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AbstractIn this paper, we address the two-stage assembly scheduling problem where there are m machines at the first 
stage and an assembly machine at the second stage. The objective is to schedule the jobs on the machines so that total 
completion time of  all n jobs is minimized. Optimal solutions are obtained for two special cases. A simulated annealing 
heuristic, a tabu search heuristic, and a hybrid tabu search heuristic are proposed for the general case. The proposed 
heuristics are compared with the existing heuristics and shown to be more efficient. The computational analysis shows that 
the proposed hybrid tabu search heuristic improves the error rate by about 60 and 90 percent over tabu search and 
simulated annealing heuristics, respectively, where the CPU time of  all the three heuristics is almost the same. 
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1. INTRODUCTION 

In a two-stage assembly flowshop scheduling problem, 
there are n jobs where each job has m + 1 operations and 
there are m + 1 different machines to perform each of  
these operations. Each machine can process only one job 
at a time. For each job, the first m operations are conducted 
at the first stage in parallel and a final operation in the 
second stage. Each of  m operations at the first stage is 
performed by a different machine and the last operation at 
the second stage may start only after all m operations at the 
first stage are completed. The two-stage assembly 
scheduling problem has several applications in industry. 
Potts et al. (1995) described an application in personal 
computer manufacturing where central processing units, 
hard disks, monitors, keyboards, and etc. are manufactured 
at the first stage, and all the required components are 
assembled to customer specification at a packaging station 
(the second stage). Lee et al. (1993) described another 
application in a fire engine assembly plant. The body and 
chassis of  fire engines are produced in parallel, in two 
different departments. When the body and chassis are 
completed and the engine has been delivered (purchased 
from outside), they are fed to an assembly line where the 
fire engine is assembled.   

Another practical application of  this problem is possibly 
in the area of  distributed database systems. In recent years, 
there has been a rapid trend toward the distribution of  
computer systems over multiple sites that are 
interconnected via a communication network, Elmasri and 
Navathe (1999). It is common with current technology to 

develop forms or reports that require tens of  embedded 
queries that retrieve information from different sites on the 
networks and assemble them in one final report, Ceri and 
Pelagatti (1984). For this scheduling problem, it may be 
possible to look at the problem from a higher level of  
abstraction. The details about database and multimedia 
servers that are typically addressed at the server level, e.g., 
memory caching, disk scheduling etc., is not considered, 
see Figure 1. 

This is an on-line problem where requests keep on 
arriving. However, a static version of  the problem can be 
assumed where there is a fixed number of  requests for a 
given period of  time. This assumption is not restrictive 
since the requests are collected until the system becomes 
available from the previous batch of  requests. Once it 
becomes available, the batch of  accumulated requests are 
considered for processing next. Hence, this can be 
considered as a static system within a window of  time that 
is equivalent in duration to the time taken to process the 
previously collected batch of  requests. 

The two-stage assembly flowshop scheduling problem 
was introduced independently by Lee et al. (1993) and 
Potts et al. (1995). Lee et al. (1993) considered the problem 
with m = 2 while Potts et al. (1995) considered the problem 
with an arbitrary m. Both studies addressed the problem 
with respect to makespan minimization and both proved 
that the problem with this objective function is NP-hard in 
the strong sense for m = 2. Lee et al. (1993) discussed a 
few polynomially solvable cases and presented a branch 
and bound algorithm. Moreover, they proposed three 
heuristics and analyzed their error bounds. Potts et al. 
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(1995) showed that the search for an optimal solution may 
be restricted to permutation schedules. They also showed 
that any arbitrary permutation schedule has a worst-case 
ratio bound of  two, and presented a heuristic with a 
worst-case ratio bound of  2 − 1/m. Hariri and Potts (1997) 
also addressed the same problem, developed a lower bound 
and established several dominance relations. They also 
presented a branch and bound algorithm incorporating the 
lower bound and dominance relations. Another branch and 
bound algorithm was proposed by Haouari and Daouas 
(1999). Sun et al. (2003) also considered the same problem 
with the same makespan objective function and proposed 
heuristics to solve the problem. Koulamas and Kyparisis 
(2001) generalized the two-stage problem to a three-stage 
assembly scheduling problem. They proposed several 
heuristics and analyzed the worst-case ratio bounds of  the 
proposed heuristics for the makespan problem. 

Tozkapan et al. (2003) considered the two-stage 
assembly scheduling problem but with the total weighted 
flowtime performance measure. They showed that 
permutation schedules are dominant for the problem with 
this performance measure. They developed a lower bound 
and a dominance relation, and utilized the bound and 
dominance relation in a branch and bound algorithm. They 
also proposed two heuristics to find an upper bound for 
their branch and bound algorithm. They indicated by 
computational analysis that problems with up to 20 jobs 
and m = 10 can be solved in a reasonable time with their 
proposed branch and bound algorithm. They suggested 

developing efficient heuristics for large sized problems. 
In this paper, we consider the same problem that 

Tozkapan et al. (2003) addressed. We propose two 
algorithms and show that one algorithm is optimal with 
total completion time criterion under certain conditions. 
We also propose a tabu search and a simulated annealing 
heuristic for the problem. Moreover, we propose a hybrid 
tabu search heuristic and show by computational analysis 
that the proposed hybrid tabu search heuristic is more 
efficient and can easily be used for large sized problems. 
 
