
International Journal of Operations Research Vol. 3, No. 2, 120-135 (2006)

A Particle Swarm Optimization and Differential Evolution Algorithms
for Job Shop Scheduling Problem

M. Fatih Tasgetiren1, Mehmet Sevkli2,*, Yun-Chia Liang3, and M. Mutlu Yenisey4

1Department of Operations Management and Business Statistics, Sultan Qaboos University, P.O. Box 20, Al Khod 123,
Muscat Sultanate of Oman

2Department of Industrial Engineering, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey

3Department of Industrial Engineering and Management, Yuan Ze University, No. 135 Yuan-Tung Road, Chung-Li,
Taoyuan County, Taiwan 320, R.O.C.

4Department of Industrial Engineering, Istanbul Technical University, 34367, Macka, Istanbul, Turkey

AbstractIn this paper, we present particle swarm optimization (PSO) and differential evolution (DE) algorithms for the
job shop scheduling problem with the makespan criterion. The applications of PSO and DE on combinatorial optimization
problems are still considered limited, but the advantages of PSO and DE algorithms such as structural simplicity,
accessibility to practical applications, ease of implementation, speed to get the solutions, and robustness are already shown
in the literature. However, the major obstacle of successfully applying PSO and DE algorithms to combinatorial
optimization problems is due to their continuous nature. To remedy this drawback, the smallest position value (SPV) rule
presented in Tasgetiren et al.(2004a, b, c, d) is employed in both algorithms to convert continuous position values to discrete
job permutations. In order to improve the solution quality, both algorithms are also hybridized with an efficient local search
method based on a variable neighborhood search (VNS) technique. The experimental results based on the well known
benchmark instances collected from OR library show that the hybrid PSO algorithm has generated slightly better results
than its counterpart, namely, the DE algorithm. It is also shown that the hybrid PSO algorithm is either better or
competitive to the state-of-the-art methods in the literature. In addition, to the best of our knowledge, both algorithms are
the first reported applications of PSO and DE algorithms for the job shop scheduling problem in the literature.
KeywordsParticle swarm optimization, Differential evolution, Job shop scheduling, Makespan, Variable neighborhood
search

∗ Corresponding author’s email: msevkli@fatih.edu.tr
1813-713X copyright © 2006 ORSTW

1. INTRODUCTION

Scheduling, a form of decision-making, plays an
essential role in manufacturing as well as in the service
industry. A corporation must respond quickly and precisely
to the customers’ demands in order to maintain market
share. Thus, effective and efficient scheduling has become
a necessity for survival in the modern competitive
marketplace. Among the typical goals of scheduling
problems, maximizing machine utilization is not only a
measure of academic interest, but also useful and
important in practice. When considering the job shop
scheduling (JSS) problem, the general form of the classical
scheduling problems, the goal above can be intuitively
transferred to makespan minimization. Therefore, the JSS
problem with the objective function of minimizing
makespan can be stated as follows. Each of n jobs is to be
processed without preemption by m machines. Each job
consists of m operations that own a predetermined
processing order through machines. Each machine can
handle no more than one job at a time and each job must

visit each machine only once. The release time of all jobs is
zero. Set-up and knock-down times on each machine are
included in the processing time. Then, the JSS problem is
to schedule jobs that minimizes the maximum completion
time over all jobs, i.e.,

max 1,..,

max{ }jj n
C C

=
= (1)

where Cj is the completion time of job j, for j = 1, 2, ..., n.
For the computational complexity of the JSS problem,
Garey et al. (1976) proved that it is NP-hard. Small size
instances of the JSS problem can be solved with
reasonable computational time by exact algorithms such as
branch-and-bound (Carlier and Pison, 1989; Applegate and
Cook, 1991), and the time orientation approach (Martin,
1996). However, when the problem size increases, the
computational time of exact methods grows exponentially.
On the other hand heuristic algorithms have generally
acceptable time and memory requirements, but do not
guarantee optimality of the final solution, that is, a feasible

International Journal of
Operations Research

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

121

solution is obtained which is likely to be either optimal or
near-optimal. Therefore, the most recent research on JSS
problems has been focused on heuristic algorithms. The
solution techniques of heuristic algorithms can be broadly
classified into two groups: meta-heuristics and local search
type heuristics. In the first category, Simulated Annealing
(SA) (Van Laarhoven et al., 1992; Yamada and Nakano,
1996; Satake et al., 1999; Steinhöfel et al., 1999, 2002;
Aydin and Fogarty, 2004), Genetic Algorithm (GA)
(Yamada and Nakano, 1992; Bierwith, 1995; Groce et al.,
1995; Dorndorf and Pesch, 1995; Ikeda and Kobayashi,
2000; Murovec and Šuhel, 2004), Tabu Search (TS)
(Dell’Amico and Trubian, 1993; Taillard, 1994; Nowicki
and Smutnicki, 1996; Pezzella and Merelli, 2000; Murovec
and Šuhel, 2004), Ant Colony Optimization (ACO)
(Colorni et al., 1994; Blum and Sampels, 2004), hybrid SA
and GA (Kolonko, 1999; Wang and Zheng, 2001), Neural
Network (NN) (Zhou et al., 1991; Satake et al., 1994) have
provided abundant research. The latter group consists of
shifting bottleneck procedure (Adams et al., 1988; Huang
and Yin, 2004), guided local search (Balas and
Vazacopoulos, 1998), constraint propagation (Brinkkötter
and Brucker, 2001; Dorndorf et al. 2002), and parallel
Greedy Randomized Adaptive Search Procedure (GRASP)
(Aiex et al., 2003). The comprehensive survey of the JSS
problem can be found in Aarts and Lenstra (1997),
Blazewicz et al. (1996), and Jain and Meeran (1999).

Particle Swarm Optimization (PSO) and Differential
Evolution (DE) are two of the latest metaheuristic
methods. PSO is based on the metaphor of social
interaction and communication such as bird flocking and
fish schooling. PSO is different from other
evolutionary-type methods in a way that it does not use the
filtering operation (such as crossover and/or mutation),
and the members of the entire population are maintained
through the search procedure so that information is
socially shared among individuals to direct the search
towards the best position in the search space. In a PSO
algorithm, each member is called a particle, and each particle
moves around in the multi-dimensional search space with a
velocity constantly updated by the particle’s experience, the
experience of the particle’s neighbors, and the experience
of the whole swarm. Like the real-coded PSO algorithm,
candidate solutions in DE are represented as individuals
based on floating-point numbers. In the DE algorithm, the
target population is perturbed with a mutant factor, and the
crossover operator is then introduced to combine the
mutated population with the target population so as to
generate a trial population. Then the selection operator is
applied to compare the fitness function value of both
competing populations, namely, target and trial populations.
The better individuals among these two populations
become members of the population for the next generation.
This process is repeated until a convergence occurs.

PSO and DE were both first introduced to optimize
various continuous nonlinear functions by Eberhart and
Kennedy (1995) and Storn and Price (1995, 1997),
respectively. PSO has been successfully applied to a wide
range of applications such as automated drilling

(Onwubolu and Clerc 2004), lot sizing problems
(Tasgetiren and Liang 2003), mass-spring systems
(Brandstatter and Baumgartner 2002), neural network
training (Van den Bergh and Engelbecht 2000),
permutation flowshop sequencing problems (Tasgetiren et
al. 2004a, 2004d), power and voltage control (Yoshida et al.,
2000; Abido, 2002), single machine total weighted tardiness
problems (Tasgetiren et al., 2004c), supplier selection and
ordering problems (Yeh, 2003), and task assignment
(Salman et al., 2003). DE’s applications consist of
aerodynamic design (Rogalsky et al., 2000), digital filter
design (Storn, 1999), earthquake relocation (Ruzek and
Kvasnicka, 2001), microprocessor synthesis (Rae and
Parameswaran, 2001), neural network learning (Masters
and Land, 1997), and permutation flowshop sequencing
problems (Tasgetiren et al., 2004b). More comprehensive
surveys of PSO can be found in Kennedy et al. (2001), DE
in Lampinen (2001), and Onwubolu and Babu (2004).

The applications of PSO and DE on combinatorial
optimization problems are still considered limited, but the
advantages of PSO and DE algorithms such as structural
simplicity, accessibility to practical applications, ease of
implementation, speed to get the solutions, and robustness
are shown in the literature. However, the major obstacle
of successfully applying PSO and DE algorithms to
combinatorial problems in the literature is due to their
continuous nature. To remedy this drawback, Tasgetiren et
al. (2004a, 2004b, 2004c and 2004d) present the smallest
position value (SPV) rule, borrowed from the random key
representation of (Bean, 1994), for the PSO and DE
algorithms to convert a continuous position vector to a
discrete job permutation. This has been effectively applied
to the single machine total weighted tardiness (SMTWT)
problem and the permutation flowshop sequencing
problem (PFSP). Following the successful applications
above, this paper aims at employing PSO and DE in
solving the job shop scheduling problem.

