlight the difference between
the robot’s movements chosen when an unload priority is
used versus those when the load priority is used to process
parts sequentially is given next. For example, part B needs
to visit station 2 before proceeding to station 3. Tables 2a
and 2b present the time history of production generated
from an analysis for sequential loading and unloading. The
‘time’ column gives the time that the action in the ‘robot
action’ column was finished. The ‘other actions’ column
indicates if any other action occurred at that time, such as
a part has been finished machining or has moved from one
buffer space to another. The ‘machine req’ (machining
requirements) column has four numbers. A given number
represents the number of processing requirements at each
station that is needed by all the parts currently in the
system. This information is used to decide which parts
enter the cell next. Values in ‘machine req’ only change
when a part no longer needs to be machined at a station
and it is no longer occupying that station. The last column
shows the done queue, which indicates the order in which
the stations have finished their machining jobs. The
following notations are used to describe the station
changes. “L” indicates that the robot has moved to the
input buffer, picked up a new part and deposited it at a
station.

“U” indicates that the robot has picked up a part and
dropped it off at the systems out buffer. “S” indicates that
the robot has picked-up a part and dropped it off at a
station. Parts are identified by a part letter followed by a
number to indicate which specific one of a part type is
being referenced (e.g. A1 or A2). A station, S, and its
affiliated buffers, are designated by the notation Sxy. The
‘y’ indicates what buffer position the part has taken at
station ‘x’. Moreover y = 0 implies that the part at a station
is currently being machined or that machining at station ‘x’
has completed processing this part. If there is no letter in
front of a part name but a station is identified after the
part, then the part has shifted up one place in the buffer
space. For example if a part B number 3 (B3) was loaded
on station 3 buffer 2 (S32) and the part at station 3 buffer
0 (S30) was unloaded, then part B3 would move to S31.
‘Done’ means the part has completed processing at a
station.

The two examples differ only in the priority rule used
for the robot’s moves. Sequential loading always loads parts
if there is place to load a part. If not, the algorithm
considers part shifts and, if this is also not possible, then it
considers unloading parts. In sequential unloading, the
hierarchy of robot actions is the reverse— first the
possibility of unloading a part is considered, then shifting a
part, and then loading parts. These two cases produce
sequences of events that are different even though the
total batch time is the same. The robot’s move time forms
the bottleneck in these examples. Examining the ‘done
queue’ list shows this. If it tends to have one or more parts

waiting, it is because the robot cannot keep up with the
demand for its action.

Once the first level of decision making is determined
(whether to load, shift unload or wait), the second level of
decision making comes into play. Here the program
decides which part is to be loaded, shifted or unloaded.
The order in which parts are loaded is determined by the
batch demand for a machine and whether space is available
in the FMC for a new part. To explain the term batch
demand for a machine, consider 50 unprocessed parts of
which 30 require machine 3, 20 require machine 4 and 10
require machine 2. Given this batch, the control program
first checks if there is a part which can be loaded on
machine 3; if not, it checks if there is a part which needs
machine 4 and then machine 2. In this example, the
machines most in demand are 3 and 4. Hence, they are
loaded first by parts that require them, in this case part B
and part C.

One important decision that has to be made in this
model is whether or not to continue to adhere to a set of
rules or to make special conditions for unique cases. For
example consider a situation wherein the robot has just
loaded the buffer of one station with a part and the part
being machined at that station is finished. In this case it
may be beneficial to take advantage of the robot’s position
to shift that part rather than addressing the next part in the
queue according to the hierarchy set out. This is illustrated
in bold lettering (at time 35) in the load example of Table
2a. Through experimentation, it is determined that the
benefit of implementing such a policy is limited to cases
where the robot’s move time is the bottleneck. Otherwise
imposing such a policy is no longer beneficial; rather, it
increases the batch throughput time. The table shown is
automatically generated by the control software. Data
similar to the one shown in Table 2a and 2b were also
generated for non-sequential load and unload cases.

The non-sequential unload showed a unique case
wherein in which no unload, shift or load operations are
possible. Hence, the robot moves to the station that would
first be done machining a part and then the robot waits for
the next required action. This situation did occur when no
more parts are to be machined at a station nor are there
any more parts to be loaded. The control methodology
then looks ahead in the working queue to pick a station
that has a completed part and move the robot to that
location. This kind of “look ahead” feature reduces the
robot’s movement time by having it take advantage of
“free time”.

