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Abstract—We study a single machine scheduling problem in which processing times or due-dates are non-negative
independent random variables and random weights (or penalties) are imposed on both early and tardy jobs. The objective is
to find an optimal sequence that minimizes the expected total weighted number of early and tardy jobs. We explore three
scenarios of the problem including a scenario with deterministic processing times and stochastic due-dates, a scenario with
stochastic processing times and deterministic due-dates, and a scenario with stochastic processing times and stochastic
due-dates. These problem scenarios are NP-hard to solve; however, when there are special structures on the stochasticity of
processing times or due-dates, we establish certain conditions under which the various resulting cases are solvable exactly.
We also approximate the solutions for the general versions of these cases. The proposed exact and approximate solution
methods as well as our illustrative examples demonstrate that variations in processing times, due-dates, and
earliness/tardiness penalties affect scheduling decisions. Furthermore, we show that the problem studied here is general in
the sense that its special cases such as the stochastic problem of minimizing the expected weighted number of tardy jobs
and the stochastic problem of minimizing the expected weighted number of eatly jobs are both solvable by the proposed

exact or approximate methods.

Keywords—Scheduljng, Single machine, Stochastic, Number of eatly and tardy jobs

1. INTRODUCTION

The single machine scheduling has been extensively
studied in more than four decades for various performance
measures (e.g., Baker, 1974, 1995; Conway et al., 1967;
French, 1982; Morton and Pentico, 1993; Pinedo, 2002).
The problem is concerned with finding a sequence among
jobs as they proceed through a single machine in order to
optimize some performance objectives. The significant of
the problem is due to its importance in developing
scheduling theory in more complex job shops, and its
practical aspects in considering integrated processes as
single machine systems.

Many researchers have studied the single machine
scheduling problem with the objective of finding a
sequence that minimizes the weighted number of tardy
jobs. This problem, which we refer to as the “T” problem,
is known to be NP-hard (e.g., Lenstra et al., 1977). Most of
the available literature on the T problem deals with the
deterministic case where job attributes (e.g., setup times,
processing times, due dates) are known with certainty (e.g.,
Baptiste, 1999; Dauzere-Peres and Sevaux, 2004; Jolai,
2005; Moore, 1968).

In contrast to the deterministic T problem, the amount
of literature on the stochastic T problem where some of
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job attributes are random variables is limited. These studies
consider special cases of the problem; for example, Balut
(1973) presents a chance-constrained formulation of a case
where processing times (which may include setup times)
are independent normal random variables. Boxma and
Forst (1986) study a case where processing times and due
dates have independent and identical distributions. De et al.
(1991) examine a case with random processing times and
an exponentially distributed common due date. Cai and
Zhou (2005) consider a case with exponential processing
times and random due dates. Assuming jobs have a
common deterministic due-date and a common tardiness
penalty, Pinedo (1983) analyzes a case with exponential
processing times, while Jang (2002) and Seo et al. (2005)
examine a case where processing times have normal
distributions.

With the exception of Lann and Mosheiov (1996) and
Soroush (20006), to the best of our knowledge, no attention
is given to the single machine scheduling problem where
the objective is to minimize the weighted number of both
early and tardy jobs, which we refer to as the “E-T”
problem. Lann and Mosheiov (1996) study the
deterministic E-T problem by considering different
eatly-tardy (E-T) penalty structures for jobs including
job-independent (i.e., the E-T penalties for all jobs are
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equal to one), job-dependent and symmetric (i.e., the E-T
penalties for each job ate identical), and job-dependent and
asymmetric (i.e., the E-T penalties of each job are
different). They show that the first two problem-classes are
solvable in polynomial time, whereas the last class is
NP-hard even when all jobs have a common due date.
Soroush (2006) examines a stochastic E-T problem in
which processing times are random variables but due dates
and E-T penalties are known fixed quantities and the
objective is to minimize the expected total weighted
number of eatly and tardy jobs. He proposes certain
conditions under which this problem is solvable exactly
and also presents a very effective and efficient heuristic for
the general case of the problem.

The stochastic E-T problem studied in this paper is a
broad extension of that of Soroush (2006) and is defined as
follows. There is a set of jobs that are simultaneously
available to be processed sequentially on a continuously
available single machine. Assume that no idle time
insertion is allowed and once the processing begins no jobs
can be pre-empted and the sequence remains unchanged
until all jobs are finished. In this stochastic problem,
processing times and/or due dates are stochastic, and each
job is penalized by a random earliness weight (if the job is
early) and a random tardiness weight (if the job is tardy).
The random weights are independent of the amounts of
time that jobs are early or tardy, that is, jobs missing their
due dates by short or long periods are penalized by the
same amounts. The objective is to find an optimal
sequence that minimizes the expected total weighted
number of early and tardy jobs on a single machine.

The importance of the proposed problem stems from
the fact that in many real-world stochastic scheduling
systems, each eatly/tardy job is penalized by the same
penalty no matter how early/tardy the job is. For example,
in various industries, raw materials or parts are often
needed at specific times. Similarly, in air or space flight
scheduling, tasks need to be performed on exact time
points or during particular time windows in order to ensure
the success of a flight. Also, the penalty functions in the
production of perishable items such as food, drugs, etc.,
have similar structures. In addition, in pick-up and delivery
systems, items should be picked up or delivered at certain
times. Therefore, when jobs (e.g., raw material, tasks, items)
are carly or late, penalties are incurred no matter how early
or late the jobs are (e.g., Lann and Mosheiov, 1996).

We formulate the stochastic E-T problem in Section 2.
Three scenatios of the problem are explored in Section 3
including a scenario with deterministic processing times
and stochastic due-dates, a scenario with stochastic
processing times and deterministic due-dates, and a
scenario with stochastic processing times and stochastic
due dates. Under some structures on the stochasticity of
processing times or due-dates, we present exact solution
methods for the various resulting cases of the three
scenarios. The solutions for the general versions of these
cases are also approximated. Finally, a summary and a few
concluding remarks are given in Section 4.

2. PROBLEM NOTATION AND FORMULATION

The stochastic E-T problem studied in this paper is as
follows. A set N = {1, ..., #} of jobs is available at time
zero to be processed sequentially without preemption and
no idle time insertions on a continuously available single
machine. Let » = [1], ..., [£], ..., [#] be a sequence among
jobs in N where [£], £ = 1, ..., n, indicates the job
occupying the £-th position in 7 € R and where R the set
of all #! sequences. The processing times pg, £ =1, ..., 7,
are non-negative independent random variables with
probability density functions (pdf) fig(.) G.e., prg~fa()) and
cumulative distribution functions (cdf) Fig(.). Then, the
completion time /g for job [£], a random variable, is defined
as

%
f= D2 Py M
=

The due dates &g, £ = 1, ..., 7, are also non-negative

independent random wvariables with pdfs gg() (e,
f[,g]Ng[,g](.)) and cdfs G[,g](.). Let wli-l
random E-T weights (penalties) for jobs [£], £ =1, ..., 7,

E_ E
values @, = E(w,) and

and u/lj,;l denote the

where the expected

a)éI:E(wIi])exist. Moreover, pg, &4, u/lil and u/lj,;l , R
=1, ..., n, are statistically independent of each other. For
eachjob [£], £=1, ..., n, let X[:] be an eatliness indicator

variable and X [l/c] be a tardiness indicator variable where

v {1, if job|k)is early with probability Pr(#, <&,),
/1 —

0, otherwise,

and

T - {1, if job|R)is tardy with probability Pr(f[k] > é[k]),
[#] —

0, otherwise.

The expected total weighted number of early and tardy

jobs in a sequence » € R (denoted by W), which we refer
to as the expected weighted number of E-T jobs in 7, is
defined as

W, = E[z [%’LX[IZ; + W[T/;]X[]Z]] [ 7]
=1

= [a)i]Pr(f[/e] < €|/é]) +a)|]/;|Pr(f|/<| > €|/é])] | 7,

A’[k]Pr(l‘[é] < ‘Sm) |r, —0<Aig<® (2

17 w[]k:] and 7y is defined by (1). Note that

the objective function (2) of the stochastic E-T problem is

where A, = a)['z
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more general than that of (i) the stochastic T problem (i.e.,
= 0and y= -y, k=1
the expected weighted number of tardy jobs is minimized
(e.g., Boxma and Forst, 1986; Cai and Zhou, 1997; Jang,

when a)[: ., n) where only

2002), and (i) the stochastic earliness (E) problem
(.e., a)w 0 and Ay Ii], £=1, ..., n) where only the

expected weighted number of early jobs is minimized.
Moreover, in our stochastic E-T problem, a)lil
[£], £ =1, ..., n, are neither at most equal to nor at least
equal to their a) , (Le., neither Ay = 0 nor Ay = 0) for all
jobs [4], that is, =0 < Ay < ©, £ =1, ..., n). Hence, in
general, the problem can be neither formulated as a pure
stochastic T problem (i.e., Ay < 0, £ =1, ..., #) or as a pure
stochastic E problem (i.e., Ay =0, £=1, ..., »).

Utilizing the conventional notation,
stochastic E-T

1// E[Z”’[i]X[i] +wi1]X£2]].
k=1

for all jobs

the proposed

problem can be represented by

Definition 1. For 1// E[Zw[’z]X[’Z] + u/[l,(]X[l/c]] a sequence

£=1

r* € Ris optimal if

W= ml}?{LVr}» 3

whete W, is given by (2). Since ZwlTk-l = sz is a
k=1 k=1

constant and is independent of job ordering, using (2), 7*

can be equivalently found as

r*=argmin{ ) A Pr(t, <&.)|r}
grgkl Z g Pty <G | @

—00 < A, < +oo.

