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AbstractIn this paper, we present particle swarm optimization (PSO) and differential evolution (DE) algorithms for the 
job shop scheduling problem with the makespan criterion. The applications of  PSO and DE on combinatorial optimization 
problems are still considered limited, but the advantages of  PSO and DE algorithms such as structural simplicity, 
accessibility to practical applications, ease of  implementation, speed to get the solutions, and robustness are already shown 
in the literature. However, the major obstacle of  successfully applying PSO and DE algorithms to combinatorial 
optimization problems is due to their continuous nature. To remedy this drawback, the smallest position value (SPV) rule 
presented in Tasgetiren et al.(2004a, b, c, d) is employed in both algorithms to convert continuous position values to discrete 
job permutations. In order to improve the solution quality, both algorithms are also hybridized with an efficient local search 
method based on a variable neighborhood search (VNS) technique. The experimental results based on the well known 
benchmark instances collected from OR library show that the hybrid PSO algorithm has generated slightly better results 
than its counterpart, namely, the DE algorithm. It is also shown that the hybrid PSO algorithm is either better or 
competitive to the state-of-the-art methods in the literature. In addition, to the best of  our knowledge, both algorithms are 
the first reported applications of  PSO and DE algorithms for the job shop scheduling problem in the literature. 
KeywordsParticle swarm optimization, Differential evolution, Job shop scheduling, Makespan, Variable neighborhood 
search 
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1. INTRODUCTION 

Scheduling, a form of  decision-making, plays an 
essential role in manufacturing as well as in the service 
industry. A corporation must respond quickly and precisely 
to the customers’ demands in order to maintain market 
share. Thus, effective and efficient scheduling has become 
a necessity for survival in the modern competitive 
marketplace. Among the typical goals of  scheduling 
problems, maximizing machine utilization is not only a 
measure of  academic interest, but also useful and 
important in practice. When considering the job shop 
scheduling (JSS) problem, the general form of  the classical 
scheduling problems, the goal above can be intuitively 
transferred to makespan minimization. Therefore, the JSS 
problem with the objective function of  minimizing 
makespan can be stated as follows. Each of  n jobs is to be 
processed without preemption by m machines. Each job 
consists of  m operations that own a predetermined 
processing order through machines. Each machine can 
handle no more than one job at a time and each job must 

visit each machine only once. The release time of  all jobs is 
zero. Set-up and knock-down times on each machine are 
included in the processing time. Then, the JSS problem is 
to schedule jobs that minimizes the maximum completion 
time over all jobs, i.e., 

 
max 1,..,

max{ }jj n
C C

=
=                              (1) 

 
where Cj is the completion time of  job j, for j = 1, 2, ..., n. 
For the computational complexity of  the JSS problem, 
Garey et al. (1976) proved that it is NP-hard. Small size 
instances of  the JSS problem can be solved with 
reasonable computational time by exact algorithms such as 
branch-and-bound (Carlier and Pison, 1989; Applegate and 
Cook, 1991), and the time orientation approach (Martin, 
1996). However, when the problem size increases, the 
computational time of  exact methods grows exponentially. 
On the other hand heuristic algorithms have generally 
acceptable time and memory requirements, but do not 
guarantee optimality of  the final solution, that is, a feasible 
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solution is obtained which is likely to be either optimal or 
near-optimal. Therefore, the most recent research on JSS 
problems has been focused on heuristic algorithms. The 
solution techniques of  heuristic algorithms can be broadly 
classified into two groups: meta-heuristics and local search 
type heuristics. In the first category, Simulated Annealing 
(SA) (Van Laarhoven et al., 1992; Yamada and Nakano, 
1996; Satake et al., 1999; Steinhöfel et al., 1999, 2002; 
Aydin and Fogarty, 2004), Genetic Algorithm (GA) 
(Yamada and Nakano, 1992; Bierwith, 1995; Groce et al., 
1995; Dorndorf  and Pesch, 1995; Ikeda and Kobayashi, 
2000; Murovec and Šuhel, 2004), Tabu Search (TS) 
(Dell’Amico and Trubian, 1993; Taillard, 1994; Nowicki 
and Smutnicki, 1996; Pezzella and Merelli, 2000; Murovec 
and Šuhel, 2004), Ant Colony Optimization (ACO) 
(Colorni et al., 1994; Blum and Sampels, 2004), hybrid SA 
and GA (Kolonko, 1999; Wang and Zheng, 2001), Neural 
Network (NN) (Zhou et al., 1991; Satake et al., 1994) have 
provided abundant research. The latter group consists of  
shifting bottleneck procedure (Adams et al., 1988; Huang 
and Yin, 2004), guided local search (Balas and 
Vazacopoulos, 1998), constraint propagation (Brinkkötter 
and Brucker, 2001; Dorndorf  et al. 2002), and parallel 
Greedy Randomized Adaptive Search Procedure (GRASP) 
(Aiex et al., 2003). The comprehensive survey of  the JSS 
problem can be found in Aarts and Lenstra (1997), 
Blazewicz et al. (1996), and Jain and Meeran (1999). 

Particle Swarm Optimization (PSO) and Differential 
Evolution (DE) are two of the latest metaheuristic 
methods. PSO is based on the metaphor of social 
interaction and communication such as bird flocking and 
fish schooling. PSO is different from other 
evolutionary-type methods in a way that it does not use the 
filtering operation (such as crossover and/or mutation), 
and the members of the entire population are maintained 
through the search procedure so that information is 
socially shared among individuals to direct the search 
towards the best position in the search space. In a PSO 
algorithm, each member is called a particle, and each particle 
moves around in the multi-dimensional search space with a 
velocity constantly updated by the particle’s experience, the 
experience of the particle’s neighbors, and the experience 
of the whole swarm. Like the real-coded PSO algorithm, 
candidate solutions in DE are represented as individuals 
based on floating-point numbers. In the DE algorithm, the 
target population is perturbed with a mutant factor, and the 
crossover operator is then introduced to combine the 
mutated population with the target population so as to 
generate a trial population. Then the selection operator is 
applied to compare the fitness function value of both 
competing populations, namely, target and trial populations. 
The better individuals among these two populations 
become members of the population for the next generation. 
This process is repeated until a convergence occurs. 

PSO and DE were both first introduced to optimize 
various continuous nonlinear functions by Eberhart and 
Kennedy (1995) and Storn and Price (1995, 1997), 
respectively. PSO has been successfully applied to a wide 
range of applications such as automated drilling 

(Onwubolu and Clerc 2004), lot sizing problems 
(Tasgetiren and Liang 2003), mass-spring systems 
(Brandstatter and Baumgartner 2002), neural network 
training (Van den Bergh and Engelbecht 2000), 
permutation flowshop sequencing problems (Tasgetiren et 
al. 2004a, 2004d), power and voltage control (Yoshida et al., 
2000; Abido, 2002), single machine total weighted tardiness 
problems (Tasgetiren et al., 2004c), supplier selection and 
ordering problems (Yeh, 2003), and task assignment 
(Salman et al., 2003). DE’s applications consist of 
aerodynamic design (Rogalsky et al., 2000), digital filter 
design (Storn, 1999), earthquake relocation (Ruzek and 
Kvasnicka, 2001), microprocessor synthesis (Rae and 
Parameswaran, 2001), neural network learning (Masters 
and Land, 1997), and permutation flowshop sequencing 
problems (Tasgetiren et al., 2004b). More comprehensive 
surveys of PSO can be found in Kennedy et al. (2001), DE 
in Lampinen (2001), and Onwubolu and Babu (2004).  

