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AbstractMaterial handling robots are routinely used for transferring parts in an interconnected multi-machine cell. The 
sequence of  robot movements between machines is arrived at by the operator, either intuitively or by the use of  some form 
of  off-line analysis. It would be extremely beneficial if  robots can be provided with additional intelligence to automatically 
sequence their control programs thereby optimizing production. This paper presents a decision support system that 
provides a real time control of  a robot to meet the stated objective. The developed methodology permits the user to analyze 
a batch production process by considering a number of  parameters that affect the throughput of  parts and generates in 
real-time, the best sequence for a given production. This adds considerable intelligence to a standard robot controller. The 
parameters currently considered are: sequential versus non-sequential processing of  parts; consideration of  processing times 
on machines; the size of  buffers in each machine; and the travel time of  the robot. A batch production is considered to 
demonstrate the methodology. To the best of  knowledge of  the authors, robot controllers have never been provided with 
this kind of  control intelligence. The system developed was tested on a four machine cell serviced by a single robot. The 
computational time required by the control software is minimal thereby facilitating real-time processing as well as control in 
a dynamic environment. Robot movements that prioritizes ‘unloading of  machines first’ proved to be superior in 
comparison to other strategies. The number of  buffers beyond a certain limit did not increase the throughput time of  the 
batch. Non-sequential processing reduces throughput time. Loading sequence has a greater impact on sequential processing. 
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1. INTRODUCTION 

A manufacturing cell is a cluster of  machines or 
processes that are located in close proximity and dedicated 
to the manufacturing of  a family of  parts. Robots are being 
increasingly employed as material handling systems in 
many manufacturing cells. The scheduling problem at the 
cell level is characterised by a short lead-time, dynamically 
changing environments, the versatility of  the machines, and 
the need for real-time decision making. Cell level 
scheduling needs to be: (i) responsive to changing 
environments; (ii) flexible in accommodating different 
scheduling needs; and (iii) intelligent for implementing 
decision support systems. With increases in computing 
speeds, complex control algorithms for real-time 
optimisation of  manufacturing tasks are becoming a reality. 

This paper focuses on the development of  a 
methodology for sequencing of  robot moves and 
sequencing of  parts in a manufacturing cell by using a 
dynamic hierarchical decision making support system. The 
system is structured for a generic machine cell 
environment which can look at questions of  buffer size, 
number of  machines, machining times, robot move times, 
part processing requirements, part loading orders, and the 

impact of  non-sequential versus sequential processing in 
order to improve the productivity. 

The problem is one of  dynamically sequencing both 
parts and robot moves without operator intervention. The 
purpose is to develop a better understanding of  how the 
batch manufacturing time can be reduced by exploring 
generally occurring batch production situations. It is then 
extended to the development of  functional control 
software that adds additional intelligence to the standard 
robot controller. The decision hierarchy has the capability 
to examine the effects of  various control parameters and 
automatically restructure the sequence of  loading/ 
unloading of  machines for greater batch throughput. 

 
2. LITERATURE REVIEW 

Robot movement and part scheduling questions are 
known to be NP-hard, making them computationally 
intensive and challenging to solve. The optimal robot move 
sequence for a Flexible Manufacturing Cell (FMC) 
environment for manufacturing a batch of  parts in the 
shortest time has been investigated (Sethi et al., 1992). 
However, the solution is limited to a flow line 
manufacturing system where parts have to visit all the three 
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stations considered and the solutions are based on cyclic 
scheduling. Extension of  this work to parallel machines 
(Geismar et al., 2004) with multiple robots as well as robots 
with a dual-gripper has also been investigated (Sethi et al., 
2004). A minimum part set (MPS) required to attain a 
desired production schedules has also been presented (Hall 
et al., 1998). The objective has been to minimize the time 
to produce one MPS in a cyclic production environment. A 
robotic cell with ‘m’ machines was considered (Crama and 
Klundert, 1997) with an objective to find a sequence of  
robot moves for arriving at the minimum cycle time. A 
situation of  no-wait constraint in which a part is moved 
immediately to the next machine as soon as the previous 
machine completes the work on the part has also been 
considered (Agentis, 2000). No-wait processing is typical in 
the steel industry and some electro-plating processes. An 
algorithm for improving the cycle time in a robotic cell 
with two machines for processing non-identical parts has 
also been analyzed (Aneja and Kamoun, 1999). An 
extension of  this work (Agentis and Pacciarelli, 2000) 
compared the situation of  identical part types in a no-wait 
robotic cell to a no-wait non-identical part types. The 
algorithm employed the travelling salesman problem’ 
technique. Genetic algorithm based techniques have also 
been proposed to scheduling problems in robotic cells 
(Kenne and Gharbi, 2004) and (Chen et al., 2001) and 
presented a methodology for scheduling multiple part 
types for two machine cells and concluded that the 
problem-solving technique becomes cumbersome when 
the number of  machines is more than two. A multiple-part 
type production problem on four machines by using a 
branch and bound technique has also been proposed 
(Chen et al., 2001). The technique is to first find an optimal 
robot cycle, and then choose a part sequence that produces 
the lowest cycle time. Some success was achieved when 
adapting the heuristics and algorithms to three machines. 
However, they concluded that further investigation was 
required to adapt the solution proposed to larger size 
problems.  

Results from a simulation based approach for a dynamic 
FMC optimisation for two machines that employs different 
movement control logic did not reveal any new insights 
that could be generalized (Niemi and Davies, 1989). A 
two-machine cell, with buffers at each machine, for 
processing a batch of  parts needing different processing 
times on each machine has been investigated (King et al., 
1993). The objective is to determine the optimal sequence 
of  robot moves to minimise the make-span of  the batch. 
The study concluded that a branch and bound technique 
becomes ineffective as the number of  parts increases past 
ten. The approach taken is to treat the problem as an open 
flow shop. This type of  open flow-shop problem deals 
with non-pre-emptive shop scheduling that addresses 
routing of  parts. It usually has the objective of  minimising 
the make-span of  a part. Moreover, a part’s route is not 
given in advance although a predetermined processing time 
is known at each machine. Routes are determined by 
queues in front of  machines and by the remaining process 
requirements. A linear time algorithm to find the optimal 

schedule for a two-machine, open-shop configuration with 
parts having different transportation times has also been 
proposed (Rebaine and Strusevich, 1999).  