Observe that 1// E Z”’I/eIXI/el +w X[Z.]] is general in

the sense that its hmltlng or special cases reduce to some
classical single machine scheduling problems. For example,

whenow® < ol k=1,

&) .., n, we get the stochastic T

141>

problem, ie., 1// E[Zwﬁ,;IXIQI], where "
k=1

&) = —/1[,%] >0

and pg and &gy are random variables (e.g., Boxma and
Forst, 1986; Cai and Zhou, 2005). In this case, if §g= dg,

k=1, ..., n,where dy are known fixed quantities, we have

1//Ezw

] where p are random variables (e.g.,

Jang, 2002; Seo et al., 2005). When @, = o), k=1,...,

n, we get the stochastic E problem, that is, 1//

Zu/ ], where a)[ & = M = 0 and py and gy are
random variables. When ppg, §a, wlil, and wli_] S R=1, 0, m,

are all known with certainty, we have the deterministic E-T

problem, that is, 1// Zu/[i]X[’Z] +u/[1,(]X[Ik] (e.g., Lann and
=

Mosheiov, 1996) where Xli] and XIY/;I are defined as

1, i t, <d 1, if t,, >d,
, > b T > T i
Xiy= ‘ and X[y = .
0, otherwise; 0, otherwise.
. . E  _ . .
In this case, if Wy = 0 with certainty, we get the

deterministic T problem, i.e., 1// Z”/[I/C]X
=1

1999; Lenstra et al., 1977; Moore, 1968). When Pr(fig < §g)

[l/c] (e.g., Baptiste,

=1,k=1,...,n (e, all jobs are early with certainty), Pr(74
> gy = 1, £ =1, ..., n (ie., all jobs are tardy with
certainty), or a)f = a)z',k =1, ..., n, using (4), any

sequence 7 € R is optimal for the proposed stochastic E-T
problem.

A naive approach to exactly solve 1// E Zwl X

+u/[k]X[/ci]] is to (i) enumerate all sequences r € R, (ii)
derive the joint cdf of pyy for all jobs [£], £ =1, ..., #in
each r € R, (iii) use (1) to get the cdf of each 44, £ =1
ninr € R, (iv) compute Prizy < &x), £ =1, ...,

s s
7, in each r

€ R, (v) apply (2) to compute IV, » € R, and then (vi) use
(3) or (4) to find 7*. This approach may be the only one if
there are no special structures on the stochasticity of
processing times or due dates. However, since the general
case of the deterministic problem is NP-hard (e.g., Lann
and Mosheiov, 1996), the general case of the stochastic
problem is even harder to solve due to the additional
difficulty of computing Pr(fg < u), £ = 1,
require complex integrations of multi-variate distributions.

.., 7, which

3. PROBLEM SCENARIOS AND SOLUTIONS

To analyze 1// E[Zwli_leil + wli_]Xl],;l], consider a
k=1

sequence 00 in R where 0 is an arbitrary sub-sequence of
jobs, excluding jobs 7 and j and jobs in d, appearing in the
first g1 — 1 positions (i.e., ¢ = [1], ..., [g1— 1]), jobs 7 and
are adjacent which respectively occupy positions ¢ and ¢1
+ 1 (e,
sub-sequence of jobs, excluding jobs 7 and j and jobs in 6,
occupying positions ¢1 + 2 to # (i.e., 6 = [q1 + 2], ...,[#]).
Then, the expected weighted number of E-T jobs in 050,
using (1) and (2), is

[¢1] = 7 and [q1 + 1] =), and ¢ is an arbitrary

" - g1 £
Woss =Zw/a + ZAWP’(ZPM <&
k=1 k=1 =1
+APr(py + b, <&,)
+ﬂ,jPr(p9 +ptp, <§j)

n £
+ z )'[/c]P”(pa*'Pi"‘P/"‘ z D <€[/&])’

k=q;+2 (=q,+2
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9,-1

where p9=z b4 - Interchanging jobs 7 and ;j in 60
%=1

produces another sequence ¢ in R whose Wyi; can be
similarly computed as Wyjs. Then, 06 is preferred to Gjid,
denoted by 070 > jid, (i.c., job i/ immediately precedes

job ;) for every jobs 7 # j € N and every choice of ¢ and §
iff

AWy = Ways— Wais
= MPripo+ pi < &) = Pripo+ p+ pi < &)
—MPrpo+ pi< &) = Pripo+ pit ;< HI=0, (5

where Prips+ pit pi < & < Pripe+ pi < &) and Prips+ pi+ p;
< & = Pr(py+ p; < &) due to non-negative processing times
and non-negative due dates. From (5), we observe that
AW = —AW}; does not depend on jobs in ¢ at all; however,
it depends on jobs in @ but it is independent of their
ordering. Hence, in some occasions, we replace Al by
AWj(b) to remind the reader of this dependence.

Inequality (5) is too general to allow the development of
useful statements to establish the relation 675 > @id for

evety 7 7 j € N and every 0 and 6. However, when thetre
are special structures on the stochasticity of processing
times or due-dates, we can use this inequality to investigate
and solve exactly the various resulting cases for three
scenarios of the problem including a scenario with
deterministic processing times and stochastic due-dates, a
scenario with stochastic processing times and deterministic
due-dates, and a scenario with stochastic processing times
and stochastic due-dates.

3.1 Deterministic processing times and stochastic
due dates

”

Consider the scenatio 1/pe= 7, &~a()/ E[Z”’[;

=1

| where pe = meand &~a(), £ =1, ..

E
]X[/f]

S
+ Xy
the non-negative quantities 7z are known with certainty.
Using (5), 06 = 6 for every i # j € N and every § and
0 (i.e., job 7 immediately precedes job ;) iff

., 1, and

MGimg+ i+ m) — Gi(mg + 7))
S WG+ it m) — Gm + 7)), (©)

7,1
where 7, ZZ”W Gimg+ 7+ m) = Gimp+ ), and Gy
=1
+ 7+ m) = Gi(my+ 7). The sufficient conditions to satisfy
(6) are then as follow.

@0 A<0<ior )

(i) 0=A=A, Glm+ i+ z) —Gi{m+ )
< Gyt mit m) = G+ m); or ®)

(i) A <A <0, Glay+ 7+ 1) — G+ )
2 G+ m+ m) = Gfw+ 7). ®

Below, we use (7) — (9) to examine some cases of 1/pe

= 7, &g ELY i X+ mly X Tl
k=1

3.1.1 Identically distributed due-dates

Suppose that &, £ = 1, ..., », are independently and
identically distributed (i.i.d) random variables with a general

pdf g() G.e., &~2().

”

Theorem 1. For 1/px = 7, &~g0)/ EID w X[,
k=1

+ u/[l/c]X[l/c]] , 05jo = 0jid for every i # j € N and every 0
and 4§ if

@ A<0=Ai;or

(i) 0=A=AiAand z= 7z or

(i) A=A <0and 7 < 7.

Proof. It immediately follows from conditions (7) — (9).

Corollary 1. For 1/p = m, &~g()/ E[D X[,
k=1

+w, X, ], asequence [1], ..., [€], [£ + 1], ..., [4], £ € {0,

1, ..., n}, whete jobs [0] and [~ + 1] do not exist, is optimal
if

. 5 /1[”], 2.1‘1(_‘1

O Ap=...ZAg=0=IAp+y=..
2.2 T

(i) zm = ... < zgand 7+

Proof. Consider a sequence 7': fizjp in R, 7 # j € N, where
0=M] ...lgp=-1,i=[gl,z=[p+ 1], ... (2= 1],/ =
[¢2], and p = [q2+ 1], ..., [#], that is, #': Oijp = O|q1][q1 +
1] ... [g2 — 1][g2]p. Suppose that jobs in 7' are arranged
according to Corollary 1. Interchanging jobs 7 and jin 7', 7
# j € N, produces another sequence 7 Gzip = O[q][q1 +
1] ...[g2 = 1][g1]p in R. We show that switching jobs 7 # ; €
N in r' increases the expected number of E-T jobs, that is,
W, < W, Using (5), W can be written as

W= LVf’lq, +1(g, 1--l2, =14, 1P + A%q, Ilg, +1]
= %[f/l +1..[g, ~11lg, 1l7, 1P + ALV[f/l][f/l +1] Tt ALV[% 17,11
= %[f/l +1]..[g, ~11[g, 19, 1P + ALV[f/l][f/l +1] +
+ ALV[% 17,11 * ALV[% 17,1
= LV9I41 1.9, 112, ~1llg, 1P + A%q, Ilg, +1] T
+ A%@ Ilg,-1] + A%@ Ilg,1 + ALVqulllqz!
=W+ > AW, (10)
(p.q)er’—r
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where Z AW, , the sum of AV, for the adjacent jobs

(pq)er'—r

p # q € Ninterchanged in 7' to get r, is given as

z AW Iq g, + 1] ot A%q g, - 1] + A%q, llg,1
(p,q)er'—r
+AU7}4; 1lg, 1 t.. +A%q +1lg, 1"

Since jobs in 7' are arranged according to Corollary 1 (see

also conditions (i) — (iii) of Theorem 1), based on (5), AWV},

< 0 yielding Z AW, = 0 where the strict inequality
(p-pyer'—>r

holds if and only if jobs p and ¢ are not identical. Using

(10), then W, < W, if and only if the pairs of adjacent jobs

switched in 7' to get 7 are not the same. In other words, the

interchange of jobs p and ¢ in 7', p # ¢ € N, increases the

expected number of E-T jobs. Therefore,
interchange of any pair of jobs in a sequence found

since the

according to Corollary 1 increases the expected number of
E-T jobs, then such a sequence itself must be optimal.