2. FORMULATION AND THEORETICAL RESULTS 

We assume that n jobs are simultaneously available at 
time zero and that preemption is not allowed, i.e., any 
started operation has to be completed without 
interruptions. Each job consists of  a set of  m + 1 
operations. The first m operations are completed at stage 
one in parallel while the last operation is performed at 
stage two. Let 
ti, j: operation time of  job i on machine j, i = 1, …, n, j = 

1, …, m, 
t[i, j]: operation time of  the job in position i on machine j, 
pi: operation time of  job i on assembly machine, 
p[i]: operation time of  the job in position i on assembly 

machine, 
C[i]: completion time of  the job in position i. 
 

Machine #1
(Server #1)

Data

Data DataData
Assembly Machine

(Backend Database Server)

Machine #2
(Server #2)

Machine #m
(Server #m)

Data Data

Distributed/Backend Database
Communication

Jobs assembled

Job #2Job #1 Job #n

 
Figure 1. A two stage assembly(distributed database) architecture. 
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Note that job k is complete once all of  its operations tk,j 
(j = 1, …, m) and pk are completed where the operation pk 
may start only after all operations tk,j (j = 1, …, m) have 
been completed. Tozkapan et al. (2003) showed that 
permutation schedules are dominant with respect to total 
flowtime (completion time) criterion. Therefore, we restrict 
our search for the optimal solution to permutation 
schedules. In other words, the sequence of  jobs on all of  
the machines, including the assembly machine, is the same. 
  It can be shown that the completion time of  the job in 
position j is as follows: 
 

[ ] [ , ] [ 1] [ ] [ 0 ]1,..., 1

max max , , where 0.
j

j i k j jk m i

C t C p C−= =

   = + =   
   

∑  

 
In the following we give two algorithms to find a 

solution for the problem. For the general case, their 
performances will be compared with those of  the 
heuristics to be proposed in the next section as well as 
those of  the previously known two upper bounds of  
Tozkapan et al. (2003) that was used in their branch and 
bound algorithm. 

 
Algorithm 1. 
Step 1. Set π 1 = {all the jobs}, π2 = {empty} 
Step 2. For j = 1..n − 1 do  
Step 3. For all 1i π∈ , compute 

 
1

[ , ] 2 ,1,..., 1

max ( ) ,
j

i r k i kk m r

T t tπ
−

=
=

 
= + 
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where [ , ] 2( )r kt π  denotes operation time of  the job 
in position r on machine k in sequence π2. Assign 
the job with the smallest Ti to the jth position of  the 
sequence π2, and remove this job from the sequence 
π1. In case of  ties, assign the job with the smallest pi 
to the jth position of  the sequence π2. 

Step 4. End for  
Step 5. The sequence π2 is the solution. 
 

The above algorithm assigns the job, among the 
unassigned jobs, to the next available position of  a partial 
sequence such that the maximum completion time on the 
first stage machines is minimum given that a partial 
sequence has already been obtained. The intuition behind 
this is that a job cannot start processing on the second 
stage unless all its operations on the first stage have been 
completed. Therefore, it is desired that this duration is as 
small as possible. It is important to note that the above 
algorithm ignores the processing time of  a job on the 
second stage. The following algorithm (Algorithm 2) takes 
that also into account. 

 
Algorithm 2. 
Algorithm 2 is similar to Algorithm 1 except at Step 3 
where Ti’s are computed as follows: 
 

1

[ , ] 2 ,1,..., 1

max ( ) .
j

i r k i k ik m r

T t t pπ
−

=
=

 
= + + 

 
∑  

 
Notice that Algorithm 1 ignores the processing times of  

the jobs on the assembly machine while Algorithm 2 takes 
this into account. It is important to note that when the 
processing times of  the jobs on the assembly machine are 
dominant, then, one expects that it has to explicitly be 
taken into account.  

If  the conditions given in the following theorem 
(Theorem 1) are satisfied, then the first stage dominates 
the second one, and hence, an optimal sequence can be 
obtained by considering the first stage processing times 
only. On the other hand, when the second stage dominates 
the first one, then an optimal sequence can be obtained by 
sequencing the jobs based on their processing times of  the 
second stage, which is described in Theorem 2. 

 
Theorem 1. Algorithm 1 minimizes the total completion 
time if 
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Then it can be shown that 
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Given the completion times of  the jobs, the total 
completion time (TCT) can be computed as: 
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Note that the term [ ]
1

n

j
j

p
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∑  is constant and 

independent of  a sequence. Hence, the minimization of  
TCT is equivalent to the minimization of  the term 

1
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∑∑ ∑  Algorithm 1 step by step 

builds a sequence such that this double summation is 
minimized. Therefore, the sequence obtained by Algorithm 
1 is optimal. 
 