There has been a lot of  work in modelling flexible 
manufacturing cells by using advanced simulation and 
modelling tools. The application of  a Timed Place 
Petri-Net (TPPN) or a Coloured Petri Net (CPN) has 
proven to be most useful. A TPPN for solving resource 
allocation questions in a FMS job shop scenario using 
automated guided vehicles (AGV) employs a heuristic 
search method to determine the near optimal schedule of  
part processing (Cheng et al., 1994). Further work (Yalcin 
and Boucher 1999) used CPN to solve a FMC problem 
with alternative machining and alternative part sequencing 
and confirmed that Petri nets can be used as an effective 
modelling tool. An object oriented modelling approach to 
create open-ended simulation software for flexible 
manufacturing focuses on object definition and actions 
occurring during state transitions (Lin et al., 1994).  

In these modelling studies, very little work to explore the 
capabilities of  a tool to gain insight for improving robot 
move times has been demonstrated. The assumption in 
these papers of  an infinite incoming buffer also leads to 
the objective of  optimising the make span of  a part rather 
than a batch of  parts. The framework developed by Petri 
net modelling adapted to address FMC questions, promises 
to provide the type of  information architecture for any 
modelling software. The papers reviewed dealing with Petri 
nets provide an example of  how a net can be structured to 
handle time and place data related to objects moving 
through a model. These ideas proved to be valuable in 
developing the simulation software reported in this paper. 
This is equally true for observations made about 
implementation of  object oriented coding for flexible, 
manufacturing related simulations. 

In cases where the part loading sequence can be 
changed, most flexible production plans solve the loading 
problem first and then separately select a fixed cyclical 
robot move schedule based on the loading results (Moreno 
and Ding, 1993). Concurrently selecting and sequencing 
jobs in an FMS proves far more effective. The optimal 
assembly time for a printed circuit board (PCB) assembly 
where the sequence of  operations is not critical has also 
been investigated (Kumar and Li, 1994). This work 
attempts to solve the problem of  the robot movement as a 
“travelling salesman” problem. This scenario relates closely 
to the one presented here. However, the authors present an 
optimal solution for the manufacturing of  just one type of  
PCB.  

It was confirmed from the literature that concurrent 
loading and robot move decision-making is preferable in a 
dynamic FMC environment. In a specific PCB case, the 
implementation of  non-sequential processing takes fuller 
advantage of  the available machine capacity and results in a 
significant reduced throughput time. The approach used 
here in the development of  the control program and 
simulation incorporates ideas from the structure proposed 
by prior research using Petri net modelling and object 
oriented programming. The methodology for 
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implementing the robot movement decision hierarchy also 
partially stems from these approaches. The hierarchy of  
decisions attempts to concurrently select parts for loading 
into the system and to sequence robot moves based on the 
current status of  the overall system. Based on the review, 
the effect of  variables like buffers, as well as the number of  
parts contained in them, loading part orders, and 
non-sequential processing merit further investigation. The 
decision support system developed as part of  this work 
incorporates several ideas generated as a result of  the 
literature review. The software and hardware is designed to 
answer issues related to optimising the batch size, number 
of  parts and to identify sequencing aspects for real-time 
control. 
 
3. LAYOUT OF EXPERIMENTAL SYSTEM 

The flexible manufacturing system consists of a FMC 
cell and a control computer that runs custom designed 
software. A five degrees-of-freedom robot is used for 
material handling. There are four processing or machining 
stations, each with gravity feed buffer which can hold up to 
five parts as shown in Figure 1. A machine, and the buffer 
behind it, is occasionally called a station when the location 
of both is being referenced. The processing or machining 
times in the cell are simulated through timers in a 
programmable logic controller (PLC) which are triggered 
through sensors located on each of the four buffers. There 
is one input buffer for parts entering the cell and a 
drop-off location for the finished parts. The robot 
controller has the ability to store up to ninety-nine unique 
programs that are controlled by a master program. This 
master program responds to commands from the 
input/output (I/O) board located in the external personal 
computer. The board will be controlled by the decisions 
from the support system software.  

 

 
Figure 1. Cell layout. 

 
The I/O board reads the status of the timers in the PLC 

and the status of the sensors at the processing stations. The 
latter indicate whether each station is occupied. Based on 
the information read by the I/O interface, the software 
determines what the robot’s next move should be and sets 
the corresponding output bit on the I/O board. The 
master program for the robot controller reads the status of 

the input bit, which controls the use of one of the many 
subprograms. The subprograms correspond to different 
tasks that the robot is required to perform. A single 
program written in C++ language controls the FMC both 
in an on-line/real time environment as well as in an 
off-line/simulation mode. The program was written to test 
the effect of different variables on the total throughput. 
The program makes decisions as to which task to perform 
next based on input criteria, the decision hierarchy, FMC 
variables and the existing feedback from the FMC. The 
custom program developed has the ability to read user 
input batch data for production through the FMC and then 
simulate or run the process. User can step through the 
simulation one step at a time and run all possible sequences 
for a batch. At the end of each program, statistics are 
displayed that indicate each station’s utilization; it’s 
occupied and free times. The program has the option to 
save data in a user-defined file at the end of each run. 
When multiple tests are conducted, data is filed 
automatically in a pre-specified file. All variables related to 
the given test are also included in this file and can be 
selected for real-time robot implementation. 

 
3.1 Structure of  cell program 

The cell program was designed to provide the user with 
the option of  choosing two types of  production cycles. 
The first type prioritises loading parts into the system; and 
the second prioritises unloading. One of  the following 
actions is taken during each cycle: load, shift part from one 
station to the next, unload, or move the robot and wait at 
the next station needing unloading or shift a part to its next 
operation. The order in which these choices are presented 
depends on whether unload or load priority is selected. 
Unload priority first looks at the option of  unloading a part. 
If  this is not possible, then it considers shifting a part from 
one station to the next. If  shifting is not an option, then it 
may load a part. If  all else is impossible the final choice is 
to move the robot to a station that has almost finished 
machining and waiting. The load priority first looks at the 
option of  loading a part, then shifting a part from one 
station to the next, followed by unloading, and lastly the 
moving and waiting command is considered.  