In the sequential load examples given in Table 2a, the
order in which parts are loaded is B C A B C A and all the
parts are loaded immediately, meaning the first six robot
actions load parts into the cell. In the non-sequential load
example, the load order is ‘ABACC’ and only after two
shifts occur is the final part B loaded. The reason that the
order is different is because two parts can be loaded
immediately on station 2, namely parts A and B. However,
if there is a restriction requiring the parts to be processed
in order, then part A cannot start on station 2. It is also

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

82

Table 2a. Time history of sequential loading

Time (s) Robot
action

Other
Actions

Machine
req

Done
queue

5 L B1-S20 0110 0000
15 L C1-S30 0121 0000
20 B1 done 0121 2000
25 L A1-S10 1221 2000
30 C1 done 1221 2300
35 LB2-S21 1331 2300
40 A1 done 1331 2310
45 L C2-S31 1342 2310
55 L A2-S11 2442 2310
60 C2-S30 2432 2310
65 S C1-C40 2432 2100
70 B2-S20 2332 2100
75 S B2-S31 C2 done 2332 1300
75 B1-S30 2322 1300
80 S C2-S41 C1 done 2322 1400
85 B2 done 2322 1420
85 A2 S10 1322 4200
90 S A1-S21 B1 done 1322 4230
90 A1-S20 1222 4230
95 S B2-S31 1222 4300
100 C2 S40 1221 3000
105 U C1 A2 done 1221 3100
105 A1 done 1221 3120
115 S A2-S21 C2 done 0221 3240
120 B2-S30 0211 3240
125 U B1 0211 2400
130 A2-S20 0111 2400
135 U A1 B2 done 0111 4300
145 U C2 A2 done 0110 3200
155 U B2 0100 2000
165 C A2 0000 0000

 Table 2b. Time history of sequential unloading

Time (s) Robot
action

Other
Actions

Machine
req

Done
queue

5 L B1-S20 0110 0000
15 L C1-S30 0121 0000
20 B1 done 0121 2000
25 L A1-S10 1221 0000
30 C1 done 1221 2300
35 S B1-S31 1121 3000
40 A1 done 1121 3100
40 B1-S30 1121 3100
45 S C1-S40 1111 1000
55 S A1-S20 B1 done 0111 3000
60 C1 done 0111 3400
65 U B1 0101 4000
75 A1 done 0101 4200
75 UC1 0100 2000
80 UA1 0000 0000
90 L B1-S20 0110 0000
95 L C1-S30 0121 0000
100 B1 done 0121 2000
105 L A1-S10 1221 0000
110 C1 done 1221 2300
115 S B1-S31 1121 3000
120 A1 done 1121 3100
120 B1-S30 1121 3100
125 S C1-S40 1111 1000
130 S A1-S20 B1 done 0111 3000
135 C1 done 0111 3400
145 U B1 0101 4000
155 A1 done 0101 4200
160 UC1 0100 2000
165 UA1 0000 0000

important to observe that the non-sequential loading
immediately load all six parts because, in this case, if the
last part B is added then further movement is blocked. This
situation does not occur in sequential loading. In the
sequential processing the bottleneck machine regulates the
cell’s capacity. In the non-sequential loading, there is a
possibility to stifle movement in the FMC by overloading it
with parts. Hence, an additional condition is added to the
load rule that restricts the number of parts that need a
specific machine to two.

This section has provided an overview of the software
developed to handle dynamic FMC control problems
on-line or off-line for simulation purposes. The key
programming decisions have been outlined as well as the
overall system’s structure. The next section describes
various aspects related to the implementation of the
proposed cell control strategy.

4. EXPERIMENT AND ANALYSIS

Prior to detail analysis, the functionality of the on-line
FMC control system was verified through several
experimental runs. All robot movements corresponded
appropriately to the programmed decision structures.
Feedback loops from the system also functioned
appropriately. The throughput from the simulation when

compared to the actual experimental run showed a
discrepancy of ±5%. This variation is a result of the slight
time delay between when the external interface initiates a
request for a subprogram and the actual execution by the
robot controller, a typical situation found in robot
controllers.