The organization of this paper is as follows. Section 2
and 3 introduce the PSO and DE algorithms respectively.
Neighborhood structure of both algorithms is presented in
Section 4 followed by experimental results given in Section
5. Finally, Section 6 summarizes the concluding remarks.

2. PARTICLE SWARM OPTIMIZATION

ALGORITHM FOR JSS PROBLEM

In a PSO algorithm for the JSS problem, the initial
population is generated randomly. Then the SPV rule for
each particle is used to convert the continuous position
values to its permutation of operations. Then the job
repetition vector is obtained to evaluate the fitness value,
the makespan, of the particle. After evaluation, the PSO
algorithm repeats the following steps iteratively.

Initially, each individual with its position, velocity, and
fitness value is assigned to its personal best (i.e., the best
value of each individual found so far). The best individual
in the whole swarm with its position and fitness value, is,
on the other hand, assigned to the global best (i.e., the best
particle in the whole swarm). Then each particle updates its

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

122

velocity based on the experiences of the personal best and
the global best in order to update the position of each
particle with the velocity currently updated. Corresponding
permutation of operations and job repetition are
determined through the SPV rule so that an evaluation is
again performed to compute the fitness of the particles in
the swarm. In addition, a local search may apply to a
certain group of particles in the swarm to enhance the
exploitation of search space. This process is terminated
with a predetermined stopping criterion. This study follows
the gbest model of Eberhart and Kennedy (1995) with the
inclusion of the SPV rule in the algorithm. Pseudo code of
the PSO algorithm for the JSS problem is given in Figure
1.

Initialize parameters
Initialize population
Find permutation of operations
Find job repetition
Evaluate
Do {

Find personal best
Find global best
Update velocity
Update position
Find permutation of operations
Find job repetition
Evaluate
Apply local search
} While (Not Termination)

Figure 1. PSO algorithm with local search for JSS problem.

The basic elements of PSO algorithm is summarized as
follows:
Particle: t

iX denotes the ith particle in the swarm at
iteration t and is defined as 1 2 ,[, , ...,]t t t t

i i i i nmX x x x= , where
t
ikx is the position value of the ith particle with respect to

the kth dimension (k = 1, 2, ..., nm).
Population: tX is the set of NP particles in the swarm at
iteration t, i.e., 1 2[, , ...,]t t t t

NPX X X X= where NP denotes
the population size.
Permutation of operations: A new variable t

iϕ , which is
a permutation of operations of jobs implied by the particle

t
iX is introduced. It can be described as

1 2 ,[, , ...,]t t t t
i i i i nmϕ ϕ ϕ ϕ= , where ϕ t

ik is the assignment of
operation k of the particle i in the permutation of
operations at iteration t.
Job repetition: Another variable π t

i , which is a repetition
of jobs implied by the particle t

iX can be described as

1 2 ,[, , ...,]t t t t
i i i i nmπ π π π= , where π t

ik is the assignment of
job j of the particle i repeating m times in the job repetition
vector at iteration t.
Particle velocity: t

iV is the velocity of particle i at
iteration t and is defined as 1 2 ,[, , ...,]t t t t

i i i i nmV v v v= , where

t
ikv is the velocity of particle i at iteration t with respect to

the kth dimension (k = 1, 2, ..., nm).
Inertia weight: tw is a parameter to control the impact of
the previous velocities on the current velocity.
Fitness function: In a minimization problem, the
objective function is ()π ←t t

i i if X where t
iπ is the

corresponding job repetition vector of particle t
iX .

Personal best: t
iP represents the best position of the

particle i with the best fitness value until iteration t, and is
called the personal best. For each particle in the swarm, t

iP
can be determined and updated at each iteration t. In a
minimization problem with the objective function

()t t
i if Xπ ← , the personal best t

iP of the ith particle is
obtained such that 1 1() ()t t t t

i i i if P f Pπ π − −← ≤ ← for i = 1,
2, ..., NP. To simplify, we denote the fitness function of the
personal best as ()pb t t

i i if f Pπ= ← . For each particle, the
personal best is defined as 1 2 ,[, , ...,]t t t t

i i i i nmP p p p= where t
ikp

denotes the position value of the ith personal best with
respect to the kth dimension (k = 1, 2, ..., nm).
Global best: tG denotes the best position of the globally
best particle achieved so far in the whole swarm. Therefore,
the global best can be obtained such that

() ()t t t t
i if G f Pπ π← ≤ ← for i = 1, 2, ..., NP. To simplify,

the fitness function of the global best is denoted as
()gb t tf f Gπ= ← . The global best is then defined as

1 2[, , ...,]t t t t
nmG g g g= where t

kg is the position value of the
global best with respect to the kth dimension (k = 1, 2, ...,
nm).

2.1 Solution representation

In this paper, an operation-based representation of Cheng
et al. (1996) was used encoding a schedule as a repetition of
jobs. Each dimension represents one operation of a job
appearing exactly m times in the job repetition vector π t

i .
For the n-job and m-machine problem, each particle
contains n × m number of dimensions corresponding to n
× m operations.

Particles have a continuous set of values for its
dimensions. The particle itself does not present a solution.
Instead, the smallest position value, the SPV rule of
Tasgetiren et al. (2004a, 2004b, 2004c, and 2004d) is used
first to find the permutation of operations. Then the job
repetition vector is determined by the following formula:

1
1.

t
t ik
ik n

ϕ
π

 −
= +

 (2)

Table 1 illustrates the solution representation of

particle t
iX of the PSO algorithm for the 3-job 3-machine

problem containing 3 × 3 = 9 operations. It should be
noted that the SPV rule converts the continuous position
values to a discrete job permutation which is the key to

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

123

enable the continuous PSO algorithms to be applied to
sequencing problems. According to the SPV rule, the
smallest position value is = −6 2.25t

ix , so the dimension k
= 6 is assigned to be the first job ϕ =1 6t

i in the
permutation t

iϕ ; the second smallest position value is

2 0.99t
ix = − , so the dimension k = 2 is assigned to be the

second job 2 2t
iϕ = in the permutation t

iϕ , and so on. In
other words, dimensions are sorted according to the
smallest position values t

ikx to construct the permutation
of operations .t

iϕ Having determined the permutation of
operations, the job repetition vector is determined. As an
example, 11

tπ value is obtained such that:

11
11

1 6 11 1 1.66 1 1 1 2.
3 3

t
t ϕ

π
 − − = + = + = + = + =

where the first part of the summation is floored to an
integer number.

Finally, an active schedule is constructed from the job
repetition vector t

iπ with the procedure given in Cheng
et al. (1996). For example, consider the example in Table 2
and suppose that a job repetition vector is given as [2 1 2 2
1 3 1 3 3] where 1 stands for job 1J , 2 for job 2J , and 3 for
job 3J . Since each job has three operations, it occurs three
times in the job repetition vector. By scanning the job
repetition vector from left to right, the kth occurrence of a
job refers to the kth operation in the routing of the job. So
the first 2 corresponds to the first operation of job J2
which will be processed on machine M1, the second 2
corresponds to the second operation of job J2 which will
be processed on machine M3, and the third 2 corresponds
to the third operation of job J2 which will be processed on
machine M2. By doing so, the corresponding machine list
can be obtained and an active schedule can be generated as
shown in Figure 2.

Table 1. Solution representation

Dimension, k 1 2 3 4 5 6 7 8 9
t
ikx 1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9
t
ikϕ 6 2 5 4 1 9 3 8 7
t
ikπ 2 1 2 2 1 3 1 3 3

Table 2. An example of 3-job × 3-machine JSS problem

 Operations

Jobs 1M 2M 3M

 Processing Times

1J 3 3 3

2J 2 3 4

3J 3 2 1
 Routing (Machines)

1J 1M 2M 3M

2J 1M 3M 2M

3J 2M 1M 3M

Figure 2. Active schedule generated from job repetition vector.

2.2 Initial population

The population of particles is constructed randomly and
uniformly for the PSO algorithm of the JSS problem. The
following formula is used to construct the continuous
position values:

()0
min max min ,ikx x x x r= + − ×

where min 4.0x = − , max 4 .0x = and r is a uniform random
number between 0 and 1. Initial continuous velocities are
generated by a similar formula as follows:

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

124

()0
min max min ,ikv v v v r= + − ×

where min max4.0 , 4 .0,v v= − = and r is a uniform random
number between 0 and 1. Continuous velocity values are
not restricted to a maximum and minimum range when
updating the velocity. The population size is the number of
dimensions. Since the objective is to minimize the
makespan, the fitness function value, ()t t t

i i if Xπ ← , is
the makespan value which is decoded from the job
repetition vector for particle i. For
simplicity, ()t t t

i i if Xπ ← is denoted as t
if .