Theorem 2.  
Arranging jobs in non-decreasing (increasing) order of  pi 

minimizes TCT if  ,1,..., 1,...,
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Clearly the first term of  TCT is minimized by arranging the 
jobs in increasing order of  p[i] and the second term is 
minimized by the fact that job i where 
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p p
=

=  

satisfies , ,1,..., 1,...,
1,...,

max{ } max { }.i k j kk m j n
k m

t t
= =

=

≤  

 
3. HEURISTICS 

The two-stage assembly scheduling problem with total 
flowtime (completion time) criterion was addressed only by 
Tozkapan et al. (2003). They proposed two heuristics to 
find an upper bound for their proposed branch and bound 
algorithm. We refer to their heuristics in this paper as 
TKC1 and TKC2 denoting their first and second upper 

bounds, respectively.  
In this section, we propose three heuristics for the 

problem. The first proposed heuristic is a simulated 
annealing heuristic, the second is a tabu search heuristic, 
and the third is a hybrid tabu search heuristic. All three 
heuristics start with a given initial sequence and iteratively 
improve on it until a stopping criterion is met. Hence, it is 
important to start with a good sequence. In the following 
we give the description of  initial sequences that will be 
used in all the three heuristics. 

 
3.1 Initial sequences  

One initial sequence is obtained by ordering all the jobs 
in increasing order of  pi. This initial sequence is called S1. 
It is expected that when assembly machine dominates the 
first stage machines (i.e., when processing times on 
assembly machine are larger than those of  the first stage 
machines), then, ordering the jobs based on Shortest 
Processing Time (SPT) on the assembly machine will yield 
a good solution. The SPT rule is known to perform well in 
general for total completion time criterion. The second 
initial sequence is obtained by considering the case that the 
first stage machines dominate the assembly machine. In 
this case, the sequence is obtained by ordering the jobs in 
increasing order of ,1,...,

max{ }i kk m
t

=
which is called S2. A third 

sequence is obtained by ordering the jobs in increasing 
order of ,1,...,

max{ }i k ik m
t p

=
+ where both stages are taken into 

account. This sequence is called S3. 
 

3.2 Simulated annealing heuristic (SA) 

Simulated annealing has been used to solve scheduling 
problems, e.g., Sadegheih (2006), Low (2005), and Mika et 
al. (2005). The main idea behind the proposed simulated 
annealing heuristic is to have a number of  iterations where 
in every iteration of  the heuristic there is a single random 
pair exchange in the sequence (other neighborhoods are 
used in different versions of  simulated annealing). If  the 
exchange improves the objective function, then it accepts 
the exchange and the new sequence is preserved. If  the 
objective function does not improve, then it is only allowed 
to accept the exchange with some small probability p. As 
the number of  iterations increases, the probability p for 
which the heuristic is allowed to accept an exchange that 
does not improve the objective function is reduced 
exponentially. This reduction in the probability is usually 
expressed as a function of  a start temperature (T1) that is 
reduced by a cooling factor to reach a final (freezing) 
temperature. Notice that the temperature cooling factor 
used in the proposed heuristic is exponential. However, in 
a general SA heuristic, it needs not to have an exponential 
cooling factor. This technique of  reducing the probability 
of  accepting non-improving exchanges has proven to be 
very useful in escaping local optimum’s during the course 
of  search for global optimum. The following is an 
algorithmic description of  the heuristic. 
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Simulated Annealing Heuristic (SA) 
 
Begin 

Let T1 = 0.1  
Select the best sequence among S1, S2, and S3 as the 
current sequence 
While T1 ≥ 0.0001 
Begin 

Repeat 50 times 
Begin 
Let L1 = value of  the objective function with current 
sequence 
 
Pick two random positions j and k 
Swap jobs in the positions of  j and k 
Let L2 = value of the objective function after the swap  
 
If L2<L1 then accept swap 
If L2>L1 then accept the move with probability f 

where d = 2 1
1

L L
L
−  

f  = / 1d Te−  
End Repeat 
Let T1 = T1×0.98 
End While 

End Heuristic 
 

Setting the parameters for the proposed simulated 
annealing heuristic is essential in achieving a good 
performance. An initial estimate for the best value of  a 
given parameter is obtained by changing the values of  that 
parameter while keeping all other parameters as constant. 
We used the following values as initial estimates of  the 
parameters; (T1 = .5, .1, and .01), (cooling factor = 0.99, 
0.98, 0.97, 0.96, and 0.95), and (final temperature = 0.005, 
0.001, 0.0005, 0.0001, 0.00005, 0.00001). Once these initial 
values are determined, then, the method of  factorial 
experimental design (three values for each parameter 
including the initial best value of  that parameter, one value 
above and one value below that value) is used to fine tune 
the values of  the parameters. After these experimentations, 
the parameters for the simulated annealing heuristic are set 
as follows; the initial temperature T1 is set to 0.1, the 
cooling factor is set to 0.98, the final temperature is set to 
0.0001, and the number of  iterations per fixed temperature 
is set to 50 since not significant improvement has been 
observed beyond this value. 

