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AbstractThis paper presents a new approach for transforming MRP orders, planned periodically, e.g. on a weekly base, 
into a detailed schedule of jobs. In this model for a parallel machine environment, the jobs are partitioned into families and 
a family specific set-up time is required at the start of each period and of each batch, where a batch is a maximal set of jobs 
in the same family, that are processed consecutively. An integer program is formulated for both the problem of minimising 
the number of overloaded periods and the problem of minimising the total overtime. These programs generate benchmark 
results for the heuristic approach. A heuristic model is developed that constructs a schedule in which overloaded periods are 
relieved and set-up time is saved. In this approach, the job sequence is constructed by repeatedly solving a knapsack 
problem for each machine. The weights used in this knapsack problem relate to the preferred priorities of the jobs not yet 
scheduled and determine the quality of the final sequence. The different features of the heuristic model are compared using 
a large set of test problems. The results show that the quality of the final schedule depends on an appropriate choice of the 
weights. 
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1. INTRODUCTION 

In an MRP II environment, the MRP module generates 
a set of planned orders, each having a release date and a 
due date. Because MRP assumes an infinite capacity, there 
is a need for detailed scheduling in order to construct a 
feasible schedule. The quality of the resulting schedule can 
be evaluated using a number of criteria, for example: 
meeting due dates, minimising lead time, minimising 
in-process-inventory, minimising total set-up time or 
maximising machine utilisation. The responsability of 
specifying when and how the planned orders (or jobs) are 
to be processed is delegated to the shop floor scheduler. 
There are several possible ways to derive the detailed 
schedule, depending on the objectives the scheduler has in 
mind. 

In many practical situations, the jobs to be processed are 
divided into different families such that jobs of different 
families require different sets of processing facilities. In 
such problems, a set-up time is necessary for rearranging 
processing facilities whenever there is a switch from 
processing a job in one family to another job from a 
different family. In general, these set-up times are sequence 
dependent. As a consequence, decisions about the sizes of 

the production batches and the sequencing of the batches 
have to be taken simultaneously. Most research has been 
dedicated to single machine problems. Several results can 
be found in survey papers, e.g. Webster and Baker (1995), 
Drexl and Kimms (1997), and Potts and Kovalyov (2000). 
A comprehensive review of scheduling problems involving 
set-up considerations is provided by Allahverdi et al.(1999). 
In this review scheduling problems are classified into batch 
and non-batch, and sequence-independent and 
sequence-dependent set-ups. Since the appearance of that 
survey paper, there has been an increasing interest in 
scheduling problems with set-up times or costs. An 
up-to-date survey is conducted by Allahverdi et al. (2006). 

When a large number of jobs have to be processed, 
several parallel machines can be used. In this situation, also 
the assignment of the production batches to single 
machines has to be determined. Quadt and Kuhn (2000) 
describe for example the back-end assembly operations of 
the semiconductor manufacturing process, which are die 
attach, wire bonding and molding. The set-up times are 
relatively long between product families (up to 12 hours) 
and are in reality sequence dependent. But the degree of 
sequence-dependency is modest, and therefore Quadt and 
Kuhn use average product family set-up times which are 
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sequence independent. 
Chen and Powell (2003) consider two particular parallel 

machine problems with multiple job families: minimising 
total weighted completion time and minimising the number 
of weighted tardy jobs. They propose exact solution 
algorithms based on column generation. Their 
computational experiments show that these algorithms are 
capable of solving problems with up to 40 jobs on up to 
six machines within reasonable computation time. For the 
total weighted completion time problem, Dunstall and 
Wirth (2005) develop a number of simple, effective and 
efficient heuristic methods based on ideas that have 
appeared previously in the literature for the analogous 
single machine problem, the parallel machine problem 
without set-ups and the parallel machine makespan 
problem with set-ups. 

Several research papers about lotsizing on parallel 
machines are inspired by a technical report from 
Chesapeake Decision Sciences, Inc. Baker and Muckstadt 
(1989) provide in this report the CHES problems, a set of 
problem instances, based on existing business problems. 
These problems comprise parallel production lines and 
sequence-dependent set-up costs, but no set-up times. The 
objective is to find a production schedule that minimises 
the sum of set-up, production and holding costs minus 
sales revenue taking into account the product demand and 
the capacity of the machines. Kang et al. (1999) designed 
the sequence splitting model for solving the CHES 
problems. This model splits an entire schedule into 
subsequences, leading to tractable subproblems. Column 
generation and branch and bound are the basic elements of 
the heuristic solution method. 