The applications of PSO and DE on combinatorial 
optimization problems are still considered limited, but the 
advantages of PSO and DE algorithms such as structural 
simplicity, accessibility to practical applications, ease of 
implementation, speed to get the solutions, and robustness 
are shown in the literature.  However, the major obstacle 
of successfully applying PSO and DE algorithms to 
combinatorial problems in the literature is due to their 
continuous nature. To remedy this drawback, Tasgetiren et 
al. (2004a, 2004b, 2004c and 2004d) present the smallest 
position value (SPV) rule, borrowed from the random key 
representation of (Bean, 1994), for the PSO and DE 
algorithms to convert a continuous position vector to a 
discrete job permutation. This has been effectively applied 
to the single machine total weighted tardiness (SMTWT) 
problem and the permutation flowshop sequencing 
problem (PFSP). Following the successful applications 
above, this paper aims at employing PSO and DE in 
solving the job shop scheduling problem. 

The organization of  this paper is as follows. Section 2 
and 3 introduce the PSO and DE algorithms respectively. 
Neighborhood structure of  both algorithms is presented in 
Section 4 followed by experimental results given in Section 
5. Finally, Section 6 summarizes the concluding remarks. 
 
2. PARTICLE SWARM OPTIMIZATION 

ALGORITHM FOR JSS PROBLEM 

In a PSO algorithm for the JSS problem, the initial 
population is generated randomly. Then the SPV rule for 
each particle is used to convert the continuous position 
values to its permutation of operations. Then the job 
repetition vector is obtained to evaluate the fitness value, 
the makespan, of the particle. After evaluation, the PSO 
algorithm repeats the following steps iteratively.  

Initially, each individual with its position, velocity, and 
fitness value is assigned to its personal best (i.e., the best 
value of  each individual found so far). The best individual 
in the whole swarm with its position and fitness value, is, 
on the other hand, assigned to the global best (i.e., the best 
particle in the whole swarm). Then each particle updates its 
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velocity based on the experiences of  the personal best and 
the global best in order to update the position of  each 
particle with the velocity currently updated. Corresponding 
permutation of  operations and job repetition are 
determined through the SPV rule so that an evaluation is 
again performed to compute the fitness of  the particles in 
the swarm. In addition, a local search may apply to a 
certain group of  particles in the swarm to enhance the 
exploitation of  search space. This process is terminated 
with a predetermined stopping criterion. This study follows 
the gbest model of  Eberhart and Kennedy (1995) with the 
inclusion of  the SPV rule in the algorithm. Pseudo code of  
the PSO algorithm for the JSS problem is given in Figure 
1. 
 

Initialize parameters 
Initialize population 
Find permutation of  operations 
Find job repetition 
Evaluate  
Do { 

Find personal best  
Find global best 
Update velocity 
Update position 
Find permutation of  operations 
Find job repetition 
Evaluate 
Apply local search  
} While (Not Termination) 

Figure 1. PSO algorithm with local search for JSS problem. 
 

The basic elements of  PSO algorithm is summarized as 
follows:  
Particle: t

iX denotes the ith particle in the swarm at 
iteration t and is defined as 1 2 ,[ , , ..., ]t t t t

i i i i nmX x x x= , where 
t
ikx  is the position value of  the ith particle with respect to 

the kth dimension (k = 1, 2, ..., nm).  
Population: tX is the set of  NP particles in the swarm at 
iteration t, i.e., 1 2[ , , ..., ]t t t t

NPX X X X= where NP denotes 
the population size. 
Permutation of  operations: A new variable t

iϕ , which is 
a permutation of  operations of  jobs implied by the particle 

t
iX is introduced. It can be described as 

1 2 ,[ , , ..., ]t t t t
i i i i nmϕ ϕ ϕ ϕ= , where ϕ t

ik is the assignment of  
operation k of  the particle i in the permutation of  
operations at iteration t. 
Job repetition: Another variable π t

i , which is a repetition 
of  jobs implied by the particle t

iX can be described as 

1 2 ,[ , , ..., ]t t t t
i i i i nmπ π π π= , where π t

ik is the assignment of  
job j of  the particle i repeating m times in the job repetition 
vector at iteration t. 
Particle velocity: t

iV is the velocity of  particle i at 
iteration t and is defined as 1 2 ,[ , , ..., ]t t t t

i i i i nmV v v v= , where 

t
ikv is the velocity of  particle i at iteration t with respect to 

the kth dimension (k = 1, 2, ..., nm). 
Inertia weight: tw is a parameter to control the impact of  
the previous velocities on the current velocity. 
Fitness function: In a minimization problem, the 
objective function is ( )π ←t t

i i if X where t
iπ is the 

corresponding job repetition vector of  particle t
iX . 

Personal best: t
iP represents the best position of  the 

particle i with the best fitness value until iteration t, and is 
called the personal best. For each particle in the swarm, t

iP  
can be determined and updated at each iteration t. In a 
minimization problem with the objective function 

( )t t
i if Xπ ← , the personal best t

iP  of  the ith particle is 
obtained such that 1 1( ) ( )t t t t

i i i if P f Pπ π − −← ≤ ← for i = 1, 
2, ..., NP. To simplify, we denote the fitness function of  the 
personal best as ( )pb t t

i i if f Pπ= ← . For each particle, the 
personal best is defined as 1 2 ,[ , , ..., ]t t t t

i i i i nmP p p p=  where t
ikp  

denotes the position value of  the ith personal best with 
respect to the kth dimension (k = 1, 2, ..., nm). 
Global best: tG denotes the best position of  the globally 
best particle achieved so far in the whole swarm. Therefore, 
the global best can be obtained such that 

( ) ( )t t t t
i if G f Pπ π← ≤ ← for i = 1, 2, ..., NP. To simplify, 

the fitness function of  the global best is denoted as 
( )gb t tf f Gπ= ← . The global best is then defined as 

1 2[ , , ..., ]t t t t
nmG g g g=  where t

kg  is the position value of  the 
global best with respect to the kth dimension (k = 1, 2, ..., 
nm). 
 
2.1 Solution representation 

In this paper, an operation-based representation of Cheng 
et al. (1996) was used encoding a schedule as a repetition of 
jobs. Each dimension represents one operation of a job 
appearing exactly m times in the job repetition vector π t

i . 
For the n-job and m-machine problem, each particle 
contains n × m number of dimensions corresponding to n 
× m operations. 

Particles have a continuous set of  values for its 
dimensions. The particle itself  does not present a solution. 
Instead, the smallest position value, the SPV rule of  
Tasgetiren et al. (2004a, 2004b, 2004c, and 2004d) is used 
first to find the permutation of  operations. Then the job 
repetition vector is determined by the following formula: 
 

1
1.

t
t ik
ik n

ϕ
π

 −
= + 

 
                            (2) 

 
Table 1 illustrates the solution representation of  

particle t
iX of  the PSO algorithm for the 3-job 3-machine 

problem containing 3 × 3 = 9 operations. It should be 
noted that the SPV rule converts the continuous position 
values to a discrete job permutation which is the key to 
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enable the continuous PSO algorithms to be applied to 
sequencing problems. According to the SPV rule, the 
smallest position value is = −6 2.25t

ix , so the dimension k 
= 6 is assigned to be the first job ϕ =1 6t

i  in the 
permutation t

iϕ ; the second smallest position value is 

2 0.99t
ix = − , so the dimension k = 2 is assigned to be the 

second job 2 2t
iϕ =  in the permutation t

iϕ , and so on. In 
other words, dimensions are sorted according to the 
smallest position values t

ikx  to construct the permutation 
of  operations .t

iϕ  Having determined the permutation of  
operations, the job repetition vector is determined. As an 
example, 11

tπ value is obtained such that: 
 

11
11

1 6 11 1 1.66 1 1 1 2.
3 3

t
t ϕ

π
 − − = + = + = + = + =       

  

 

where the first part of  the summation is floored to an 
integer number. 

