
International Journal of Operations Research Vol. 3, No. 2, 109−119 (2006)

A Hybrid Tabu Search Heuristic for the Two-Stage Assembly
Scheduling Problem

Fawaz S. Al-Anzi1, ∗ and Ali Allahverdi2

1Department of Computer Engineering, Kuwait University, P.O. Box 5969, Safat, Kuwait

2Department of Industrial and Management Systems Engineering, Kuwait University, P.O. Box 5969, Safat, Kuwait

Received January 2006; Revised April 2006; Accepted May 2006

AbstractIn this paper, we address the two-stage assembly scheduling problem where there are m machines at the first
stage and an assembly machine at the second stage. The objective is to schedule the jobs on the machines so that total
completion time of all n jobs is minimized. Optimal solutions are obtained for two special cases. A simulated annealing
heuristic, a tabu search heuristic, and a hybrid tabu search heuristic are proposed for the general case. The proposed
heuristics are compared with the existing heuristics and shown to be more efficient. The computational analysis shows that
the proposed hybrid tabu search heuristic improves the error rate by about 60 and 90 percent over tabu search and
simulated annealing heuristics, respectively, where the CPU time of all the three heuristics is almost the same.
KeywordsScheduling, Assembly flowshop, Total completion time, Simulated annealing, Tabu search

∗ Corresponding author’s email: alanzif@eng.kuniv.edu.kw
1813-713X copyright © 2006 ORSTW

1. INTRODUCTION

In a two-stage assembly flowshop scheduling problem,
there are n jobs where each job has m + 1 operations and
there are m + 1 different machines to perform each of
these operations. Each machine can process only one job
at a time. For each job, the first m operations are conducted
at the first stage in parallel and a final operation in the
second stage. Each of m operations at the first stage is
performed by a different machine and the last operation at
the second stage may start only after all m operations at the
first stage are completed. The two-stage assembly
scheduling problem has several applications in industry.
Potts et al. (1995) described an application in personal
computer manufacturing where central processing units,
hard disks, monitors, keyboards, and etc. are manufactured
at the first stage, and all the required components are
assembled to customer specification at a packaging station
(the second stage). Lee et al. (1993) described another
application in a fire engine assembly plant. The body and
chassis of fire engines are produced in parallel, in two
different departments. When the body and chassis are
completed and the engine has been delivered (purchased
from outside), they are fed to an assembly line where the
fire engine is assembled.

Another practical application of this problem is possibly
in the area of distributed database systems. In recent years,
there has been a rapid trend toward the distribution of
computer systems over multiple sites that are
interconnected via a communication network, Elmasri and
Navathe (1999). It is common with current technology to

develop forms or reports that require tens of embedded
queries that retrieve information from different sites on the
networks and assemble them in one final report, Ceri and
Pelagatti (1984). For this scheduling problem, it may be
possible to look at the problem from a higher level of
abstraction. The details about database and multimedia
servers that are typically addressed at the server level, e.g.,
memory caching, disk scheduling etc., is not considered,
see Figure 1.

This is an on-line problem where requests keep on
arriving. However, a static version of the problem can be
assumed where there is a fixed number of requests for a
given period of time. This assumption is not restrictive
since the requests are collected until the system becomes
available from the previous batch of requests. Once it
becomes available, the batch of accumulated requests are
considered for processing next. Hence, this can be
considered as a static system within a window of time that
is equivalent in duration to the time taken to process the
previously collected batch of requests.

The two-stage assembly flowshop scheduling problem
was introduced independently by Lee et al. (1993) and
Potts et al. (1995). Lee et al. (1993) considered the problem
with m = 2 while Potts et al. (1995) considered the problem
with an arbitrary m. Both studies addressed the problem
with respect to makespan minimization and both proved
that the problem with this objective function is NP-hard in
the strong sense for m = 2. Lee et al. (1993) discussed a
few polynomially solvable cases and presented a branch
and bound algorithm. Moreover, they proposed three
heuristics and analyzed their error bounds. Potts et al.

International Journal of
Operations Research

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

110

(1995) showed that the search for an optimal solution may
be restricted to permutation schedules. They also showed
that any arbitrary permutation schedule has a worst-case
ratio bound of two, and presented a heuristic with a
worst-case ratio bound of 2 − 1/m. Hariri and Potts (1997)
also addressed the same problem, developed a lower bound
and established several dominance relations. They also
presented a branch and bound algorithm incorporating the
lower bound and dominance relations. Another branch and
bound algorithm was proposed by Haouari and Daouas
(1999). Sun et al. (2003) also considered the same problem
with the same makespan objective function and proposed
heuristics to solve the problem. Koulamas and Kyparisis
(2001) generalized the two-stage problem to a three-stage
assembly scheduling problem. They proposed several
heuristics and analyzed the worst-case ratio bounds of the
proposed heuristics for the makespan problem.

Tozkapan et al. (2003) considered the two-stage
assembly scheduling problem but with the total weighted
flowtime performance measure. They showed that
permutation schedules are dominant for the problem with
this performance measure. They developed a lower bound
and a dominance relation, and utilized the bound and
dominance relation in a branch and bound algorithm. They
also proposed two heuristics to find an upper bound for
their branch and bound algorithm. They indicated by
computational analysis that problems with up to 20 jobs
and m = 10 can be solved in a reasonable time with their
proposed branch and bound algorithm. They suggested

developing efficient heuristics for large sized problems.
In this paper, we consider the same problem that

Tozkapan et al. (2003) addressed. We propose two
algorithms and show that one algorithm is optimal with
total completion time criterion under certain conditions.
We also propose a tabu search and a simulated annealing
heuristic for the problem. Moreover, we propose a hybrid
tabu search heuristic and show by computational analysis
that the proposed hybrid tabu search heuristic is more
efficient and can easily be used for large sized problems.