Meyr (2002) proposes a combination of local search 
metastrategies with local reoptimization for solving the 
problem of simultaneous lotsizing and scheduling on 
non-identical parallel machines. In his model sequence- 
dependent set-up times are integrated as a further 
reduction of the limited capacity of the machines. The 
solution procedure is quite flexible, because - after some 
minor modifications - it can solve the CHES problems. 

Clark (2003) develops models for constructing a capacity 
feasible master production schedule (MPS) in material 
requirements planning (MRP) systems. The exact MIP 
model minimises the total costs associated with stocks and 
backorders and takes into account sequence-dependent 
set-up times. It is optimally solvable only for small product 
structures. He proposes an approximate model and 
solution method in which set-ups and lots are scheduled 
on a period-by-period basis. This model is able to schedule 
set-ups of up to 100 products on 10 machines over 5 
periods in reasonable computing time. 

In this paper, the method proposed by Crauwels and 
Van Oudheusden (2003), for transforming planned MRP 
orders into a detailed schedule in a single machine 
environment, is extended to the parallel machine 
environment. We assume that the planning horizon is 
segmented into a finite number of time buckets of equal 
length, e.g. into weeks. The end times of these periods 
constitute the different due dates of the jobs. The jobs are 

divided into a number of families: a sequence-independent 
set-up time is incurred between jobs of different families 
and whenever a job is the first to be processed in a period. 
A job has to be processed (inclusive a specific set-up of its 
own) without interruption in such a period. 

When all jobs are scheduled in the single period just 
before their common due date, there is a large probability 
that the resulting sequence is not feasible. Some periods 
will have idle time and in other periods there will be not 
enough capacity to process all the scheduled jobs. Thus, 
the jobs from the overloaded periods should be shifted to 
the underloaded periods. Probably, several jobs may be 
worth being considered for shifting. A more interesting job 
is a job that saves set-up time, relieves overloaded periods 
and helps to maximise the utilisation of the resources. 

The main objective of this study is to adapt a number of 
simple heuristic rules that were developed for the single 
machine case so that they can be conveniently applied by a 
dispatcher in a parallel machine environment. The 
constructed schedules can be evaluated on different 
performance criteria. And, because different circumstances 
in the workshop require different performance criteria to 
be optimised, we also investigate the relation between a 
specific rule and a specific criterion. In addition, two 
integer programming models are formulated, mainly for 
using their outcomes as benchmarks. They are probably 
not very useful in practice because of their complexity and 
the fact that, at one time, only a single objective can be 
optimised. 

On the one hand our approach is inspired by the 
research carried out in the area of scheduling with family 
batching. In this context, the motivation for batching jobs 
is a gain in efficiency: it may be cheaper or faster to process 
jobs in a batch than to process them individually. On the 
other hand, our technique is also related to lotsizing: 
grouping together planned MRP orders of consecutive 
periods in order to minimise the sum of inventory and 
set-up costs (Maes and Van Wassenhove, 1988). One of 
the first reviews about the integration of scheduling with 
batching and lotsizing is presented by Potts and Van 
Wassenhove (1992).  

In Section 2, we give a formal statement of our problem 
and Section 3 introduces the integer programming models. 
In Section 4, the new heuristic approach is described. 
Section 5 reports on computational experience and some 
concluding remarks are contained in Section 6. 

 
2. PROBLEM FORMULATION 

To state our scheduling problem more precisely, we are 
given N jobs divided into F families. Each family f, for 1 
≤  f ≤  F, contains nf jobs. The jobs are numbered 1, 
2, …, N. Sometimes it is more convenient to refer to job (i, 
f), which is the ith job in family f, for 1 ≤  i ≤  nf. There 
are M identical parallel machines available on which these 
jobs can be scheduled. We let pif denote the processing 
time of job (i, f). The planning horizon is segmented into a 
finite number (T) of equal length time (L) periods. Each 
job has a release date rif, the moment it becomes available 
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for processing, which corresponds to the start time of such 
a period. Each job has a due date dif which is the end time 
of such a period. There are at most T different end times 
and sometimes we refer to them as Dt with 1 ≤  t ≤  T. 
In a single machine environment, all jobs in one family can 
be assumed to have different due dates. If there are two or 
more jobs of some family with the same due date, they can 
in many practical situations be considered as one large job 
that requires only one set-up. In a parallel machine 
environment several jobs of a family with the same due 
date can be scheduled on different machines each requiring 
a set-up. In both cases jobs are labeled in order of 
non-decreasing due dates dif. A sequence-independent 
set-up time sf is incurred whenever a job in family f is 
processed immediately after a job of a different family. 
Also, an initial set-up time sf is required if a job from family 
f is the first to be processed in a period. In addition, the 
complete processing of a job, possibly preceded by a job 
specific set-up has to be carried out in one period. 