In general, since the optimality conditions of Corollary 1
do not hold among jobs, 7 cannot be found. However, if
these conditions are satisfied among the jobs in a sequence

1, .., @, €+1,...,M1, €€ {0,1, ...,
S S/ S0 S A/ e S -
< ... = A/ 7. The converse of the latter may not be true,
that is, it is possible to have Ay/zy < Ag/ 7, p < ¢ =1, ...,
1, such that the conditions of Theorem 1 do not hold for
every job [p] preceding job [¢]. Hence, we can approximate
the solution (i.e., find a candidate for /%) for 1/px= 7z, &~

I’l}, then /1[1]/72’[1]
< Mt/ 7, of A/ 7y

g()/EZwl,eleil +u/ XIQI] by atranging jobs in non-

decreaslng order of Ae/m, £ =1, ..., n. In the case where

M/ 7i= N/ 7, i # j €N, the job with smaller A, £ € {7, /}, is
placed before the other job. This is due to the fact that
di/m=X/m < 0,i#j € N, if only & < 4 < Ofie, @)
< o,, k= i,)); thus, the job with smaller 4, < 0, &£ €{;, /},
is scheduled first to avoid large tardiness penalty. Also, A;/7;
=)/520,i#;€ N,ifonly 0 S L < ) (e, 0 2 0, &

= 4, )); hence, the job with smaller & = 0, £ € {j, j}, is
scheduled first to avoid large earliness penalty.

Remark 1. Since 1/px = m, & ~4()/ E Zu/[,( 1 (e, the

stochastic T problem) and 1 / e = m, &~

a0/ E[Zwlileil] (i.e., the stochastic E problem) are
k=1

special cases of 1/pe = m, &~g()/ E[Zwli]Xlil +

u/lT
based on Corollary 1, a sequence [1], ..., [#] is optimal for

. T
.. S /1[;,] (1.6., a)m 2 2

I/el] (i.e., the stochastic E-T problem) (see Section 2),

the stochastic T problem if A <

(0[1”]) and 7y < ... < 7, and is optimal for the stochastic

. E
< /1[;,] (1.6. a)m <..<

- Also, in the stochastic T problem if 60

E problem if iy < ... ) and

> >
I = ... T £]

=, k= , 7 (i.e., jobs have a common mean tardiness
penalty), arrangng ]obs in non-decreasing order of ¢ (i.e.,
according to shortest processing time (SPT) rule) yields 7*.
In the stochastic E problem if wlkl =w k=1,..,n (e,
jobs have a common mean earliness penalty), arranging
jobs in non-increasing order of 7 (i.e., based on longest
processing time (LPT) rule) gives 7*.

3.1.2 Distinctly distributed due-dates

When &~g(), £ = 1, ..., n, it is more difficult to
develop useful statements to establish 070 > 0jid for 1/ps

= 7 &~ge()/ E[Zw[’z]X[i] +u/[lk]X[Ik]] Nevertheless, such
=1

statements can be derived for the case. where &, £ =1, ...,
n, are exponentially distributed (i.e., &~exp(ys)) with G(x)
= 1 — exp(—yxx) and means 1/yx The use of exponential
distribution in shop scheduling is justified by, for example,
Boxma and Forst (1986), Cai and Zhou (1997, 2005), Jang
(2002), and Pinedo (1983).

Theorem 2. For 1/px = 7z, &~exp(ye) /E[Zwli_]Xlil

+ ”’|]/;|X|/e|] 0j6 > Gjid for every i ¥ j € N and evety 0
and ¢ if

0 4<0<i;or
(i) 0=<A<A 2y, and m/y = m/y; ot
() 4<A4=<0,9 < p,and 7/y < m/y,

Proof. Using Gi(x) = 1 — exp(—px) in (8), 0o > Gjid for
evety 7/ # j € Nand every fand §if 0 <A, < 4

and

[1 = exp(=pim)]exp[—yizs + 7)]
< [1 = exppm)expl—pm+ z)]- an

From (11), for every / # j € N and evety 0,
1 — exp(—pm) iff pim; < pm and exp|—pi(mo+ )] = exp[—p (7o
+ z)| iff p(me+ 7) = p(ms+ m). The latter condition always
holds if y;= p; and p = pm. Since y; 2y and yimy < ym
imply 7; 2 7, then yim; 2 yim. Hence, using (8) and (11), 0o
> Gidforevery i ¥ j € Nandevery fand §if 0 < 4 <4

yi = yiand 7/ yi 2 7/ y; (due to pimy <

L1 —exp(—pz) =

7). Similarly, using (9)
we can show that 06 > @jid for every i # j € N and
evety 0 and 6 if 4 < A <0, p5 < p, and m/y < m/y,
Therefore, 0ij6 > 0jid holds for every 7 # j € N and every
Oand 6if G iS00t 0 <A <A, 9 2y, and 7/ yi 2 7/
ot (i) 4 <4 =<0,y <y, and 7/ yi < m/y,.
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Corollary 2. For 1/pe = m, &~exp(pe)/ E[D i X
k=1

+ wly X[ 1, a sequence [1], ..., [€], [€ + 1], ..., [2], € €40,

1, ..., n}, is optimal if

(i) /1[1] <..< /1[(] <0< /1[[+1] <...< /1[,,], and

@y = Sy ey = oo 2 s /v S - = mal/ v
and 7+ g/ pie+ 0 2 o Z /Y

Proof. Using an approach similar to that of the proof of
Corollary 1, we show that a sequence obtained by arranging
jobs according to Corollary 2 (see also conditions (i) — (iii)
of Theorem 2) is optimal.

Let us relax the optimality conditions of Corollary 2 by
< ygqand p+q = 2 - If the
remaining conditions of the corollary hold among the jobs
in a sequence [1], ..., [€], [€ + 1], ..., [#], €€{0, 1, ..., n},
then Ayp/zn < - < Agpa/ma S 0= A e /7
< S v/ ma Qe Appym/ 7 < .o S Apyia/ 7). Hence,
we can approximate the solution (i.e., find a candidate for

removing yg = ...

™) for 1/pe= m, &~exp(ye)/ E| ZWIHXIZI +wWX|£]] by

arranging jobs in non-decreasing order of Aeyr/ mx.

Remark 2. Based on Corollary 2, a sequence [1], ...,
which A =

[#] in
< Ay is optimal for 1/pe = =z,
Geeexp()/ ELY o X1l i iy < .
< ... = 72'[4/}/[/;]:,1 and is optimal for 1/pe=me, &~exp(pe)
/E[Zwﬁlxﬁﬂ if oy = .

i/ Yo

< i and 7/pp

S y[ﬂ] and 72’[1]/})[1] 2 2

Remark 3. For 1/pe = m, &~g()/ ED X

£=1

+”’|]/;|X|Z.|] according to Corollaries 1 or 2, jobs [£], &=
SO+, .. 56{0,1, ..., 1}, ate arranged in 7* in
non- decreasmg order of coI A J«I (i.e., Ajg) where there are

additional conditions imposed on 7z or yg of jobs [£], £ =
., U (i.e., jobs with a)lil < wITl
on those of jobs [£], £ = € + 1,

o, or Ay = 0.

of Ay = 0) as well as

., 7 (i.e., jobs Wltha)l/el =

1/ Dk = Ty

Hence,

&~a()/ E[Zu/[i]X[:] + u/[l/c]X[l/c]] among jobs [1], ..., [£],

k=1

[€ + 1], ..., [#] where —00 < iy < +© (ie., the stochastic
E-T problem) is a mixture of 1/p¢ = 7,
&~ae()/ E[Zu/[l/c]X[lk]] among jobs [1], ..., [f] where

k=1
a)[lk] = —A = 0 (i.e., the stochastic T problem) and 1/px = 7,
G/ EL (i) among jobs [£ + 1],

.oes |77] where

: =g = 0 (i.e., the stochastic E problem).

3.2 Stochastic processing times and deterministic due
dates

Consider the scenatio 1/pe~fe(), &= de/ E wa l

+ w Xy ] where pe~fi() and & = di, £ oy 11, With dp
being known constants (see also Soroush (2006)). Then,

using (5), 056 > i for every i # j € N and every fand &
iff

AWHO) = MPripo+ pi < d) — Pripo+ pi+ pi < dy)] —
MPrpo+ p; < dy = Pripg+ pi+ py < d)] <0, (12)

or

MIF, *F(d)—T, *F,*F.(d,)]

~ ~ (13)
S;L‘/[F9 *F/(d/)_E *E*F/(d/)]é

where Fy(x) = By * % B (x), By * F(x), By * F (%),
and F,*F*F (o) are the convolutions of the cdfs of py

for jobs [£], £ = 1, ..., ¢1 — 1, in 0, for jobs in ¢ and job 4,
for jobs in ¢ and job j, and for jobs in # and jobs 7 and j,
Fy*F,*F(d,)< F,*F(d,) and

F,*F(d,) due to

respectively. Moreover,
Fy*F*Fd,) <

processing times.

non-negative

Since (12) or (13) are too general to allow the
development of practical statements to establish 6]5 -

0jid, we analyze the following cases of 1/pe~fi(), & = di

/E ZWIHX + WIHXIZ!]

3.2.1 Identically distributed processing times

Assume that pg, £ =1, ..., 7, are i.i.d. with a general pdf
S Ge., pe~f)) and & = di (known constant). Using (13),
0ijo > Gjid for every i # j € N and every ¢ and J iff

ALF (d,) = F9* ()]
<AIF" ()= F“" ()] (14)

where F"" (x) is the convolution of the cdfs Fi() of job 7
and the ¢1— 1 jobs in 6, and F'*""(x) s that of jobs i and j
and the jobs in 6.

Inequality (14) is still difficult to be explored for ii.d.
processing times with a general f.). However, we can

examine a case where pe~exp(a) with Fi(x) = 1 — exp(—ax)
and mean 1/a, £=1, ..., 1
Theotem 3. For 1/pe~expla) , & = dif

Z”’WXIQW”’W X1, 08 > 0é for everyi #j € N

and every fand §if
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@) A<0<ior
(i) 4 < dand cither 0 < 6,< §or ;< ¢, < 0 where

§,€ - lkdkexp(—ad/i), (1 5)
and
be=ded, " exp(—ady); or (16)

(iii) &= diand either §; < <0010 =1¢); =y

Proof. For pi~exp(a), £ = 1, ..., n, using the relationship
between Poisson and exponential distributions, (14) can be
equivalently written as

LDIN@) =n- D IN@,) = n]]
n=q, ) n=q,+1 i (1 7)
<A, [Z[N(d]) =n]— Z [N(d,)=n]],

where N(7 has a Poisson distribution with mean rate a.