Finally, an active schedule is constructed from the job 
repetition vector t

iπ  with the procedure given in Cheng 
et al. (1996). For example, consider the example in Table 2 
and suppose that a job repetition vector is given as [2 1 2 2 
1 3 1 3 3] where 1 stands for job 1J , 2 for job 2J , and 3 for 
job 3J . Since each job has three operations, it occurs three 
times in the job repetition vector. By scanning the job 
repetition vector from left to right, the kth occurrence of  a 
job refers to the kth operation in the routing of  the job. So 
the first 2 corresponds to the first operation of  job J2 
which will be processed on machine M1, the second 2 
corresponds to the second operation of  job J2 which will 
be processed on machine M3, and the third 2 corresponds 
to the third operation of  job J2 which will be processed on 
machine M2. By doing so, the corresponding machine list 
can be obtained and an active schedule can be generated as 
shown in Figure 2. 

 
Table 1. Solution representation 

Dimension, k 1 2 3 4 5 6 7 8 9 
t
ikx  1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9 
t
ikϕ  6 2 5 4 1 9 3 8 7 
t
ikπ  2 1 2 2 1 3 1 3 3 

 
Table 2. An example of  3-job × 3-machine JSS problem 

 Operations 

Jobs 1M  2M  3M  

 Processing Times 

1J  3 3 3 

2J  2 3 4 

3J  3 2 1 
 Routing (Machines) 

1J  1M  2M  3M  

2J  1M  3M  2M  

3J  2M  1M  3M  

 

Figure 2. Active schedule generated from job repetition vector. 
 
2.2 Initial population 

The population of  particles is constructed randomly and 
uniformly for the PSO algorithm of  the JSS problem. The 
following formula is used to construct the continuous 
position values: 

( )0
min max min ,ikx x x x r= + − ×  

 
where min 4.0x = − , max 4 .0x = and r is a uniform random 
number between 0 and 1. Initial continuous velocities are 
generated by a similar formula as follows: 
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( )0
min max min ,ikv v v v r= + − ×  

 
where min max4.0 ,  4 .0,v v= − = and r is a uniform random 
number between 0 and 1. Continuous velocity values are 
not restricted to a maximum and minimum range when 
updating the velocity. The population size is the number of  
dimensions. Since the objective is to minimize the 
makespan, the fitness function value, ( )t t t

i i if Xπ ← , is 
the makespan value which is decoded from the job 
repetition vector for particle i. For 
simplicity, ( )t t t

i i if Xπ ← is denoted as t
if . 

 
2.3 Computational flow 

The complete computational flow of  the PSO algorithm 
for the JSS problem is given below: 
Step 1. Initialization 

Set t = 0, NP = the number of  dimensions, and 
0 0.9.w =  

Generate NP particles randomly as explained before, 
0{ , 1, 2, ..., }iX i NP= where 0 0 0 0

1 2 ,[ , , ..., ]i i i i nmX x x x= . 
Generate the initial velocities for particle i randomly 
as explained before, 0{ , 1, 2, ..., }iV i NP= where 

0 0 0 0
1 2 ,[ , , ..., ]i i i i nmV v v v= .Apply the SPV rule to find 

the permutation of  operations 
0 0 0 0

1 2 ,[ , , ..., ]i i i i nmϕ ϕ ϕ ϕ=  of  particle 0
iX  for i = 1, 

2, ..., NP. 
Determine the job repetition vector 0

iπ =  
0 0 0
1 2 ,[ , , .., ]i i i nmπ π π of  particle 0

iX  for i = 1, 2, ..., NP. 
Evaluate each particle i in the swarm using the 
objective function 0

if  for i = 1, 2, ..., NP. 
For each particle i in the swarm, set the personal 
best to 0 0

i iP X= , where 0 0 0
1 1 [ ,i i iP p x= =  

0 0 0 0
2 2 , ,,  ..., ]i i i nm i nmp x p x= =  together with its best 

fitness value, 0pb
i if f=  for i = 1, 2, ..., NP. 

Find the best fitness value among the whole swarm 
such that 0min{ }l if f=  for i = 1, 2, ..., NP with its 
corresponding positions 0

lX . Set the global best to 
0 0

lG X=  such that 0 0 0
1 ,1 2 ,2 [ , ,  ...,l lG g x g x= = =  

0
, ]nm l nmg x=  with its fitness value gb

lf f= . 
Step 2. Update iteration counter 

1t t= + . 
Step 3. Update inertia weight 

1t tw w β−= ×  where β is the decrement factor 
which is a constant between (0, 1). 

Step 4. Update velocity 
1 1 1 1 1 1

1 1 2 2( ) ( )t t t t t t t
ik ik ik ik k ikv w v c r p x c r g x− − − − − −= + − + −  

where c1 and c2 are social and cognitive parameters. 
r1 and r2 are uniform random numbers between (0, 1). 

Step 5. Update position  
1 .t t t

ik ik ikx x v−= +  

Step 6. Find permutation of  operations 
Apply the SPV rule to find the permutation of  
operations 1 2 ,[ , , ..., ]t t t t

i i i i nmϕ ϕ ϕ ϕ=  for i = 1, 2, ..., 
NP. 

Step 7. Find job repetition 
Determine the job repetition vector, 

1 2 ,[ , , ..., ]t t t t
i i i i nmπ π π π=  for i = 1, 2, ..., NP. 

Step 8. Update the personal best 
Each particle is evaluated by using the permutation 
to see if  personal best will improve.  That is, if  

t pb
i if f<  then the personal best is updated as 
t t

i iP X=  and pb t
i if f=  for i = 1, 2, ..., NP. 

Step 9. Update the global best 
Find the minimum value of  the personal best.  
That is, min{ },  1,  2,  ...,  ;  t pb

l if f i NP= = l ∈  
{1,  2,  ...,  }.NP  
If t gb

lf f< , then the global best is updated as 
t t

lG X= and gb t
lf f= . 

Step 10. Stopping criterion 
If  the CPU time exceeds the maximum CPU time 
limit, then stop; otherwise go to step 2. 

 
3. DIFFERENTIAL EVOLUTION ALGORITHM 

FOR JSS PROBLEM 

Solution representation and initial population in the DE 
algorithm are the same as the ones in the PSO algorithm 
except for omitting the velocity vector in the 
representation. Several variations of  DE algorithms have 
been introduced in the literature. We follow the 
DE/rand/1/bin scheme of  Storn and Price (1995) with the 
inclusion of  the SPV rule in the algorithm. The pseudo 
code of  the DE algorithm for the JSS problem is given in 
Figure 3. 

 
Initialize parameters 
Initialize target population 
Find permutation of  operations 
Find job repetition 
Evaluate  
Do { 

Obtain mutant population 
Obtain trial population  
Find permutation of  operations 
Find job repetition 
Evaluate trial population 
Do selection  
Apply local search 
 }While (Not Termination) 

Figure 3. DE algorithm with local search for the JSS 
problem. 