2.3 Computational flow

The complete computational flow of the PSO algorithm
for the JSS problem is given below:
Step 1. Initialization

Set t = 0, NP = the number of dimensions, and
0 0.9.w =

Generate NP particles randomly as explained before,
0{ , 1, 2, ..., }iX i NP= where 0 0 0 0

1 2 ,[, , ...,]i i i i nmX x x x= .
Generate the initial velocities for particle i randomly
as explained before, 0{ , 1, 2, ..., }iV i NP= where

0 0 0 0
1 2 ,[, , ...,]i i i i nmV v v v= .Apply the SPV rule to find

the permutation of operations
0 0 0 0

1 2 ,[, , ...,]i i i i nmϕ ϕ ϕ ϕ= of particle 0
iX for i = 1,

2, ..., NP.
Determine the job repetition vector 0

iπ =
0 0 0
1 2 ,[, , ..,]i i i nmπ π π of particle 0

iX for i = 1, 2, ..., NP.
Evaluate each particle i in the swarm using the
objective function 0

if for i = 1, 2, ..., NP.
For each particle i in the swarm, set the personal
best to 0 0

i iP X= , where 0 0 0
1 1 [,i i iP p x= =

0 0 0 0
2 2 , ,, ...,]i i i nm i nmp x p x= = together with its best

fitness value, 0pb
i if f= for i = 1, 2, ..., NP.

Find the best fitness value among the whole swarm
such that 0min{ }l if f= for i = 1, 2, ..., NP with its
corresponding positions 0

lX . Set the global best to
0 0

lG X= such that 0 0 0
1 ,1 2 ,2 [, , ...,l lG g x g x= = =

0
,]nm l nmg x= with its fitness value gb

lf f= .
Step 2. Update iteration counter

1t t= + .
Step 3. Update inertia weight

1t tw w β−= × where β is the decrement factor
which is a constant between (0, 1).

Step 4. Update velocity
1 1 1 1 1 1

1 1 2 2() ()t t t t t t t
ik ik ik ik k ikv w v c r p x c r g x− − − − − −= + − + −

where c1 and c2 are social and cognitive parameters.
r1 and r2 are uniform random numbers between (0, 1).

Step 5. Update position
1 .t t t

ik ik ikx x v−= +

Step 6. Find permutation of operations
Apply the SPV rule to find the permutation of
operations 1 2 ,[, , ...,]t t t t

i i i i nmϕ ϕ ϕ ϕ= for i = 1, 2, ...,
NP.

Step 7. Find job repetition
Determine the job repetition vector,

1 2 ,[, , ...,]t t t t
i i i i nmπ π π π= for i = 1, 2, ..., NP.

Step 8. Update the personal best
Each particle is evaluated by using the permutation
to see if personal best will improve. That is, if

t pb
i if f< then the personal best is updated as
t t

i iP X= and pb t
i if f= for i = 1, 2, ..., NP.

Step 9. Update the global best
Find the minimum value of the personal best.
That is, min{ }, 1, 2, ..., ; t pb

l if f i NP= = l ∈
{1, 2, ..., }.NP
If t gb

lf f< , then the global best is updated as
t t

lG X= and gb t
lf f= .

Step 10. Stopping criterion
If the CPU time exceeds the maximum CPU time
limit, then stop; otherwise go to step 2.

3. DIFFERENTIAL EVOLUTION ALGORITHM

FOR JSS PROBLEM

Solution representation and initial population in the DE
algorithm are the same as the ones in the PSO algorithm
except for omitting the velocity vector in the
representation. Several variations of DE algorithms have
been introduced in the literature. We follow the
DE/rand/1/bin scheme of Storn and Price (1995) with the
inclusion of the SPV rule in the algorithm. The pseudo
code of the DE algorithm for the JSS problem is given in
Figure 3.

Initialize parameters
Initialize target population
Find permutation of operations
Find job repetition
Evaluate
Do {

Obtain mutant population
Obtain trial population
Find permutation of operations
Find job repetition
Evaluate trial population
Do selection
Apply local search
 }While (Not Termination)

Figure 3. DE algorithm with local search for the JSS
problem.

The basic elements of DE algorithm is summarized as

follows:
Target individual: t

iX denotes the ith individual in the
target population at generation t and is defined as

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

125

1 2 ,[, , ...,]t t t t
i i i i nmX x x x= , where t

ikx is the dimension value
of the ith individual with respect to the kth dimension (k =
1, 2, ..., nm).
Mutant individual: t

iV denotes the ith individual in the
mutant population at generation t and is defined as

1 2 ,[, , ...,]t t t t
i i i i nmV v v v= , where t

ikv is the dimension value
of the ith individual with respect to the kth dimension (k =
1, 2, ..., nm).
Trial individual: t

iU denotes the ith individual in the trial
population at generation t and is defined as

1 2 ,[, , ...,]t t t t
i i i i nmU u u u= , where t

iku is the dimension value
of the ith individual with respect to the kth dimension (k =
1, 2, ..., nm).
Target population: tX is the set of NP individuals in the
target population at generation t, i.e., tX =

1 2[, , ...,]t t t
NPX X X .

Mutant population: tV is the set of NP individuals in the
mutant population at generation t, i.e., tV =

1 2[, , ...,]t t t
NPV V V .

Trial population: tU is the set of NP individuals in the trial
population at generation t, i.e., 1 2[, , ...,]t t t t

NPU U U U= .
Permutation of operations: A new variable t

iϕ , which is
a permutation of the operations of jobs implied by the
particle t

iX is introduced. It can be described as

1 2 ,[, , ...,]t t t t
i i i i nmϕ ϕ ϕ ϕ= , where t

ikϕ is the assignment of
operation k of the particle i in the permutation of
operations at iteration t.
Job repetition: Another variable t

iπ , which is a repetition
of jobs implied by the particle t

iX is also introduced. It can
be described as 1 2 ,[, , ...,]t t t t

i i i i nmπ π π π= , where t
ikπ is the

assignment of job j of the particle i in the job repetition at
iteration t. Note that each job repeats m times in the
chromosome.
Mutant constant: F ∈ (0, 2)is a real number constant
which affects the differential variation between two
individuals.
Crossover constant: CR ∈ (0, 1)is a real number constant
which affects the diversity of population for the next
generation.
Fitness function: In a minimization problem, the
objective function is ()t t

i i if Xπ ← , where t
iπ is the

corresponding job repetition vector of individual t
iX .

The complete computational procedure of the DE
algorithm for the JSS problem can be summarized as
follows:
Step 1. Initialization

Set t = 0, NP = the number of dimensions.
Generate NP individuals randomly as explained
before, 0{ , 1, 2, ..., }iX i NP= where 0

iX =
0 0 0
1 2 ,[, , ...,]i i i nmx x x

Apply the SPV rule to find the permutation of
operations 0 0 0 0

1 2 ,[, , ...,]i i i i nmϕ ϕ ϕ ϕ= of particle 0
iX

for i = 1, 2, …, NP.
Determine the job repetition vector

0 0 0 0
1 2 ,[, , ...,]i i i i nmπ π π π= of particle 0

iX for i = 1, 2, …,
NP.
Evaluate each individual i in the population using
the objective function 0 0()o

i i if Xπ ← for i = 1, 2, …,
NP.

Step 2. Update generation counter
1.t t= +

Step 3. Generate mutant population
For each target individual, t

iX , i = 1, 2, …, NP, at
generation t, a mutant individual, t

iV =

1 2 ,[, , ...,]t t t
i i i nmv v v , is determined such that:

1 1 1(),

i i i

t t t t
i a b cV X F X X− − −= + × −

where ai, bi, and ci are three randomly chosen
individuals from the population such that
(i i ia b c≠ ≠).

Step 4. Generate trial population
Following the mutation phase, the crossover
(recombination) operator is applied to obtain the
trial population. For each mutant individual,

1 2 ,[, , ..,]t t t t
i i i i nmV v v v= , an integer random number

between 1 and nm, i.e., iD ∈ (1, 2, …, nm), is chosen,
and a trial individual, 1 2 ,[, , ...,]t t t t

i i i i nmU u u u= is
generated such that:

1

, ,

, ,

t t
ik ik it

ik t
ik

v if r CR or k D
u

x otherwise−

 ≤ ==

 (3)

where the index D refers to a randomly chosen
dimension (k = 1, 2, ..., nm) used to ensure that at
least one parameter of each trial individual

t
iU differs from its counterpart in the previous

generation 1 ,t
iU − CR is a user-defined crossover

constant in the range (0, 1), and t
ikr is a uniform

random number between 0 and 1. The trial
individual is made up with some parameters of a
mutant individual, or at least one of the parameters
randomly selected, and some other parameters of
the target individual.