Simplifying (17), we have
Al(ad)" exp(—ad,)/q,'| < A, [(ad )" exp(-ad,)/q,'],
ot

Adl exp(-ad,)SA,d} exp(-ad ), (18)

where (18) depends on jobs 7 # j € N as well as the position
giofjob 7. For <0 <A, 7# j € N, (18) is always satisfied.
Ford; < d,i#j€ N, (18) holds for 1 = 1, ..., n— 1, (job
occupies position ¢1 + 1) if either

) 0= Ad exp(-ad,) < A,d, exp(-ad,);or

() Ad' exp(-ad) < Ad " exp(-ad,)<0.

For d; = d, i # j € N, (18) holds if either
) Ad exp(—ad)<A,d, exp(-ad,) =< 0;or
(i) 0<Ad "exp(-ad,) < Ad. " exp(-ad,).

Based on Theorem 3, the following corollary provides
the conditions under which an optimal sequence can be
found.

Corollary 3. For 1/p~exp(a) , & = do/ E[D w, X},
k=1

+1, X, ], a sequence [1], ..., [€], [€ + 1], ..., [4], € € {0,

1, ..., n},is optimal if either

O y=...=<qg=0=0p+1=
by (15), dpj = ...

... = 0p) where dis given
Zdgand die+ = ... < djy; 01

(1) ¢[1]§ S §/J[[] S 0 S ¢[€+1] S S ¢[ﬂ] Where §/),(~1§
given by (16), dm S S d[{] and d[ﬁ+1] 2 2 d[ﬂ].

Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence found by arranging
jobs according to Corollary 3 (see also conditions (i) — (iii)
of Theorem 3) is optimal.

In general, the optimality conditions of Corollary 3 do
not hold among jobs and thus 7* cannot be found.
However, if these conditions are satisfied among the jobs
in a sequence [1], ..., [{], [€ + 1], ..., [#], € € {0, 1, ...,n},
then either

(1) 5[1]6{[1] S . S 5[;,]4[,1]; or
i) Jm/dn< ... = o/ dn.

Hence, the solution for

& =
de/ E[Zwli]Xlil +m,X,,] an be approximated (i.c., can
k=1

1/pe~exp(a),

find a candidate for 7*) by arranging jobs in non-decreasing
order of either Gede ot ¢e/ de whete 6 and ¢ are defined by
(15) and (16).

Example 1. Consider the problem 1/pi~exp(a), & = de/
E[Z”ﬁi]X[i]"'”’[i]X[L]Of Table 1 where @z = 0.5 (e,
k=1

E(pe) = 2) and d are different £ =1, ..., 5.

Here, 04< 61 < 0 < d5 < J5 < 62 where, using (15), 0z =
-0.317, 1.195, 0.41, —0.439, and 1.055, £ = 1, ..., 5,
respectively, and dy > di and 45 < ds < cb. Based on
condition (i) of Corollary 3, 7*: 4 — 1 — 3 — 5 — 2. Since 7y
of each job [£], £ = 1, ..., 5, has an Erlang pdf with
parameters £ and a = 0.5, then Py < dyg) = 1 —

& (ady,)’
exp(—adyy) ) k, .
J=0

Hence, processing jobs according

to 7* results in jobs [£], £ =1, ..., 5, being early with Pr(fy
< 8) = 0.982, Pr(t < 7) = 0.864, Pr(#3 < 5) = 0.456, Pr{tig
< 5.5) = 0.297, and Pr(#5 < 6) = 0.185, respectively. Note
that the candidate found by arranging jobs in
non-decreasing order of dedp is also optimal.

Table 1. A stochastic E-T problem with ps~exp(0.5) and & = 4

(known constant)

Job £ e o) o, I
1 7.0 1.0 25 15
2 6.0 6.0 2.0 40
3 5.0 2.0 1.0 1.0
4 8.0 3.0 6.0 -3.0
5 55 40 1.0 3.0

Remark 4. Based on Corollary 3, a sequence [1], ...,[#] is
optimal for 1/pe~exp(@), & = de/ E[D 'y X1 if either
k=1

5[1] S e S 5[;,] and d[]] 2 e 2 d[ﬂ], or ¢[1] S e S ¢[ﬂ] and dm
< ... = djy. Also, a sequence [1], ..., [#] is optimal for
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1 pexp(@, & =di/ E ZW

and d[]] S S d[ﬂ], or §/)[1] >~ ... S Q/J[;,] and d[]] 2 2 d[ﬂ].
Assuming jobs have a common known fixed due date
(e, &=de=d k=1,

corollary.

1f either 5[1] . =< 5[;,]

..., #), we have the following

Corollary 4. For 1/pr~exp(@), & = d/ EZWW L

+ HXl 41> an optimal sequence is found by arranging

jobs in a non-decreasing order of Ae.
Proof. It follows from Corollary 3.

3.2.2 Distinctly distributed processing times

Suppose that pe~fi() and & = d
1, ..., n. Using (13), 076 > b for every i # ; € N and
every 0 and 0 iff

(known constant), & =

MIFy *F(d) - Fy *F * F(d)]

19
<A |F, *F (d) - F 1

*F (),

where [}, * F, * F,(d)< min{F, * F.(d),F, * F,(d)}.

Theorem 4. For 1/p~fi(), & = d/ FIY0X
k=1

+ WIZ_]X&I], 06 = Gjid for every 7 £ j € N and evety 0
and 0 if

(@ A=0=4i;or

(i) 0=<A<Xland Fy) < F(),0<y=<d or

(i) A=A=0and F() =2 F(),0<y=d.

Proof. Using (19), 0ij6 > 0jié for every i # j € N and every 0
and 0 if

@0 A<0<ior (20)

(i) 0<4<kand F,*F(d)<F,*F (d)or @1)

(i) <4<Oand F,*F(d)2F, *F (d). 22)

Thus, if (20), (21), or (22) are satisfied, then (19) holds;
however, the converse may not be true. The condition

F, * F(d) < F, * F (d)in (21) can be written as

[ F(d=x) Jyeodes [ F (=) Jy ()i, (23)

where ]79 (x) = fiy * - * S, -y (x)is be the convolution of

the pdfs of py for jobs [£], £ =1, ..., q1 — 1, in 6.
Letting y = d — x, 0 = y < d, we can write (23) as

[[EG) Tod=dy < ['F,0) Jod - by,

[ -F N - nd<o. 4
If Fy)) < E@), 0 < y < d, then (24) holds and thus

Fy*F(d) < Fy*F(d).
F,*F(d) > F,*F (d)in (22)as

Similarly, we can write

['1F 5)=F O, @=ndr=o. 25)

If Fo) = E@), 0 < y = d, then (25) holds and
Iy * F(d) > [, * F (d). Accordingly, using (20) — (22),

0ij6 = Gjid for every i # j € N and every 0 and § if

@ A=<0=X;or
() 0<A=<iand F()) < F(),0<y=<d or
(i) A=A =<0and Fi()) = F(),0 <y =d.

Theotem 4 can be used to examine 1/pe~/i(.), &= d/
ZWIHXI;I +w|k| |/e|] for any general processing time

pdfs. Below, we investigate cases with, for example,
exponential, weibull, or uniform distributions. The use of
these distributions in shop scheduling is justified by, e.g.,
Boxma and Forst (1986), Cai and Zhou (1997, 2005), Jang
(2002), and Pinedo (1983). (Even though the exponential
case is a special situation of the weibull case, it is analyzed
due to the development of a general optimality condition.)

Exponential processing times
Suppose that pr~exp(az) with cdf Fr (x) = 1 — exp(—aex)
and means 1/ag, £ =1, ...,

& = df E[Z X

k=1
+u/[,( X 1> 0ijo = Gid for every i # j € N and every  and
0if

Corollary 5. For 1/pi~exp(ar),

@ A=0=4i;0r
() 0=A=AiAand &< a;or
(i) <A <0and a2 a

Proof. For pr~exp(ap), £ =1, ..,
Theorem 4, 050 > 0)id for every i # j € N and evety 0 and
0if 0 = A4 = 4 and exp(~ay) = exp(-ap), 0 < y =< 4
However, this inequality holds for 0 < y < 4 if ¢ < aj.
Similarly, using condition (iif) of Theorem 4, 0jé > Gjid
for every i # j € Nand every fand §if ; <4 < 0 and o; 2
&

#, using condition (i) of
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Corollary 6. For 1/pi~exp(a), & = d/ E[Y m, X[, +

o
i Xyl a sequence [1], ..., [€], [ + 1], ..., [4], £ € {0,
1, ..., n}, is optimal if

O A=...=Ag=0=Ar+y=... <Ay, and

i) anz...Zaqand g+ = .. S ap.

Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence obtained by arranging
jobs according to Corollary 6 (see also conditions (i) — (iii)
of Corollary 5) is optimal.

For the exponential processing times, as the following
theorem shows, we can provide a more general optimality
condition.

Theotem 5. For 1/pi~exp(ar), & =d/ E[Y wl X[ +
k=1

u/[l/c]X[l/c]] , an optimal sequence is found by arranging jobs in
a non-decreasing order of Araz.
Proof. Since pr~exp(ag) with F(x) = 1 — exp(—agx), £ =
1, ..., n then
F % F,(d)
= [ F(d =) f(x)a

d
= o, ["[1—exp(a, (d =) exp(—a x)dv

a, [exp(—a/d) —exp(—a,d)]

=1l-exp(—a,d)- o —a) s
i~

a,#a,. (26)

Substituting (26) into (19), we get

(Ao, = Ao ) |[exp(-a,d) —exp(—a,d)]/ (a, — )| Fy (d)

<0,a,# a,,
which holds if

(o= 20 lesp-a d) —espCadl/@ —a )]
0,0, #a,.