2. FORMULATION AND THEORETICAL RESULTS

We assume that n jobs are simultaneously available at
time zero and that preemption is not allowed, i.e., any
started operation has to be completed without
interruptions. Each job consists of a set of m + 1
operations. The first m operations are completed at stage
one in parallel while the last operation is performed at
stage two. Let
ti, j: operation time of job i on machine j, i = 1, …, n, j =

1, …, m,
t[i, j]: operation time of the job in position i on machine j,
pi: operation time of job i on assembly machine,
p[i]: operation time of the job in position i on assembly

machine,
C[i]: completion time of the job in position i.

Machine #1
(Server #1)

Data

Data DataData
Assembly Machine

(Backend Database Server)

Machine #2
(Server #2)

Machine #m
(Server #m)

Data Data

Distributed/Backend Database
Communication

Jobs assembled

Job #2Job #1 Job #n

Figure 1. A two stage assembly(distributed database) architecture.

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

111

Note that job k is complete once all of its operations tk,j
(j = 1, …, m) and pk are completed where the operation pk
may start only after all operations tk,j (j = 1, …, m) have
been completed. Tozkapan et al. (2003) showed that
permutation schedules are dominant with respect to total
flowtime (completion time) criterion. Therefore, we restrict
our search for the optimal solution to permutation
schedules. In other words, the sequence of jobs on all of
the machines, including the assembly machine, is the same.
 It can be shown that the completion time of the job in
position j is as follows:

[] [,] [1] [] [0]1,..., 1

max max , , where 0.
j

j i k j jk m i

C t C p C−= =

   = + =   
   

∑

In the following we give two algorithms to find a

solution for the problem. For the general case, their
performances will be compared with those of the
heuristics to be proposed in the next section as well as
those of the previously known two upper bounds of
Tozkapan et al. (2003) that was used in their branch and
bound algorithm.

Algorithm 1.
Step 1. Set π 1 = {all the jobs}, π2 = {empty}
Step 2. For j = 1..n − 1 do
Step 3. For all 1i π∈ , compute

1

[,] 2 ,1,..., 1

max () ,
j

i r k i kk m r

T t tπ
−

=
=

 
= + 

 
∑

where [,] 2()r kt π denotes operation time of the job
in position r on machine k in sequence π2. Assign
the job with the smallest Ti to the jth position of the
sequence π2, and remove this job from the sequence
π1. In case of ties, assign the job with the smallest pi
to the jth position of the sequence π2.

Step 4. End for
Step 5. The sequence π2 is the solution.

The above algorithm assigns the job, among the
unassigned jobs, to the next available position of a partial
sequence such that the maximum completion time on the
first stage machines is minimum given that a partial
sequence has already been obtained. The intuition behind
this is that a job cannot start processing on the second
stage unless all its operations on the first stage have been
completed. Therefore, it is desired that this duration is as
small as possible. It is important to note that the above
algorithm ignores the processing time of a job on the
second stage. The following algorithm (Algorithm 2) takes
that also into account.

Algorithm 2.
Algorithm 2 is similar to Algorithm 1 except at Step 3
where Ti’s are computed as follows:

1

[,] 2 ,1,..., 1

max () .
j

i r k i k ik m r

T t t pπ
−

=
=

 
= + + 

 
∑

Notice that Algorithm 1 ignores the processing times of

the jobs on the assembly machine while Algorithm 2 takes
this into account. It is important to note that when the
processing times of the jobs on the assembly machine are
dominant, then, one expects that it has to explicitly be
taken into account.

If the conditions given in the following theorem
(Theorem 1) are satisfied, then the first stage dominates
the second one, and hence, an optimal sequence can be
obtained by considering the first stage processing times
only. On the other hand, when the second stage dominates
the first one, then an optimal sequence can be obtained by
sequencing the jobs based on their processing times of the
second stage, which is described in Theorem 2.

Theorem 1. Algorithm 1 minimizes the total completion
time if

,1,..., 1,..., 1,...,
min max{ } max{ }.i k ji n k m j n

t p
= = =

  ≥  

Proof. Let

1

[,] [] 1 21,..., 1 1

max , and max{ , , ..., }.
j j

j i k i j jk m i i

t pσ σ σ σ
−

=
= =

 
= − ∆ = 

 
∑ ∑

Then it can be shown that

[] []
1

j

j i j
i

C p
=

= + ∆∑

Notice that

{ }1 [,] [1]1,...,
maxj j j k jk m

t pσ σ − −=
= + −

Therefore, 1 ,j jσ σ −≥ since { }[,] [1]1,...,

max j k jk m
t p −=

≥ as a

result of the assumption that

,1,..., 1,..., 1,...,
min max{ } max{ }.i k ji n k m j n

t p
= = =

  ≥  

This means that .j jσ∆ =
Therefore,

[] [] []
1 1

j j

j i j i j
i i

C p p σ
= =

= + ∆ = +∑ ∑

1

[] [,] []1,...,1 1 1

max
j j j

i i k ik mi i i

p t p
−

=
= = =

 
= + − 

 
∑ ∑ ∑

[,] []1,...,1 1

max .
j j

i k jk mi i

t p
=

= =

 
= + 

 
∑ ∑

Given the completion times of the jobs, the total
completion time (TCT) can be computed as:

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

112

[]
1

[,] []1,...,1 1 1 1

1

[,] [,] []1,...,1 1 1 1

max

max .

n

j
j

j jn n

i k jk mj i i j

j jn n

i k j k jk mj i i j

TCT C

t p

t t p

=

== = = =

−

== = = =

=

 
= + 

 
 

= + + 
 

∑

∑∑ ∑ ∑

∑∑ ∑ ∑

Note that the term []
1

n

j
j

p
=

∑ is constant and

independent of a sequence. Hence, the minimization of
TCT is equivalent to the minimization of the term

1

[,] [,]1,...,1 1 1

max .
j jn

i k j kk mj i i

t t
−

=
= = =

 
+ 

 
∑∑ ∑ Algorithm 1 step by step

builds a sequence such that this double summation is
minimized. Therefore, the sequence obtained by Algorithm
1 is optimal.