Finding an initial sequence for simulated annealing 
heuristics is common in the scheduling literature. For 
example, Sridhar and Rajendran (1993) used a similar 
approach for the hybrid flowshop scheduling problem with 
total completion time criterion. Sridhar and Rajendran 
(1993) first obtained an initial sequence, then, used a 
similar simulated annealing heuristic to find a solution. 
Note that the two-stage assembly flowshop problem has 
some similarity with the two-stage hybrid flowshop 
problem with m machines on the first stage and one 

machine on the second stage. In the hybrid problem, a job 
can be processed by any one of  the m machines at the first 
stage before it is processed on the machine at the second 
stage. On the other hand, in a two-stage assembly 
flowshop problem each job has to be processed on all the 
m machines on the first stage before it can be processed at 
the assembly machine. 

 
3.3. Tabu search heuristic (Tabu) 

Some scheduling problems have been solved by using 
different algorithms including Tabu search heuristic, e.g., 
Al-Turki et al. (2001), Al-Fawzan and Haouari (2005), Ruiz 
and Maroto (2005), and Liaw (2003). The main idea behind 
a tabu search heuristic is to have a large number of  
iterations, where in every iteration of  the heuristic there is 
a choice of  a best sequence from neighborhood of  the 
current sequence. The heuristic is only allowed to choose 
the new sequence if  this sequence has the best objective 
function of  the neighborhood of  the current sequence and 
the new move is not in the previous h iterations. The last h 
moves are kept in a list for checking. This list is called the 
tabu list. This technique has been proven to be very useful 
for escaping loops as well as escaping a local optimum 
during the course of  search for a global optimum. 

We use an example of  scheduling five jobs to illustrate 
the concept of  neighborhood of  a sequence for our 
problem (in general, for any scheduling problem). Let us 
assume that at some point of  time we have three sequences 
Seq-1, Seq-2, and Seq-3 as follows: 

 
Seq-1 = [2, 3, 4, 1, 5] 
Seq-2 = [2, 5, 4, 1, 3] 
Seq-3 = [2, 4, 1, 3, 5] 
 

In the above example, it is easy to see that sequences 
Seq-1 and Seq-2 are closer to each other than sequences 
Seq-1 and Seq-3. This is because, we can obtain Seq-2 from 
Seq-1 by exchanging jobs 3 and 5 in the sequence while to 
obtain Seq-3 from Seq-1 one needs to reorder jobs 3, 4 and 
1. In this context, we define the distance between two 
sequences as the number of  mismatches between the 
sequences. In the above example, the distance between 
Seq-1 and Seq-2 is 2 while that of  Seq-1 and Seq-3 is 3. 
Notice that the minimum distance we can achieve 
according to this definition is 2 for any sequence. Hence, in 
our tabu heuristic, the neighborhood of  a sequence can be 
defined as all sequences that have a distance of  2 from the 
current sequence. A complete set of  neighborhood of  
distance two can be achieved by simply swapping all pairs 
of  jobs in a sequence. 
The following is an algorithmic description of the heuristic. 
 
Tabu Search Heuristic (Tabu) 
 
Begin 

Initialize Tabu h list with maximum size of  4 
Select the best sequence among S1, S2, and S3 as the 
current sequence 
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Let L1 = value of  the objective function with initial 
sequence 
Let T1 = 0.1 
 
While T1 ≥ 0.0001 
Begin 

Repeat 50 times 
Begin 
Pick two random positions j and k where (j, k) is not 
in the Tabu list h 
Swap jobs in the positions of  j and k 
Let L2 = value of  the objective function with the 
sequence after the swap 
Set j2 = j and k2 = k 
Swap back jobs in the positions of  j and k 

 
For all possible combinations of  j and k (i.e., explore 
all neighborhood) 

If (j, k) is not in the Tabu list then 
Begin  

Swap jobs in the positions of  j and k 
Let L3 = value of the objective function after the swap  
 
If L3 < L2 then 
Begin 

Set L2 = L3, j2 = j and k2 = k 
End If 
 
Reverse swap 

End If 
End For 
Swap jobs in the positions of  j2 and k2 
Add (j2, k2) to front of  Tabu 
If  the Tabu maximum list size is exceeded, then delete 
the item at the end of  the list h 
Update L1 = value of  the objective function with 
current sequence 

End Repeat 
Let T1 = T1*0.98 
End While 

End Heuristic 
 

In the above description of  the heuristic, a 
neighborhood of  distance 2 is explored. This step requires 
examining all possible combinations of  pairs of  two jobs. 
The neighborhood concept can be extended to explore a 
distance more than 2. For example, in a neighborhood of  
distance 3, it is needed to inspect all possible combinations 
of  triplicates of  three jobs. Since a neighborhood of  
distance more than 2 requires significantly more 
computational time, we have chosen to use a neighborhood 
of  distance 2 in this paper.  

Note that the parameter T1 is only used as a geometric 
iteration index. T1 specifies the number of  iterations that is 
required by the outer most loop of  the Tabu algorithm. 
This is used in order to have the exact number of  iterations 
that the other two heuristics have in order to have a fair 
comparison (i.e., to have the same computational time). 