Since the fraction in the brackets of inequality (27) is
non-negative, then the inequality holds if Aia; < A, i # j €
N. Using an approach similar to that of the proof of

Corollary 1, we can show that a sequence [1], ..., [#] found

by atranging jobs according to Aa; < Aa, i # j € N (ie.,
. = Apjap) is optimal. That is, 7% can be identified
by arranging jobs in a non-decreasing order of Aeag.

/1[1](1[1] S .

Remark 5. Using Theorem 5, 7* for 1/pe~exp(a), &= d

/E[ZWI]/;IXIZ-!] can be found by arranging jobs in
=1

non-increasing order of o ka): or in non-decreasing order
of E(pk)/ a)kT (i.e., according to the weighted shortest
expected processing time (WSEPT) rule) (e.g., Pinedo,

1983), and for 1/pe~exp(a), & = d/ E[Y wi X\ 1 by
k=1

arranging jobs in non-decreasing order of a,@, or in
non-increasing order of E(p)/ @} (i.e., according to the

weighted longest expected processing time (WLEPT) rule).

Weibull processing times
Suppose that pe, £ = 1, ..., #, have Weibull distributions
with shape and scale parameters a¢ and e (i.e., pe~W(az,

£9) and cdfs Fi(x) = 1—exp[—(a,x)"*].

Corollary 7. For 1/pe~Wiae, fo), & = d/ E[D miy X,
k=1

+ u/[l/c]X[l/c]] , 0o > o for every i # j € N and every 0
and 0 if

@ A=0=Ai;0r

(i) 0= =4Aand F(d) < F{d) where F(d)
=1 —exp[—(akd)ﬂ*] and f; 2 g or

(iii) A=A < 0and Fi(d) = F{d) where §; < .

Proof. For pe~W(as, fe), # = 1, ..., n, using condition (if)
of Theorem 4, 0;j6 > i for every i # j € N and every 0
and 4if 0 < 4 < 4 andexp[~(et, )" | = exp[—(a, )" ].
This inequality simplifies to Yl < a/ﬁ/ / % which
holds for all 0 < y =< 4 if f = [ and
d" P <ol Jal (e, (a,d)” < (a,d)" or F(d) < F(d).
Similarly, using condition (iii) of Theorem 4, 0jjé > 0jid for
every 7/ # j € N and every § and § if &, < 4, <0
and exp[—(a, »)"] < exp[—(aj])ﬁ/] , which reduces
" 2a” /a0 <y < d This holds if pi < p,
and (aid)ﬂ'Z(a/d)ﬁ/ or Fy(d) = Fy(d). Therefore, 0ijo > jio
for every 7 # j € N and every fand §if () ;< 0 < A; or (if)

0 = A4 < A and Fid) < Fd) where ;= g or (i) <4 =0
and F{d) 2 Fy(d) where ;< g

Corollary 8. For 1/p~W(afe), & = d/ E[D Xy,

k=1
+ wly X[, 1, a sequence [1], ..., [€], [£ + 1], ..., [2], € € {0,

1, ..., n}, is optimal if

(i) /1[1] <..< /1[(] <0< /1[[+1] <.. < /1[”], and

(ii) F[q(d) Z Z F[[](d) 2.1‘1(_‘1 F[£+ 1](4) S S F[n](d) Where
Fe (d) = 1=exp[~(@, )"}, fin < ... < fia, and fe+y
> .=
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Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence obtained by arranging
jobs according to Corollary 8 (see also conditions (i)-(iii) of
Corollary 7) is optimal.

In general, the optimality conditions of Corollary 8 do
not hold among jobs and thus 7% cannot be identified.
However, if these conditions are satisfied among the jobs
in a sequence [1], ..., [€], [£ + 1],...,[4], £ € {0, 1, ..., n},
then AFu(@) = ... = Ayl (@). Therefore, the solution for

1/ pe~Wiae, B, & = df E[Zw[’z]X[i] +wy X[,] can be
=1

approximated (i.e., can find a candidate for 7) by arranging
jobs in non-decreasing order of AeFi(d).

Example 2. Consider the problem 1/pe~W(ax,Be), &= d/
E[Zwlileil + wli__]Xlil] of Table 2 where dp = 3, £ =
k=1

1,...,5.

Table 2. A stochastic E-T problem with pg~W/{ax, fz)

and&E=dr=3
Job & @ B o) o, A
1 1.0 0.6 20 1.0 1.0
2 0.5 0.2 5.0 6.5 1.5
3 2.0 0.4 25 0.5 2.0
4 40 0.1 1.0 3.0 20
5 04 0.3 40 5.0 1.0

Here, I'x(3) = 0.855, 0.662, 0.871, 0.722, and 0.652, £ =
1, ..., 5, respectively. Since 4 < A2 < A5 < 0 < A < A3, Fu(3)
> F2(3) > F5(3), and F1(3) < F3(3) where /34 < ﬁz < ﬁs and /31
> fs, based on Corollary 8, 7*: 4 — 2 — 5 — 1 — 3.The
candidate obtained by arranging jobs in non-decreasing
order of AtF(d) is also optimal.

Remark 6. According to Corollary 8, a sequence [1], ..., [#]
in which /1[1] <..< /1[,,] is optimal for 1/pk~W(ak, ﬁ,g), & =

d/ B[ iy X lif Fuy(d 2 ... = Fiy(d) where Fud) = 1 -
k=1
exp[—(a,d)’Jand By = ... = B, and is optimal for

Vpe=Wiar, Be), & = df ELY wio X il if Fiy(d) < ... <

£=1

F[;,](d) Where ﬁ[ﬂ S e S ﬁ[ﬂ].

Uniform processing times

Suppose that pr, £ = 1, .., n, are uniform random
vatiables defined in the intervals [ae, be], bx > ax = O (ie.,
pe~Ulag, be]). A uniformly distributed processing time
provides a time window (i.e., [a¢, &]) during which the job
is processed with equal probability. The cdf of pe~Ulax, b4
is defined as

0, if x<a,,
F,(x) = X:‘r ,ifa, <x<b,, 28)

£ £

1, if x> b,

Corollary 9. For 1/pe~Ulas, bil, &= d/ E[D p X0, +
k=1

Wi Xyl 055 = 66 for every i # j € N and every 6 and
oif

@ A=0=ZAi;0r

(i) 0= A = A and F{d) = F(d) where Fi(x) is defined by
(28); or

(iii) A <4 <0 and Fi(d) = F{d).

Proof. For pp~Ulap,be], £ = 1, ..., n, £ =1,
condition (ii) of Theotem 4, 06 > i fot every i # j €
N and every 0 and §if 0 < A < A and (y-a)/(bra) < (y —
a)/ (b= a) ot

.y 7, USING

NG =a) = (bi—a) < alb—a) —a(bi—a),0=y=d (29

If bi— a2 bj— ajand aiby— a) = a(bi— a) (ie., (bi— a)/a; <
(b — @)/ a), then (29) holds for any 0 < y < 4; hence, Fi(d) <
Fi(d) where Fi(x) is defined by (28). If b; — a; < by — a;, (29)
can be rewritten as y < [ai(by — a) — afbi — a)|/[(b — a) — (b
—a)], 0 <y < 4, which holds as long as d < [ai(bj— a) — a/(b;
— a))/[(bi— a) — (bi— a))] ot Fi(d) < Fy(d). Thus, when 0 < 4,
<4, (29) holds if either (1) bi— a; = by — ajand (bi — a))/a; <
(bj— a)/a, ot (2) bi— a; < by— a; and Fi(d) < Fy(d). Similatly,
using condition (iif) of Theorem 4, 0jj6 > Gjid for every 7
#7 € Nand every fand §if 1; < 4, < 0 and

= a) = (= @)] = ally— a) = b= a) ,0 <y < d. (30)

If bi—a < bj— ayand (bi — a)/ai = (b — a)/a;, then (30)
holds for any 0 < y < 4; thus, Fi(d) = F(d). If bi— a; > bj— a;
we can write (30) 3 < [a(l — @) — a(b— a)l /{6 @) — (b~
a)], 0 <y < d, which holds as long as d < [ai(b;— a) — a)(bi —
a)|/[(b— @) — (bi — a)) ot Fi(d) = F(d). Therefore, 0y = Gjid
for every 7 # j € N and evety fand 6 if (i) ;< 0 < A; or (if)
0 = A =< A and Fd) < Fj(d); or (i) 4 = 4 = 0 and Fi(d) =
F().

Corollary 10. For 1/pe~Ularbd, &= d/ E[D pi X[ +

k=1
wy Xyl a sequence [1], ..., [], [€ + 1], ..., [#], € € {0,

1, ..., n}, is optimal if

(i) /1[115...51[4505/1[“1]5...S/l[”],and
(ii) F[q(d) Z Z F[(](d) 2.1‘1(_‘1 F[£+ 1](4) 5 5 F[n](d) Where
Fi(x) is defined by (28).

Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence obtained by arranging
jobs according to Corollary 10 (see also conditions (i) — (iii)
of Corollary 9) is optimal.

Similar to the case with weibull £(.), we can approximate
the solution (ot find a candidate for 7) for 1/pe~Ulas, b,
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& = df EZ”/[/(X +w, X[I/C]] by arranging jobs in
non—decreasmg order of A.Fe(d).

Remark 7. Based on Corollary 10, a sequence [1], ..., [#] in
which Ay < ... < Ay is optimal for 1/pe~Ulax, b, & =

d/ B[ wl, X, 1if Fy(d) = ... = Fi(d), and is optimal for
~

1/pe~Ula, b, & = d/EZwW wl if Fy@ < ... <

F(@.