 
The basic elements of  DE algorithm is summarized as 

follows: 
Target individual: t

iX denotes the ith individual in the 
target population at generation t and is defined as 
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1 2 ,[ , , ..., ]t t t t
i i i i nmX x x x= , where t

ikx  is the dimension value 
of  the ith individual with respect to the kth dimension (k = 
1, 2, ..., nm).  
Mutant individual: t

iV denotes the ith individual in the 
mutant population at generation t and is defined as 

1 2 ,[ , , ..., ]t t t t
i i i i nmV v v v= , where t

ikv  is the dimension value 
of  the ith individual with respect to the kth dimension (k = 
1, 2, ..., nm).  
Trial individual: t

iU denotes the ith individual in the trial 
population at generation t and is defined as 

1 2 ,[ , , ..., ]t t t t
i i i i nmU u u u= , where t

iku  is the dimension value 
of  the ith individual with respect to the kth dimension (k = 
1, 2, ..., nm).  
Target population: tX is the set of  NP individuals in the 
target population at generation t, i.e., tX =  

1 2[ , , ..., ]t t t
NPX X X . 

Mutant population: tV is the set of NP individuals in the 
mutant population at generation t, i.e., tV =  

1 2[ , , ..., ]t t t
NPV V V . 

Trial population: tU is the set of NP individuals in the trial 
population at generation t, i.e., 1 2[ , , ..., ]t t t t

NPU U U U= . 
Permutation of  operations: A new variable t

iϕ , which is 
a permutation of  the operations of  jobs implied by the 
particle t

iX is introduced. It can be described as 

1 2 ,[ , , ..., ]t t t t
i i i i nmϕ ϕ ϕ ϕ= , where t

ikϕ  is the assignment of  
operation k of  the particle i in the permutation of  
operations at iteration t. 
Job repetition: Another variable t

iπ , which is a repetition 
of  jobs implied by the particle t

iX is also introduced. It can 
be described as 1 2 ,[ , , ..., ]t t t t

i i i i nmπ π π π= , where t
ikπ  is the 

assignment of  job j of  the particle i in the job repetition at 
iteration t. Note that each job repeats m times in the 
chromosome. 
Mutant constant: F ∈ (0, 2)is a real number constant 
which affects the differential variation between two 
individuals. 
Crossover constant: CR ∈ (0, 1)is a real number constant 
which affects the diversity of  population for the next 
generation. 
Fitness function: In a minimization problem, the 
objective function is ( )t t

i i if Xπ ← , where t
iπ  is the 

corresponding job repetition vector of  individual t
iX .  

The complete computational procedure of  the DE 
algorithm for the JSS problem can be summarized as 
follows: 
Step 1. Initialization 

Set t = 0, NP = the number of  dimensions. 
Generate NP individuals randomly as explained 
before, 0{ , 1,  2,  ...,  }iX i NP= where 0

iX =
0 0 0
1 2 ,[ , , ..., ]i i i nmx x x  

Apply the SPV rule to find the permutation of 
operations 0 0 0 0

1 2 ,[ , , ..., ]i i i i nmϕ ϕ ϕ ϕ=  of particle 0
iX  

for i = 1, 2, …, NP. 
Determine the job repetition vector 

0 0 0 0
1 2 ,[ , , ..., ]i i i i nmπ π π π= of particle 0

iX for i = 1, 2, …, 
NP. 
Evaluate each individual i in the population using 
the objective function 0 0( )o

i i if Xπ ← for i = 1, 2, …, 
NP. 

Step 2. Update generation counter 
1.t t= +  

Step 3. Generate mutant population 
For each target individual, t

iX , i = 1, 2, …, NP, at 
generation t, a mutant individual, t

iV =  

1 2 ,[ , , ..., ]t t t
i i i nmv v v , is determined such that: 

 
1 1 1( ),

i i i

t t t t
i a b cV X F X X− − −= + × −  

 
where ai, bi, and ci are three randomly chosen 
individuals from the population such that 
( i i ia b c≠ ≠ ).  

Step 4. Generate trial population  
Following the mutation phase, the crossover 
(recombination) operator is applied to obtain the 
trial population. For each mutant individual, 

1 2 ,[ , , .., ]t t t t
i i i i nmV v v v= , an integer random number 

between 1 and nm, i.e., iD ∈ (1, 2, …, nm), is chosen, 
and a trial individual, 1 2 ,[ , , ..., ]t t t t

i i i i nmU u u u= is 
generated such that: 
 

1

, ,

, ,

t t
ik ik it

ik t
ik

v if r CR or k D
u

x otherwise−

 ≤ == 


        (3) 

 
where the index D refers to a randomly chosen 
dimension (k = 1, 2, ..., nm) used to ensure that at 
least one parameter of  each trial individual 

t
iU differs from its counterpart in the previous 

generation 1 ,t
iU −  CR is a user-defined crossover 

constant in the range (0, 1), and t
ikr  is a uniform 

random number between 0 and 1. The trial 
individual is made up with some parameters of  a 
mutant individual, or at least one of  the parameters 
randomly selected, and some other parameters of  
the target individual. 

Step 5. Find permutation of operations 
Apply the SPV rule to find the permutation of 
operations 1 2 ,[ , , ..., ]t t t t

i i i i nmϕ ϕ ϕ ϕ=  for i = 1, 2, …, 
NP. 

Step 6. Find job repetition 
Determine the job repetition vector, t

iπ =  

1 2 ,[ , , ..., ]t t t
i i i nmπ π π  for i = 1, 2, …, NP. 

Step 7. Evaluate trial population 
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Evaluate the trial population using the objective 
function ( )t t t

i i if Uπ ← for i = 1, 2, …, NP. 
Step 8. Do selection 

To decide whether or not the trial individual 
t
iU should be a member of  the target population 

for the next generation, it is compared to its 
counterpart target individual 1t

iX − at the previous 
generation. The selection is based on the survival 
of  fitness among the trial population and target 
population such that: 

 
1 1

1

,   ( ) ( ),

,  ,

t t t t t
i i i i it

i t
i

U if f U f X
X

X otherwise

π π − −

−

 ← ≤ ←= 


  (4) 

 
Step 9. Stopping criterion 

If  the CPU time exceeds the maximum CPU time 
limit, then stop; otherwise go to step 2. 
 

4. NEIGHBORHOOD OF PSO AND DE 
ALGORITHMS 

There might be two types of  neighborhood structures 
that can be employed for the search. The first one is based 
on the neighbors of  the positions whereas the second one 
is based on the neighbors of  the job repetition vector. The 
second approach based on neighbors of  job repetitions is 
used in this paper because of  its efficiency. However, it 
violates the SPV rule and needs a repair mechanism. This 
approach is illustrated in Table 3 where 2 1t

iπ =  and 

6 3t
iπ =  are interchanged. As shown in Table 3, the SPV 

rule is violated because the permutation of  operations and 
job repetitions are the result of  the particle’s position 
values. After completing the local search, the particle 
should be repaired in order to satisfy the SPV rule. This is 
achieved by changing the values of  position, and 
permutation of  operations according to the SPV rule as 
shown in Table 4.

 
Table 3. Local search applied to job repetition before repairing 

Dimension, k 1 2 3 4 5 6 7 8 9 
t
ikx  1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9 
t
ikϕ  6 2 5 4 1 9 3 8 7 
t
ikπ  2 1 2 2 1 3 1 3 3 
t
ikx  1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9 
t
ikϕ  6 2 5 4 1 9 3 8 7 
t
ikπ  2 3 2 2 1 1 1 3 3 

 
Table 4. Local search applied to job repetition after repairing 

Dimension, k 1 2 3 4 5 6 7 8 9 
t
ikx  1.8 -0.99 3.01 0.72 -0.45 -2.25 5.3 4.8 1.9 
t
ikϕ  6 2 5 4 1 9 3 8 7 
t
ikπ  2 1 2 2 1 3 1 3 3 
t
ikx  1.8 1.9 3.01 0.72 -0.45 -2.25 5.3 4.8 -0.99 
t
ikϕ  6 9 5 4 1 2 3 8 7 
t
ikπ  2 3 2 2 1 1 1 3 3 

 
In other words, the values of positions and permutation 

of operations are interchanged in the particle. 
Sinc 2 1t

iπ = and 6 3t
iπ = are interchanged, their 

corresponding t
ikϕ and t

ikx values are interchanged 
respectively to keep the particle consistent with the SPV 
rule. The advantage of this approach is due to the fact that 
the repair algorithm is only needed after evaluating all the 
neighbors in the job repetition vector. 