During each cycle, the program’s clock is incremented 
by the total time it takes for the robot to move. When the 
move and wait action is called, the clock is incremented by 
the time it takes the robot to move plus the time remaining 
for processing the part at the station to which the robot 
moves. As the main clock is incremented, the timers 
(representing the appropriate machining times) 
corresponding to the stations processing parts decrements. 
There are also two queues, the ‘done station’ queue and the 
‘almost done station’ or ‘working station’ queue. These 
queues keep track of  which part is done first and which 
parts are to be done next. In the case of  a station finishing 
processing when the clock is incremented, the station 
number gets added to the ‘done station queue’, and that 
station number is removed from the working station queue. 
For example, if  the ‘working station queue’ indicates that 
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machine 3 is done machining first, followed by stations 1 
and 4, the working queue is 314. If  machine 2 is holding a 
finished part, the ‘done’ queue is 2. If  the timer is 
incremented by an amount which is equal or more than the 
time required to finishing machining the part at machine 3, 
then the done queue is 23 and the working queue becomes 
14.  

Each part moving through the system is entered in a 
matrix as shown in Figure 2. An individual part has an 
identification number and nine variables of  information 
defined when the part enters the system. The first five 
variables are Boolean variables that identify the stations 
that a particular part needs to visit. These variables could 
also be turned into integer variables and used to store 
unique machining times for each station.  

 As the part visits each station for processing, the 
integer value representing the status changes, and binary 
numbers 0 and 1 are used to represent the state. The sixth 
variable monitors how many stations that the robot still has 
to visit by reading the binary number created by the first 
five Boolean variables. For example, if  the first five 
variables describing a part are [0, 1, 1, 0, 1], then the sixth 
variable is 2 + 4 + 16 = 22. If  the third operation is 
complete, the sixth variable is 18. The seventh variable 

indicates the part number, which would be used if  the part 
needs to be unloaded to a part-specific buffer. The eighth 
variable gives the current station at which the part is 
located. The ninth variable indicates whether the part is in 
transition (i.e. held by the robot), in a buffer, being worked 
on, waiting for unloading or is out of  the system. Each of  
these states has a number affiliated to it. There is also a 
buffer matrix that keeps track of  the part queues at each 
station. Figure 3 provides a graphical representation of  
these matrices. Of  the four operations that can be 
performed in each cycle, the load operation is the most 
complicated. The load operation triggers a subroutine that 
determines whether there is any part that can enter the 
system. The primary requirement for loading a part into 
the cell is the availability of  space to load the part onto a 
required machine, or into a limited capacity buffer. The 
program has been developed to accommodate two types 
of  part processing, sequential and non-sequential 
processing. The loading rules for both these processes are 
the same. However, when parts are loaded sequentially, the 
option of  which part to choose is more restricted. The 
following paragraph explains the hierarchy of  the part 
selection priorities. 

 
 

 
Figure 2. Job matrix. 

 
Figure 3. Matrix example. 
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In the sequential case, a part can be loaded only if  the 
first machine in the series of  machines that the part needs 
to go to is free. Given that there may be more than one 
part that is a suitable candidate for loading, there is an 
order of  priority for selecting a part. The first priority is 
given to the first part in the order of  feasible parts which 
needs the currently least occupied station (e.g. a station 
having the fewest waiting parts). If  there is more than one 
station with the fewest parts (e.g. two stations that are 
occupied by one part while the other stations have two or 
more), priority goes to the station that is most in demand 
by the parts in the current batch. If  no clear priority is 
found, then the same search is performed for stations that 
have one more occupancy. 

The process of  part selection for the non-sequential 
case goes through the same order of  priorities as in the 
previously defined sequential process. However, in this case, 
a part is a candidate providing one of  its machining 
requirements is met. There are two additional criteria in the 
case of  non-sequential processing. The part to be loaded, 
after having met all the other requirements, must go 
through a conflict check. The conflict check is a subroutine 
that ensures that, if  a part is loaded into the system, it will 
not cause a blockage to the further processing of  parts. For 
example, consider a situation when two parts of  the same 
type need to visit two machines, and both machines have 
no buffers. If  the parts are loaded consecutively on 
machines 1 and 2, there is no way for either part to 
proceed to the other station. This scenario is defined as a 
conflict situation, which needs to be avoided or resolved. 

The other unique feature of  non-sequential loading is 
that the cell can be loaded to capacity. This feature means 
that all the free buffer space in the cell can be loaded in 
such a way that no process is in conflict. This is not 
desirable because it tends to reduce the number of  options 
available for the movement of  parts and it usually leaves 
only one free buffer space for manoeuvring. Consequently, 
the total batch time is increased greatly. This situation does 
not arise in sequential processing. However, capping 
current machining requirements of  parts in the system by 
making it a part loading condition solves the problem of  
insufficient manoeuvring room. The number of  parts, 
requiring a particular machine, permitted to enter into the 
cell, is fixed as the number of  buffers at that machining 
station plus two. For example: if  there are two buffers at 
each of  three stations, then the current requirements of  
the parts in the cell cannot be more than four requests for 
processing on machine 1, four requests on machine 2, and 

four requests on machine 3. The choice of  setting the cap 
at the number of  buffers plus two was determined based 
on numerical experimentation performed by using an 
exhaustive search algorithm. Values greater or less than two 
proved to be unsatisfactory for reasons given below. The 
first arrangement, where no cap was imposed, allowed the 
cell to be loaded to its maximum capacity. This 
arrangement made it possible to load the cell to the point 
where any additional part would completely block the 
system. It made shifting parts difficult and led to the 
conclusion that loading the system to maximum capacity 
resulted in buffers being used more as storage locations 
than temporary transfer points. The chosen cap of  the 
number of  buffers plus two provided the best compromise 
between overloading the system and switching to an 
‘unload always’ rule, regardless of  the number of  buffers. 
In conclusion, to benefit from the buffers, the time spent 
by parts in the buffers should be minimal. 

The shift load, and unload routines are the other places 
in the program in which a part selection hierarchy is used. 
In both cases a decision needs to be made as to which of  
‘x’ number of  finished parts is to be unloaded or shifted 
first. Here, again, priority is given to the parts at a station 
that is in high demand. If  demand among stations with 
finished parts is equal, then the ‘done parts queue’ is 
referred to, in order to see which part will be finished first. 
Based on these criteria, a decision is made as to which part 
to unload next. In the case of  shifting a part from station 
to station, the same two criteria are examined. First, the 
part being shifted can be shifted only to a station that has 
free buffer space. Second, a conflict check is performed in 
the case of  non-sequential processing.  