Remark 8. Based on Corollaties 6, 8, and 10, for 1/pe~/e(.),

& =de/ ELY i X+ 0l X[ 1 jobs [&], £ =1, .., ¢, € +
k=1

1, .., n, £ € {0, 1, ..., n}, are arranged in 7* in
w[llc] (.e., Ayy) where the

=1, ..

non-decreasing order of ., —

1]
Fy(d) of jobs with of </, ¢, are in
non-increasing order while the Fiy(d) of jobs with a)[i

T —
O, k=C+1, ..,

>
1 =

n, are in non-decreasing order. Thus,

1pefi(), & = di/ E ZWWX,; +w, X,,] among jobs

1], .., [€], [€ + 1], ..., [#] where =0 < Ay < +0 (ie., the
stochastic E-T problem) is a mixture of 1/ pe~fi(), & =

del ELD X ]
o

—Ag 2 0 (ie., the stochastic T problem) and of 1/pe~fi(), &

= d/ E zw

= Ay 2 0 (i.e., the stochastic E problem).

. [f] where o) =

among jobs [1], .. 4]

., [1] where @,

] among jobs [¢ + 1], . 4]

3.3 Stochastic processing times and stochastic due
dates
Consider the

/E Z”’M!X&ﬁ”ﬁﬂ |/e|]'

scenario 1/ pa~fe()s Se~gi()

# j €N and every 0 and 4, using (5), iff

[ UFy * E (%)= Fy * F % F(x)14G, () "
<A, :O[Fa *F (x) = Fy ¥ F * F ()G, (x).

where F, *F *F/(x) < Fy % F () and
Fy*F*F (x) < F*F(x).
Inequality (31) is too general to allow the development

of useful statements to establish ;i > 0jio. However, we
can utilize this inequality to explore the following cases.

3.3.1 Identically distributed due-dates

Suppose that &~g() and pe~fi(.), £ =1, ..., n. Using (31),
0y > Gjid for every i # j € N and every 0 and ¢ iff

Then, 0o > Gjio for every i

[RACK
S NAGN

[A,LF (x) = E * F, ()] dG ()
(32)
2,[F,(x) = F * F(x)] [dG ().

We use (32) to analyze different cases of 1/ pe~/fe(), & ~4()
/E ZWWX +u/ XW]

Exponential processing times
Consider the case where pe~exp(ar) with Fe(x) = 1 —
exp(—agx) and &~g(), k=1, ..., 7

Theotem 6. For 1/pi~exp(a), &~a()/ E[Y m X
k=1

T .
+”}|k]X[k]] , an optimal sequence can be found by

arranging jobs in a non-decreasing order of Aea.

Proof. Using Fi(x) = 1 — exp(~aex) and (26) in (32), 0jo
> 0jid for every i # j € N and every 0 and § iff

exp(—a ;x) —exp(—a;x)

a, -a,

<0,a,#0,. (33)

CReol(a -2 ( )]dG(20)

Since the fraction inside the parentheses of (33) is
non-negative, then (33) holds if Aa; < Aa, i # j € N. Using
an approach similar to that of the proof of Corollary 1, we
., |#] obtained by arranging
jobs according to Aa; < Aa, i # j € N (e, Amay < ... <
Apapy) is optimal. That is, 7% can be identified by arranging
jobs in non-decreasing order of Ara.

can show that a sequence [1], ..

Remark 9. Based on Theotem 6, 7 for 1/pi~exp(ay),
é’/gg(.)/E[ZwIZIXIL] can be found by arranging jobs in
k=1

. . T . .
non-increasing order of o, @, or in non-decreasing order of

E(py)/ o, (i.e., WSEPT rule) (e.g., Cai and Zhou, 2005),
and 7* for 1/pe~exp(ar), &~g()/ E[Zwli_leil] can be
k=1

found by arranging jobs in non-decreasing order of
aka),f or in non-increasing order of E(pk)/ (o/cf d.e.,
WLEPT rule).

Exponential due-dates
Consider the case where &~exp(py) with Ge(x) =

exp(—yx) and pe~fe(.), £ = 1, ..., 7.

Theotem 7. For 1/pe~fi(), &~exp()/ EZ:J/W 5

+”}|k]X[k]] , an optimal sequence can be found by

arranging jobs in a non-decreasing order of A¢/[1/Le(p) — 1]
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where Li(p) denotes the Laplace-Stieltjes transform (LST)
of fi(.) evaluated at p.

Proof. Substituting G(x) = 1 — exp(—px) into (32), Ojo >
Gjié for every i # j € N and every 6 and & iff

/ll-J‘:eXp(—yx)Fg (x)*[F(x) = F; *F/(X)]dx

<2, [ exp(=yx)Fy (x)* [F,(x) = F* F ()],

or

ALL)T — L] = LML — L), (34

where

Lu) = [ exp(=yx) fy(x)dx = p [ " exp(=y %) F, (x)dx,

0

i
is the LST of fx(.) evaluated at p, and Lg(py) = HL[ a).
k=1

Inequality (34) simplifies to LL(p)[1 — L(p)] < AL()[1 —
L), ot 4/[1/LG) - 1] < 4/[1/L) ~ 11

Using an approach similar to that of the proof of
Corollary 1, we can show that a sequence [1], ..., [#]
obtained by arranging jobs according to A/[1/Li(y) — 1]
< .. S A/[1/Ly) — 1] is optimal; thus, 7 is obtained by
arranging jobs in a non-decreasing order of A¢/[1/Li(y) —
1].

Example 3. Consider the problem 1/pc~/(.), &~exp(»)/
E[Zu/[’;(]X[;] + u/[lk]X[Ik]] of Table 3 where p1 has a normal
k=1

pdf with mean 5 and variance 2 (i.c., p1~N(5, 2)), p> has a
gamma pdf with shape and slope parameters 3 and 1 (i.e.,
P2~G(3, 1)), p3~exp(), pa~U]|2, 10], and ps has a chi-square
pdf with degree of freedom 8 (i.e., ps~¥*(8)). Also, let
&~exp(y), £ = 1, .., 5, with p = 1. The use of normal,
exponential, and uniform processing times in shop
scheduling is justified by, e.g., Balut (1973), Bertrand (1983),
Cai and Zhou (1997, 2005), Jang (2002), Kise and Ibaraki
(1983), Sarin et al. (1991), Soroush (1999), and Soroush
and Allahverdi (2005). Since p1 has a normal distribution,
its variance must be small enough relative to the mean such
that Pr(p1 = 0) = 0. To accomplish this, a coefficient of
variation (CV) of at most 0.32 is considered for p1 (i.e., CVz
= ot/ e < 0.32) to insure Pr(p; > 0) = 0.999.

Table 3. A stochastic E-T problem with pe~f(.)

and &~exp(1)
Job £ () o) o, M
1 NG2) 2.0 50 3.0
2 GG, 6.0 1.0 50
3 Exp(4) 40 3.0 1.0
4 U2, 10] 0.0 7.0 7.0
5 22(8) 1.0 5.0 -4.0

Using the pdfs of px, £ =1, ..., 5, we respectively have
Li(1) = exp(-4), Lo(1) = 0.125, I3(1) = 0.8, Ly4(1) =
exp(-2)[1 — exp(-8)]/8, and ILs(1) = 0.197. Then,
A/ [1/La(y) — 1]= —0.056, 0.714, 4.0, —0.12, and —0.981, 4
=1, ..., 5, respectively. Arranging jobs in non-decreasing
order of ¢/ [1/Li(y) — 1] provides 7*: 5 -4 —1 -2 — 3 (see
Theorem 7).

Remark 10. Based on Theorem 7, 7* for 1/pe~/fi(),
&~exp(y)/ E[Zu/[lk]X [I/C]] can be found by arranging jobs in
k=1

non-increasing order of ®, /[1/I«() — 1] (e.g. Boxma
1986), and 7* for 1/pe~fe(), &~exp(p)

/ E[Zwli_leil] can be found by arranging jobs in
k=1

and Forst,

non-decreasing order of @, / [1/L(y) — 1].

Identically distributed processing times
Consider the case where pz~f) and &~g(), £ =1, ..., n

Using (32), 0ij6 > 0ji6 for every i # j € N and every 0 and
iff

(A —4) jj[FW (x) = F“*Y" (x)]dG(x) < 0. (35)

Theotem 8. For 1/p~f), &~g()/ E[Y mi X}
k=1

T T : .
+w, X, |5 an optimal sequence can be found by arranging

jobs in a non-decreasing order of Ac.

Proof. Since FY'(x)2F“%*™(x),x = 0, using (35), 06

> 0id for every i # j € N and every 0 and § if ;< 4. We
can use an approach similar to that in the proof of
Corollary 1 to show that a sequence [1], ..., [#] found
based on Ay < ... < Ay, is optimal, that is, 7* can be found
by arranging jobs in a non-decreasing order of Az

Common expected difference between earliness and
tardiness penalties

Consider the case where A = E(w, —w,)= o -, ,
—0 < A < © (ie., job expected eatliness penalties differ

from their expected tardiness penalties by a common
constant), pe~/x(.), and &~g(), £ =1, ..., n. Then, using (32),

0ij6 = Gjid fot every i # j € N and evety fand ¢ iff
A[TE, () * [F(3) = F, (x)]dG(x) < 0. (36)

Let the stochastic ordering p; <y p; (p; = » pj) denote Fi(x) =
Fi(x) (Fi(x) < Fy(x)) for all x = 0.

Theorem 9. For 1/pe~fi(), &~a(), & = A/ E[D iy X,
k=1

S
T X

(s an optimal sequence can be found by
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arranging jobs in non-increasing stochastic ordering of pr

(i.e., ])[1] > ...
stochastic ordering of pe (i.e., pyij <o ...

2y pap) if A > 0, and in non-decreasing
S;zﬁ[ﬂ]) if A <O.

Proof. When A = 0, any sequencer € Ris optimal (see
Section 2). When 4 > 0, inequality (36) holds for every 7 # j
€ N and every 0if Fi(x) < F(x) for all x 2 0 (i.e., pi 2 p).
Similarly, when A < 0, the inequality is satisfied for every 7
#j € N and every 0if Fi(x) = Fy(x) for all x = 0 (i.e., pi <o
p). Using an approach similar to that of the proof of
Corollary 1, we can show that a sequence [1], ..., [#]
obtained according to pyj 2« ... 24 p when A > 0, or
<« prawhen A < 0 is optimal. Hence,
7 can be found by arranging jobs in non-increasing

according to pp =g ...

stochastic ordering of p¢ if 4 > 0, and non-decreasing
stochastic ordering of pe if A < 0.