The next test compares the results of individually
processing part types (all part As then all part Bs and so on)
versus concurrently processing parts. The significance of
concurrent processing over non-concurrent processing
seems to be influenced greatly by the total order and the
process that each part type has to undergo. Hence, the
benefit of concurrent processing is composition
dependent. The following examples corroborate this
assertion. The load priority is used in all cases. If each part
type in the batch shown in Table 3 (Batch #2) is processed
individually, the total processing time is 3180 seconds. In
comparison, the total throughput for the same forty parts
produced concurrently is 1085 seconds.

This batch is an extreme case in which each part has
only one process requirement. Producing all of one part
type at a time resulted in three idle machines. The batch
throughput time becomes the process time of each part on
a specified station plus the time for the robot to load, and
unload the part. Hence, the concurrent processing of the
parts proves to be very beneficial and reduced the

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

83

throughput time by almost a third.
Considering another batch (Batch #3) whose data is

shown in Table 4, the total processing time is 4580 seconds
when the parts are processed individually. The total
throughput time for the same forty parts produced
concurrently is 4395 seconds. This case is the opposite of
previous case, namely, although they may still be unique,
they need to visit the same three stations. Concurrent
processing of parts has very little effect in this case. The
minor improvement shown is due to the fact that
concurrently processing the four part types can be done
without interruption caused by the completion of all part
A’s and starting the next batch of part B’s.

The next analysis considered a more realistic model of
the types of parts that would be processed in a FMS. In
this case, parts need at least a couple of the machining
processes in the FMC. The batch data considered (Batch
#4) is shown in Table 5.

If each part type shown above is processed individually,
the total processing time is 4520 seconds. The total
throughput for the same forty parts produced concurrently
is 4310 seconds. Here, concurrently processing parts
results in a 5% improvement. The results from an analysis
when the batch processing requirements for the data
shown in Table 5 were reduced by 50% (case 2) and 75%

(case 3), respectively are shown in Table 6.
There are two trends related to the ‘total machining

requirements’ of a batch. The first shows that, as the total
batch processing time is reduced, the closer the total
throughput to the total machining requirements. As the
processing is completed more quickly, the robot is in
greater demand compared to when the robot’s moves
occur while all the machines are busy machining parts.
Reducing the machining time leaves the stations idle while
the robot is moving. Essentially the robot becomes the
bottleneck. This observation is true for both the
concurrent processing and for processing by part. The
other observable trend is the influence of the processing
time on the improvements afforded by concurrent
processing. Column 4 of the results shown above also
indicates a clear reduction of benefits brought through
concurrent processing as the ratio of the processing to
robot move times reduces.

What these analyses show is that the ability to
concurrently process parts with different processing
requirements in the same FMC reduces the throughput
time of the batch in comparison to processing all one part
type followed by another part type. Hence, the ability to
dynamically respond to different part processing requests

Table 3. Data for batch #2
Station 1 Station 2 Station 3 Station 4

Part type Number to be
produced Processing

time=40 s
Processing
time= 90 s

Processing
time=70 s

Processing
time=60 s

A 10 X
B 10 X
C 10 X
D 10 X

Table 4. Data for batch #3
Station 1 Station 2 Station 3 Station 4

Part type Number to be
produced Processing

time=40 s
Processing
time= 90 s

Processing
time=70 s

Processing
time=60 s

A 10 X X X
B 10 X X X
C 10 X X X
D 10 X X X

Table 5. Data for batch #4
Station 1 Station 2 Station 3 Station 4

Part type Number to be
produced Processing

time=40 s
Processing
time= 90 s

Processing
time=70 s

Processing
time=60 s

A 10 X X
B 10 X X
C 10 X X X
D 10 X X X

Table 6. Results from analysis for batch #4

Case Total machining
time required (s)

Total throughput
time (s) by part

Total Throughput
time(s) concurrent %improvement % decrease for

part throughput

% decrease for
concurrent
throughput

1 7100 4520 4310 4.65 ------ ------
2 3550 2630 2530 3.80 41.8 41.3
3 1740 1669 1638 1.86 36.5 35.3

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

84

Table 7. Data for batch #5
Station 1 Station 2 Station 3 Station 4

Part type Number to be
produced Processing

time=5 to 100 s
Processing time=5

to 100 s
Processing

time=5 to 100 s
Processing

time=5 to 100 s
A 5 X X
B 5 X X
C 5 X X

and FMC conditions takes fuller advantage of the capacity
of a FMC over a fixed robot move cycle for processing
one part type at a time. It can also be argued that
developing fixed cycles for a combination of part types
would produce a superior batch throughput to that
afforded by separately processing single part types.
However, the flexibility that this dynamic response allows
is still likely to produce better results. Proof of this
assertion is beyond the scope of this work.