 
3.2 Hierarchy of  decisions 

Having stated the basic criteria for making decisions 
regarding robot moves and part selection rules, this section 
provide a clear understanding of  how these decisions 
affect the batch processing time. This section also 
demonstrates the differences between the loading and 
unloading rules, as well as the non-sequential and 
sequential loading rules. The differences are demonstrated 
in four step-by-step analyses of  state changes in one 
particular robot loading and sequencing example. The 
example considered consists of  three part types A, B, and 
C to be produced in the cell. The data for batch considered 
(Batch #1) is shown in Table 1. 

 

 
Table 1. Data for batch #1 
Station 1 Station 2 Station 3 Station 4 

Part type Number to be 
produced 

Processing 
time=15 s 

Processing 
time= 15 s 

Processing 
time=15 s 

Processing 
time=15 s 

A 2 X X   
B 2  X X  
C 2   X X 
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The robot’s move times are each 5 seconds between 
stations. The stations that the part has to visit are indicated 
by an ‘X’. A step by step account of  the processing of  this 
batch with an objective to highlight the difference between 
the robot’s movements chosen when an unload priority is 
used versus those when the load priority is used to process 
parts sequentially is given next. For example, part B needs 
to visit station 2 before proceeding to station 3. Tables 2a 
and 2b present the time history of  production generated 
from an analysis for sequential loading and unloading. The 
‘time’ column gives the time that the action in the ‘robot 
action’ column was finished. The ‘other actions’ column 
indicates if  any other action occurred at that time, such as 
a part has been finished machining or has moved from one 
buffer space to another. The ‘machine req’ (machining 
requirements) column has four numbers. A given number 
represents the number of  processing requirements at each 
station that is needed by all the parts currently in the 
system. This information is used to decide which parts 
enter the cell next. Values in ‘machine req’ only change 
when a part no longer needs to be machined at a station 
and it is no longer occupying that station. The last column 
shows the done queue, which indicates the order in which 
the stations have finished their machining jobs. The 
following notations are used to describe the station 
changes. “L” indicates that the robot has moved to the 
input buffer, picked up a new part and deposited it at a 
station. 

“U” indicates that the robot has picked up a part and 
dropped it off  at the systems out buffer. “S” indicates that 
the robot has picked-up a part and dropped it off  at a 
station. Parts are identified by a part letter followed by a 
number to indicate which specific one of  a part type is 
being referenced (e.g. A1 or A2). A station, S, and its 
affiliated buffers, are designated by the notation Sxy. The 
‘y’ indicates what buffer position the part has taken at 
station ‘x’. Moreover y = 0 implies that the part at a station 
is currently being machined or that machining at station ‘x’ 
has completed processing this part. If  there is no letter in 
front of  a part name but a station is identified after the 
part, then the part has shifted up one place in the buffer 
space. For example if  a part B number 3 (B3) was loaded 
on station 3 buffer 2 (S32) and the part at station 3 buffer 
0 (S30) was unloaded, then part B3 would move to S31. 
‘Done’ means the part has completed processing at a 
station. 

The two examples differ only in the priority rule used 
for the robot’s moves. Sequential loading always loads parts 
if  there is place to load a part. If  not, the algorithm 
considers part shifts and, if  this is also not possible, then it 
considers unloading parts. In sequential unloading, the 
hierarchy of  robot actions is the reverse— first the 
possibility of  unloading a part is considered, then shifting a 
part, and then loading parts. These two cases produce 
sequences of  events that are different even though the 
total batch time is the same. The robot’s move time forms 
the bottleneck in these examples. Examining the ‘done 
queue’ list shows this. If  it tends to have one or more parts 

waiting, it is because the robot cannot keep up with the 
demand for its action. 

Once the first level of  decision making is determined 
(whether to load, shift unload or wait), the second level of  
decision making comes into play. Here the program 
decides which part is to be loaded, shifted or unloaded. 
The order in which parts are loaded is determined by the 
batch demand for a machine and whether space is available 
in the FMC for a new part. To explain the term batch 
demand for a machine, consider 50 unprocessed parts of  
which 30 require machine 3, 20 require machine 4 and 10 
require machine 2. Given this batch, the control program 
first checks if  there is a part which can be loaded on 
machine 3; if  not, it checks if  there is a part which needs 
machine 4 and then machine 2. In this example, the 
machines most in demand are 3 and 4. Hence, they are 
loaded first by parts that require them, in this case part B 
and part C. 

One important decision that has to be made in this 
model is whether or not to continue to adhere to a set of  
rules or to make special conditions for unique cases. For 
example consider a situation wherein the robot has just 
loaded the buffer of  one station with a part and the part 
being machined at that station is finished. In this case it 
may be beneficial to take advantage of  the robot’s position 
to shift that part rather than addressing the next part in the 
queue according to the hierarchy set out. This is illustrated 
in bold lettering (at time 35) in the load example of  Table 
2a. Through experimentation, it is determined that the 
benefit of  implementing such a policy is limited to cases 
where the robot’s move time is the bottleneck. Otherwise 
imposing such a policy is no longer beneficial; rather, it 
increases the batch throughput time. The table shown is 
automatically generated by the control software. Data 
similar to the one shown in Table 2a and 2b were also 
generated for non-sequential load and unload cases. 

The non-sequential unload showed a unique case 
wherein in which no unload, shift or load operations are 
possible. Hence, the robot moves to the station that would 
first be done machining a part and then the robot waits for 
the next required action. This situation did occur when no 
more parts are to be machined at a station nor are there 
any more parts to be loaded. The control methodology 
then looks ahead in the working queue to pick a station 
that has a completed part and move the robot to that 
location. This kind of  “look ahead” feature reduces the 
robot’s movement time by having it take advantage of  
“free time”.  