For the proposed tabu search heuristic, setting the 
parameters is essential in achieving a good performance. 
After some experimentations as explained earlier in section 
3.2, the parameters for the tabu search heuristic are set as 
follows; the total number of  iterations is set to the same 
value of  simulated annealing heuristic (for a fair 
comparison), and the tabu list size is set to four. The tabu 
list size of  four was found to be the best performing value 
for the tested range of  1 to 7. 

 
3.4 A hybrid tabu search heuristic (H-tabu) 

The main idea behind the hybrid tabu search heuristic is 
to introduce the concept of  probability of  accepting 
exchanges that are not necessarily of  the best objective 
function of  the neighborhood of  the tabu search heuristic. 
This concept was introduced into the tabu search by 
looking at the main concept behind the simulated 
annealing heuristic. This concept was integrated into the 
tabu search, which we call a hybrid tabu search heuristic. 
The hybrid tabu search heuristic is allowed to accept 
exchanges that are not in the tabu list. As in tabu search, an 
exchange is allowed if  this sequence has the best objective 
function of  the neighborhood of  the current sequence and 
the new sequence is not in the previous h iterations. It is 
also allowed in the hybrid tabu search heuristic to have 
exchanges of  a second type. The second type is an 
exchange that is not in the tabu list and does not 
necessarily have the best value of  the objective function 
with a small probability p. This probability is reduced 
exponentially as the search for the global optimum 
progresses. The following is an algorithmic description of  
the heuristic. 

Replace the following lines of  code form the regular 
tabu search heuristic: 
 
If L3 < L2 then 
Begin 

Set L2 = L3, j2 = j and k2 = k 
End If 
 
by the following lines of  code in the hybrid tabu search 
heuristic: 

 
If (L3 < L2) then 
Begin 

Set L2 = L3, j2 = j and k2 = k 
Else 

Compute d and f, where 

d = 3 1
1

L L
L
−  

f  = 100* / 1d Te−  
if  (L3 > L2 and with probability f) 
Begin 

Set L2 = L3, j2 = j and k2 = k 
End 

End If 
 

For the proposed hybrid tabu search heuristic, 
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parameters are set to the same values as in simulated 
annealing and tabu search heuristics. Notice that the value 
of  f  has been fine tuned by multiplying the exponent of  
the simulated annealing by 100 which has been found to 
have a better performance. It should be noted that when 
computing the objective functions for sequences after 
swapping jobs in, say positions i and j (i < j), there is no 
need to compute C[1] up to C[i − 1] again since they are the 
same before and after the swap. This can contribute to a 
significant savings in computational time. This is true for 
all the three algorithms.   

 
4. HEURISTIC COMPARISON 

The two existing heuristics of  TKC1 and TKC2 and the 
three proposed SA, Tabu, and H-tabu heuristics along with 
the proposed two algorithms (Algorithm 1 and Algorithm 
2) were implemented in C under GCC-3.4.2 compiler using 
the built-in math library. The machine used was a Sun Fire 
V880 with 4 CPU processors of  900MHz running under 
Solaris Version 9.0 operating system with 8GB RAM. 
Heuristics and algorithms are evaluated with respect to 
average error, standard deviation of  the error, and the 
percentage of  times yielding the best solution. 

The processing times were randomly generated from a 
uniform distribution (0, 100) on all the m machines on the 
first stage while from a uniform distribution (1, 100) on the 
last stage. The reason for using a uniform distribution (0, 
100), rather than (1, 100), on the first stage machines is that 
it could be that some of  the jobs may not necessarily need 
to be processed by all the machines at the first stage. In the 
scheduling literature, the use of  uniform distribution is 
common, e.g., Wang et al. (1997), Pan and Chen (1997), 
Al-Anzi and Allahverdi (2001), and Allahverdi and Al-Anzi 
(2002). The reason for using a uniform distribution with a 
wide range is that the variance of  this distribution is large 
and if  a heuristic performs well with such a distribution, it 
will most likely perform well with other distributions. 
However, in order to test the heuristics and algorithms for 
other types of  data, we also consider the cases when 
processing times follow exponential distribution. 

Problem data were generated for a different number of  
jobs for the range of  20 to 120 in increment of  20. 
Different number of  machines at the first stage have been 
considered for experimentation to observe the behavior of  
the heuristic and algorithms. We vary the number of  
machines at the first stage as 2, 4, 6, or 8.  We compare 
the performance of  the heuristics using three measures: 
average error (Error), standard deviation (Std), and the 
percentage of  the number of  the best solutions (NBS). 
The error is defined as (Heuristic Solution − Best 
Solution)/(Worst Solution − Best Solution). Notice that 
according to this definition, the best performing heuristic 
will have an error of  zero while the worst one will have an 
error of  100 %.  Thirty replicates were generated for each 
instance of  the twenty four (6 × 4) combinations of  the 
number of  jobs and machines. 