Theorem 2.
Arranging jobs in non-decreasing (increasing) order of pi

minimizes TCT if ,1,..., 1,...,
max max { }i ki n k m

t
= =

 
   1,...,

min { }jj n
p

=
≤ and if

job i where
1,...,

min{ }i jj n
p p

=
= satisfies ,1,...,

max{ }i kk m
t

=

,1,...,
1,...,

max { }.j kj n
k m

t
=
=

≤

Proof.

If , 1,...,1,..., 1,...,
max max{ } min{ }i k jj ni n k m

t p
== =

  ≤  
, then 1 [1,]1,...,

max{ }j kk m
tσ

=
∆ = = .

Therefore,

[] []
1

j

j i j
i

C p
=

= + ∆∑ [] [1,]1,...,1

max { }
j

i kk mi

p t
==

= +∑

[] [1,]1,...,1 1 1

[] [1,]1,...,1 1

max { }

 (1) max { }.

jn n

i kk mj i j

n n

j kk mj j

TCT p t

n j p t

== = =

=
= =

= +

= − + +

∑∑ ∑

∑ ∑

Clearly the first term of TCT is minimized by arranging the
jobs in increasing order of p[i] and the second term is
minimized by the fact that job i where

1,...,
min{ }i jj n

p p
=

=

satisfies , ,1,..., 1,...,
1,...,

max{ } max { }.i k j kk m j n
k m

t t
= =

=

≤

3. HEURISTICS

The two-stage assembly scheduling problem with total
flowtime (completion time) criterion was addressed only by
Tozkapan et al. (2003). They proposed two heuristics to
find an upper bound for their proposed branch and bound
algorithm. We refer to their heuristics in this paper as
TKC1 and TKC2 denoting their first and second upper

bounds, respectively.
In this section, we propose three heuristics for the

problem. The first proposed heuristic is a simulated
annealing heuristic, the second is a tabu search heuristic,
and the third is a hybrid tabu search heuristic. All three
heuristics start with a given initial sequence and iteratively
improve on it until a stopping criterion is met. Hence, it is
important to start with a good sequence. In the following
we give the description of initial sequences that will be
used in all the three heuristics.

3.1 Initial sequences

One initial sequence is obtained by ordering all the jobs
in increasing order of pi. This initial sequence is called S1.
It is expected that when assembly machine dominates the
first stage machines (i.e., when processing times on
assembly machine are larger than those of the first stage
machines), then, ordering the jobs based on Shortest
Processing Time (SPT) on the assembly machine will yield
a good solution. The SPT rule is known to perform well in
general for total completion time criterion. The second
initial sequence is obtained by considering the case that the
first stage machines dominate the assembly machine. In
this case, the sequence is obtained by ordering the jobs in
increasing order of ,1,...,

max{ }i kk m
t

=
which is called S2. A third

sequence is obtained by ordering the jobs in increasing
order of ,1,...,

max{ }i k ik m
t p

=
+ where both stages are taken into

account. This sequence is called S3.

3.2 Simulated annealing heuristic (SA)

Simulated annealing has been used to solve scheduling
problems, e.g., Sadegheih (2006), Low (2005), and Mika et
al. (2005). The main idea behind the proposed simulated
annealing heuristic is to have a number of iterations where
in every iteration of the heuristic there is a single random
pair exchange in the sequence (other neighborhoods are
used in different versions of simulated annealing). If the
exchange improves the objective function, then it accepts
the exchange and the new sequence is preserved. If the
objective function does not improve, then it is only allowed
to accept the exchange with some small probability p. As
the number of iterations increases, the probability p for
which the heuristic is allowed to accept an exchange that
does not improve the objective function is reduced
exponentially. This reduction in the probability is usually
expressed as a function of a start temperature (T1) that is
reduced by a cooling factor to reach a final (freezing)
temperature. Notice that the temperature cooling factor
used in the proposed heuristic is exponential. However, in
a general SA heuristic, it needs not to have an exponential
cooling factor. This technique of reducing the probability
of accepting non-improving exchanges has proven to be
very useful in escaping local optimum’s during the course
of search for global optimum. The following is an
algorithmic description of the heuristic.

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

113

Simulated Annealing Heuristic (SA)

Begin

Let T1 = 0.1
Select the best sequence among S1, S2, and S3 as the
current sequence
While T1 ≥ 0.0001
Begin

Repeat 50 times
Begin
Let L1 = value of the objective function with current
sequence

Pick two random positions j and k
Swap jobs in the positions of j and k
Let L2 = value of the objective function after the swap

If L2<L1 then accept swap
If L2>L1 then accept the move with probability f

where d = 2 1
1

L L
L
−

f = / 1d Te−
End Repeat
Let T1 = T1×0.98
End While

End Heuristic

Setting the parameters for the proposed simulated
annealing heuristic is essential in achieving a good
performance. An initial estimate for the best value of a
given parameter is obtained by changing the values of that
parameter while keeping all other parameters as constant.
We used the following values as initial estimates of the
parameters; (T1 = .5, .1, and .01), (cooling factor = 0.99,
0.98, 0.97, 0.96, and 0.95), and (final temperature = 0.005,
0.001, 0.0005, 0.0001, 0.00005, 0.00001). Once these initial
values are determined, then, the method of factorial
experimental design (three values for each parameter
including the initial best value of that parameter, one value
above and one value below that value) is used to fine tune
the values of the parameters. After these experimentations,
the parameters for the simulated annealing heuristic are set
as follows; the initial temperature T1 is set to 0.1, the
cooling factor is set to 0.98, the final temperature is set to
0.0001, and the number of iterations per fixed temperature
is set to 50 since not significant improvement has been
observed beyond this value.