The local search for the JSS problem is applied to the 
job repetition tπ of  the global best solution at each 
iteration t. The performance of  the local search algorithm 
depends on the choice of  the neighborhood structure. 
Local search in this work is based on the interchange+ insert 
variant of  the variable neighborhood search (VNS) method 

presented in Mladenovic and Hansen (1997). For the JSS 
problem, the following two neighborhood structures are 
employed: 

Interchange two jobs between thη and thκ dimensions, 
η κ≠ (Interchange) 

Remove the job at the thη dimension and insert it in the 
thκ dimensionη κ≠ (Insert) 
The pseudo code of  the local search is given in Figure 4 

where η and κ are the random integer numbers between 
1 and nm. s = ( )0 , ,insert s η κ means removing the job from 

the thη dimension in the job repetition vector 0s  and 

inserting it in the thκ dimension in the job repetition 
vector 0s , resulting in a job repetition vector s . In case 
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of  perturbing the job repetition vector 0s , two inserts and 
two interchanges were used to diversify the global best 
solution before applying the local search. This perturbation 
is important to direct the search towards the global optima 
since the global best solution remains the same after some 
iterations, probably at a local minimum. In addition, neutral 
moves are allowed in the VNS local search in order to 
restart the search from a different sequence with the same 
objective function value. 
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Figure 4. Pseudo code of  VNS local search. 
 

5. EXPERIMENTAL RESULTS 

The proposed PSO and DE algorithms for the JSS 
problem are coded in C and run on an Intel Pentium IV 
2.6 GHz PC with 256MB memory. The following 
parameters were used for the PSO and DE algorithms.  
The size of the population in both algorithms is the 
number of dimensions. The social and cognitive 
parameters were taken as 1 2 2c c= = consistent with the 
literature. Initial inertia weight is set to 0 0.9w = and never 
decreased below 0.40. The decrement factor β is taken as 
0.975. For the DE algorithm, mutant factor and crossover 
rate are taken as F = 0.8 and CR = 0.9 respectively.  

First, different neighborhood structures such as insert + 
interchange and interchange + insert are hybridized in the PSO 
and DE algorithms for a set of known job shop 
benchmark problem instances from the literature. As 

shown in the experimental results in Tables 5 and 6, the 
interchange + insert structure of the VNS local search 
embedded in both algorithms generated lower relative 
errors, thus convincing us to use this neighborhood 
structure in further comparisons. Tables 5 and 6 
summarize the statistics collected from the 20 replications 
for each instance. For each instance, its name and the best 
known upper bound (in parentheses) or optimal makespan 
(without parentheses) are given as reported by Jain and 
Meeran (1999). The third column gives the time limit to 
stop the algorithm. Since our comparisons are based on the 
recent work by Blum and Sampels (2004), the problem 
instances were run with different CPU time requirements 
to have a fair comparison. Owing to the fact that Blum and 
Sampels (2004) used a machine with 1.10 GHz, the 
maximum CPU times were restricted to the 11/26 of their 
CPU time limit because we employed a faster machine with 
2.6 GHz. Similar correction factor of 300/2600 is used for 
the CPU time results of Murovec and Šuhel (2004) since 
they used a machine with Celeron 300 MHz. Experimental 
results are given in the next five columns for each 
algorithm. These are the best solution out of 20 runs, the 
average over 20 runs, the standard deviation of 20 runs, the 
average time (in seconds, t ) needed to reach the best 
objective function value in each run, and finally, the 
relative percent error based on the best solution out of 20 
runs. 

The performance measures in this paper were the 
average relative percent error and CPU time requirements. 
Computational efficiency was measured by the CPU time, 
and the solution quality was measured with the average 
relative percent error which is specifically defined as: 
 

1

( ) * 100
/

R
i i

i i

H UARPE R
U=

 −
=  

 
∑             (5) 

 
where Hi denotes the value of the makespan that the DEvns 
or PSOvns. algorithms generated, whereas Ui is the value 
of best known or optimal makespan provided in the 
literature, and R is the total number of problem instances.  

Convergence graphs for the well-known problem 
instances of  ft10 and ft20 are given in Figure 5 and 6. From 
the convergence graphs, it can be seen that Both PSOvns 
and DEvns algorithms were converged very quickly until 10 
generations, very slowly thereafter. Since PSOvns with the 
interchange + insert neighborhood structure has generated 
the lowest average relative percent error of  0.20% as 
shown in Tables 5 and 6, the results of  PSOvns with the 
interchange + insert neighborhood were used to compare 
with those recently published in the literature. However, 
DEvns has performed well enough across the variety of  
problem instances in the literature. 

The second comparison is based on the results of  an ant 
colony optimization algorithm (ACO_GSS) by Blum and 
Sampels (2004). They reported the results for the 16 
benchmark instances of  the JSS problem and compared to 
their adaptation of  the tabu search approach (TS_GSS) by 
Nowicki and Smutnicki (1996), the state-of-the-art 
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algorithms for the JSS problem. From Table 8, it can be 
seen that the hybrid PSOvns algorithm outperforms the 
ACO_GSS algorithm in terms of  the best, and average 
makespan as well as the average relative percent error 
generated since the statistics are 994.00, 1002.23 and 0.28 
for the hybrid PSOvns whereas it is 1000.50, 1007.81, and 
1.02 for ACO_GSS. However, the ACO_GSS algorithm is 
more robust than the hybrid PSOvns algorithm due to the 
lower standard deviations. As explained before, the CPU 

time limits were fixed to 11/26 of  those reported in Blum 
and Sampels (2004) because of  the faster machine we used. 
However, the average time to reach the best solution in 
each run is still smaller for PSOvns than ACO_GSS. In 
addition to above, ACO_GSS is able to find only the 6 best 
known or optimal solutions whereas the hybrid PSOvns 
algorithm is able to find the 10 best known or optimal 
solutions among 16 instances reported. 

 
Table 5. Performance comparison of  PSOvns and DEvns with interchange + insert version 