The next set of analysis examined the effect of
increasing the machining time while the robot’s move time
stays at 5 seconds for all inter-cell movements. The data
considered is shown in Table 7 (Batch #5). The objective is
to observe the effect of changing the ratio of the
machining to robot move times on the total production
time under the following, individually applied conditions.
The robot prioritizes unloading parts; parts are processed
sequentially; or the robot prioritizes loading parts; parts are
processed sequentially; or the robot prioritizes unloading
parts; parts are processed non-sequentially; or the robot
prioritizes loading parts; parts are processed sequentially. In
all four cases the 15 parts identified in the data shown
below are to be produced. The processing time for each
test was incremented by 5 seconds on each test. The
summary of the results are shown in Figure 4, as well as in
Table 7. The results shown in Figure 4 as well as Table 8
indicate that, in both the sequential and non-sequential
cases, prioritizing the unload results in a lower total batch
time than prioritizing the loading when the ratio of the
machining and robot move times is about six or more. This
test also indicates that non-sequential processing of parts is
faster than sequential process. When the average machining
time is less than about six times the robot’s move time,
there seems to be no observable pattern. The observations
made about this particular experiment are generally
applicable. For all variations in batch sizes and part
requirements, the unload priority gives a lower total time
than when the load is prioritized. This observation holds
true regardless of the number of buffers or parts. What
cannot be generalized is at what ratio of the average
machining time to robot move time does the system
become stable (i.e. achieves a constant relationship). Thus
far, it has been observed that, for the parameters used in
these simulation studies, all batch simulations become
stable under a machining to robot move time ratio of
around 10: 1.

The next set of tests evaluated the effect of buffer sizes
for both non-sequential and sequential unloading. The
same batch order employed in the previous analysis was
used and, as in the previous cases, 15 parts were
manufactured with the machining time incremented

progressively by 5 seconds from 5 to 100 seconds. The
results from this analysis are shown in Figures 5a and 5b.
From Figure 5a and 5b, it would appear that no significant
improvement is produced by increasing the buffer size to
more than two in the non-sequential case and more than
four in the sequential case. The sequential example shows
that, having more buffers in the FMC, ensures that stations
past the bottleneck have less chance of remaining idle. In
both examples, since there are only 15 parts in the batch,
this inevitably decreases the need for buffers. The tests
show that the point where more buffers become beneficial
is related directly to the average machining time. For
example, it is only after the average machining time is
greater then 65 seconds that there is a benefit to having
four rather than three buffers in the non-sequential case. In
the analogous sequential case there is a benefit after 60
seconds. In both cases, as the ratio of robot move time to
machining time increases, the more the robot sits idle. If
extra buffers are available, the robot can take advantage of
this idle time to fill the buffers with parts. This ensures that
when a part is removed from a machine there is always a
new part immediately available for machining. By
decreasing machine idle time, the total batch throughput is
also decreased.

Table 8. Machining time data

Non-sequential Sequential Machining
time(s) Load Unload load unload

5 405 425 425 430
10 415 445 425 445
15 415 440 420 420
20 410 450 445 410
25 425 455 455 440
30 460 465 495 465
35 475 455 520 455
40 495 480 565 530
45 530 510 610 605
50 570 565 655 580
55 615 600 710 610
60 660 645 765 710
65 705 695 820 775
70 755 745 875 825
75 805 795 930 875
80 855 845 990 930
85 905 895 1050 985
90 955 945 1110 1040
95 1005 995 1170 1095
100 1055 1045 1230 1150

The next experiment examined the difference between

non-sequential and sequential part processing. Four
different batch orders were tested. The composition of
each order is intended to examine the effect of having
different bottleneck machines in the cell. All the orders

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

85

demand equal machining times and each station has two
buffers. In all tests, 40 parts were processed (10 of each
part type A, B, C, D). Moreover, each part had the same
total machining time requirements for all cases, although
these requirements were not necessarily on the same
machines for each case. In the four different cases

considered, each specific machine requires 90 seconds to
machine a part. However, the machines may have different
total machining demands (meaning machine 1 processes 20
parts while machine 2 processes 30 parts). The details of
the batch requirements are given (Batch #6 through #9) in
Table 9.