In the sequential load examples given in Table 2a, the 
order in which parts are loaded is B C A B C A and all the 
parts are loaded immediately, meaning the first six robot 
actions load parts into the cell. In the non-sequential load 
example, the load order is ‘ABACC’ and only after two 
shifts occur is the final part B loaded. The reason that the 
order is different is because two parts can be loaded 
immediately on station 2, namely parts A and B. However, 
if  there is a restriction requiring the parts to be processed 
in order, then part A cannot start on station 2. It is also 
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Table 2a. Time history of  sequential loading 

Time (s) Robot  
action 

Other 
Actions 

Machine 
req 

Done  
queue 

5 L B1-S20  0110 0000 
15 L C1-S30  0121 0000 
20  B1 done 0121 2000 
25 L A1-S10  1221 2000 
30  C1 done 1221 2300 
35 LB2-S21  1331 2300 
40  A1 done 1331 2310 
45 L C2-S31  1342 2310 
55 L A2-S11  2442 2310 
60  C2-S30 2432 2310 
65 S C1-C40  2432 2100 
70  B2-S20 2332 2100 
75 S B2-S31 C2 done 2332 1300 
75  B1-S30 2322 1300 
80 S C2-S41 C1 done 2322 1400 
85  B2 done 2322 1420 
85  A2 S10 1322 4200 
90 S A1-S21 B1 done 1322 4230 
90  A1-S20 1222 4230 
95 S B2-S31  1222 4300 
100  C2 S40 1221 3000 
105 U C1 A2 done 1221 3100 
105  A1 done 1221 3120 
115 S A2-S21 C2 done 0221 3240 
120  B2-S30 0211 3240 
125 U B1  0211 2400 
130  A2-S20 0111 2400 
135 U A1 B2 done 0111 4300 
145 U C2 A2 done 0110 3200 
155 U B2  0100 2000 
165 C A2  0000 0000  

 Table 2b. Time history of  sequential unloading 

Time (s) Robot  
action 

Other 
Actions 

Machine 
req 

Done  
queue 

5 L B1-S20  0110 0000 
15 L C1-S30  0121 0000 
20  B1 done 0121 2000 
25 L A1-S10  1221 0000 
30  C1 done 1221 2300 
35 S B1-S31  1121 3000 
40  A1 done 1121 3100 
40  B1-S30 1121 3100 
45 S C1-S40  1111 1000 
55 S A1-S20 B1 done 0111 3000 
60  C1 done 0111 3400 
65 U B1  0101 4000 
75  A1 done 0101 4200 
75 UC1  0100 2000 
80 UA1  0000 0000 
90 L B1-S20  0110 0000 
95 L C1-S30  0121 0000 
100  B1 done 0121 2000 
105 L A1-S10  1221 0000 
110  C1 done 1221 2300 
115 S B1-S31  1121 3000 
120  A1 done 1121 3100 
120  B1-S30 1121 3100 
125 S C1-S40  1111 1000 
130 S A1-S20 B1 done 0111 3000 
135  C1 done 0111 3400 
145 U B1  0101 4000 
155  A1 done 0101 4200 
160 UC1  0100 2000 
165 UA1  0000 0000  

 
important to observe that the non-sequential loading 
immediately load all six parts because, in this case, if  the 
last part B is added then further movement is blocked. This 
situation does not occur in sequential loading. In the 
sequential processing the bottleneck machine regulates the 
cell’s capacity. In the non-sequential loading, there is a 
possibility to stifle movement in the FMC by overloading it 
with parts. Hence, an additional condition is added to the 
load rule that restricts the number of  parts that need a 
specific machine to two. 

This section has provided an overview of  the software 
developed to handle dynamic FMC control problems 
on-line or off-line for simulation purposes. The key 
programming decisions have been outlined as well as the 
overall system’s structure. The next section describes 
various aspects related to the implementation of  the 
proposed cell control strategy. 

 
4. EXPERIMENT AND ANALYSIS 

Prior to detail analysis, the functionality of  the on-line 
FMC control system was verified through several 
experimental runs. All robot movements corresponded 
appropriately to the programmed decision structures. 
Feedback loops from the system also functioned 
appropriately. The throughput from the simulation when 

compared to the actual experimental run showed a 
discrepancy of  ±5%. This variation is a result of  the slight 
time delay between when the external interface initiates a 
request for a subprogram and the actual execution by the 
robot controller, a typical situation found in robot 
controllers. 

The next test compares the results of  individually 
processing part types (all part As then all part Bs and so on) 
versus concurrently processing parts. The significance of  
concurrent processing over non-concurrent processing 
seems to be influenced greatly by the total order and the 
process that each part type has to undergo. Hence, the 
benefit of  concurrent processing is composition 
dependent. The following examples corroborate this 
assertion. The load priority is used in all cases. If  each part 
type in the batch shown in Table 3 (Batch #2) is processed 
individually, the total processing time is 3180 seconds. In 
comparison, the total throughput for the same forty parts 
produced concurrently is 1085 seconds. 

This batch is an extreme case in which each part has 
only one process requirement. Producing all of  one part 
type at a time resulted in three idle machines. The batch 
throughput time becomes the process time of  each part on 
a specified station plus the time for the robot to load, and 
unload the part. Hence, the concurrent processing of  the 
parts proves to be very beneficial and reduced the 
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throughput time by almost a third. 
Considering another batch (Batch #3) whose data is 

shown in Table 4, the total processing time is 4580 seconds 
when the parts are processed individually. The total 
throughput time for the same forty parts produced 
concurrently is 4395 seconds. This case is the opposite of  
previous case, namely, although they may still be unique, 
they need to visit the same three stations. Concurrent 
processing of  parts has very little effect in this case. The 
minor improvement shown is due to the fact that 
concurrently processing the four part types can be done 
without interruption caused by the completion of  all part 
A’s and starting the next batch of  part B’s. 

The next analysis considered a more realistic model of  
the types of  parts that would be processed in a FMS. In 
this case, parts need at least a couple of  the machining 
processes in the FMC. The batch data considered (Batch 
#4) is shown in Table 5. 

If  each part type shown above is processed individually, 
the total processing time is 4520 seconds. The total 
throughput for the same forty parts produced concurrently 
is 4310 seconds. Here, concurrently processing parts 
results in a 5% improvement. The results from an analysis 
when the batch processing requirements for the data 
shown in Table 5 were reduced by 50% (case 2) and 75% 

(case 3), respectively are shown in Table 6. 
There are two trends related to the ‘total machining 

requirements’ of  a batch. The first shows that, as the total 
batch processing time is reduced, the closer the total 
throughput to the total machining requirements. As the 
processing is completed more quickly, the robot is in 
greater demand compared to when the robot’s moves 
occur while all the machines are busy machining parts. 
Reducing the machining time leaves the stations idle while 
the robot is moving. Essentially the robot becomes the 
bottleneck. This observation is true for both the 
concurrent processing and for processing by part. The 
other observable trend is the influence of  the processing 
time on the improvements afforded by concurrent 
processing. Column 4 of  the results shown above also 
indicates a clear reduction of  benefits brought through 
concurrent processing as the ratio of  the processing to 
robot move times reduces. 