Tables 1 and 2 show the results of  running the existing 

and the proposed heuristics and algorithms for different 
number of  jobs and machines with respect to the error and 
standard deviation, respectively. Each entry in the tables 
represents the average of  the thirty replicates. Each 
heuristic and algorithm is evaluated for the same 
configuration to ensure accurate assessment of  the 
different heuristics. It is clear from the tables that, as 
expected, TCK1 and TCK2 did not perform well since 
they were developed as upper bounds for a branch and 
bound algorithm. 

Algorithm 1 and Algorithm 2 also did not perform well 
since they were designed for special cases. Table 2 shows 
that the standard deviation of  Algorithm 1 is high 
compared to that of  TCK1, TCK2, and Algorithm 2. This 
means that for some replicates where the special 
conditions (stated in Theorem 1) were nearly satisfied, the 
algorithm performed well (error was small) while for some 
others it performed badly. In order to further investigate 
the performance of  the heuristics where it is more likely 
that the conditions are satisfied, two other processing time 
distributions have been tested. Table 3 illustrates the results 
of  these distributions for 40 jobs where U(a, b; c, d) means 
the processing time distributions of  the jobs on the first 
stage is uniform between a and b and on the second stage 
(i.e., the assembly machine) uniform between c and d. The 
average errors of  Algorithm 1 for U(0, 100; 1, 100), U(0, 
100; 1, 50), and U(0, 100; 1, 20) are 9.536, 1.755, and 1.676, 
respectively. Note that it is more likely that the conditions 
of  Theorem 1 are satisfied in the cases of  U(0, 100; 1, 20) 
and U(0, 100; 1, 50) than that of  U(0, 100; 1, 100). 
Therefore, the averages of  the former cases are 
significantly less than that of  the latter case for Algorithm 
1. 

The same initial sequence (i.e., the best of  S1, S2, and 
S3) is used in Tabu, SA, and H-tabu. The performance of  
S1, S2, and S3 was also evaluated and it has been observed 
that about 1, 81, and 18% of  the time S1, S2, and S3 
generated the best initial solution, respectively.  

Figures 2-4 illustrate the performance of  all heuristics 
and algorithms with respect to the error, std, and NBS, 
respectively. It is obvious that, as expected, SA, Tabu, and 
H-tabu significantly perform better than TKC1, TKC2, 
Algorithm 1, and Algorithm 2. Observe that logarithmic 
scales are used in Figures 2 and 3 for clarity. Given that 
three proposed heuristics (SA, Tabu, and H-tabu) take 
almost the same CPU time to run (see Table 5), it can be 
seen from the figures that Tabu and H-tabu perform better 
than SA, in general. It is also clear that the performance of  
Tabu and H-tabu gets better as the number of  jobs 
increases, while that of  SA deteriorates significantly. 
Moreover, H-tabu performs consistently better than Tabu.  

For all 24 instances (4 values of  m and 6 values of  n), a 
test of  hypotheses has been conducted at a significance 
level of  0.05 for comparing the mean errors of  Tabu and 
H-tabu. It has been found that for all the 24 instances, the 
mean for H-tabu was less than that of  tabu. Therefore, 
H-tabu is the best heuristic. 
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Table 1. Average percentage deviation from the best solution for all heuristics and algorithms 
n m Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2 

20 2 10.375 10.592 0.395 0.152 0.864 19.639 9.143 
 4 6.123 9.811 0.447 0.095 0.716 16.634 9.838 
 6 5.229 8.917 0.523 0.104 0.867 14.041 9.648 
 8 4.186 9.205 0.539 0.095 0.795 13.503 8.868 

40 2 15.142 12.410 0.259 0.264 0.304 24.236 9.084 
 4 9.597 12.575 0.176 0.294 0.613 20.182 9.734 
 6 6.836 12.569 0.171 0.330 0.541 15.687 9.939 
 8 6.570 11.561 0.186 0.430 0.572 15.354 10.445 

60 2 14.306 11.954 0.091 1.232 0.248 24.702 9.068 
 4 10.086 13.073 0.068 1.084 0.273 20.463 9.552 
 6 6.701 12.553 0.060 1.177 0.292 17.384 9.694 
 8 6.088 11.295 0.077 1.140 0.458 16.147 9.345 

80 2 17.046 12.299 0.078 2.135 0.259 25.441 8.555 
 4 10.199 13.544 0.089 2.032 0.305 20.093 9.746 
 6 7.356 12.898 0.119 2.014 0.351 17.500 8.833 
 8 6.763 12.458 0.085 1.934 0.478 15.962 8.791 

100 2 18.245 12.133 0.092 2.944 0.214 25.555 7.234 
 4 9.152 13.535 0.067 2.735 0.249 19.896 7.540 
 6 7.405 12.661 0.037 2.547 0.320 17.618 7.789 
 8 6.692 12.916 0.043 2.553 0.375 16.160 8.704 

120 2 18.131 12.286 0.058 3.488 0.195 25.501 7.193 
 4 11.241 13.893 0.043 3.436 0.362 20.541 7.674 
 6 8.666 13.285 0.025 3.101 0.391 17.602 7.997 
 8 5.938 12.409 0.037 2.842 0.348 15.941 8.594 