350

450

550

650

750

850

950

1050

1150

1250

5 15 25 35 45 55 65 75 85 95

Machining Time(s)

T
ot

al
 B

at
ch

 T
im

e(
s)

load nonsequential
unload nonsequential
load sequential
unload sequential

Figure 4. Influence of machining times on load and unload rules.

3 0 0

5 0 0

7 0 0

9 0 0

1 1 0 0

1 3 0 0

1 5 0 0

1 7 0 0

5 15 25 35 45 55 65 75 85 95

M a c h i n e T i m e (s)

To
ta

l B
at

ch
 T

im
e(

s)

b u f f e r s = 0
b u f f e r s = 1
b u f f e r s = 2
b u f f e r s = 3
b u f f e r s = 4
b u f f e r s = 5
b u f f e r s = 6

Figure 5a. Influence of buffers on sequential processing.

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

86

300

500

700

900

1100

1300

1500

1700

5 15 25 35 45 55 65 75 85 95

M achining Time (s)

T
ot

al
 B

at
ch

 T
im

e
(s

)

bu ffe rs=0
bu ffe rs=1
bu ffe rs=2
bu ffe rs=3
bu ffe rs=4
bu ffe rs=5
bu ffe rs=6

Figure 5b. Influence of buffers on non-sequential processing.

Table 9. Batch order data
Station 1 Station 2 Station 3 Station 4 Batch#6

Part type

Number to be
produced Processing

time=90 s
Processing
time= 90 s

Processing
time=90 s

Processing
time=90 s

A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Station 1 Station 2 Station 3 Station 4 Batch#7
Part type

Number to be
produced

Processing
time=90 s

Processing
time= 90 s

Processing
time=90 s

Processing
time=90 s

A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Station 1 Station 2 Station 3 Station 4 Batch#8
Part type

Number to be
produced Processing

time=90 s
Processing
time= 90 s

Processing
time=90 s

Processing
time=90 s

A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Station 1 Station 2 Station 3 Station 4 Batch#9
Part type

Number to be
produced

Processing
time=90 s

Processing
time= 90 s

Processing
time=90 s

Processing
time=90 s

A 10 X X
B 10 X X
C 10 X X
D 10 X X X

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

87

The results for the four batch orders are summarized in
Table 10. What is clear from this table is that
non-sequential processing is always faster than sequential
processing. However, what needs to be explained is the
noticeable variation in the throughput times given that all
the batch cases have the same total machining time.
Through experimentation, these variations have been
attributed to the location of the bottleneck machine.
Indeed, the batch requirements were chosen specifically to
demonstrate this effect. In all cases, three of the machines
are required to machine 20 parts while the fourth is
required to machine 30 parts. Clearly the machine with the
additional load corresponds to the bottleneck. The batch
orders 6 through 9 each have a different machine forming
the bottleneck.

From the results shown in Table 10, it would seem that
non-sequential processing is slightly faster if the bottleneck
machines are used first in the process. However, given that
the processing is non-sequential, the machine order should,
intuitively, not influence the results. This first observation
indeed turns out to be incorrect. The reason for the
variation in the batch times will be explored further in the
next experiment, which links the part loading order to this
throughput variation. In regard to the throughput times of
sequential processing, this example indicates that the
location of the bottleneck machine should hardly affect the
batch’s throughput time. Through further experimentation
(in the next section), it has been found that the loading
order of the parts, as well as the location of the bottleneck
machine, does affect the total throughput time. The next
experiment will demonstrate that, in the sequential case,
when all the different orders parts can be introduced into
the system, the throughput times are greater, on average,
when the bottleneck machine is at the front of the queue
of machines. Moreover, the throughput time decreases as
the bottleneck machine progresses to the end of this
queue.