What these analyses show is that the ability to 
concurrently process parts with different processing 
requirements in the same FMC reduces the throughput 
time of  the batch in comparison to processing all one part 
type followed by another part type. Hence, the ability to 
dynamically respond to different part processing requests

Table 3. Data for batch #2 
Station 1 Station 2 Station 3 Station 4 

Part type Number to be 
produced Processing  

time=40 s 
Processing  
time= 90 s 

Processing 
time=70 s 

Processing 
time=60 s 

A 10 X    
B 10  X   
C 10   X  
D 10    X 

 
Table 4. Data for batch #3 
Station 1 Station 2 Station 3 Station 4 

Part type Number to be 
produced Processing  

time=40 s 
Processing  
time= 90 s 

Processing 
time=70 s 

Processing 
time=60 s 

A 10 X X X  
B 10 X X X  
C 10 X X X  
D 10 X X X  

 
Table 5. Data for batch #4 
Station 1 Station 2 Station 3 Station 4 

Part type Number to be 
produced Processing  

time=40 s 
Processing  
time= 90 s 

Processing 
time=70 s 

Processing 
time=60 s 

A 10 X X   
B 10  X X  
C 10 X X X  
D 10  X X X 

 
Table 6. Results from analysis for batch #4 

Case Total machining 
time required (s) 

Total throughput 
time (s) by part 

Total Throughput 
time(s) concurrent %improvement % decrease for 

part throughput 

% decrease for 
concurrent 
throughput 

1 7100 4520 4310 4.65 ------ ------ 
2 3550 2630 2530 3.80 41.8 41.3 
3 1740 1669 1638 1.86 36.5 35.3 
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Table 7. Data for batch #5 
Station 1 Station 2 Station 3 Station 4 

Part type Number to be 
produced Processing  

time=5 to 100 s 
Processing  time=5 

to 100 s 
Processing  

time=5 to 100 s 
Processing  

time=5 to 100 s 
A 5 X X   
B 5  X X  
C 5   X X 

 
and FMC conditions takes fuller advantage of  the capacity 
of  a FMC over a fixed robot move cycle for processing 
one part type at a time. It can also be argued that 
developing fixed cycles for a combination of  part types 
would produce a superior batch throughput to that 
afforded by separately processing single part types. 
However, the flexibility that this dynamic response allows 
is still likely to produce better results. Proof  of  this 
assertion is beyond the scope of  this work. 

The next set of  analysis examined the effect of  
increasing the machining time while the robot’s move time 
stays at 5 seconds for all inter-cell movements. The data 
considered is shown in Table 7 (Batch #5). The objective is 
to observe the effect of  changing the ratio of  the 
machining to robot move times on the total production 
time under the following, individually applied conditions. 
The robot prioritizes unloading parts; parts are processed 
sequentially; or the robot prioritizes loading parts; parts are 
processed sequentially; or the robot prioritizes unloading 
parts; parts are processed non-sequentially; or the robot 
prioritizes loading parts; parts are processed sequentially. In 
all four cases the 15 parts identified in the data shown 
below are to be produced. The processing time for each 
test was incremented by 5 seconds on each test. The 
summary of  the results are shown in Figure 4, as well as in 
Table 7. The results shown in Figure 4 as well as Table 8 
indicate that, in both the sequential and non-sequential 
cases, prioritizing the unload results in a lower total batch 
time than prioritizing the loading when the ratio of  the 
machining and robot move times is about six or more. This 
test also indicates that non-sequential processing of  parts is 
faster than sequential process. When the average machining 
time is less than about six times the robot’s move time, 
there seems to be no observable pattern. The observations 
made about this particular experiment are generally 
applicable. For all variations in batch sizes and part 
requirements, the unload priority gives a lower total time 
than when the load is prioritized. This observation holds 
true regardless of  the number of  buffers or parts. What 
cannot be generalized is at what ratio of  the average 
machining time to robot move time does the system 
become stable (i.e. achieves a constant relationship). Thus 
far, it has been observed that, for the parameters used in 
these simulation studies, all batch simulations become 
stable under a machining to robot move time ratio of  
around 10: 1. 

The next set of  tests evaluated the effect of  buffer sizes 
for both non-sequential and sequential unloading. The 
same batch order employed in the previous analysis was 
used and, as in the previous cases, 15 parts were 
manufactured with the machining time incremented 

progressively by 5 seconds from 5 to 100 seconds. The 
results from this analysis are shown in Figures 5a and 5b. 
From Figure 5a and 5b, it would appear that no significant 
improvement is produced by increasing the buffer size to 
more than two in the non-sequential case and more than 
four in the sequential case. The sequential example shows 
that, having more buffers in the FMC, ensures that stations 
past the bottleneck have less chance of  remaining idle. In 
both examples, since there are only 15 parts in the batch, 
this inevitably decreases the need for buffers. The tests 
show that the point where more buffers become beneficial 
is related directly to the average machining time. For 
example, it is only after the average machining time is 
greater then 65 seconds that there is a benefit to having 
four rather than three buffers in the non-sequential case. In 
the analogous sequential case there is a benefit after 60 
seconds. In both cases, as the ratio of  robot move time to 
machining time increases, the more the robot sits idle. If  
extra buffers are available, the robot can take advantage of  
this idle time to fill the buffers with parts. This ensures that 
when a part is removed from a machine there is always a 
new part immediately available for machining. By 
decreasing machine idle time, the total batch throughput is 
also decreased. 

 
Table 8. Machining time data 

Non-sequential Sequential Machining 
time(s) Load Unload load unload 

5 405 425 425 430 
10 415 445 425 445 
15 415 440 420 420 
20 410 450 445 410 
25 425 455 455 440 
30 460 465 495 465 
35 475 455 520 455 
40 495 480 565 530 
45 530 510 610 605 
50 570 565 655 580 
55 615 600 710 610 
60 660 645 765 710 
65 705 695 820 775 
70 755 745 875 825 
75 805 795 930 875 
80 855 845 990 930 
85 905 895 1050 985 
90 955 945 1110 1040 
95 1005 995 1170 1095 
100 1055 1045 1230 1150 

 
The next experiment examined the difference between 

non-sequential and sequential part processing. Four 
different batch orders were tested. The composition of  
each order is intended to examine the effect of  having 
different bottleneck machines in the cell. All the orders 
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demand equal machining times and each station has two 
buffers. In all tests, 40 parts were processed (10 of  each 
part type A, B, C, D). Moreover, each part had the same 
total machining time requirements for all cases, although 
these requirements were not necessarily on the same 
machines for each case. In the four different cases 

considered, each specific machine requires 90 seconds to 
machine a part. However, the machines may have different 
total machining demands (meaning machine 1 processes 20 
parts while machine 2 processes 30 parts). The details of  
the batch requirements are given (Batch #6 through #9) in 
Table 9. 
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Figure 4. Influence of  machining times on load and unload rules. 
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Figure 5a. Influence of  buffers on sequential processing. 
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Figure 5b. Influence of buffers on non-sequential processing. 