Example 4. Consider the problem 1/pe~N(ur,06%), &~g(.),
e = A E[Z”:w[i}X['Z] +m X, of Table 4 where A
k=1
=0, 0, =-2,k=1,.., 5(e., 1/pe~N(, o), &~g(), M
= -2/ E[Zﬂ:wlileil]).Since 2e~Nu, 0, k=1, ..., 5, pr
k=1

are such that CT7% < 0.32 to insure Pr{pe > 0) = 0.999.

Here, Fi(x) = P(Z < zz) where Z is a standard normal
random vatiable and ¢ = (x — we)/oe, £ =1, ..., 5. If PHZ
S (x—m)/a] = PHZ < (x— w)/ o] for all x = 0, then p; <, py.
That is, pi <o py if (x — )/ 0i 2 (x — )/ 05 ot x(0; — 7) = pioy
— wo; for all x = 0. Sufficient conditions to satisfy this
inequality (i.e., pi <y p) are a; < g and pig; < yo; (.e., CVi 2
CT/;) Since 1 < o» and C17 > CVz, then P <y Dpo. Simﬂarly,
D1 S p3, p1 S pa, and p1 Z¢ ps because 01 < g3 and C11 2>
CV}, a1 < O4 and CV1 = CV4, and a1 < a5 and CT/1 = CVs,
respectively. Analogously, we can show that py <y p2, p4 =g
D3, and py Sy ps; po Sy ps and pr <y p3; and ps <y p3. Hence,
D1 S pa Sy p2 o ps <y p3 which implies 7*: 1-4-2-5-3 (see
Theorem 9).

Note that for 1/pe~fi(), &~g(), b= A/ E[D wl, X[]
k=1

and 1/pe~fi(), &~g(), b= 4/ E[D w; X[1, the optimal
k=1

sequences are respectively found by arranging jobs in
non-decreasing and non-increasing stochastic ordering of

Pe

Table 4. A stochastic E-T problem with pe~N(us02?), &~5(),
and A, =0, —©, =-2.

Job £ e o o) o, A
1 20 0.25 0.0 20 30
2 11.0 530 5.0 7.0 5.0
3 20.0 1600 1.0 3.0 1.0
4 5.0 1.44 20 40 70
5 17.0 1225 30 50 -40

3.3.2 Identically distributed processing times
Suppose that pe~f(.) and &~g(), £ =1, ..., n. Using (31),
0ij6 = Gjié for every i # j € N and evety fand ¢ iff

[T o) = F ol A,dG, (x) = 2,dG ()] < 0. (37)

Since it is difficult to analyze (37) for general ge(.), we
consider the case where &~exp(pr) with Ge(x) = 1 —

exp(—yex).

Theorem 10. For 1/p~f(), &~exp(pe)/ E[Y mli X[+
k=1

wli__]XlZ]] , 06 > Gjid for every i # j € N and every 0 and

dgif

(@) A<0=Ai;or
(i) pi=y andeither 0 <7 =<zorg = ¢ =0where

e = MLpe)1l — Lo, 33)
and

pe= 2l 1ol — Lp)l; 39)
or

(i) p;<pandeithery; <7=00r0=¢ < g

Proof. Using (37), 0ij6 > id for every i # j € N and
every fand Jif

[7F " ()= F ™ (o)l Ay, exp(=7,)= A, exp(—7 )] < 0,
that can be equivalently written as
MLyl = L(p)) =ALa@)[1 = L(p)] =0,

ALA@)[L = LOo] = ALa@m)[1 = L)l (40)

where L) = 7, jj exp(—y,x)F(x)dx is the LST of F()
evaluated at . Inequality (40) shows that the relation
05 > 6ji6 depends on every job i # j € N as well as
the position g1 of job 7 (Note that I.(y) =(2) L(y) iff p;
2(S) y) For <0< 4, i # 7 € N, (40) is always satisfied.
For L(y) < L(y) (i.e., yi = p), i #j € N, (40) holds for ¢
=1, ..., n—1(job j occupies position g + 1) if

@ 0=ALEH = L)l = ALMIL = L)), or
(i) ALl = L)) < AL 1)1 = L)) < 0.

For L(y) = L(y) (i.e., y: < p), (40) holds if
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@ ALGH = L)l = ALM[L = L))l < 0, or
() 0=AL [l = LGal = AL ([ = L)

Corollary 11. For 1/p:~f), &~exp(y)/ EZWW L

[, ¢+ 1, ...,

+”’|/<1XI]A;|]’ a sequence [1], ..., [7], € € {0,

1, ..., n}, is optimal if

(i) 7 5 . 5 /i S 0 S e + 1 S S ﬁ[n] Where Nk is
given by (38), y = ...< yjg and y[[ +1]
i@ pm< ... S =0=geen S
given by (39), y 2=

.. 2 Y Of
<y where g is
0 and y N+ S e S

Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence obtained by arranging
jobs according to Corollary 11 (see also conditions (i) — (iif)
of Theorem 10) is optimal.

In general, the optimality conditions of Corollary 11 do
not hold among jobs and hence 7* cannot be found.
However, if these conditions are satisfied among the jobs

(€, [€+1],....[1, €€ {0,1, ..., n},

in a sequence [1], ...,
then either

@ g/ S - S g/ s or
@) epyu S = Py
Hence, the soluton for 1/p~f), &~exp(ye)

/EZ;:/[,(X +u/

,;]] can be approximated (i.c., can

find a cand1date for 7*) by arranging jobs in non-decreasing
order of either 7¢/ye or peyr where 7: and gr are defined
by (38) and (39).

Example 5. Consider the problem 1/pe~G(0.5, 2),
&~exp(r)/ B[ D iy X\, + my Xy ] of Table 5.
k=1

For p~G(0.5,2), L(ye)= [2/Q2 + po)]*5, £ =1, ..., 5. Then,
using (38), 7& = —0.215, 0.149, —0.378, 0.378, and 0.262, £
= ., 5, respectively. Since 73 < 71 <0 < 72 < 75 < 74, 3
< ypiand y2 > ys5 > y4, based on condition (i) of Corollary
11, 7% 3-1-2-5-4. Here, the candidate found by arranging
jobs in non-decteasing order of 7¢/ye is also optimal.

Table 5. A stochastic E-T problem with py~G(0.5, 2) and

Si-exp(ye)
1 0.6 1.0 3.0 -2.0 -3.0
2 1.0 2.0 1.0 1.0 5.0
3 0.5 1.0 5.0 -4.0 1.0
4 0.5 4.0 0.0 4.0 -7.0
5 0.8 3.0 1.0 2.0 -4.0

Remark 11. A sequence [1], ..., [#] is optimal for 1/p~A.),

&~exp(ye)/ E[ZWIZIXIZ_]] if either 7y < ... < g and
p

S oS or g S S g and 2 . 2y (see

Corollary 11). Also, a sequence [1], .
U pef), &~exp()/ E Zw

and }/[1] -

., [#] is optimal for
if either 71 = ... = 714

L2 Vs OF gﬂ[ﬂ <..< P and Y <..<Z V-
3.3.3 Distinctly distributed processing times and
due-dates
Assuming pe~fe() and &~g(), £ =1, ...

the following cases.

, 1, we analyze

Exponential processing times and uniform due-dates

Consider the case where pr~exp(ax) and &~Ulax, b, £
=1, .., n. Using Fy(x) = () = 1/(b -
ar), and (26) in (31), 0j6 > Gjid for every i # j € N and
every ¢ and 0 iff

1 — exp(—ax),

A’ia, " XP(—O X )—eXp(—O.X B x)dx
(a, _a/)(bi ~a)) J‘ﬂl [exp( a; ) p(—0,x) ] Fj ()
/l./a_/ /'/ ~
< [ Vexp(0t, %)~ exp(-, )l ()

(a, —a])(b/. —a,)’
(41)

Theotem 11. For 1/pe~exp(ar), &~Ula, b/

B i X0y +mg Xy ), 06 = Gjid foreveryi# ;€ N
k=1

and every fand ¢ if

@) 4<0<ior

() Aai/(bi— a) < Aaj/ (b — a) and eithet
(1) 0<A<AM,a2a,and b; < by, or
(2 A<X<0,4=a,and b2 b.

Proof. We have [exp(—ax) — exp(—ax)]/ (@ —a) = 0 for x =
0. Then, for ; < 0 < 4, (41) always holds. For 0 < 4; < 4,

using (41), 046 > Gjid for every i ¥ j € N and every 6 and
gif

Aa,(b,~a)
/1]05] (b, —a;)
[ lexp(-a %) - exp(-a2)1/ (@, —a )] Fy () 42

< J" [[eXp(—Otjx) —exp(-a,x)]|/ (o, —a, )] Fe () .

Inequality (42) is satisfied if its left hand side (LHS) is at
most equal to one (i.e., da(by — a) = Aa(b; — a)) or Aiai/ (bi —
a) < Na/ (b — a)) and its right hand side (RHS) is at least
equal to one (e, @ = 4 and b; < b). (By definition, (41)
also holds if ;; = 4; = 0 or @; = ;) Hence, 0ijo > 0io for
evety /# 7 € Nand evety fand 6if 0 <A < A, 4 = a;, b; <
bj, and /l,a,-/(b,- = ﬂl) < /I/a,/ (b/ = d/) For A; < /1/ < 0, Hyé -
0jié for every i # j € N and every 0 and § if an inequality
similar to (42) but with direction “2” holds. However,
such an inequality is satisfied if its LHS is at least equal to
one (i.e., dai/(bi — a) < May/(b; — @) where A; < J; < 0) and
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its RHS is at most equal to one (ie., @ < 4 and b = b).

Thus, 076 > id for every i # j € N and every 0 and § if
M<X<0,4 = a, b= b, and Aa/ (bi— a) < hai/ (b — a).