Finding an initial sequence for simulated annealing
heuristics is common in the scheduling literature. For
example, Sridhar and Rajendran (1993) used a similar
approach for the hybrid flowshop scheduling problem with
total completion time criterion. Sridhar and Rajendran
(1993) first obtained an initial sequence, then, used a
similar simulated annealing heuristic to find a solution.
Note that the two-stage assembly flowshop problem has
some similarity with the two-stage hybrid flowshop
problem with m machines on the first stage and one

machine on the second stage. In the hybrid problem, a job
can be processed by any one of the m machines at the first
stage before it is processed on the machine at the second
stage. On the other hand, in a two-stage assembly
flowshop problem each job has to be processed on all the
m machines on the first stage before it can be processed at
the assembly machine.

3.3. Tabu search heuristic (Tabu)

Some scheduling problems have been solved by using
different algorithms including Tabu search heuristic, e.g.,
Al-Turki et al. (2001), Al-Fawzan and Haouari (2005), Ruiz
and Maroto (2005), and Liaw (2003). The main idea behind
a tabu search heuristic is to have a large number of
iterations, where in every iteration of the heuristic there is
a choice of a best sequence from neighborhood of the
current sequence. The heuristic is only allowed to choose
the new sequence if this sequence has the best objective
function of the neighborhood of the current sequence and
the new move is not in the previous h iterations. The last h
moves are kept in a list for checking. This list is called the
tabu list. This technique has been proven to be very useful
for escaping loops as well as escaping a local optimum
during the course of search for a global optimum.

We use an example of scheduling five jobs to illustrate
the concept of neighborhood of a sequence for our
problem (in general, for any scheduling problem). Let us
assume that at some point of time we have three sequences
Seq-1, Seq-2, and Seq-3 as follows:

Seq-1 = [2, 3, 4, 1, 5]
Seq-2 = [2, 5, 4, 1, 3]
Seq-3 = [2, 4, 1, 3, 5]

In the above example, it is easy to see that sequences
Seq-1 and Seq-2 are closer to each other than sequences
Seq-1 and Seq-3. This is because, we can obtain Seq-2 from
Seq-1 by exchanging jobs 3 and 5 in the sequence while to
obtain Seq-3 from Seq-1 one needs to reorder jobs 3, 4 and
1. In this context, we define the distance between two
sequences as the number of mismatches between the
sequences. In the above example, the distance between
Seq-1 and Seq-2 is 2 while that of Seq-1 and Seq-3 is 3.
Notice that the minimum distance we can achieve
according to this definition is 2 for any sequence. Hence, in
our tabu heuristic, the neighborhood of a sequence can be
defined as all sequences that have a distance of 2 from the
current sequence. A complete set of neighborhood of
distance two can be achieved by simply swapping all pairs
of jobs in a sequence.
The following is an algorithmic description of the heuristic.

Tabu Search Heuristic (Tabu)

Begin

Initialize Tabu h list with maximum size of 4
Select the best sequence among S1, S2, and S3 as the
current sequence

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

114

Let L1 = value of the objective function with initial
sequence
Let T1 = 0.1

While T1 ≥ 0.0001
Begin

Repeat 50 times
Begin
Pick two random positions j and k where (j, k) is not
in the Tabu list h
Swap jobs in the positions of j and k
Let L2 = value of the objective function with the
sequence after the swap
Set j2 = j and k2 = k
Swap back jobs in the positions of j and k

For all possible combinations of j and k (i.e., explore
all neighborhood)

If (j, k) is not in the Tabu list then
Begin

Swap jobs in the positions of j and k
Let L3 = value of the objective function after the swap

If L3 < L2 then
Begin

Set L2 = L3, j2 = j and k2 = k
End If

Reverse swap

End If
End For
Swap jobs in the positions of j2 and k2
Add (j2, k2) to front of Tabu
If the Tabu maximum list size is exceeded, then delete
the item at the end of the list h
Update L1 = value of the objective function with
current sequence

End Repeat
Let T1 = T1*0.98
End While

End Heuristic

In the above description of the heuristic, a
neighborhood of distance 2 is explored. This step requires
examining all possible combinations of pairs of two jobs.
The neighborhood concept can be extended to explore a
distance more than 2. For example, in a neighborhood of
distance 3, it is needed to inspect all possible combinations
of triplicates of three jobs. Since a neighborhood of
distance more than 2 requires significantly more
computational time, we have chosen to use a neighborhood
of distance 2 in this paper.

Note that the parameter T1 is only used as a geometric
iteration index. T1 specifies the number of iterations that is
required by the outer most loop of the Tabu algorithm.
This is used in order to have the exact number of iterations
that the other two heuristics have in order to have a fair
comparison (i.e., to have the same computational time).

For the proposed tabu search heuristic, setting the
parameters is essential in achieving a good performance.
After some experimentations as explained earlier in section
3.2, the parameters for the tabu search heuristic are set as
follows; the total number of iterations is set to the same
value of simulated annealing heuristic (for a fair
comparison), and the tabu list size is set to four. The tabu
list size of four was found to be the best performing value
for the tested range of 1 to 7.

3.4 A hybrid tabu search heuristic (H-tabu)

The main idea behind the hybrid tabu search heuristic is
to introduce the concept of probability of accepting
exchanges that are not necessarily of the best objective
function of the neighborhood of the tabu search heuristic.
This concept was introduced into the tabu search by
looking at the main concept behind the simulated
annealing heuristic. This concept was integrated into the
tabu search, which we call a hybrid tabu search heuristic.
The hybrid tabu search heuristic is allowed to accept
exchanges that are not in the tabu list. As in tabu search, an
exchange is allowed if this sequence has the best objective
function of the neighborhood of the current sequence and
the new sequence is not in the previous h iterations. It is
also allowed in the hybrid tabu search heuristic to have
exchanges of a second type. The second type is an
exchange that is not in the tabu list and does not
necessarily have the best value of the objective function
with a small probability p. This probability is reduced
exponentially as the search for the global optimum
progresses. The following is an algorithmic description of
the heuristic.