 
 

Table 9. Batch order data 
Station 1 Station 2 Station 3 Station 4 Batch#6 

Part type 
 

Number to be 
produced Processing  

time=90 s 
Processing  
time= 90 s 

Processing 
time=90 s 

Processing 
time=90 s 

A 10 X X   
B 10 X  X  
C 10   X X 
D 10 X X  X 

Station 1 Station 2 Station 3 Station 4 Batch#7 
Part type 

 

Number to be 
produced 

Processing  
time=90 s 

Processing  
time= 90 s 

Processing 
time=90 s 

Processing 
time=90 s 

A 10 X X   
B 10  X X  
C 10   X X 
D 10 X X  X 

Station 1 Station 2 Station 3 Station 4 Batch#8 
Part type 

 

Number to be 
produced Processing  

time=90 s 
Processing  
time= 90 s 

Processing 
time=90 s 

Processing 
time=90 s 

A 10 X X   
B 10  X X  
C 10   X X 
D 10 X  X X 

Station 1 Station 2 Station 3 Station 4 Batch#9 
Part type 

 

Number to be 
produced 

Processing  
time=90 s 

Processing  
time= 90 s 

Processing 
time=90 s 

Processing 
time=90 s 

A 10 X X   
B 10  X  X 
C 10   X X 
D 10 X  X X 
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The results for the four batch orders are summarized in 
Table 10. What is clear from this table is that 
non-sequential processing is always faster than sequential 
processing. However, what needs to be explained is the 
noticeable variation in the throughput times given that all 
the batch cases have the same total machining time. 
Through experimentation, these variations have been 
attributed to the location of the bottleneck machine. 
Indeed, the batch requirements were chosen specifically to 
demonstrate this effect. In all cases, three of the machines 
are required to machine 20 parts while the fourth is 
required to machine 30 parts. Clearly the machine with the 
additional load corresponds to the bottleneck. The batch 
orders 6 through 9 each have a different machine forming 
the bottleneck. 

From the results shown in Table 10, it would seem that 
non-sequential processing is slightly faster if the bottleneck 
machines are used first in the process. However, given that 
the processing is non-sequential, the machine order should, 
intuitively, not influence the results. This first observation 
indeed turns out to be incorrect. The reason for the 
variation in the batch times will be explored further in the 
next experiment, which links the part loading order to this 
throughput variation. In regard to the throughput times of 
sequential processing, this example indicates that the 
location of the bottleneck machine should hardly affect the 
batch’s throughput time. Through further experimentation 
(in the next section), it has been found that the loading 
order of the parts, as well as the location of the bottleneck 
machine, does affect the total throughput time. The next 
experiment will demonstrate that, in the sequential case, 
when all the different orders parts can be introduced into 
the system, the throughput times are greater, on average, 
when the bottleneck machine is at the front of the queue 
of machines. Moreover, the throughput time decreases as 
the bottleneck machine progresses to the end of this 
queue. 

Table 10. Summary 
Batch 
Order 

Non-sequential 
(in seconds) 

Sequential 
(in seconds) 

1 2710 2900 
2 2710 3030 
3 2790 3035 
4 2790 3010 

 
The last experiment will address the issue of  the loading 

sequence of  parts. As it stands, the program is capable of  
searching the parts that remain to be processed in order to 
find a suitable fit with the current state of  the FMC. For 
example, if  three machines are busy and the fourth 
machine is idle, the program searches the parts remaining 
to be processed to see if  any part requires machining at the 
free station. Consequently, the order of  parts introduced to 
the system is superseded by the requirements of  the cell. 
However, in most cases, several parts may need the 
machines that are currently free or have free buffer space. 
This situation is where the ‘search order’ that the program 
uses for checking the remaining part types for loading 

suitability becomes critical. Until now, all the parts were 
processed in the same order that they entered the system 
(i.e. A, B, C, and D). Indeed, there is no obvious reason for 
selecting one part over another, or pairing parts in a 
specific manner. 

This test will examine how alternative loading sequences 
of parts affects the total throughput of a batch. Using the 
same scenarios presented, twenty-four individual but 
different experiments were conducted. Each experiment 
involved a different loading sequence. The twenty-four 
experiments were conducted by using both the sequential 
and non-sequential rules. The results are presented in the 
Table 11. The first, most observable result from Table 11 is 
that there is a marked variation in the batch throughput 
time that clearly depends on the order of the loading 
sequence. In the case of non-sequential processing, this 
variation is around 1% while, in the sequential case, 
variations are between 1.6 and 7.8%. This lower variability 
supports the conclusions given earlier that non-sequential 
processing is more beneficial than sequential processing. 
Lower batch throughput times are also obtained 
consistently by using non-sequential processing. This 
difference is also indicated by the average processing times 
listed at the bottom of Table 11. Furthermore it is clear 
that the best non-sequential results do not correspond to 
the best sequential results. 

Overall, several patterns are observable in Table 11, such 
as the interchangeable nature of part type 1 and 3 in the 
non-sequential case. However, what has not been 
determined is how to predict when a specific loading 
sequence results in a higher than average throughput time, 
or how to select a sequence which would produce the 
lowest throughput time. Various hypotheses were perused 
to correlate the loading patterns and throughput results but 
no conclusive pattern was found. This problem requires 
further investigation. The first, most observable result 
from Table 11 is that there is a marked variation in the 
batch throughput time that clearly depends on the order of 
the loading sequence. In the case of non-sequential 
processing, this variation is around 1% while, in the 
sequential case, variations are between 1.6 and 7.8%. This 
lower variability supports the conclusions given earlier that 
non-sequential processing is more beneficial than 
sequential processing. Lower batch throughput times are 
also obtained consistently by using non-sequential 
processing. This difference is also indicated by the average 
processing times listed at the bottom of Table 11. 
Furthermore it is clear that the best non-sequential results 
do not correspond to the best sequential results. 