Step 5. Find permutation of operations
Apply the SPV rule to find the permutation of
operations 1 2 ,[, , ...,]t t t t

i i i i nmϕ ϕ ϕ ϕ= for i = 1, 2, …,
NP.

Step 6. Find job repetition
Determine the job repetition vector, t

iπ =

1 2 ,[, , ...,]t t t
i i i nmπ π π for i = 1, 2, …, NP.

Step 7. Evaluate trial population

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

126

Evaluate the trial population using the objective
function ()t t t

i i if Uπ ← for i = 1, 2, …, NP.
Step 8. Do selection

To decide whether or not the trial individual
t
iU should be a member of the target population

for the next generation, it is compared to its
counterpart target individual 1t

iX − at the previous
generation. The selection is based on the survival
of fitness among the trial population and target
population such that:

1 1

1

, () (),

, ,

t t t t t
i i i i it

i t
i

U if f U f X
X

X otherwise

π π − −

−

 ← ≤ ←=

 (4)

Step 9. Stopping criterion

If the CPU time exceeds the maximum CPU time
limit, then stop; otherwise go to step 2.

4. NEIGHBORHOOD OF PSO AND DE
ALGORITHMS

There might be two types of neighborhood structures
that can be employed for the search. The first one is based
on the neighbors of the positions whereas the second one
is based on the neighbors of the job repetition vector. The
second approach based on neighbors of job repetitions is
used in this paper because of its efficiency. However, it
violates the SPV rule and needs a repair mechanism. This
approach is illustrated in Table 3 where 2 1t

iπ = and

6 3t
iπ = are interchanged. As shown in Table 3, the SPV

rule is violated because the permutation of operations and
job repetitions are the result of the particle’s position
values. After completing the local search, the particle
should be repaired in order to satisfy the SPV rule. This is
achieved by changing the values of position, and
permutation of operations according to the SPV rule as
shown in Table 4.

Table 3. Local search applied to job repetition before repairing

Dimension, k 1 2 3 4 5 6 7 8 9
t
ikx 1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9
t
ikϕ 6 2 5 4 1 9 3 8 7
t
ikπ 2 1 2 2 1 3 1 3 3
t
ikx 1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9
t
ikϕ 6 2 5 4 1 9 3 8 7
t
ikπ 2 3 2 2 1 1 1 3 3

Table 4. Local search applied to job repetition after repairing

Dimension, k 1 2 3 4 5 6 7 8 9
t
ikx 1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9
t
ikϕ 6 2 5 4 1 9 3 8 7
t
ikπ 2 1 2 2 1 3 1 3 3
t
ikx 1.8 1.9 3.01 0.72 -0.45 -2.25 5.3 4.8 -0.99
t
ikϕ 6 9 5 4 1 2 3 8 7
t
ikπ 2 3 2 2 1 1 1 3 3

In other words, the values of positions and permutation

of operations are interchanged in the particle.
Sinc 2 1t

iπ = and 6 3t
iπ = are interchanged, their

corresponding t
ikϕ and t

ikx values are interchanged
respectively to keep the particle consistent with the SPV
rule. The advantage of this approach is due to the fact that
the repair algorithm is only needed after evaluating all the
neighbors in the job repetition vector.

The local search for the JSS problem is applied to the
job repetition tπ of the global best solution at each
iteration t. The performance of the local search algorithm
depends on the choice of the neighborhood structure.
Local search in this work is based on the interchange+ insert
variant of the variable neighborhood search (VNS) method

presented in Mladenovic and Hansen (1997). For the JSS
problem, the following two neighborhood structures are
employed:

Interchange two jobs between thη and thκ dimensions,
η κ≠ (Interchange)

Remove the job at the thη dimension and insert it in the
thκ dimensionη κ≠ (Insert)
The pseudo code of the local search is given in Figure 4

where η and κ are the random integer numbers between
1 and nm. s = ()0 , ,insert s η κ means removing the job from

the thη dimension in the job repetition vector 0s and

inserting it in the thκ dimension in the job repetition
vector 0s , resulting in a job repetition vector s . In case

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

127

of perturbing the job repetition vector 0s , two inserts and
two interchanges were used to diversify the global best
solution before applying the local search. This perturbation
is important to direct the search towards the global optima
since the global best solution remains the same after some
iterations, probably at a local minimum. In addition, neutral
moves are allowed in the VNS local search in order to
restart the search from a different sequence with the same
objective function value.

() ()
()

{

{
() ()

() ()
() ()

() ()(){

0

0

1

1

1

1, , 1, ,

, ,
0

 0
 max_ 2

 1, , 1, ,

 0 int , ,

 1 , ,

ts
rnd nm rnd nm

s perturbation s
loop
Do

kcount
method

Do
rnd nm rnd nm

if kcount s erchange s

if kcount s insert s

if f s f s

π

η κ η κ

η κ

η κ η κ

η κ

η κ

=

= = ≠

=

=

=
=

= = ≠

== =

== =

≤

}
{ }

} ()

1

 0

 max_

} (* (1))

(() ()){

t

t

kcount
s s

else kcount

While kcount method
loop
While loop nm nm

if f s f

s

π

π

=

=

+ +

<

+ +
< −

≤

=

 ()}t Repair G

Figure 4. Pseudo code of VNS local search.

5. EXPERIMENTAL RESULTS

The proposed PSO and DE algorithms for the JSS
problem are coded in C and run on an Intel Pentium IV
2.6 GHz PC with 256MB memory. The following
parameters were used for the PSO and DE algorithms.
The size of the population in both algorithms is the
number of dimensions. The social and cognitive
parameters were taken as 1 2 2c c= = consistent with the
literature. Initial inertia weight is set to 0 0.9w = and never
decreased below 0.40. The decrement factor β is taken as
0.975. For the DE algorithm, mutant factor and crossover
rate are taken as F = 0.8 and CR = 0.9 respectively.

First, different neighborhood structures such as insert +
interchange and interchange + insert are hybridized in the PSO
and DE algorithms for a set of known job shop
benchmark problem instances from the literature. As

shown in the experimental results in Tables 5 and 6, the
interchange + insert structure of the VNS local search
embedded in both algorithms generated lower relative
errors, thus convincing us to use this neighborhood
structure in further comparisons. Tables 5 and 6
summarize the statistics collected from the 20 replications
for each instance. For each instance, its name and the best
known upper bound (in parentheses) or optimal makespan
(without parentheses) are given as reported by Jain and
Meeran (1999). The third column gives the time limit to
stop the algorithm. Since our comparisons are based on the
recent work by Blum and Sampels (2004), the problem
instances were run with different CPU time requirements
to have a fair comparison. Owing to the fact that Blum and
Sampels (2004) used a machine with 1.10 GHz, the
maximum CPU times were restricted to the 11/26 of their
CPU time limit because we employed a faster machine with
2.6 GHz. Similar correction factor of 300/2600 is used for
the CPU time results of Murovec and Šuhel (2004) since
they used a machine with Celeron 300 MHz. Experimental
results are given in the next five columns for each
algorithm. These are the best solution out of 20 runs, the
average over 20 runs, the standard deviation of 20 runs, the
average time (in seconds, t) needed to reach the best
objective function value in each run, and finally, the
relative percent error based on the best solution out of 20
runs.

The performance measures in this paper were the
average relative percent error and CPU time requirements.
Computational efficiency was measured by the CPU time,
and the solution quality was measured with the average
relative percent error which is specifically defined as:

1

() * 100
/

R
i i

i i

H UARPE R
U=

 −
=

∑ (5)

where Hi denotes the value of the makespan that the DEvns
or PSOvns. algorithms generated, whereas Ui is the value
of best known or optimal makespan provided in the
literature, and R is the total number of problem instances.

Convergence graphs for the well-known problem
instances of ft10 and ft20 are given in Figure 5 and 6. From
the convergence graphs, it can be seen that Both PSOvns
and DEvns algorithms were converged very quickly until 10
generations, very slowly thereafter. Since PSOvns with the
interchange + insert neighborhood structure has generated
the lowest average relative percent error of 0.20% as
shown in Tables 5 and 6, the results of PSOvns with the
interchange + insert neighborhood were used to compare
with those recently published in the literature. However,
DEvns has performed well enough across the variety of
problem instances in the literature.

The second comparison is based on the results of an ant
colony optimization algorithm (ACO_GSS) by Blum and
Sampels (2004). They reported the results for the 16
benchmark instances of the JSS problem and compared to
their adaptation of the tabu search approach (TS_GSS) by
Nowicki and Smutnicki (1996), the state-of-the-art

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

128

algorithms for the JSS problem. From Table 8, it can be
seen that the hybrid PSOvns algorithm outperforms the
ACO_GSS algorithm in terms of the best, and average
makespan as well as the average relative percent error
generated since the statistics are 994.00, 1002.23 and 0.28
for the hybrid PSOvns whereas it is 1000.50, 1007.81, and
1.02 for ACO_GSS. However, the ACO_GSS algorithm is
more robust than the hybrid PSOvns algorithm due to the
lower standard deviations. As explained before, the CPU

time limits were fixed to 11/26 of those reported in Blum
and Sampels (2004) because of the faster machine we used.
However, the average time to reach the best solution in
each run is still smaller for PSOvns than ACO_GSS. In
addition to above, ACO_GSS is able to find only the 6 best
known or optimal solutions whereas the hybrid PSOvns
algorithm is able to find the 10 best known or optimal
solutions among 16 instances reported.