Replace the following lines of code form the regular
tabu search heuristic:

If L3 < L2 then
Begin

Set L2 = L3, j2 = j and k2 = k
End If

by the following lines of code in the hybrid tabu search
heuristic:

If (L3 < L2) then
Begin

Set L2 = L3, j2 = j and k2 = k
Else

Compute d and f, where

d = 3 1
1

L L
L
−

f = 100* / 1d Te−
if (L3 > L2 and with probability f)
Begin

Set L2 = L3, j2 = j and k2 = k
End

End If

For the proposed hybrid tabu search heuristic,

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

115

parameters are set to the same values as in simulated
annealing and tabu search heuristics. Notice that the value
of f has been fine tuned by multiplying the exponent of
the simulated annealing by 100 which has been found to
have a better performance. It should be noted that when
computing the objective functions for sequences after
swapping jobs in, say positions i and j (i < j), there is no
need to compute C[1] up to C[i − 1] again since they are the
same before and after the swap. This can contribute to a
significant savings in computational time. This is true for
all the three algorithms.

4. HEURISTIC COMPARISON

The two existing heuristics of TKC1 and TKC2 and the
three proposed SA, Tabu, and H-tabu heuristics along with
the proposed two algorithms (Algorithm 1 and Algorithm
2) were implemented in C under GCC-3.4.2 compiler using
the built-in math library. The machine used was a Sun Fire
V880 with 4 CPU processors of 900MHz running under
Solaris Version 9.0 operating system with 8GB RAM.
Heuristics and algorithms are evaluated with respect to
average error, standard deviation of the error, and the
percentage of times yielding the best solution.

The processing times were randomly generated from a
uniform distribution (0, 100) on all the m machines on the
first stage while from a uniform distribution (1, 100) on the
last stage. The reason for using a uniform distribution (0,
100), rather than (1, 100), on the first stage machines is that
it could be that some of the jobs may not necessarily need
to be processed by all the machines at the first stage. In the
scheduling literature, the use of uniform distribution is
common, e.g., Wang et al. (1997), Pan and Chen (1997),
Al-Anzi and Allahverdi (2001), and Allahverdi and Al-Anzi
(2002). The reason for using a uniform distribution with a
wide range is that the variance of this distribution is large
and if a heuristic performs well with such a distribution, it
will most likely perform well with other distributions.
However, in order to test the heuristics and algorithms for
other types of data, we also consider the cases when
processing times follow exponential distribution.

Problem data were generated for a different number of
jobs for the range of 20 to 120 in increment of 20.
Different number of machines at the first stage have been
considered for experimentation to observe the behavior of
the heuristic and algorithms. We vary the number of
machines at the first stage as 2, 4, 6, or 8. We compare
the performance of the heuristics using three measures:
average error (Error), standard deviation (Std), and the
percentage of the number of the best solutions (NBS).
The error is defined as (Heuristic Solution − Best
Solution)/(Worst Solution − Best Solution). Notice that
according to this definition, the best performing heuristic
will have an error of zero while the worst one will have an
error of 100 %. Thirty replicates were generated for each
instance of the twenty four (6 × 4) combinations of the
number of jobs and machines.

Tables 1 and 2 show the results of running the existing

and the proposed heuristics and algorithms for different
number of jobs and machines with respect to the error and
standard deviation, respectively. Each entry in the tables
represents the average of the thirty replicates. Each
heuristic and algorithm is evaluated for the same
configuration to ensure accurate assessment of the
different heuristics. It is clear from the tables that, as
expected, TCK1 and TCK2 did not perform well since
they were developed as upper bounds for a branch and
bound algorithm.

Algorithm 1 and Algorithm 2 also did not perform well
since they were designed for special cases. Table 2 shows
that the standard deviation of Algorithm 1 is high
compared to that of TCK1, TCK2, and Algorithm 2. This
means that for some replicates where the special
conditions (stated in Theorem 1) were nearly satisfied, the
algorithm performed well (error was small) while for some
others it performed badly. In order to further investigate
the performance of the heuristics where it is more likely
that the conditions are satisfied, two other processing time
distributions have been tested. Table 3 illustrates the results
of these distributions for 40 jobs where U(a, b; c, d) means
the processing time distributions of the jobs on the first
stage is uniform between a and b and on the second stage
(i.e., the assembly machine) uniform between c and d. The
average errors of Algorithm 1 for U(0, 100; 1, 100), U(0,
100; 1, 50), and U(0, 100; 1, 20) are 9.536, 1.755, and 1.676,
respectively. Note that it is more likely that the conditions
of Theorem 1 are satisfied in the cases of U(0, 100; 1, 20)
and U(0, 100; 1, 50) than that of U(0, 100; 1, 100).
Therefore, the averages of the former cases are
significantly less than that of the latter case for Algorithm
1.

The same initial sequence (i.e., the best of S1, S2, and
S3) is used in Tabu, SA, and H-tabu. The performance of
S1, S2, and S3 was also evaluated and it has been observed
that about 1, 81, and 18% of the time S1, S2, and S3
generated the best initial solution, respectively.

Figures 2-4 illustrate the performance of all heuristics
and algorithms with respect to the error, std, and NBS,
respectively. It is obvious that, as expected, SA, Tabu, and
H-tabu significantly perform better than TKC1, TKC2,
Algorithm 1, and Algorithm 2. Observe that logarithmic
scales are used in Figures 2 and 3 for clarity. Given that
three proposed heuristics (SA, Tabu, and H-tabu) take
almost the same CPU time to run (see Table 5), it can be
seen from the figures that Tabu and H-tabu perform better
than SA, in general. It is also clear that the performance of
Tabu and H-tabu gets better as the number of jobs
increases, while that of SA deteriorates significantly.
Moreover, H-tabu performs consistently better than Tabu.