Overall, several patterns are observable in Table 11, such 
as the interchangeable nature of  part type 1 and 3 in the 
non-sequential case. However, what has not been 
determined is how to predict when a specific loading 
sequence results in a higher than average throughput time, 
or how to select a sequence which would produce the 
lowest throughput time. Various hypotheses were perused 
to correlate the loading patterns and throughput results but 
no conclusive pattern was found. This problem requires 
further investigation. 
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Table 11. Load sequence (results in seconds) 
 Non-sequential  Sequential  

Sequence case 1 case 2 case 3 case 4  Sequence case 1 case 2 case 3 case 4 

1234000 2710 2710 2790 2790  1234000 2900 3030 3035 2935 
1243000 2725 2725 2805 2805  1243000 2900 3030 3035 2935 
1324000 2710 2710 2770 2770  1324000 2900 3030 3035 2935 
1342000 2710 2710 2770 2770  1342000 2805 3030 3035 2935 
1423000 2725 2725 2710 2710  1423000 2805 3030 3035 2935 
1432000 2710 2710 2795 2795  1432000 2805 3030 3035 2935 
2134000 2710 2710 2710 2710  2134000 3470 3030 3035 2935 
2143000 2725 2725 2710 2710  2143000 3470 3030 3035 2935 
2314000 2710 2710 2710 2710  2314000 3470 3030 3035 2935 
2341000 2770 2770 2725 2725  2341000 3375 3130 2845 2815 
2413000 2865 2865 2725 2725  2413000 3375 3130 2845 2815 
2431000 2865 2865 2725 2725  2431000 3375 3130 2845 2815 
3124000 2710 2710 2770 2770  3124000 2900 3030 3035 2935 
3142000 2710 2710 2770 2770  3142000 2805 3030 3035 2935 
3214000 2720 2720 2725 2725  3214000 3470 3030 3035 2935 
3241000 2780 2780 2750 2750  3241000 3375 3130 2845 2815 
3412000 2710 2710 2785 2785  3412000 3305 3130 2845 2815 
3421000 2715 2715 2750 2750  3421000 3225 3130 2845 2815 
4123000 2785 2785 2760 2760  4123000 3305 3130 2845 2815 
4132000 2710 2710 2710 2710  4132000 3305 3130 2845 2815 
4213000 2795 2795 2725 2725  4213000 3225 3130 2845 2815 
4231000 2795 2795 2725 2725  4231000 3225 3130 2845 2815 
4312000 2710 2710 2710 2710  4312000 3305 3130 2845 2815 
4321000 2720 2720 2725 2725  4321000 3225 3130 2845 2815 
Highest 2865 2865 2805 2805  Highest 3470 3130 3035 2935 
Lowest 2710 2710 2710 2710  Lowest 2805 3030 2845 2815 

Standard 
Deviation 

48.4 48.4 31.4 31.4  
Standard 
Deviation 

249.8 51.1 97.0 61.3 

Average 2741.5 2741.5 2743.8 2743.8  Average 3180.1 3080.3 2940.3 2875.0 
 

5. CONCLUSIONS 

The objective of  this work is to enhance the notion of  
flexibility in “flexible” manufacturing cells so that a cell’s 
utility can be enhanced by using a computer implemented 
scheduler. This aim has been achieved by allowing multiple 
parts to be processed concurrently without using 
predetermined cycles of  robot movement. The program 
developed to control the FMC performs reliably. It 
provided tools for dynamically selecting parts and 
controlling the robot’s movements to complete complex 
batch demands with lower throughput times than is 
possible by processing one part type at a time. The other 
significant contribution was to develop a dynamic 
manufacturing cell which could process parts 
non-sequentially, an issue which has not been addressed 
adequately in the literature. 

The simulation program, developed in conjunction with 
the control software, allows users to experiment with a 
multitude of  variables that exist in the FMC environment 

prior to selecting a strategy that best fits a production run. 
Experiments using this software demonstrated its potential 
as a tool for examining different FMC control heuristics, 
and the effect of  buffers on the throughput as well as part 
loading order questions. From these experiments a general 
understanding of  the complexity of  this enhanced flexible 
environment can be gained. The first critical issue that the 
simulation software helped to verify was that, in all cases, 
the concurrent processing of  parts is more desirable than 
processing parts in cycles when trying to minimize the 
batch throughput time. The software also helped to study 
the relationship between robot’s moves to machining times. 
When this ratio was low (between 1:1 and 1:10), the 
throughput times were less predictable due to the changes 
in robot’s path. However, it was observed that this 
relationship became more predictable once the ratio of  the 
robot’s move to machining times was higher than 1:10. At 
this point all robot movements occurred while all the 
stations were engaged in machining. This resulted in a 
steady increase in the throughput time. The software also 
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helped to confirm that, from the perspective of  batch 
throughput time, using an ‘unload always’ robot movement 
rule is consistently superior (albeit marginally) to a ‘load 
always’ rule. Numerical simulations also suggested that 
there was a limit to the number of  buffers that could be 
added to reduce the throughput time. It was shown that, 
after a point, buffers began to work more as a storage 
device than as dynamic transfer points. Increasing the 
number of  buffers can enhance the performance of  the 
cell but excess work in progress in arguably not desirable. 

The question of  non-sequential processing versus 
sequential processing was also examined using the 
simulation software. The results show that non-sequential 
processing, when possible, reduces batch throughput times, 
thereby increasing the utilization of  a cell. Factors that 
increase or decrease the significance of  this improvement 
include the number of  machines in the FMC and the 
location of  the “bottle neck machine” or the machine most 
in demand in the machining processing cycle. The final set 
of  experiments showed the effect on the batch throughput 
time of  the sequence in which parts are introduced into the 
cell. Consideration of  sequence in which parts are 
introduced proves to be significant depending on the 
process requirements of  the parts in the batch. An 
experiment of  24 different part sequences was tested with 
four different batch orders of  40 parts. Each batch 
required a total of  135 minutes of  machining. As a result 
of  the different part orders there was a 1% variation in the 
batch throughput time using non-sequential processing, 
and a 7.8% variation in sequential processing. Overall, the 
loading sequence had a greater effect on sequential 
processing than that produced by non-sequential 
processing. However, no easily generalized patterns were 
obvious for selecting the sequence that generates the 
smallest batch throughput time. Thus far, the only way to 
determine the best sequence in which to load part is to 
simulate all combinations and allow the software to choose 
the best part sequence for a given scenario which can not 
be done in real time. 
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