Table 10. Summary
Batch
Order

Non-sequential
(in seconds)

Sequential
(in seconds)

1 2710 2900
2 2710 3030
3 2790 3035
4 2790 3010

The last experiment will address the issue of the loading

sequence of parts. As it stands, the program is capable of
searching the parts that remain to be processed in order to
find a suitable fit with the current state of the FMC. For
example, if three machines are busy and the fourth
machine is idle, the program searches the parts remaining
to be processed to see if any part requires machining at the
free station. Consequently, the order of parts introduced to
the system is superseded by the requirements of the cell.
However, in most cases, several parts may need the
machines that are currently free or have free buffer space.
This situation is where the ‘search order’ that the program
uses for checking the remaining part types for loading

suitability becomes critical. Until now, all the parts were
processed in the same order that they entered the system
(i.e. A, B, C, and D). Indeed, there is no obvious reason for
selecting one part over another, or pairing parts in a
specific manner.

This test will examine how alternative loading sequences
of parts affects the total throughput of a batch. Using the
same scenarios presented, twenty-four individual but
different experiments were conducted. Each experiment
involved a different loading sequence. The twenty-four
experiments were conducted by using both the sequential
and non-sequential rules. The results are presented in the
Table 11. The first, most observable result from Table 11 is
that there is a marked variation in the batch throughput
time that clearly depends on the order of the loading
sequence. In the case of non-sequential processing, this
variation is around 1% while, in the sequential case,
variations are between 1.6 and 7.8%. This lower variability
supports the conclusions given earlier that non-sequential
processing is more beneficial than sequential processing.
Lower batch throughput times are also obtained
consistently by using non-sequential processing. This
difference is also indicated by the average processing times
listed at the bottom of Table 11. Furthermore it is clear
that the best non-sequential results do not correspond to
the best sequential results.

Overall, several patterns are observable in Table 11, such
as the interchangeable nature of part type 1 and 3 in the
non-sequential case. However, what has not been
determined is how to predict when a specific loading
sequence results in a higher than average throughput time,
or how to select a sequence which would produce the
lowest throughput time. Various hypotheses were perused
to correlate the loading patterns and throughput results but
no conclusive pattern was found. This problem requires
further investigation. The first, most observable result
from Table 11 is that there is a marked variation in the
batch throughput time that clearly depends on the order of
the loading sequence. In the case of non-sequential
processing, this variation is around 1% while, in the
sequential case, variations are between 1.6 and 7.8%. This
lower variability supports the conclusions given earlier that
non-sequential processing is more beneficial than
sequential processing. Lower batch throughput times are
also obtained consistently by using non-sequential
processing. This difference is also indicated by the average
processing times listed at the bottom of Table 11.
Furthermore it is clear that the best non-sequential results
do not correspond to the best sequential results.

Overall, several patterns are observable in Table 11, such
as the interchangeable nature of part type 1 and 3 in the
non-sequential case. However, what has not been
determined is how to predict when a specific loading
sequence results in a higher than average throughput time,
or how to select a sequence which would produce the
lowest throughput time. Various hypotheses were perused
to correlate the loading patterns and throughput results but
no conclusive pattern was found. This problem requires
further investigation.