For all 24 instances (4 values of m and 6 values of n), a
test of hypotheses has been conducted at a significance
level of 0.05 for comparing the mean errors of Tabu and
H-tabu. It has been found that for all the 24 instances, the
mean for H-tabu was less than that of tabu. Therefore,
H-tabu is the best heuristic.

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109-119 (2006)

116

Table 1. Average percentage deviation from the best solution for all heuristics and algorithms
n m Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2

20 2 10.375 10.592 0.395 0.152 0.864 19.639 9.143
 4 6.123 9.811 0.447 0.095 0.716 16.634 9.838
 6 5.229 8.917 0.523 0.104 0.867 14.041 9.648
 8 4.186 9.205 0.539 0.095 0.795 13.503 8.868

40 2 15.142 12.410 0.259 0.264 0.304 24.236 9.084
 4 9.597 12.575 0.176 0.294 0.613 20.182 9.734
 6 6.836 12.569 0.171 0.330 0.541 15.687 9.939
 8 6.570 11.561 0.186 0.430 0.572 15.354 10.445

60 2 14.306 11.954 0.091 1.232 0.248 24.702 9.068
 4 10.086 13.073 0.068 1.084 0.273 20.463 9.552
 6 6.701 12.553 0.060 1.177 0.292 17.384 9.694
 8 6.088 11.295 0.077 1.140 0.458 16.147 9.345

80 2 17.046 12.299 0.078 2.135 0.259 25.441 8.555
 4 10.199 13.544 0.089 2.032 0.305 20.093 9.746
 6 7.356 12.898 0.119 2.014 0.351 17.500 8.833
 8 6.763 12.458 0.085 1.934 0.478 15.962 8.791

100 2 18.245 12.133 0.092 2.944 0.214 25.555 7.234
 4 9.152 13.535 0.067 2.735 0.249 19.896 7.540
 6 7.405 12.661 0.037 2.547 0.320 17.618 7.789
 8 6.692 12.916 0.043 2.553 0.375 16.160 8.704

120 2 18.131 12.286 0.058 3.488 0.195 25.501 7.193
 4 11.241 13.893 0.043 3.436 0.362 20.541 7.674
 6 8.666 13.285 0.025 3.101 0.391 17.602 7.997
 8 5.938 12.409 0.037 2.842 0.348 15.941 8.594

Overall Avg. 9.503 12.118 0.157 1.590 0.433 18.991 8.875

Table 2. Standard deviation for all heuristics and algorithms
n m Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2

20 2 6.130 4.380 0.420 0.280 0.920 6.150 3.160
 4 4.530 4.050 0.500 0.160 0.750 4.140 3.700
 6 4.330 3.520 0.680 0.230 0.780 3.560 4.240
 8 3.610 3.380 0.580 0.160 0.840 2.330 2.530

40 2 7.540 4.330 0.320 0.240 0.360 5.360 3.090
 4 4.980 3.340 0.330 0.270 0.580 2.600 2.170
 6 4.110 3.480 0.380 0.360 0.590 2.720 2.170
 8 4.730 3.440 0.390 0.390 0.510 2.590 3.150

60 2 6.220 3.870 0.150 0.380 0.240 3.580 2.810
 4 4.680 3.480 0.170 0.430 0.310 2.570 2.820
 6 3.290 2.200 0.130 0.390 0.400 2.350 2.820
 8 3.770 2.800 0.210 0.470 0.420 2.340 2.770

80 2 6.070 2.470 0.170 0.490 0.260 3.430 2.520
 4 4.620 2.590 0.180 0.600 0.380 2.730 3.230
 6 3.900 3.050 0.220 0.410 0.300 1.940 1.610
 8 3.740 2.400 0.190 0.370 0.440 1.680 2.240

100 2 5.130 2.560 0.150 0.530 0.260 3.530 2.500
 4 4.850 2.640 0.090 0.410 0.300 1.910 2.380
 6 4.660 2.110 0.110 0.410 0.330 1.810 1.860
 8 3.850 2.630 0.140 0.480 0.390 1.840 2.410

120 2 4.310 1.960 0.130 0.580 0.240 4.030 2.360
 4 4.850 2.480 0.100 0.500 0.340 2.670 2.380
 6 4.700 2.350 0.060 0.520 0.350 1.670 1.970
 8 3.330 1.880 0.150 0.610 0.310 1.290 2.700

Overall Avg. 4.664 2.975 0.248 0.403 0.442 2.868 2.650

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109-119 (2006)

117

Table 3. Error and standard deviation comparison for different uniform distribution ranges

 TKC1 TKC2 Algorithm 1 Algorithm 2 Tabu SA H-tabu Distribution
range m Error Std Error Std Error Std Error Std Error Std Error Std Error Std

U(0,100); 2 24.236 5.360 9.084 3.090 15.142 7.540 12.410 4.330 0.304 0.360 0.264 0.240 0.259 0.320
U(1,100) 4 20.182 2.600 9.734 2.170 9.597 4.980 12.575 3.340 0.613 0.580 0.294 0.270 0.176 0.330

 6 15.687 2.720 9.939 2.170 6.836 4.110 12.569 3.480 0.541 0.590 0.330 0.360 0.171 0.380
 8 15.354 2.590 10.445 3.150 6.570 4.730 11.561 3.440 0.572 0.510 0.430 0.390 0.186 0.390

Avg. 18.865 3.318 9.801 2.645 9.536 5.340 12.279 3.648 0.508 0.510 0.330 0.315 0.198 0.355