 PSOvns DEvns 

Instance 
Best 

Known 
Time 
limit 

Best Avg 2σ  t  RPE Best Avg 2σ  t  RPE 

abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1235.80 2.09 25.66 0.00 
abz06 943 76.15 943 943.00 0.00 12.49 0.00 943 943.00 0.00 10.70 0.00 
abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 666 672.70 3.84 444.09 1.52 
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 674 681.90 6.13 476.71 1.35 
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 682 697.90 8.80 479.08 0.44 
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 935.80 10.91 26.38 0.00 
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1172.15 6.64 20.34 0.00 

orb01 1059 76.15 1059 1076.05 10.58 25.29 0.00 1064 1078.50 11.02 34.90 0.47 
orb02 888 76.15 889 889.45 1.79 10.15 0.11 889 891.40 3.76 14.73 0.11 
orb03 1005 76.15 1005 1034.55 22.95 31.37 0.00 1005 1035.70 21.99 36.93 0.00 
orb04 1005 76.15 1005 1011.30 6.42 41.63 0.00 1005 1012.85 6.44 26.89 0.00 
orb05 887 76.15 887 892.45 4.81 27.14 0.00 889 892.95 7.76 30.20 0.23 
orb06 1010 76.15 1013 1018.80 5.73 26.49 0.30 1010 1020.45 6.27 44.22 0.00 
orb07 397 76.15 397 398.60 2.56 15.03 0.00 397 399.00 2.60 13.63 0.00 
orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 913.25 12.70 27.09 0.00 
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 940.25 3.65 11.79 0.00 
orb10 944 76.15 944 944.00 0.00 16.43 0.00 944 944.35 1.57 17.06 0.00 
la16 945 76.15 945 948.50 9.08 20.63 0.00 945 946.85 6.88 24.45 0.00 
la19 842 76.15 842 844.00 3.78 19.09 0.00 842 844.95 4.96 29.63 0.00 
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1055.40 7.39 92.50 0.10 
la22 927 380.77 927 930.55 2.95 107.16 0.00 927 930.10 3.42 109.91 0.00 
la24 935 380.77 935 939.70 3.63 182.19 0.00 938 940.70 5.96 169.17 0.32 
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 981.35 2.70 129.38 0.00 
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1235 1250.45 11.20 367.22 0.00 
la28 1216 761.54 1216 1216.25 0.64 180.44 0.00 1216 1216.45 1.57 192.71 0.00 
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1163 1172.30 6.35 484.87 0.95 
la36 1268 761.54 1268 1279.30 6.98 464.49 0.00 1268 1275.25 5.93 443.62 0.00 
la37 1397 761.54 1397 1410.90 7.74 316.75 0.00 1397 1414.50 7.41 318.38 0.00 
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1196 1206.20 5.46 474.19 0.00 
la39 1233 761.54 1233 1240.00 4.10 387.69 0.00 1233 1238.10 5.75 367.40 0.00 
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1224 1228.10 5.57 391.80 0.16 
yn01 (888) 1523.08 893 901.15 6.56 818.47 0.56 894 902.75 5.58 870.18 0.68 
yn02 (909) 1523.08 910 925.85 6.43 962.93 0.11 917 925.95 3.69 1089.17 0.88 
yn03 (893) 1523.08 902 908.40 5.23 1007.06 1.01 895 906.85 6.93 1086.82 0.22 
yn04 (968) 1523.08 973 987.05 8.87 1015.96 0.52 980 990.55 7.98 891.95 1.24 

Mean     6.40 258.34 0.20   6.31 264.96 0.25 
 

The third comparison was for the TS_GSS algorithm, 
which has already been shown in Blum and Sampels (2004), 
outperforming the ACO_GSS algorithm. Table 9 presents 
the comparison of  the hybrid PSOvns to TS_GSS. In terms 
of  the best makespan and relative percent error generated, 
the hybrid PSOvns algorithm generated slightly better 
results than the TS_GSS algorithm because the mean best 
and RPE for PSOvns is 994.00 and 0.28% respectively 

whereas it is 994.63 and 0.32% for TS_GSS. However, the 
TS_GSS algorithm generated much more robust results 
due to the much lower standard deviations and it was 
slightly faster than PSOvns. To sum up, the hybrid PSOvns 
algorithm has produced smaller best makespan and lower 
relative percent errors, but the TS_GSS and ACO_GSS 
algorithms, on the other hand, are more robust than the 
hybrid PSOvns algorithm. Note that the tabu search adapted 
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in Blum and Sampels (2004) is one of  the state-of-the-art 
algorithms for the JSS problem. These results can be 
interpreted in another way. Blum and Sampels (2004) 
developed an extension of  neighborhood structure 
presented by Nowicki and Smutnicki (1996). This 
extension of  neighborhood structure is used both in their 
ant colony algorithm as a steepest descent local search and 
in their adaptation of  tabu search as a move structure. 
From Table 8, it can concluded that the simple VNS 
structure hybridized with the PSO algorithm was very 
effective in finding better or competitive results for a set of  
well known benchmark instances than those generated by 
their extension of  neighborhood structure presented by 
Nowicki and Smutnicki (1996) hybridized both with the 
ACO and TS algorithms. This is documented by another 

fact that TS_GSS is able to find 9 best known or optimal 
solutions out of  16 problem instances whereas PSOvns is 
able to find 10 best known or optimal solutions out of  16 
problem instances. The last comparison is due to the most 
recent study (GA_TS) by Murovec and Šuhel (2004) in 
which they developed a genetic algorithm employing a tabu 
search with a repairing technique as a local search. Upper 
bounds of  three instances are improved by Murovec and 
Šuhel (2004) where five hundred replications for each 
instance are conducted. From Table 10, it is clear that the 
GA_TS algorithm is superior to the PSOvns algorithm in 
terms of  all the performance measure. However, it is also 
superior to dESA, ACO_GSS and TS_GSS algorithms too. 
Murovec and Šuhel (2004) clearly reported the best results 
so far in the literature. 

 
Table 6. Performance comparison of  PSO and DE with insert + interchange version 

 PSOvns DEvns 

Instance 
Best 

Known 
Time 
limit 

Best Avg 2σ  t  RPE Best Avg 2σ  t  RPE 

abz05 1234 76.15 1234 1236.3 2.13 30.70 0.00 1234 1235.15 1.95 17.88 0.00 
abz 06 943 76.15 943 943.00 0.00 11.85 0.00 943 943.00 0.00 14.93 0.00 
abz 07 (656) 761.54 666 672.40 4.45 441.21 1.52 661 670.60 4.86 521.31 0.76 
abz 08 (665) 761.54 675 680.65 5.02 476.96 1.50 671 681.70 6.71 445.33 0.90 
abz 09 (679) 761.54 691 697.55 4.35 479.66 1.77 685 694.60 5.56 539.82 0.88 
ft10 930 76.15 930 942.25 12.77 27.83 0.00 930 939.65 11.25 28.43 0.00 
ft20 1165 76.15 1165 1173.30 6.28 26.42 0.00 1165 1173.95 6.05 19.58 0.00 