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

88

Table 11. Load sequence (results in seconds)
 Non-sequential Sequential

Sequence case 1 case 2 case 3 case 4 Sequence case 1 case 2 case 3 case 4

1234000 2710 2710 2790 2790 1234000 2900 3030 3035 2935
1243000 2725 2725 2805 2805 1243000 2900 3030 3035 2935
1324000 2710 2710 2770 2770 1324000 2900 3030 3035 2935
1342000 2710 2710 2770 2770 1342000 2805 3030 3035 2935
1423000 2725 2725 2710 2710 1423000 2805 3030 3035 2935
1432000 2710 2710 2795 2795 1432000 2805 3030 3035 2935
2134000 2710 2710 2710 2710 2134000 3470 3030 3035 2935
2143000 2725 2725 2710 2710 2143000 3470 3030 3035 2935
2314000 2710 2710 2710 2710 2314000 3470 3030 3035 2935
2341000 2770 2770 2725 2725 2341000 3375 3130 2845 2815
2413000 2865 2865 2725 2725 2413000 3375 3130 2845 2815
2431000 2865 2865 2725 2725 2431000 3375 3130 2845 2815
3124000 2710 2710 2770 2770 3124000 2900 3030 3035 2935
3142000 2710 2710 2770 2770 3142000 2805 3030 3035 2935
3214000 2720 2720 2725 2725 3214000 3470 3030 3035 2935
3241000 2780 2780 2750 2750 3241000 3375 3130 2845 2815
3412000 2710 2710 2785 2785 3412000 3305 3130 2845 2815
3421000 2715 2715 2750 2750 3421000 3225 3130 2845 2815
4123000 2785 2785 2760 2760 4123000 3305 3130 2845 2815
4132000 2710 2710 2710 2710 4132000 3305 3130 2845 2815
4213000 2795 2795 2725 2725 4213000 3225 3130 2845 2815
4231000 2795 2795 2725 2725 4231000 3225 3130 2845 2815
4312000 2710 2710 2710 2710 4312000 3305 3130 2845 2815
4321000 2720 2720 2725 2725 4321000 3225 3130 2845 2815
Highest 2865 2865 2805 2805 Highest 3470 3130 3035 2935
Lowest 2710 2710 2710 2710 Lowest 2805 3030 2845 2815

Standard
Deviation

48.4 48.4 31.4 31.4
Standard
Deviation

249.8 51.1 97.0 61.3

Average 2741.5 2741.5 2743.8 2743.8 Average 3180.1 3080.3 2940.3 2875.0

5. CONCLUSIONS

The objective of this work is to enhance the notion of
flexibility in “flexible” manufacturing cells so that a cell’s
utility can be enhanced by using a computer implemented
scheduler. This aim has been achieved by allowing multiple
parts to be processed concurrently without using
predetermined cycles of robot movement. The program
developed to control the FMC performs reliably. It
provided tools for dynamically selecting parts and
controlling the robot’s movements to complete complex
batch demands with lower throughput times than is
possible by processing one part type at a time. The other
significant contribution was to develop a dynamic
manufacturing cell which could process parts
non-sequentially, an issue which has not been addressed
adequately in the literature.

The simulation program, developed in conjunction with
the control software, allows users to experiment with a
multitude of variables that exist in the FMC environment

prior to selecting a strategy that best fits a production run.
Experiments using this software demonstrated its potential
as a tool for examining different FMC control heuristics,
and the effect of buffers on the throughput as well as part
loading order questions. From these experiments a general
understanding of the complexity of this enhanced flexible
environment can be gained. The first critical issue that the
simulation software helped to verify was that, in all cases,
the concurrent processing of parts is more desirable than
processing parts in cycles when trying to minimize the
batch throughput time. The software also helped to study
the relationship between robot’s moves to machining times.
When this ratio was low (between 1:1 and 1:10), the
throughput times were less predictable due to the changes
in robot’s path. However, it was observed that this
relationship became more predictable once the ratio of the
robot’s move to machining times was higher than 1:10. At
this point all robot movements occurred while all the
stations were engaged in machining. This resulted in a
steady increase in the throughput time. The software also

Hathout and Balakrishnan: An Intelligent Movement Sequence in Production Process for Real Time Robot Control in a Multi-Machine Manufacturing Cell
IJOR Vol. 3, No. 2, 76-89 (2006)

89

helped to confirm that, from the perspective of batch
throughput time, using an ‘unload always’ robot movement
rule is consistently superior (albeit marginally) to a ‘load
always’ rule. Numerical simulations also suggested that
there was a limit to the number of buffers that could be
added to reduce the throughput time. It was shown that,
after a point, buffers began to work more as a storage
device than as dynamic transfer points. Increasing the
number of buffers can enhance the performance of the
cell but excess work in progress in arguably not desirable.

The question of non-sequential processing versus
sequential processing was also examined using the
simulation software. The results show that non-sequential
processing, when possible, reduces batch throughput times,
thereby increasing the utilization of a cell. Factors that
increase or decrease the significance of this improvement
include the number of machines in the FMC and the
location of the “bottle neck machine” or the machine most
in demand in the machining processing cycle. The final set
of experiments showed the effect on the batch throughput
time of the sequence in which parts are introduced into the
cell. Consideration of sequence in which parts are
introduced proves to be significant depending on the
process requirements of the parts in the batch. An
experiment of 24 different part sequences was tested with
four different batch orders of 40 parts. Each batch
required a total of 135 minutes of machining. As a result
of the different part orders there was a 1% variation in the
batch throughput time using non-sequential processing,
and a 7.8% variation in sequential processing. Overall, the
loading sequence had a greater effect on sequential
processing than that produced by non-sequential
processing. However, no easily generalized patterns were
obvious for selecting the sequence that generates the
smallest batch throughput time. Thus far, the only way to
determine the best sequence in which to load part is to
simulate all combinations and allow the software to choose
the best part sequence for a given scenario which can not
be done in real time.