Table 5. Performance comparison of PSOvns and DEvns with interchange + insert version

 PSOvns DEvns

Instance
Best

Known
Time
limit

Best Avg 2σ t RPE Best Avg 2σ t RPE

abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1235.80 2.09 25.66 0.00
abz06 943 76.15 943 943.00 0.00 12.49 0.00 943 943.00 0.00 10.70 0.00
abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 666 672.70 3.84 444.09 1.52
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 674 681.90 6.13 476.71 1.35
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 682 697.90 8.80 479.08 0.44
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 935.80 10.91 26.38 0.00
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1172.15 6.64 20.34 0.00

orb01 1059 76.15 1059 1076.05 10.58 25.29 0.00 1064 1078.50 11.02 34.90 0.47
orb02 888 76.15 889 889.45 1.79 10.15 0.11 889 891.40 3.76 14.73 0.11
orb03 1005 76.15 1005 1034.55 22.95 31.37 0.00 1005 1035.70 21.99 36.93 0.00
orb04 1005 76.15 1005 1011.30 6.42 41.63 0.00 1005 1012.85 6.44 26.89 0.00
orb05 887 76.15 887 892.45 4.81 27.14 0.00 889 892.95 7.76 30.20 0.23
orb06 1010 76.15 1013 1018.80 5.73 26.49 0.30 1010 1020.45 6.27 44.22 0.00
orb07 397 76.15 397 398.60 2.56 15.03 0.00 397 399.00 2.60 13.63 0.00
orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 913.25 12.70 27.09 0.00
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 940.25 3.65 11.79 0.00
orb10 944 76.15 944 944.00 0.00 16.43 0.00 944 944.35 1.57 17.06 0.00
la16 945 76.15 945 948.50 9.08 20.63 0.00 945 946.85 6.88 24.45 0.00
la19 842 76.15 842 844.00 3.78 19.09 0.00 842 844.95 4.96 29.63 0.00
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1055.40 7.39 92.50 0.10
la22 927 380.77 927 930.55 2.95 107.16 0.00 927 930.10 3.42 109.91 0.00
la24 935 380.77 935 939.70 3.63 182.19 0.00 938 940.70 5.96 169.17 0.32
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 981.35 2.70 129.38 0.00
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1235 1250.45 11.20 367.22 0.00
la28 1216 761.54 1216 1216.25 0.64 180.44 0.00 1216 1216.45 1.57 192.71 0.00
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1163 1172.30 6.35 484.87 0.95
la36 1268 761.54 1268 1279.30 6.98 464.49 0.00 1268 1275.25 5.93 443.62 0.00
la37 1397 761.54 1397 1410.90 7.74 316.75 0.00 1397 1414.50 7.41 318.38 0.00
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1196 1206.20 5.46 474.19 0.00
la39 1233 761.54 1233 1240.00 4.10 387.69 0.00 1233 1238.10 5.75 367.40 0.00
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1224 1228.10 5.57 391.80 0.16
yn01 (888) 1523.08 893 901.15 6.56 818.47 0.56 894 902.75 5.58 870.18 0.68
yn02 (909) 1523.08 910 925.85 6.43 962.93 0.11 917 925.95 3.69 1089.17 0.88
yn03 (893) 1523.08 902 908.40 5.23 1007.06 1.01 895 906.85 6.93 1086.82 0.22
yn04 (968) 1523.08 973 987.05 8.87 1015.96 0.52 980 990.55 7.98 891.95 1.24

Mean 6.40 258.34 0.20 6.31 264.96 0.25

The third comparison was for the TS_GSS algorithm,
which has already been shown in Blum and Sampels (2004),
outperforming the ACO_GSS algorithm. Table 9 presents
the comparison of the hybrid PSOvns to TS_GSS. In terms
of the best makespan and relative percent error generated,
the hybrid PSOvns algorithm generated slightly better
results than the TS_GSS algorithm because the mean best
and RPE for PSOvns is 994.00 and 0.28% respectively

whereas it is 994.63 and 0.32% for TS_GSS. However, the
TS_GSS algorithm generated much more robust results
due to the much lower standard deviations and it was
slightly faster than PSOvns. To sum up, the hybrid PSOvns
algorithm has produced smaller best makespan and lower
relative percent errors, but the TS_GSS and ACO_GSS
algorithms, on the other hand, are more robust than the
hybrid PSOvns algorithm. Note that the tabu search adapted

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

129

in Blum and Sampels (2004) is one of the state-of-the-art
algorithms for the JSS problem. These results can be
interpreted in another way. Blum and Sampels (2004)
developed an extension of neighborhood structure
presented by Nowicki and Smutnicki (1996). This
extension of neighborhood structure is used both in their
ant colony algorithm as a steepest descent local search and
in their adaptation of tabu search as a move structure.
From Table 8, it can concluded that the simple VNS
structure hybridized with the PSO algorithm was very
effective in finding better or competitive results for a set of
well known benchmark instances than those generated by
their extension of neighborhood structure presented by
Nowicki and Smutnicki (1996) hybridized both with the
ACO and TS algorithms. This is documented by another

fact that TS_GSS is able to find 9 best known or optimal
solutions out of 16 problem instances whereas PSOvns is
able to find 10 best known or optimal solutions out of 16
problem instances. The last comparison is due to the most
recent study (GA_TS) by Murovec and Šuhel (2004) in
which they developed a genetic algorithm employing a tabu
search with a repairing technique as a local search. Upper
bounds of three instances are improved by Murovec and
Šuhel (2004) where five hundred replications for each
instance are conducted. From Table 10, it is clear that the
GA_TS algorithm is superior to the PSOvns algorithm in
terms of all the performance measure. However, it is also
superior to dESA, ACO_GSS and TS_GSS algorithms too.
Murovec and Šuhel (2004) clearly reported the best results
so far in the literature.

Table 6. Performance comparison of PSO and DE with insert + interchange version

 PSOvns DEvns

Instance
Best

Known
Time
limit

Best Avg 2σ t RPE Best Avg 2σ t RPE

abz05 1234 76.15 1234 1236.3 2.13 30.70 0.00 1234 1235.15 1.95 17.88 0.00
abz 06 943 76.15 943 943.00 0.00 11.85 0.00 943 943.00 0.00 14.93 0.00
abz 07 (656) 761.54 666 672.40 4.45 441.21 1.52 661 670.60 4.86 521.31 0.76
abz 08 (665) 761.54 675 680.65 5.02 476.96 1.50 671 681.70 6.71 445.33 0.90
abz 09 (679) 761.54 691 697.55 4.35 479.66 1.77 685 694.60 5.56 539.82 0.88
ft10 930 76.15 930 942.25 12.77 27.83 0.00 930 939.65 11.25 28.43 0.00
ft20 1165 76.15 1165 1173.30 6.28 26.42 0.00 1165 1173.95 6.05 19.58 0.00