orb01 1059 76.15 1064 1074.40 8.48 38.24 0.47 1059 1075.30 13.64 39.60 0.00 
orb 02 888 76.15 888 889.90 2.51 21.89 0.00 889 890.60 3.28 15.45 0.11 
orb 03 1005 76.15 1017 1038.15 13.87 44.39 1.19 1005 1034.45 24.67 33.52 0.00 
orb 04 1005 76.15 1005 10120 4.69 37.00 0.00 1005 1012.90 5.74 26.70 0.00 
orb 05 887 76.15 889 892.20 3.97 36.01 0.23 887 896.50 11.83 19.77 0.00 
orb 06 1010 76.15 1013 1020.20 6.40 31.95 0.30 1010 1017.70 6.43 34.62 0.00 
orb 07 397 76.15 397 399.40 3.02 16.66 0.00 397 398.70 2.70 12.76 0.00 
orb 08 899 76.15 899 910.85 13.28 37.08 0.00 899 915.80 18.44 27.48 0.00 
orb 09 934 76.15 934 940.60 3.68 12.91 0.00 934 939.05 4.10 17.81 0.00 
orb 10 944 76.15 944 944.00 0.00 20.92 0.00 944 944.00 0.00 16.55 0.00 
la16 945 76.15 945 955.05 13.97 17.54 0.00 945 948.45 9.10 23.29 0.00 
la 19 842 76.15 842 843.85 4.59 30.26 0.00 842 843.30 3.26 31.89 0.00 
la 21 1046 380.77 1047 1054.55 5.06 85.09 0.10 1047 1055.30 8.23 172.77 0.10 
la 22 927 380.77 927 928.90 2.51 116.66 0.00 927 929.50 2.70 105.47 0.00 
la 24 935 380.77 935 939.35 2.72 216.34 0.00 938 939.95 2.19 165.85 0.32 
la 25 977 380.77 977 983.15 4.83 113.60 0.00 977 982.55 4.11 114.69 0.00 
la 27 1235 761.54 1236 1249.65 9.37 456.01 0.08 1235 1244.40 8.85 412.48 0.00 
la 28 1216 761.54 1216 1216.00 0.00 222.18 0.00 1216 1216.25 0.55 246.71 0.00 
la 29 1152 761.54 1164 1172.90 5.24 442.26 1.04 1163 1171.60 6.82 519.88 0.95 
la 36 1268 761.54 1268 1278.35 7.00 454.95 0.00 1268 1275.00 4.74 417.70 0.00 
la 37 1397 761.54 1397 1410.75 8.13 439.40 0.00 1397 1409.45 8.15 433.94 0.00 
la 38 1196 761.54 1196 1206.25 7.06 441.11 0.00 1207 1214.70 14.96 365.34 0.92 
la 39 1233 761.54 1233 1238.90 5.82 361.96 0.00 1233 1240.25 5.31 386.02 0.00 
la 40 1222 761.54 1224 1229.40 7.34 398.29 0.16 1224 1227.35 3.53 422.99 0.16 
yn01 (888) 1523.08 892 900.85 5.67 939.82 0.45 895 902.75 4.71 904.59 0.79 
yn 02 (909) 1523.08 911 923.85 6.21 1002.95 0.22 917 924.20 5.66 998.22 0.88 
yn 03 (893) 1523.08 897 908.85 6.56 1004.19 0.45 898 905.95 5.27 1090.40 0.56 
yn 04 (968) 1523.08 975 987.75 6.15 1042.97 0.72 981 989.85 4.96 1075.22 1.34 
Mean     5.80 273.64 0.29   6.58 277.69 0.25 
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Figure 5. Convergence graph for the ft10 in terms of  average relative percent deviation. 
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Figure 6. Convergence graph for the ft20 in terms of  average relative percent deviation. 
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Table 7. Performance comparison of  PSOvns and dESA 
 PSOvns dESA 

Instance 
Best 

known 
Time 
limit 

Best Avg 2σ  t  RPE Best Avg 2σ  t  RPE 

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 672 682.40 8.11 NA 2.44 
abz 08 (665) 761.54 674 682.30 5.52 442.87 1.35 681 691.50 7.34 NA 2.41 
abz 09 (679) 761.54 688 697.55 5.79 424.79 1.33 699 706.60 6.06 NA 2.95 
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1046 1049.40 4.17 NA 0.00 
la 24 935 380.77 935 939.70 3.63 182.19 0.00 938 940.80 2.97 NA 0.32 
la 25 977 380.77 977 981.45 4.74 143.12 0.00 977 982.00 5.06 NA 0.00 
la 27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1240 1242.00 4.52 NA 0.41 
la 29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1176 1179.00 9.81 NA 2.08 
la 38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1201 1208.40 5.02 NA 0.42 
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1228 1232.40 5.84 NA 0.49 

Mean   979.90 988.98 7.08 341.99 0.44 985.80 991.45 5.89 NA 1.15 
 

Table 8. Performance comparison of  PSOvns and ACO_GSS 
 PSOvns ACO_GSS 

Instance 
Best 

known 
Time 
limit 

Best Avg 2σ  t  RPE Best Avg 2σ  t  RPE 

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 674 681.20 3.16 405.63 2.74 
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 689 697.05 3.24 462.53 3.61 
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 702 709.35 4.16 448.13 3.39 
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1053.25 3.51 194.73 0.10 
la24 935 380.77 935 939.70 3.63 182.19 0.00 944 948.10 3.39 153.84 0.96 
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 981.45 2.98 378.49 0.00 
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1243 1255.50 5.90 436.51 0.65 
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1168 1186.75 8.15 459.03 1.39 
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1227 1235.45 4.17 392.62 2.59 
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1228 1234.55 5.92 436.23 0.49 
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 938.90 7.61 39.55 0.00 
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1168.55 5.11 37.35 0.00 

orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 914.65 6.87 37.34 0.00 
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 935.15 2.92 34.06 0.00 
abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1237.20 1.36 14.46 0.00 
abz06 943 76.15 943 943.00 0.00 12.49 0.00 947 947.80 0.41 6.50 0.42 
Mean   994.00 1002.23 6.66 221.73 0.28 1000.50 1007.81 4.30 246.06 1.02 

 
6. CONCLUSIONS 

In this paper, we present PSO and DE algorithms for 
the JSS problem with the makespan criterion. The 
applications of PSO and DE on combinatorial 
optimization problems are still considered limited, but the 
advantages of PSO and DE algorithms such as structural 
simplicity, accessibility to practical applications, ease of 
implementation, speed to get the solutions, and robustness 
are already shown in the literature. However, the major 
obstacle of successfully applying PSO and DE algorithms 
to combinatorial optimization problems is due to their 
continuous nature. To remedy this drawback, the SPV rule 
presented in Tasgetiren et al. (2004a, b, c, d) is used in both 
algorithms to convert continuous position values to 
discrete job permutations. Both algorithms are also 
hybridized with an efficient local search method based on a 
VNS method in order to improve the solution quality.  

To the best of our knowledge, these are the first 
reported applications of the PSO and DE algorithms to the 
JSS problem with either better or competitive results to the 

well known approaches in the literature. The SPV rule can 
be employed to enable the continuous PSO and DE 
algorithms to be applied to all classes of sequencing and 
scheduling problems. It is hoped that the PSO and DE 
algorithms with the proposed SPV rule will enrich the PSO 
and DE literatures applied to the combinatorial 
optimization problems in the future. 

As summarized in Table 11, it has been shown that the 
hybrid PSOvns algorithm generated better results than the 
dESA algorithm. It has also been shown that the hybrid 
PSOvns algorithm generated better results than the 
ACO_GSS algorithm, and was very competitive to 
TS_GSS algorithm. However, the hybrid PSOvns was not 
so robust in comparison to dESA, ACO_GSS and 
TS_GSS.  

The hybrid PSOvns algorithm was not competitive to the 
GA_TS algorithm which generated best reported results so 
far in the literature. However, both PSOvns and DEvns 
algorithms solved very hard instances collected from the 
OR library with 0.20% and 0.25% deviations from the best 
known or optimal solutions reported in the literature.  
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Table 9. Performance comparison of  PSO and TS_GSS 
 PSOvns TS_GSS 