U(0,100); 2 18.546 5.620 5.199 1.690 2.146 1.060 5.393 1.720 0.133 0.110 0.393 0.120 0.016 0.050
U(1,50) 4 16.876 3.130 7.259 2.300 1.623 0.710 5.363 1.200 0.212 0.200 0.458 0.210 0.019 0.040

 6 14.816 2.380 8.516 2.040 1.731 0.660 5.307 1.840 0.319 0.260 0.448 0.250 0.021 0.060
 8 12.881 2.590 8.397 2.660 1.521 0.630 5.102 1.380 0.325 0.290 0.424 0.270 0.053 0.120

Avg. 15.780 3.430 7.343 2.173 1.755 0.765 5.291 1.535 0.247 0.215 0.431 0.213 0.027 0.068

U(0,100); 2 20.138 6.010 4.326 1.770 1.741 0.730 2.212 0.810 0.063 0.050 0.418 0.130 0.006 0.010
U(1,20) 4 16.602 3.140 6.810 2.590 1.862 0.690 2.528 0.900 0.252 0.190 0.499 0.190 0.000 0.000

 6 15.293 2.200 7.030 2.170 1.639 0.750 2.521 0.870 0.278 0.300 0.454 0.220 0.032 0.080
 8 13.665 2.310 7.929 2.750 1.461 0.580 2.401 0.920 0.352 0.320 0.523 0.210 0.011 0.040

Avg. 16.425 3.415 6.524 2.320 1.676 0.688 2.416 0.875 0.236 0.215 0.474 0.188 0.012 0.033

Table 4. Error and standard deviation comparison for exponential and uniform distributions
 TKC1 TKC2 Algorithm 1 Algorithm 2 Tabu SA H-tabu Distribution

range m Error Std Error Std Error Std Error Std Error Std Error Std Error Std
Uniform 2 24.702 3.580 9.068 2.810 14.306 6.220 11.954 3.870 0.248 0.240 1.232 0.380 0.091 0.150

 4 20.463 2.570 9.552 2.820 10.086 4.680 13.073 3.480 0.273 0.310 1.084 0.430 0.068 0.170
 6 17.384 2.350 9.694 2.820 6.701 3.290 12.553 2.200 0.292 0.400 1.177 0.390 0.060 0.130
 8 16.147 2.340 9.345 2.770 6.088 3.770 11.295 2.800 0.458 0.420 1.140 0.470 0.077 0.210

Avg. 19.674 2.710 9.415 2.805 9.295 4.490 12.219 3.088 0.318 0.343 1.158 0.418 0.074 0.165

Exponential 2 33.983 6.450 10.375 2.740 22.261 8.600 12.486 2.840 0.528 0.600 1.285 0.570 0.029 0.100
 4 27.701 4.340 11.356 3.740 13.308 7.790 12.856 3.000 0.447 0.460 1.182 0.540 0.092 0.210
 6 23.043 3.510 10.771 2.670 10.025 7.290 11.988 3.540 0.444 0.430 0.926 0.590 0.150 0.280
 8 20.795 2.660 11.835 3.320 8.682 7.410 11.995 2.930 0.492 0.490 1.109 0.670 0.143 0.330

Avg. 26.381 4.240 11.084 3.118 13.569 7.773 12.331 3.078 0.478 0.495 1.126 0.593 0.104 0.230

Table 5. CPU time (in seconds) for all heuristics and algorithms

n Algorithm 1 Algorithm 2 H-tabu SA Tabu TKC1 TKC2
20 0.000 0.000 0.471 0.470 0.455 0.000 0.000
40 0.001 0.001 1.702 1.724 1.686 0.001 0.000
60 0.003 0.003 3.720 3.781 3.705 0.002 0.001
80 0.006 0.006 6.527 6.643 6.512 0.003 0.002
100 0.011 0.012 10.119 10.305 10.105 0.005 0.002
120 0.019 0.019 14.498 14.771 14.485 0.007 0.004
Overall Avg. 0.007 0.007 6.173 6.282 6.158 0.003 0.001

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

118

0.010

0.100

1.000

10.000

100.000

20 40 60 80 100 120
n

Er
ro

r

Algorithm-1
Algorithm-2
H-tabu
SA
Tabu
TKC1
TKC2

Figure 2. Error comparison for different n values.

0.100

1.000

10.000

20 40 60 80 100 120
n

St
d

Algorithm-1
Algorithm-2
H-tabu
SA
Tabu
TKC1
TKC2

Figure 3. Std comparison for different n values.

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

20 40 60 80 100 120
n

N
B

S

Algorithm-1
Algorithm-2
H-tabu
SA
Tabu
TKC1
TKC2

Figure 4. NBS comparison for different n values.

0.100

1.000

10.000

100.000

2 4 6 8
m

Er
ro

r

Algorithm-1
Algorithm-2
H-tabu
SA
Tabu
TKC1
TKC2

Figure 5. Error comparison for different m values.

Figure 5 shows the performance of the heuristics and

algorithms for different number of machines at the first
stage. It can be seen from the figure that the performance
of Algorithm 2, TCK2, and H-tabu is not sensitive to m
values. It can also be seen that the performance of SA
slightly decreases while that of Tabu slightly increases as m
increases. On the other hand, the performance of
Algorithm 1 and TKC1 decreases as m increases. This is
expected since Algorithm 1 only takes into account the
processing times of the jobs on the first stage while TKC1
mainly takes these processing times into account.

The comparison of heuristics and algorithms has also
been performed by generating processing times from a
skewed distribution, exponential distribution with a mean
of 70. Table 4 shows the results when n = 60 for both
uniform distribution (U(0, 100) for machines on the first
stage, and U(1, 100) for the machine on the second stage)
and exponential distribution. As can be seen from the table,
the performance of the heuristics and algorithms, in
general, is consistent for both distribution. The results for
other n values were similar and not reported in the paper
due to space limitation.