Overall Avg. 9.503 12.118 0.157 1.590 0.433 18.991 8.875 
 

Table 2. Standard deviation for all heuristics and algorithms 
n m Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2 

20 2 6.130 4.380 0.420 0.280 0.920 6.150 3.160 
 4 4.530 4.050 0.500 0.160 0.750 4.140 3.700 
 6 4.330 3.520 0.680 0.230 0.780 3.560 4.240 
 8 3.610 3.380 0.580 0.160 0.840 2.330 2.530 

40 2 7.540 4.330 0.320 0.240 0.360 5.360 3.090 
 4 4.980 3.340 0.330 0.270 0.580 2.600 2.170 
 6 4.110 3.480 0.380 0.360 0.590 2.720 2.170 
 8 4.730 3.440 0.390 0.390 0.510 2.590 3.150 

60 2 6.220 3.870 0.150 0.380 0.240 3.580 2.810 
 4 4.680 3.480 0.170 0.430 0.310 2.570 2.820 
 6 3.290 2.200 0.130 0.390 0.400 2.350 2.820 
 8 3.770 2.800 0.210 0.470 0.420 2.340 2.770 

80 2 6.070 2.470 0.170 0.490 0.260 3.430 2.520 
 4 4.620 2.590 0.180 0.600 0.380 2.730 3.230 
 6 3.900 3.050 0.220 0.410 0.300 1.940 1.610 
 8 3.740 2.400 0.190 0.370 0.440 1.680 2.240 

100 2 5.130 2.560 0.150 0.530 0.260 3.530 2.500 
 4 4.850 2.640 0.090 0.410 0.300 1.910 2.380 
 6 4.660 2.110 0.110 0.410 0.330 1.810 1.860 
 8 3.850 2.630 0.140 0.480 0.390 1.840 2.410 

120 2 4.310 1.960 0.130 0.580 0.240 4.030 2.360 
 4 4.850 2.480 0.100 0.500 0.340 2.670 2.380 
 6 4.700 2.350 0.060 0.520 0.350 1.670 1.970 
 8 3.330 1.880 0.150 0.610 0.310 1.290 2.700 

Overall Avg. 4.664 2.975 0.248 0.403 0.442 2.868 2.650 
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Table 3. Error and standard deviation comparison for different uniform distribution ranges 

 TKC1 TKC2 Algorithm 1 Algorithm 2 Tabu SA H-tabu Distribution 
range m Error Std Error Std Error Std Error Std Error Std Error Std Error Std 

U(0,100); 2 24.236 5.360 9.084 3.090 15.142 7.540 12.410 4.330 0.304 0.360 0.264 0.240 0.259 0.320 
U(1,100) 4 20.182 2.600 9.734 2.170 9.597 4.980 12.575 3.340 0.613 0.580 0.294 0.270 0.176 0.330 

 6 15.687 2.720 9.939 2.170 6.836 4.110 12.569 3.480 0.541 0.590 0.330 0.360 0.171 0.380 
 8 15.354 2.590 10.445 3.150 6.570 4.730 11.561 3.440 0.572 0.510 0.430 0.390 0.186 0.390 

Avg.  18.865 3.318 9.801 2.645 9.536 5.340 12.279 3.648 0.508 0.510 0.330 0.315 0.198 0.355 
                

U(0,100); 2 18.546 5.620 5.199 1.690 2.146 1.060 5.393 1.720 0.133 0.110 0.393 0.120 0.016 0.050 
U(1,50) 4 16.876 3.130 7.259 2.300 1.623 0.710 5.363 1.200 0.212 0.200 0.458 0.210 0.019 0.040 

 6 14.816 2.380 8.516 2.040 1.731 0.660 5.307 1.840 0.319 0.260 0.448 0.250 0.021 0.060 
 8 12.881 2.590 8.397 2.660 1.521 0.630 5.102 1.380 0.325 0.290 0.424 0.270 0.053 0.120 

Avg.  15.780 3.430 7.343 2.173 1.755 0.765 5.291 1.535 0.247 0.215 0.431 0.213 0.027 0.068 
                

U(0,100); 2 20.138 6.010 4.326 1.770 1.741 0.730 2.212 0.810 0.063 0.050 0.418 0.130 0.006 0.010 
U(1,20) 4 16.602 3.140 6.810 2.590 1.862 0.690 2.528 0.900 0.252 0.190 0.499 0.190 0.000 0.000 

 6 15.293 2.200 7.030 2.170 1.639 0.750 2.521 0.870 0.278 0.300 0.454 0.220 0.032 0.080 
 8 13.665 2.310 7.929 2.750 1.461 0.580 2.401 0.920 0.352 0.320 0.523 0.210 0.011 0.040 

Avg.  16.425 3.415 6.524 2.320 1.676 0.688 2.416 0.875 0.236 0.215 0.474 0.188 0.012 0.033 
 
 