REFERENCES

1. Aneja, Y. and Kamoun, H. (1999). Scheduling of parts
and robot activities in a two machine robotic cell.
Computers and Operations Research, 26(4): 297-312.

2. Agentis, A. (2000). Scheduling no-wait robotic cells
with two and three machines. European Journal of
Operational Research, 123: 303-314.

3. Agentis, A and Pacciarelli, D. (2000). Part sequencing in
three-machine no-wait robotic cells. Operations Research
Letters, 27: 185-192.

4. Chen, S., Chen, L., and Lin, L. (2001).
Knowledge-based support for simulation analysis of
manufacturing cells. Computers in Industry, 44: 33-49.

5. Chen, H., Chu, C, and Proth, J.M. (1997). Sequencing
of parts in robotic cells. The International Journal of
Flexible Manufacturing Systems, 9: 81-104.

6. Cheng, C.W, Sun, T.H. and Fu, L.C. (1994). Petri-net
based modeling and scheduling of a flexible

manufacturing system. IEEE International Conference on
Robotics and Automation, pp. 513-519.

7. Crama, Y. and Klundert, J.V.D. (1997). Cyclic
scheduling of identical parts in a robotic cell. Operations
Research, 45: 952-965.

8. Geismar, H.N., Sriskandarajah, C., and Ramanan, N.
(2004). Increasing throughput for robotic cells with
parallel machines and multiple robots. IEEE
Transactions on Automation Science and Engineering, 1:
84-89.

9. Hall, N.G., Kamoun, H., and Sriskandarajah, C. (1998).
Scheduling in robotic cells: complexity and steady state
analysis. European Journal of Operations Research, 109:
43-65.

10. Kenne, J.P. and A. Gharbi, A. (2004). A simulation
optimization based control policy for failure prone
one-machine, two-product manufacturing systems.
Computers and Industrial Engineering, 46: 285-292.

11. King, R.E., Hodgson, T.J., and Chafee, F.W. (1993).
Robot task scheduling in a flexible manufacturing cell.
IIE Transactions, 25(2): 80-87.

12. Kumar, R., and Li, H. (1994). Assembly time
Optimization of PCB Assembly. Proceedings of the
American Control Conference, Baltimore Maryland, pp.
306-310.

13. Lin, L., Wakabayashi, M., and Adiga, S. (1994).
Object-oriented modeling and implementation of
control software for a robotic flexible manufacturing
cell. Robotics & Computer-Integrated Manufacturing, 11(1):
1-12.

14. Moreno, A.A. and Ding, F.Y. (1993). A constructive
heuristic algorithm for concurrently selecting and
sequencing jobs in an FMS environment. International
Journal of Production Research, 31(5): 1157-1169.

15. Niemi, E. and Davies, B.J. (1989), Simulation of an
optimizing FMS-cell control system. Robotics &
Computer-Integrated Manufacturing, 5(2/3): 229-234.

16. Rebaine, D. and Strusevich, V.A. (1999). Two machine
open shop scheduling with special transportation times.
Journal of the Operational Research Society, 50: 756-764.

17. Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J.,
and Kubiak, W. (1992). Sequencing of parts and robot
moves in a robotic cell. The International Journal of
Flexible Manufacturing Systems, 4: 331-358.

18. Sethi, S.P., Chandrasekaran, R., Drobouchevitch, I., and
Sriskandarajah, C. (2004). Scheduling multiple parts in a
robotic cell served by a dual-gripper robot. Operations
Research, 52: 65-82.

19. Yalcin, A. and Boucher, T.O. (1999). An architecture
for flexible manufacturing cells with alternative
machining and alternative sequencing. IEEE
Transactions on Robotics and Automations, 15(6): 1126-1130.