5. CONCLUSION

The two-stage assembly flowshop scheduling problem is
addressed in this paper. The objective is to schedule jobs
on machines so that the total completion time of all n jobs
is minimized. Optimal solutions are obtained for special
cases, and two algorithms are presented. Moreover, three

heuristics are proposed for the general case: a simulated
annealing heuristic, a tabu search heuristic, and a hybrid
tabu search heuristic. The computational analysis shows
that the CPU time of all the three proposed heuristics is
almost the same. The analysis further shows that the hybrid
tabu search heuristic improves the error rate significantly
over tabu search and simulated annealing heuristics.
Therefore, the hybrid tabu search heuristic could be
applied to other scheduling problems.

We assumed that setup times are negligible, and hence,
can be considered as part of job processing times. While
this assumption reflects certain applications, it adversely
affects the solution quality of many applications of
scheduling research that require an explicit treatment of
setup times, Allahverdi et al. (1999, 2006). Therefore, a
possible extension is to consider the problem addressed in
this paper where setup times are treated as separate from
processing times. Another possible extension is to consider
the problem with re-entry of jobs on some of the
machines on the first stage.

ACKNOWLEDGEMENTS

This research was supported by Kuwait University
Research Administration project number EO 02/05.

REFERENCES

1. Al-Anzi, FS. and Allahverdi, A. (2001). The relation
between three-tired client-server internet database and
two-machine flowshop. International Journal of Parallel

Al-Anzi and Allahverdi: A Hybrid Tabu Search Heuristic for the Two-Stage Assembly Scheduling Problem
IJOR Vol. 3, No. 2, 109−119 (2006)

119

and Distributed Systems and Networks, 4: 94-101.
2. Al-Fawzan, MA. and Haouari, M. (2005). A bi-objective

model for robust resource-constrained project
scheduling. International Journal of Production Economics,
96: 175-187.

3. Al-Turki, U., Fedjki, C., and Andijani, A. (2001). Tabu
search for a class of single-machine scheduling
problems. Computers & Operations Research, 28:
1223-1230.

4. Allahverdi, A. and Al-Anzi, FS. (2002). Using
two-machine flowshop with maximum lateness
objective to model multimedia data objects scheduling
problem for WWW applications. Computers & Operations
Research, 29: 971-994.

5. Allahverdi, A., Gupta, JND., and Aldowaisan, T. (1999).
A review of scheduling research involving setup
considerations. OMEGA The International Journal of
Management Sciences, 27: 219-239.

6. Allahverdi, A., Ng, CT., Cheng, TCE., and Kovalyov,
MY. (2006). A survey of scheduling problems with
setup times or costs. European Journal of Operational
Research , (to appear).

7. Ceri, S. and Pelagatti, G. (1984). Distributed Databases:
Principles and Systems. New York: McGraw-Hi.

8. Elmasri, R. and Navathe, B.(1999). Fundamentals of
Database Systems, 3rd edition. New York: Addison-Wesley.

9. Haouari, M. and Daouas, T. (1999). Optimal scheduling
of the 3-machine assembly-type flow shop. RAIRO
Recherche Operationnelle, 33: 439-445.

10. Hariri, AMA. and Potts, CN. (1997). A branch and
bound algorithm for the two-stage assembly scheduling
problem. European Journal of Operational Research, 103:
547-556.

11. Koulamas, C. and Kyparisis, GJ. (2001). The three-stage
assembly flowshop scheduling problem. Computers &
Operations Research, 28: 687-704.

12. Lee, CY., Cheng, TCE. and Lin, BMT. (1993).
Minimizing the makespan in the 3-machine
assembly-type flowshop scheduling problem.
Management Science, 39: 616-625.

13. Liaw, CF. (2003). An efficient tabu search approach for
the two-machine preemptive open shop scheduling
problem. Computers & Operations Research, 30:
2081-2095.

14. Low, C. (2005). Simulated annealing heuristic for flow
shop scheduling problems with unrelated parallel
machines. Computers & Operations Research, 32:
2013-2025.

15. Mika, M., Waligóra, G., and Weglarz, J. (2005).
Simulated annealing and tabu search for multi-mode
resource-constrained project scheduling with positive
discounted cash flows and different payment models.
European Journal of Operational Research, 164: 639-668.

16. Pan, CH. and Chen, JS. (1997). Scheduling alternative
operations in two-machine flow-shops. Journal of the
Operational Research Society, 48: 533-540.

17. Potts, CN., Sevast’janov, SV., Strusevich, VA., Van
Wassenhove, LN., and Zwaneveld, CM. (1995). The
two-stage assembly scheduling problem: complexity

and approximation. Operations Research, 43: 346-355.
18. Ruiz, R. and Maroto, C. (2005). A comprehensive

review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165:
479-494.

19. Sadegheih, A. (2006). Scheduling problem using genetic
algorithm, simulated annealing and the effects of
parameter values on GA performance. Applied
Mathematical Modelling, 30: 147-154.

20. Sridhar, J. and Rajendran, C. (1993). Scheduling in a
cellular manufacturing system: a simulated annealing
approach. International Journal of Production Research, 31:
2927-2945.

21. Sun, X., Morizawa, K., and Nagasawa, H. (2003).
Powerful heuristics to minimize makespan in fixed,
3-machine, assembly-type flowshop scheduling.
European Journal of Operational Research, 146: 498-516.

22. Tozkapan, A., Kirca, O., and Chung, CS. (2003). A
branch and bound algorithm to minimize the total
weighted flowtime for the two-stage assembly
scheduling problem. Computers & Operations Research, 30:
309-320.

23. Wang, MY., Sethi, SP., and Van De Velde SL. (1997).
Minimizing makespan in a class of reentrant shops.
Operations Research, 45: 702-7.