orb01 1059 76.15 1064 1074.40 8.48 38.24 0.47 1059 1075.30 13.64 39.60 0.00
orb 02 888 76.15 888 889.90 2.51 21.89 0.00 889 890.60 3.28 15.45 0.11
orb 03 1005 76.15 1017 1038.15 13.87 44.39 1.19 1005 1034.45 24.67 33.52 0.00
orb 04 1005 76.15 1005 10120 4.69 37.00 0.00 1005 1012.90 5.74 26.70 0.00
orb 05 887 76.15 889 892.20 3.97 36.01 0.23 887 896.50 11.83 19.77 0.00
orb 06 1010 76.15 1013 1020.20 6.40 31.95 0.30 1010 1017.70 6.43 34.62 0.00
orb 07 397 76.15 397 399.40 3.02 16.66 0.00 397 398.70 2.70 12.76 0.00
orb 08 899 76.15 899 910.85 13.28 37.08 0.00 899 915.80 18.44 27.48 0.00
orb 09 934 76.15 934 940.60 3.68 12.91 0.00 934 939.05 4.10 17.81 0.00
orb 10 944 76.15 944 944.00 0.00 20.92 0.00 944 944.00 0.00 16.55 0.00
la16 945 76.15 945 955.05 13.97 17.54 0.00 945 948.45 9.10 23.29 0.00
la 19 842 76.15 842 843.85 4.59 30.26 0.00 842 843.30 3.26 31.89 0.00
la 21 1046 380.77 1047 1054.55 5.06 85.09 0.10 1047 1055.30 8.23 172.77 0.10
la 22 927 380.77 927 928.90 2.51 116.66 0.00 927 929.50 2.70 105.47 0.00
la 24 935 380.77 935 939.35 2.72 216.34 0.00 938 939.95 2.19 165.85 0.32
la 25 977 380.77 977 983.15 4.83 113.60 0.00 977 982.55 4.11 114.69 0.00
la 27 1235 761.54 1236 1249.65 9.37 456.01 0.08 1235 1244.40 8.85 412.48 0.00
la 28 1216 761.54 1216 1216.00 0.00 222.18 0.00 1216 1216.25 0.55 246.71 0.00
la 29 1152 761.54 1164 1172.90 5.24 442.26 1.04 1163 1171.60 6.82 519.88 0.95
la 36 1268 761.54 1268 1278.35 7.00 454.95 0.00 1268 1275.00 4.74 417.70 0.00
la 37 1397 761.54 1397 1410.75 8.13 439.40 0.00 1397 1409.45 8.15 433.94 0.00
la 38 1196 761.54 1196 1206.25 7.06 441.11 0.00 1207 1214.70 14.96 365.34 0.92
la 39 1233 761.54 1233 1238.90 5.82 361.96 0.00 1233 1240.25 5.31 386.02 0.00
la 40 1222 761.54 1224 1229.40 7.34 398.29 0.16 1224 1227.35 3.53 422.99 0.16
yn01 (888) 1523.08 892 900.85 5.67 939.82 0.45 895 902.75 4.71 904.59 0.79
yn 02 (909) 1523.08 911 923.85 6.21 1002.95 0.22 917 924.20 5.66 998.22 0.88
yn 03 (893) 1523.08 897 908.85 6.56 1004.19 0.45 898 905.95 5.27 1090.40 0.56
yn 04 (968) 1523.08 975 987.75 6.15 1042.97 0.72 981 989.85 4.96 1075.22 1.34
Mean 5.80 273.64 0.29 6.58 277.69 0.25

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

130

900

920

940

960

980

1000

1020

0 10 20 30 40 50 60 70 80 90 100

Generation

M
ak

es
pa

n

PSO
DE

Figure 5. Convergence graph for the ft10 in terms of average relative percent deviation.

1150

1160

1170

1180

1190

1200

1210

1220

0 10 20 30 40 50 60 70 80 90 100

Generation

M
ak

es
pa

n

PSO
DE

Figure 6. Convergence graph for the ft20 in terms of average relative percent deviation.

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

131

Table 7. Performance comparison of PSOvns and dESA
 PSOvns dESA

Instance
Best

known
Time
limit

Best Avg 2σ t RPE Best Avg 2σ t RPE

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 672 682.40 8.11 NA 2.44
abz 08 (665) 761.54 674 682.30 5.52 442.87 1.35 681 691.50 7.34 NA 2.41
abz 09 (679) 761.54 688 697.55 5.79 424.79 1.33 699 706.60 6.06 NA 2.95
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1046 1049.40 4.17 NA 0.00
la 24 935 380.77 935 939.70 3.63 182.19 0.00 938 940.80 2.97 NA 0.32
la 25 977 380.77 977 981.45 4.74 143.12 0.00 977 982.00 5.06 NA 0.00
la 27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1240 1242.00 4.52 NA 0.41
la 29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1176 1179.00 9.81 NA 2.08
la 38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1201 1208.40 5.02 NA 0.42
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1228 1232.40 5.84 NA 0.49

Mean 979.90 988.98 7.08 341.99 0.44 985.80 991.45 5.89 NA 1.15

Table 8. Performance comparison of PSOvns and ACO_GSS
 PSOvns ACO_GSS

Instance
Best

known
Time
limit

Best Avg 2σ t RPE Best Avg 2σ t RPE

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 674 681.20 3.16 405.63 2.74
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 689 697.05 3.24 462.53 3.61
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 702 709.35 4.16 448.13 3.39
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1053.25 3.51 194.73 0.10
la24 935 380.77 935 939.70 3.63 182.19 0.00 944 948.10 3.39 153.84 0.96
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 981.45 2.98 378.49 0.00
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1243 1255.50 5.90 436.51 0.65
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1168 1186.75 8.15 459.03 1.39
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1227 1235.45 4.17 392.62 2.59
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1228 1234.55 5.92 436.23 0.49
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 938.90 7.61 39.55 0.00
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1168.55 5.11 37.35 0.00

orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 914.65 6.87 37.34 0.00
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 935.15 2.92 34.06 0.00
abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1237.20 1.36 14.46 0.00
abz06 943 76.15 943 943.00 0.00 12.49 0.00 947 947.80 0.41 6.50 0.42
Mean 994.00 1002.23 6.66 221.73 0.28 1000.50 1007.81 4.30 246.06 1.02

6. CONCLUSIONS

In this paper, we present PSO and DE algorithms for
the JSS problem with the makespan criterion. The
applications of PSO and DE on combinatorial
optimization problems are still considered limited, but the
advantages of PSO and DE algorithms such as structural
simplicity, accessibility to practical applications, ease of
implementation, speed to get the solutions, and robustness
are already shown in the literature. However, the major
obstacle of successfully applying PSO and DE algorithms
to combinatorial optimization problems is due to their
continuous nature. To remedy this drawback, the SPV rule
presented in Tasgetiren et al. (2004a, b, c, d) is used in both
algorithms to convert continuous position values to
discrete job permutations. Both algorithms are also
hybridized with an efficient local search method based on a
VNS method in order to improve the solution quality.

To the best of our knowledge, these are the first
reported applications of the PSO and DE algorithms to the
JSS problem with either better or competitive results to the

well known approaches in the literature. The SPV rule can
be employed to enable the continuous PSO and DE
algorithms to be applied to all classes of sequencing and
scheduling problems. It is hoped that the PSO and DE
algorithms with the proposed SPV rule will enrich the PSO
and DE literatures applied to the combinatorial
optimization problems in the future.

As summarized in Table 11, it has been shown that the
hybrid PSOvns algorithm generated better results than the
dESA algorithm. It has also been shown that the hybrid
PSOvns algorithm generated better results than the
ACO_GSS algorithm, and was very competitive to
TS_GSS algorithm. However, the hybrid PSOvns was not
so robust in comparison to dESA, ACO_GSS and
TS_GSS.

The hybrid PSOvns algorithm was not competitive to the
GA_TS algorithm which generated best reported results so
far in the literature. However, both PSOvns and DEvns
algorithms solved very hard instances collected from the
OR library with 0.20% and 0.25% deviations from the best
known or optimal solutions reported in the literature.

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

132

Table 9. Performance comparison of PSO and TS_GSS
 PSOvns TS_GSS

Instance
Best

known
Time
limit

Best Avg σ 2 t RPE Best Avg 2σ t RPE

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 666 668.45 1.47 350.30 1.52
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 673 679.95 3.17 335.93 0.60
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 688 692.20 2.61 267.42 1.33
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1049.25 2.05 155.74 0.10
la24 935 380.77 935 939.70 3.63 182.19 0.00 939 942.30 1.38 131.98 0.43
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 977.30 0.47 286.35 0.00
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1235 1241.15 3.69 379.06 0.00
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1164 1168.10 2.17 347.78 1.04
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1196 1201.40 1.85 366.88 0.00
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1224 1228.35 2.52 300.94 0.16
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 931.90 3.32 28.10 0.00
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1165.00 0.00 9.52 0.00

orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 910.75 6.33 29.78 0.00
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 934.00 0.00 11.77 0.00
abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1236.90 1.37 23.05 0.00
abz06 943 76.15 943 943.00 0.00 12.49 0.00 943 943.70 0.98 25.99 0.00
Mean 994.0 1002.23 6.66 221.73 0.28 994.63 998.17 2.09 190.66 0.32