Instance 
Best 

known 
Time 
limit 

Best Avg σ 2  t  RPE Best Avg 2σ  t  RPE 

abz07 (656) 761.54 659 670.10 5.75 573.59 0.46 666 668.45 1.47 350.30 1.52 
abz08 (665) 761.54 674 682.30 5.52 442.87 1.35 673 679.95 3.17 335.93 0.60 
abz09 (679) 761.54 688 697.55 5.79 424.79 1.33 688 692.20 2.61 267.42 1.33 
la21 1046 380.77 1047 1053.80 6.01 146.18 0.10 1047 1049.25 2.05 155.74 0.10 
la24 935 380.77 935 939.70 3.63 182.19 0.00 939 942.30 1.38 131.98 0.43 
la25 977 380.77 977 981.45 4.74 143.12 0.00 977 977.30 0.47 286.35 0.00 
la27 1235 761.54 1235 1248.10 10.09 359.36 0.00 1235 1241.15 3.69 379.06 0.00 
la29 1152 761.54 1164 1176.70 10.55 353.93 1.04 1164 1168.10 2.17 347.78 1.04 
la38 1196 761.54 1196 1212.50 14.96 415.13 0.00 1196 1201.40 1.85 366.88 0.00 
la40 1222 761.54 1224 1227.60 3.80 378.76 0.16 1224 1228.35 2.52 300.94 0.16 
ft10 930 76.15 930 938.45 9.71 36.14 0.00 930 931.90 3.32 28.10 0.00 
ft20 1165 76.15 1165 1175.25 5.30 17.68 0.00 1165 1165.00 0.00 9.52 0.00 

orb08 899 76.15 899 913.40 14.19 36.07 0.00 899 910.75 6.33 29.78 0.00 
orb09 934 76.15 934 939.45 4.27 8.08 0.00 934 934.00 0.00 11.77 0.00 
abz05 1234 76.15 1234 1236.25 2.31 17.36 0.00 1234 1236.90 1.37 23.05 0.00 
abz06 943 76.15 943 943.00 0.00 12.49 0.00 943 943.70 0.98 25.99 0.00 
Mean   994.0 1002.23 6.66 221.73 0.28 994.63 998.17 2.09 190.66 0.32 

 
Table 10. Performance comparison of  PSOvns and GA_TS 

 PSOvns GA_TS 

Instance 
Best 

known 
Time 
limit 

Best Avg Worst t  RPE Best Avg Worst t  RPE 

abz05 1234 76.15 1234 1236.25 1239.00 17.36 0.00 1234 1234.90 1238 0.61 0.00 
abz06 943 76.15 943 943.00 943.00 12.49 0.00 943 943.00 943 0.28 0.00 
abz07 (656) 761.54 659 670.10 682.00 573.59 0.46 658 666.40 674 77.75 0.30 
abz08 (665) 761.54 674 682.30 691.00 442.87 1.35 669 674.30 685 104.88 0.60 
abz09 (679) 761.54 688 697.55 708.00 424.79 1.33 678 687.50 701 93.39 -0.15 
ft10 930 76.15 930 938.45 967.00 36.14 0.00 930 931.60 944 1.15 0.00 
ft20 1165 76.15 1165 1175.25 1178.00 17.68 0.00 1165 1165.20 1173 1.11 0.00 

orb01 1059 76.15 1059 1076.05 1099.00 25.29 0.00 1059 1062.40 1077 1.01 0.00 
orb02 888 76.15 889 889.45 897.00 10.15 0.11 888 888.60 890 0.54 0.00 
orb03 1005 76.15 1005 1034.55 1077.00 31.37 0.00 1005 1012.10 1035 1.44 0.00 
orb04 1005 76.15 1005 1011.30 1023.00 41.63 0.00 1005 1008.10 1013 0.68 0.00 
orb05 887 76.15 887 892.45 904.00 27.14 0.00 887 888.30 891 0.91 0.00 
orb06 1010 76.15 1013 1018.80 1031.00 26.49 0.30 1010 1012.80 1023 1.39 0.00 
orb07 397 76.15 397 398.60 403.00 15.03 0.00 397 397.00 397 0.39 0.00 
orb08 899 76.15 899 913.40 944.00 36.07 0.00 899 902.40 927 1.6 0.00 
orb09 934 76.15 934 939.45 943.00 8.08 0.00 934 934.70 943 0.74 0.00 
orb10 944 76.15 944 944.00 944.00 16.43 0.00 944 944.00 944 0.46 0.00 
la16 945 76.15 945 948.50 976.00 20.63 0.00 945 945.00 945 0.33 0.00 
la19 842 76.15 842 844.00 852.00 19.09 0.00 842 842.10 848 0.38 0.00 
la21 1046 380.77 1047 1053.80 1071.00 146.18 0.10 1046 1048.70 1055 3.07 0.00 
la22 927 380.77 927 930.55 935.00 107.16 0.00 927 927.70 935 3.34 0.00 
la24 935 380.77 935 939.70 950.00 182.19 0.00 935 938.20 943 3.07 0.00 
la25 977 380.77 977 981.45 998.00 143.12 0.00 977 978.20 984 3.71 0.00 
la27 1235 761.54 1235 1248.10 1264.00 359.36 0.00 1235 1236.80 1256 16.07 0.00 
la28 1216 761.54 1216 1216.25 1218.00 180.44 0.00 1216 1216.00 1216 2.4 0.00 
la29 1152 761.54 1164 1176.70 1205.00 353.93 1.04 1153 1165.20 1178 16.3 0.09 
la36 1268 761.54 1268 1279.30 1291.00 464.49 0.00 1268 1268.30 1278 15.28 0.00 
la37 1397 761.54 1397 1410.90 1421.00 316.75 0.00 1397 1402.40 1418 30.2 0.00 
la38 1196 761.54 1196 1212.50 1248.00 415.13 0.00 1196 1202.30 1212 24.51 0.00 
la39 1233 761.54 1233 1240.00 1248.00 387.69 0.00 1233 1235.50 1248 25.18 0.00 
la40 1222 761.54 1224 1227.60 1237.00 378.76 0.16 1222 1226.00 1234 22.9 0.00 
yn01 (888) 1523.08 893 901.15 914.00 818.47 0.56 886 896.00 905 220.78 -0.23 
yn02 (909) 1523.08 910 925.85 937.00 962.93 0.11 907 915.70 927 242.28 -0.22 
yn03 (893) 1523.08 902 908.40 919.00 1007.06 1.01 895 900.60 909 228.23 0.22 
yn04 (968) 1523.08 973 987.05 1010.00 1015.96 0.52 969 978.50 991 263.36 0.10 

Mean   988.83 996.94 1010.49 258.34 0.20 987.26 990.76 999.43 40.28 0.02 
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Table 11. Summary of  comparisons 

Problems 
Best 

Known PSOvns DEvns dESA ACO_GSS TS_GSS GA_TS 

abz07 656 0.46 1.52 2.44 2.74 1.52 0.30 
abz08 665 1.35 1.35 2.41 3.61 0.60 0.60 
abz09 679 1.33 0.44 2.95 3.39 1.33 -0.15 
la21 1046 0.10 0.10 0.00 0.10 0.10 0.00 
la24 935 0.00 0.32 0.32 0.96 0.43 0.00 
la25 977 0.00 0.00 0.00 0.00 0.00 0.00 
la27 1235 0.00 0.00 0.41 0.65 0.00 0.00 
la29 1152 1.04 0.95 2.08 1.39 1.04 0.09 
la38 1196 0.00 0.00 0.42 2.59 0.00 0.00 
la40 1222 0.16 0.16 0.49 0.49 0.16 0.00 

Mean 0.44 0.48 1.15 1.59 0.52 0.08 
 

To summarize, the results presented in this work are 
very encouraging and promising for the applications of the 
PSO and DE algorithms to job shop scheduling problems, 
and hence to the other scheduling problems. It should be 
noted that the success was mainly due to the use of VNS 
local search improving the solution quality together with 
the neutral moves allowed.  

For future work, the SPV rule can be used in both 
algorithms to solve other combinatorial optimization 
problems requiring permutation representation. It should 
also be pointed out that VNS is so time consuming due to 
the nature of  changing the neighborhood during the search. 
This is one of  our future research directions such that the 
iterated local search (ILS) with an insert neighborhood 
could be used to further improve the performance of  the 
PSO algorithm. In addition, a deterministic version (VND) 
of  the VNS local search with the first improvement 
pivoting rule could be used to improve the performance of  
the current algorithm 
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