Table 4. Error and standard deviation comparison for exponential and uniform distributions 
 TKC1 TKC2 Algorithm 1 Algorithm 2 Tabu SA H-tabu Distribution

range m Error Std Error Std Error Std Error Std Error Std Error Std Error Std 
Uniform 2 24.702 3.580 9.068 2.810 14.306 6.220 11.954 3.870 0.248 0.240 1.232 0.380 0.091 0.150 

 4 20.463 2.570 9.552 2.820 10.086 4.680 13.073 3.480 0.273 0.310 1.084 0.430 0.068 0.170 
 6 17.384 2.350 9.694 2.820 6.701 3.290 12.553 2.200 0.292 0.400 1.177 0.390 0.060 0.130 
 8 16.147 2.340 9.345 2.770 6.088 3.770 11.295 2.800 0.458 0.420 1.140 0.470 0.077 0.210 

Avg.  19.674 2.710 9.415 2.805 9.295 4.490 12.219 3.088 0.318 0.343 1.158 0.418 0.074 0.165 
                

Exponential 2 33.983 6.450 10.375 2.740 22.261 8.600 12.486 2.840 0.528 0.600 1.285 0.570 0.029 0.100 
 4 27.701 4.340 11.356 3.740 13.308 7.790 12.856 3.000 0.447 0.460 1.182 0.540 0.092 0.210 
 6 23.043 3.510 10.771 2.670 10.025 7.290 11.988 3.540 0.444 0.430 0.926 0.590 0.150 0.280 
 8 20.795 2.660 11.835 3.320 8.682 7.410 11.995 2.930 0.492 0.490 1.109 0.670 0.143 0.330 

Avg.  26.381 4.240 11.084 3.118 13.569 7.773 12.331 3.078 0.478 0.495 1.126 0.593 0.104 0.230 
 

 
Table 5. CPU time (in seconds) for all heuristics and algorithms 

n  Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2 
20  0.000 0.000 0.471 0.470 0.455 0.000 0.000 
40  0.001 0.001 1.702 1.724 1.686 0.001 0.000 
60  0.003 0.003 3.720 3.781 3.705 0.002 0.001 
80  0.006 0.006 6.527 6.643 6.512 0.003 0.002 
100  0.011 0.012 10.119 10.305 10.105 0.005 0.002 
120  0.019 0.019 14.498 14.771 14.485 0.007 0.004 
Overall Avg. 0.007 0.007 6.173 6.282 6.158 0.003 0.001 
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Figure 2. Error comparison for different n values. 

 

0.100

1.000

10.000

20 40 60 80 100 120
n

St
d

Algorithm-1
Algorithm-2
H-tabu
SA
Tabu
TKC1
TKC2

 
Figure 3. Std comparison for different n values. 
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Figure 4. NBS comparison for different n values. 
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Figure 5. Error comparison for different m values. 

 
Figure 5 shows the performance of  the heuristics and 

algorithms for different number of  machines at the first 
stage. It can be seen from the figure that the performance 
of  Algorithm 2, TCK2, and H-tabu is not sensitive to m 
values. It can also be seen that the performance of  SA 
slightly decreases while that of  Tabu slightly increases as m 
increases. On the other hand, the performance of  
Algorithm 1 and TKC1 decreases as m increases. This is 
expected since Algorithm 1 only takes into account the 
processing times of  the jobs on the first stage while TKC1 
mainly takes these processing times into account. 

The comparison of  heuristics and algorithms has also 
been performed by generating processing times from a 
skewed distribution, exponential distribution with a mean 
of  70. Table 4 shows the results when n = 60 for both 
uniform distribution (U(0, 100) for machines on the first 
stage, and U(1, 100) for the machine on the second stage) 
and exponential distribution. As can be seen from the table, 
the performance of  the heuristics and algorithms, in 
general, is consistent for both distribution. The results for 
other n values were similar and not reported in the paper 
due to space limitation. 

 
5. CONCLUSION 

The two-stage assembly flowshop scheduling problem is 
addressed in this paper. The objective is to schedule jobs 
on machines so that the total completion time of  all n jobs 
is minimized. Optimal solutions are obtained for special 
cases, and two algorithms are presented. Moreover, three 

heuristics are proposed for the general case: a simulated 
annealing heuristic, a tabu search heuristic, and a hybrid 
tabu search heuristic. The computational analysis shows 
that the CPU time of  all the three proposed heuristics is 
almost the same. The analysis further shows that the hybrid 
tabu search heuristic improves the error rate significantly 
over tabu search and simulated annealing heuristics. 
Therefore, the hybrid tabu search heuristic could be 
applied to other scheduling problems.  

We assumed that setup times are negligible, and hence, 
can be considered as part of  job processing times. While 
this assumption reflects certain applications, it adversely 
affects the solution quality of  many applications of  
scheduling research that require an explicit treatment of  
setup times, Allahverdi et al. (1999, 2006). Therefore, a 
possible extension is to consider the problem addressed in 
this paper where setup times are treated as separate from 
processing times. Another possible extension is to consider 
the problem with re-entry of  jobs on some of  the 
machines on the first stage.  
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