Table 10. Performance comparison of PSOvns and GA_TS

 PSOvns GA_TS

Instance
Best

known
Time
limit

Best Avg Worst t RPE Best Avg Worst t RPE

abz05 1234 76.15 1234 1236.25 1239.00 17.36 0.00 1234 1234.90 1238 0.61 0.00
abz06 943 76.15 943 943.00 943.00 12.49 0.00 943 943.00 943 0.28 0.00
abz07 (656) 761.54 659 670.10 682.00 573.59 0.46 658 666.40 674 77.75 0.30
abz08 (665) 761.54 674 682.30 691.00 442.87 1.35 669 674.30 685 104.88 0.60
abz09 (679) 761.54 688 697.55 708.00 424.79 1.33 678 687.50 701 93.39 -0.15
ft10 930 76.15 930 938.45 967.00 36.14 0.00 930 931.60 944 1.15 0.00
ft20 1165 76.15 1165 1175.25 1178.00 17.68 0.00 1165 1165.20 1173 1.11 0.00

orb01 1059 76.15 1059 1076.05 1099.00 25.29 0.00 1059 1062.40 1077 1.01 0.00
orb02 888 76.15 889 889.45 897.00 10.15 0.11 888 888.60 890 0.54 0.00
orb03 1005 76.15 1005 1034.55 1077.00 31.37 0.00 1005 1012.10 1035 1.44 0.00
orb04 1005 76.15 1005 1011.30 1023.00 41.63 0.00 1005 1008.10 1013 0.68 0.00
orb05 887 76.15 887 892.45 904.00 27.14 0.00 887 888.30 891 0.91 0.00
orb06 1010 76.15 1013 1018.80 1031.00 26.49 0.30 1010 1012.80 1023 1.39 0.00
orb07 397 76.15 397 398.60 403.00 15.03 0.00 397 397.00 397 0.39 0.00
orb08 899 76.15 899 913.40 944.00 36.07 0.00 899 902.40 927 1.6 0.00
orb09 934 76.15 934 939.45 943.00 8.08 0.00 934 934.70 943 0.74 0.00
orb10 944 76.15 944 944.00 944.00 16.43 0.00 944 944.00 944 0.46 0.00
la16 945 76.15 945 948.50 976.00 20.63 0.00 945 945.00 945 0.33 0.00
la19 842 76.15 842 844.00 852.00 19.09 0.00 842 842.10 848 0.38 0.00
la21 1046 380.77 1047 1053.80 1071.00 146.18 0.10 1046 1048.70 1055 3.07 0.00
la22 927 380.77 927 930.55 935.00 107.16 0.00 927 927.70 935 3.34 0.00
la24 935 380.77 935 939.70 950.00 182.19 0.00 935 938.20 943 3.07 0.00
la25 977 380.77 977 981.45 998.00 143.12 0.00 977 978.20 984 3.71 0.00
la27 1235 761.54 1235 1248.10 1264.00 359.36 0.00 1235 1236.80 1256 16.07 0.00
la28 1216 761.54 1216 1216.25 1218.00 180.44 0.00 1216 1216.00 1216 2.4 0.00
la29 1152 761.54 1164 1176.70 1205.00 353.93 1.04 1153 1165.20 1178 16.3 0.09
la36 1268 761.54 1268 1279.30 1291.00 464.49 0.00 1268 1268.30 1278 15.28 0.00
la37 1397 761.54 1397 1410.90 1421.00 316.75 0.00 1397 1402.40 1418 30.2 0.00
la38 1196 761.54 1196 1212.50 1248.00 415.13 0.00 1196 1202.30 1212 24.51 0.00
la39 1233 761.54 1233 1240.00 1248.00 387.69 0.00 1233 1235.50 1248 25.18 0.00
la40 1222 761.54 1224 1227.60 1237.00 378.76 0.16 1222 1226.00 1234 22.9 0.00
yn01 (888) 1523.08 893 901.15 914.00 818.47 0.56 886 896.00 905 220.78 -0.23
yn02 (909) 1523.08 910 925.85 937.00 962.93 0.11 907 915.70 927 242.28 -0.22
yn03 (893) 1523.08 902 908.40 919.00 1007.06 1.01 895 900.60 909 228.23 0.22
yn04 (968) 1523.08 973 987.05 1010.00 1015.96 0.52 969 978.50 991 263.36 0.10

Mean 988.83 996.94 1010.49 258.34 0.20 987.26 990.76 999.43 40.28 0.02

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

133

Table 11. Summary of comparisons

Problems
Best

Known PSOvns DEvns dESA ACO_GSS TS_GSS GA_TS

abz07 656 0.46 1.52 2.44 2.74 1.52 0.30
abz08 665 1.35 1.35 2.41 3.61 0.60 0.60
abz09 679 1.33 0.44 2.95 3.39 1.33 -0.15
la21 1046 0.10 0.10 0.00 0.10 0.10 0.00
la24 935 0.00 0.32 0.32 0.96 0.43 0.00
la25 977 0.00 0.00 0.00 0.00 0.00 0.00
la27 1235 0.00 0.00 0.41 0.65 0.00 0.00
la29 1152 1.04 0.95 2.08 1.39 1.04 0.09
la38 1196 0.00 0.00 0.42 2.59 0.00 0.00
la40 1222 0.16 0.16 0.49 0.49 0.16 0.00

Mean 0.44 0.48 1.15 1.59 0.52 0.08

To summarize, the results presented in this work are
very encouraging and promising for the applications of the
PSO and DE algorithms to job shop scheduling problems,
and hence to the other scheduling problems. It should be
noted that the success was mainly due to the use of VNS
local search improving the solution quality together with
the neutral moves allowed.

For future work, the SPV rule can be used in both
algorithms to solve other combinatorial optimization
problems requiring permutation representation. It should
also be pointed out that VNS is so time consuming due to
the nature of changing the neighborhood during the search.
This is one of our future research directions such that the
iterated local search (ILS) with an insert neighborhood
could be used to further improve the performance of the
PSO algorithm. In addition, a deterministic version (VND)
of the VNS local search with the first improvement
pivoting rule could be used to improve the performance of
the current algorithm

REFERENCES

1. Aarts, E. and Lenstra., J.K. (1997). Local Search and
Combinatorial Optimization, Wiley, New York.

2. Abido, M.A. (2002). Optimal power flow using particle
swarm optimization. Electrical Power and Energy Systems,
24: 563-571.

3. Adams, J., Balas, E., and Zawack, D. (1988). The
Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science, 34: 391-401.

4. Aiex, R.M., Binato, S., and Resende, M.G.C. (2003).
Parallel GRASP with path-relinking for job shop
Scheduling. Parallel Computing, 29: 393-430.

5. Applegate, D. and Cook, W. (1991). A computational
study of job-shop scheduling. ORSA Journal on
Computing, 3(2): 149-156.

6. Aydin, M.E. and Fogarty, T.C. (2004) A distributed
evolutionary simulated annealing algorithm for
combinatorial optimisation problems. Journal of
Heuristics, 10: 269-292.

7. Balas, E. and Vazacopoulos, A. (1998). Guided local
search with shifting bottleneck for job shop Scheduling.
Management Science, 44: 262-275.

8. Bean, J.C. (1994). Genetic algorithm and random keys
for sequencing and optimization. ORSA Journal on
Computing, 6(2): 154-160.

9. Bierwith, C. (1995). A generalized permutation
approach to job shop scheduling with genetic
algorithms. OR Spektrum, 17: 87-92.

10. Blazewicz, J., Domschke, W., and Pesch, E. (1996). The
job shop scheduling problem: conventional and new
solution techniques. European Journal of Operations
Research, 93: 1-33.

11. Blum, C. and Sampels, M. (2004). An ant colony
optimization algorithm for shop scheduling problems.
Journal of Mathematical Modelling and Algorithms, 3:
285-308.

12. Brandstatter, B. and Baumgartner, U. (2002). Particle
swarm optimization―mass-spring system analogon.
IEEE Transactions on Magnetics 38: 997-1000.

13. Brinkkötter, W. and Brucker, P. (2001). Solving open
benchmark problems for the job shop problem. Journal
of Scheduling 4: 53-64.

14. Carlier, J. and Pison, E. (1989). An algorithm for
solving the job-shop problem. Management Science, 35:
164-176.

15. Cheng, R., Gen, M., and Tsujimura, Y. (1996). A
tutorial survey of job shop scheduling problems using
genetic algorithms-I. Representation. Journal of
Computers and Industrial Engineering, 30(4): 983-997.

16. Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M.
(1994). Ant system for job-shop scheduling. belgian
Journal of Operations Research, Statistics and Computer Science
(JORBEL), 34(1): 39-53.

17. Dell’Amico, M. and Trubian, M. (1993). Applying
tabu-search to the job-shop scheduling problem. Annals
of Operations Research, 4: 231-252.

18. Demirkol, E., Mehta, S., and Uzsoy, R. (1998).
Benchmarks for shop scheduling problems. European
Journal of Operational Research, 109: 137-141.

19. Dorndorf, U. and Pesch, E. (1995). Evolution based
learning in a job shop scheduling environment.
Computers and Operations Research, 22: 25-40.

20. Dorndorf, U., Pesch, E., and Phan-Huy, T. (2002).
Constraint propagation and problem decomposition: a

t

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

134

preprocessing procedure for the job shop problem.
Annals of Operations Research, 115: 125-145.

21. Eberhart, R.C. and Kennedy, J. (1995). A new optimizer
using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human
Science, Nagoya, Japan, pp. 39-43.

22. Fisher, H. and Thompson, G.L. (1963). Probabilistic
learning combinations of local job-shop scheduling
rules. In: J.F. Muth and G.L. Thompson (Eds.),
Industrial Scheduling, Prentice-Hall, Englewood Cliffs, pp.
225-251.