Corollary 12. For 1/pe~exp(ar), &~Ula,

h/e]/E[Zwli|Xli| +”’|]/;|X|£.|]» a sequence [1], ..., [€], [£ +
=1
1, ..., [#], € € {0,1, ..., n}, is optimal if

(1) /1[1] S e S /l[ﬁ] S O S /1[[+ 1] S e S /1[,1] and /1[1]a[1]/(b[1]
—a) = ... = Agap/ (bp — @),

and
(ii) an <..< ae, ape + 1 > ... ap, 5[1] > ... b[{], and
ber < .l S by

Proof. Using an approach similar to that of the proof of
Corollary 1, we show that a sequence found by arranging
jobs based on Corollary 12 (see also conditions (i) — (iii) of
Theorem 11)

The optimality conditions of Corollary 12 can be relaxed
by removing Ay = ... S Ag =0 = Ag+ = ... < A and
condition (ii) leaving behind only Ayyapy/ (b — apy) < ... <
Aadp/ (byy — apy)- This condition can be used to approximate
the solution (i.e., find a candidate for ) for 1/pe~exp(ar),

is optimal.

&~Ula, b/@]/E[Zw[’Z]X[’;] + w[I,(]X[I,(]], that is, arranging
=

jobs in non-decteasing otrdetr of Awar/(be — ag) provides a
candidate for 7*.

Remark 12. Based on Corollary 12, a sequence [1], ..., [#]
Where /1[1] S S /1[”] and /1[1]61[1]/(5[1]—61[1]) S 5 A[”]a[,,]/(b[n]
—d[ﬂ]) is 1/p/¢_~exp (ak), &~ U[ﬂ,@_, bk]

/E[ZWI;XIY/;I] if an) S S ap) and 5[1] Z Z h[,,], and is
k=1

optimal  for

”

optimal for 1/pe~exp(ar), &~Ulas, b/ E[ Y s, X, 11 ap

k=1
2 2 Aa[n) and bp] S S b[ﬂ].

Corollary 13. For 1/pi~exp(as), &~Ula, b/ E[D mi, X,
k=1

+u/t2]Xt2]], an optimal sequence is found by arranging jobs

in non-decreasing ordering of keax, £ =1, ..., 2.

Proof. It immediately follows from Corollary 12 (see also
inequality (41)).

Note that Corollary 13 and Theorem 6 provide the same
results.

Exponential processing times and due-dates

Consider the case where pr~exp(ax) and &~exp(y), £ =
1, ..., n. Then, using Fe(x) = 1 — exp(—aex),
Ge(x) = 1 — exp(—ywx), and (26) into (31), 0jj6 > Gjid for
evety 7 # j € N and every 0 and § iff

A, o B
L[ [expl~(a , 7] expl~(a, +7,)x]]F, (x)d
(ai _a/) 0

Aoy, e _
< mjo [exp[ (o, +7,x]

—exp[—(at, +7 ,)x]]F, (x)dx. (43)

Theorem 12. For 1/pi~exp(ar), &~exp(ye)/ E[Zw[i]X['Z]

=1
+ wly X[, 1, 0ij6 = 6id for every i # j € N and every 6 and
oif

@ A4<0<4i;or

(i) Mayp; < Aajyyand either
(1) 0<X<AXAandy =y,or
2 A<A<Oandy=y,.

Proof. We have [exp[—(a+ peo)x] — exp[—(a:+ pe)x]]/ (@ —a)

> 0forall x=20, &€ {j/}. When 4; < 0 < A, (43) is
satisfied. When 0 < A; < A; using (43), o > 0o for

evety 7 # j € N and every @ and § if

J-w[ lexp(—(a, +7,)x)—exp(—(a, +7, )X)]]
0 (a, —a/)

<
" Lo (@ 7% —esp(<(, + 1)) -
Il — 1F, Gy

Fy (5)dx

(44)

Inequality (44) holds if its LHS is at most equal to one (i.e.,
Aiaiyi < Aajy) and its RHS is at least equal to one (i.e., y; = 7).
(By definition, (43) also holds when 4; = 4, = 0, or @; = a;
ot y; = yand Aa; < Aa.) Hence, 06 > 06 for every i
J € Nand every §and 6if 0 < A4, < A, y; = pyand Adayy; <
Aagy. Fot & < N < 0, 06> Gjid for evety i # j € N and
every ¢ and ¢ if an inequality similar to (44) but with
direction “=" is satisfied. But, such an inequality holds if its
LHS is at least equal to one (i.e., Aay; < Aaj; where 4; < 4
< 0) and its RHS is at most equal to one (e, y;i < p).
Hence, 0jj6 > jid for every i # j € N and evety fand ¢ if
A< 2 <0,p: < yand Ay < Aagy;.

Corollary 14. For 1/pi~exp(as), &~exp(ye)/ E[Y i X[,
k=1

+ wly X1, a sequence [1], ..., [€], [€ + 1], ..., [2], € € {0,

1, ..., n}, is optimal if

(i) /1[1] <..< /1[[] <0< /1[[4- 1] <..< /1[”] and /1[1]61[1]}/[1]
<...< /l[n]a[,,]y[”], and

(ii) Y 5 5 Yia and Yie+1) Z ..

< Z .

Proof. We use an approach similar to that of the proof of
Corollary 1 to show that a sequence found by arranging
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jobs according to Corollary 14 (see also conditions (i) — (iii)
of Theorem 12) is optimal.

We can relax the optimality conditions of Corollary 14
by removing /1[1] SS /l[q S 0 S /1[[+ 1] S S /1[;,] and
condition (ii) leaving behind only Amaup = -.. < Apdpyin-
This condition can be used to approximate the solution
(.e., find a candidate for 7*) for 1/pe~exp(ar), &~exp(ye)

n
E E T T : . . .
/E[wa ) T WXyl that is, arranging jobs in
k=1

non-decreasing order of Aearyr can provide a candidate for

.

Remark 13. According to Corollary 14, a sequence [1], ...,

[ﬂ] in Which /1[1] S 5 /1[,1] and /1[1]61[1]}/[1] 5 5 l[”]a[n]y[”] is

optimal for 1/ pe~exp(az), &~exp()/ LD m, X, 1if y
k=1

< ... <y, and is optimal for 1/pr~exp(ar), &~exp(ye)

/ED w X5 i 2 2
k=1

Corollary 15. For 1/pe~exp(az), &~exp()/ E[D miy X1,
k=1

-
+ Xy

jobs in non-decreasing ordering of lwag, £ =1, ..., 2.

], an optimal sequence is found by arranging

Proof. It immediately follows from Corollary 14 (see also
inequality (43)).

Observe that Corollary 15 and Theorem 6 provide the
same results.

Remark 14. For 1/pe~fi(), &~g()/ E[ZW[Z]X[:]
k=1

T T
+ WWX

(1] > based on this subsection’s discussion, jobs [],

k=1,..,00+1, .. nt€ {0,1, ..., n}, are arranged in
7 in non-decreasing order of a)lil—a)lil (.e., Ay) where
there are additional conditions imposed on some other
charactetistics of jobs [£], £ = 1, ..., { (i.e., jobs with a)lil
< a)[yl/cj]) as well as on those of jobs [£], &=+ 1, ..., 7 (e,
jobs with @f = @ ). Hence, 1/p~£(), &~g()
/E[Zw[i]X[i] + u/[l/C]X[’/C]] among jobs [1], ..., [£], [ +
k=1
1], ..., [#] where

—00 < Ay < © (ie., the stochastic E-T

problem) is a mixture of 1/p~f(), &~ge()/ E[Zﬂ:wlilxlil]
k=1

among jobs [1], ..., [€] where wlil
T problem) and of

—l[k] >0 (i.e., the
Upefe(), &gl

., [#] where a)[i] =

stochastic

/E[Zw[i]X[i]] among jobs [£ + 1], ..
k=1

Mg = 0 (i.e., the stochastic E problem).

4. SUMMARY AND
REMARKS

SOME CONCLUDING

In this paper, we have studied a stochastic single machine
scheduling problem in which processing times or due-dates
are non-negative independent random variables and
random weights (penalties) are imposed on both early and
tardy (E-T) jobs. These random weights do not depend on
the amount of deviations of job completion times from their
due dates, that is, the penalty for missing a due date by a
short or long period is the same. The objective is to find an
optimal sequence that minimizes the expected total weighted
number of early and tardy jobs. We have examined three
scenarios of the proposed stochastic E-T problem including a
scenario with deterministic processing times and stochastic
due-dates, a scenario with stochastic processing times and
deterministic due-dates, and a scenario with stochastic
processing times and stochastic due-dates. These problem
scenarios are NP hard to solve; however, based on some
structures on the stochasticity of processing times or due
dates, we have solved exactly vatrious resulting cases of the
three scenarios (see Table 6). We have also presented
methods to approximate the solutions for the general
versions of these cases. It is demonstrated that in the
proposed stochastic E-T problem those jobs whose mean
earliness penalties are at most equal to their mean tardiness
penalties appear in the optimal sequence before those
whose mean earliness penalties are greater than their mean
tardiness penalties. Moreover, the problem studied here is
shown to be general in the sense that its special or limiting
cases reduce to some classical single machine scheduling
problems including the stochastic problem of minimizing
the expected weighted number of tardy jobs and the
stochastic problem of minimizing the expected weighted
number of early which both are solvable by the proposed
exact or approximate methods. This research validates one
of the principles of synchronous manufacturing that
statistical fluctuations in job
processing times, due dates, and earliness and tardiness
affect
extension of this study is to explore the most general version

characteristics such as

penalties scheduling decisions. An immediate
of the problem when processing times and due dates have
distinct arbitrary distributions. In addition, due to the
importance of research in scheduling with setup times (e.g.,
Allahverdi et al., 1999; Allahverdi et al., 2006; Allahverdi and
Soroush, 2000), it is highly recommended to examine the
proposed stochastic E-T problem by incorporating explicitly
job setup times.
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