23. Garey, M., Johnson, D., and Sethy, R. (1976). The
complexity of flow shop and job shop scheduling.
Mathematics of Operations Research, 1: 117-129.

24. Groce, F.D., Tadei, R., and Volta, G. (1995). A genetic
algorithm for the job shop problem. Computers and
Operations Research, 22: 15-24.

25. Huang, W. and Yin, A. (2004). An improved shifting
bottleneck procedure for the job shop scheduling
problem. Computers and Operations Research, 31:
2093-2110.

26. Ikeda, K. and Kobayashi, S. (2000). GA based on the
UV-Structure hypothesis and its application to JSP. In:
Proceedings of the Sixth International Conference on Parallel
Problem Solving from Nature (PPSN-VI), Springer-Verlag,
Berlin, pp. 273-282.

27. Jain, A. and Meeran, S. (1999). Deterministic job-shop
scheduling: past, present and future. European Journal of
Operations Research, 113: 390-434.

28. Kennedy, J., Eberhart, R.C., and Shi, Y. (2001). Swarm
Intelligence, San Mateo, Morgan Kaufmann, CA, USA.

29. Kolonko, M. (1999). Some new results on simulated
annealing applied to the job shop scheduling problem.
European Journal of Operational Research, 113: 123-136.

30. Lampinen, J. (2001). A Bibliography of Differential
Evolution Algorithm, Technical Report, Laboratory of
Information Processing, Department of Information
Technology, Lappeenranta University of Technology.

31. Lawrence, S. (1984). Resource Constrained Project Scheduling:
An Experimental Investigation of Heuristic Scheduling
Techniques (Supplement), Graduate School of Industrial
Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, PA, USA.

32. Martin, P.D. (1996). A Time-Oriented Approach to
Computing Optimal Schedules for the Job-Shop Scheduling
Problem, Ph.D. Thesis, School of Operations Research
and Industrial Engineering, Cornell University, NY,
USA.

33. Masters, T. and Land, W. (1997). A new training
algorithm for the general regression neural network,
Proceedings of the 1997 IEEE International Conference on
Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, pp.1990-1994.

34. Mladenovic, N. and Hansen, P. (1997). Variable
neighborhood search. Computers and Operations Research,
24: 1097-1100.

35. Murovec, B. and Šuhel, P. (2004). A repairing technique
for the local search of the job-shop problem. European
Journal of Operational Research, 153: 220-238.

36. Nowicki, E. and Smutnicki, C. (1996). A fast taboo
search algorithm for the job shop problem. Management
Science, 42: 797-813.

37. Onwubolu, G.C. and Clerc, M. (2004). Optimal
operating path for automated drilling operations by a
new heuristic approach using particle swarm
optimisation. International Journal of Production Research,
42(3): 473-491.

38. Onwubolu, G.C. and Babu, B.V. (2004). New
Optimization Techniques in Engineering, Springer Verlag.

39. Pezzella, F. and Merelli, E. (2000). A tabu search
method guided by shifting bottleneck for the job shop
scheduling problem. European Journal of Operational
Research, 120: 297-310.

40. Rae, A. and Parameswaran, S. (2001). Synthesising
application-specific heterogenous multiprocessors
using differential evolution. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer
Sciences, E84-A(12): 3125-3131.

41. Rogalsky, T., Kocabiyik, S., and Derksen, R.W. (2000).
Differential evolution in aerodynamic optimization.
Canadian Aeronautics and Space Journal, 46(4): 183-190.

42. Ruzek, B. and Kvasnicka, M. (2001). Differential
evolution algorithm in the earthquake hypocenter
location. Pure and Applied Geophysics, 158(4), 667-693.

43. Salman, A., Ahmad, I., and Al-Madani, S. (2003).
Particle swarm optimization for task assignment
problem. Microprocessors and Microsystems, 26: 363-371.

44. Satake, T., Morikawa, K., Takahashi, K., and Nakamura,
N. (1994). Neural network approach for minimizing the
makespan of the general job-shop. International Journal
of Production Economics, 33: 67-74.

45. Satake, T., Morikawa, K., Takahashi, K., and Nakamura,
N. (1999). Simulated annealing approach for
minimizing the makespan of the general job-shop.
International Journal of Production Economics, 60-61:
515-522.

46. Steinhöfel, K., Albrecht, A., and Wong, C.K. (1999).
Two simulated annealing-based heuristics for the job
shop scheduling problem. European Journal of Operational
Research, 118: 524-548.

47. Steinhöfel, K., Albrecht, A., and Wong, C.K. (2002).
Fast parallel heuristics for the job shop scheduling
problem. Computers and Operations Research, 29, 151-169.

48. Storn, R. (1999). Designing digital filters with
differential evolution. In: D. Corne, M. Dorigo, and F.
Glover (Eds.), New Ideas in Optimization, London:
McGraw-Hill, UK, pp. 109-125.

49. Storn, R. and Price, K. (1995). Differential Evolution a
Simple and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces, Technical Report TR-95-012,
ICSI.

50. Storn, R. and Price, K. (1997). Differential evolution - a
simple and efficient heuristic for global optimization
over continuous space. Journal of Global Optimization, 11:
341-359.

51. Taillard, É. (1993). Benchmarks for basic scheduling
problems. European Journal of Operational Research, 64:
278-285.

Tasgetiren, Sevkli, Liang, and Yenisey: A Particle Swarm Optimization and Differential Evolution Algorithms for Job Shop Scheduling Problem
IJOR Vol. 3, No. 2, 120-135 (2006)

135

52. Taillard, É. (1994). Parallel taboo search techniques for
the job shop scheduling problem. ORSA Journal on
Computing, 6(2), 108-117.

53. Tasgetiren, M.F. and Liang, Y.-C. (2003). A binary
particle swarm optimization algorithm for lot sizing
problem. Journal of Economic and Social Research, 5(2):
1-20.

54. Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., and
Gencyilmaz, G. (2004a). Particle swarm optimization
algorithm for makespan and maximum lateness
minimization in permutation flowshop sequencing
problem. In Proceedings of the 4th International Symposium
on Intelligent Manufacturing Systems (IMS2004), Sakarya,
Turkey, pp. 431-441.

55. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., and
Gencyilmaz, G. (2004b). Differential evolution
algorithm for permutation flowshop sequencing
problem with makespan criterion. Proceedings of the 4th
International Symposium on Intelligent Manufacturing Systems
(IMS2004), Sakarya, Turkey, pp. 442-452.

56. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., and
Gencyilmaz, G. (2004c). Particle swarm optimization
algorithm for single machine total weighted tardiness
problem. In Proceedings of the 2004 Congress on
Evolutionary Computation (CEC’04), Portland, Oregon,
pp. 1412-1419.

57. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., and
Gencyilmaz, G. (2004d). Particle swarm optimization
algorithm for permutation flowshop sequencing
problem. In Proceedings of the 4th International Workshop on
Ant Colony Optimization and Swarm Intelligence
(ANTS2004), LNSC 3172, Brussels, Belgium, pp.
382-390.

58. Van den Bergh, F. and Engelbecht, A.P. (2000).
Cooperative learning in neural networks using particle
swarm optimizers. South African Computer Journal, 26:
84-90.

59. Van Laarhoven, P., Aarts, E., and Lenstra, J. (1992). Job
shop scheduling by simulated annealing. Operations
Research, 40: 113-125.

60. Wang, L. and Zheng, D.Z. (2001). An effective hybrid
optimization strategy for job-shop scheduling problems.
Computers and Operations Research, 28: 585-596.

61. Yamada, T. and Nakano, R. (1992). A genetic algorithm
applicable to large-scale job shop problems. In
Proceedings of the Second International Conference on Parallel
Problem Solving from Nature (PPSN-II), North-Holland,
Amsterdam, pp 281-290.

62. Yamada, T. and Nakano, R. (1996). Job-shop
scheduling by simulated annealing combined with
deterministic local search. In I.H. Osman and J.P. Kelly
(Eds.), Meta-Heuristics: Theory and Applications, Kluwer,
237-248.

63. Yeh, L.-W. (2003). Optimal Procurement Policies for
Multi-product Multi-supplier with Capacity Constraint and
Price Discount, Master thesis, Department of Industrial
Engineering and Management, Yuan Ze University,
Taiwan, R.O.C.

64. Yoshida, H., Kawata, K., Fukuyama, Y., and Nakanishi,
Y. (2000). A particle swarm optimization for reactive
power and voltage control considering voltage security
assessment. IEEE Transactions on Power Systems, 15:
1232-1239.

65. Zhou, D.N., Cherkassky, V., Baldwin, T.R., and Olson,
D.E. (1991). A Neural network approach to job-shop
scheduling, IEEE Transactions on Neural Networks, 2(1):
175-179.