Note that in this formulation real set-up times are used 
and not set-up costs as is usually the case in more classical 
lotsizing models. We believe that set-up time is a much 
more practical concept. As long as costs (for set-up, 
overtime, and inventory) are directly proportional to their 
respective use of time, the approach will also find 
cost-efficient solutions. In certain situations, however, 
costs may not be proportional to time and then the 
application of the presented approach should be done with 
caution. The cost, for example, could be high for switching 
between certain families even though the changeover time 
is relatively small (Allahverdi et al., 1999), or vice versa. 
Likewise, the cost of keeping inventory for one additional 
period may be relatively high for certain families and small 
for other families. Finally, the cost of production of certain 
families may be relatively high compared to their 
production time when, for example, more or higher skilled 
operators are needed. 

In a first attempt for solving a parallel machine 
scheduling problem, the capacity of the M parallel 
machines can be taken together. The resulting virtual single 
machine problem can be solved with single machine 
techniques and the sequence of jobs has then to be 
subdivided across the different parallel machines. In our 
problem however, this approach would be too simplistic 
because of the family set-up times. During the last phase, 
when the jobs have to be subdivided across the different 
machines, additional set-up times would have to be 
incorporated. Probably, this would take too much time of 
the available machine capacity. 
 
3. INTEGER PROGRAMMING FORMULATIONS 

By defining variables 
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we obtain the following formulation for minimising the 
number of overloaded periods: 

 
minimize 

∈ ∈
∑ ∑ tk

k t

z
M T

                          (1) 

 
subject to  
 

∈ ∈
∑ ∑ =1iftk

k t

x
M T

, (i, f)∈N,                         (2) 

≤iftk ftkx y , (i, f)∈N, t∈T , k∈M,                (3) 
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, t∈T, k∈M,   (4) 

 
≤=0  if  or >iftk if ifx tL r tL d , (i, f)∈N, k∈M,        (5) 

 
∈ {0, 1}iftkx , (i, f)∈N, t∈T, k∈M,                (6) 

 
∈ {0 , 1}ftky , f∈F, t∈T, k∈M,                (7) 

 
∈ {0, 1}tkz , t∈T, k∈M.                       (8) 

 
Constraints (2) ensure that each job is processed in 

exactly one period on one machine. Constraints (3) ensure 
that the necessary set-ups are executed: if job (i, f) is 
processed in period t, a set-up for family f is required in 
period t. A capacity restriction has been imposed on each 
machine and on each period by constraints (4): the 
required set-ups plus the processing times must be less 
than the length of the period (L), except for the overloaded 
periods where this length is increased by a term Q. 
Constraints (5) ensure that each job is processed between 
its release date and its due date. 

When Q in constraints (4) is set to a very large value, the 
minimisation of the number of overloaded periods often 
results in an unrealistic schedule where all the overload is 
assembled into just one period on one specific machine. In 
practical situations, a restriction on the magnitude of the 
overload is imposed. For the computational experiments, 
we choose to set Q equal to the length of a period (L). For 
some problem instances, the time window established by 
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constraints (5) is rather narrow. Therefore, it is possible 
that because of the limited overtime, no feasible solution 
can be calculated for the model. By taking a rather large 
value for Q, we eliminate this phenomenon as much as 
possible. 

By changing the variables ztk, with t∈T and k∈M, from 
binary to positive real and by replacing the capacity 
constraints (4) with 

 

∈ ∈

≤∑ ∑
( , )

+ +f ftk if iftk tk
f i f

s y p x L z
F N

, t∈T, k∈M,    (9) 

 
we formulate a mixed integer programme for minimising 
the total overtime. In this model the overload will be 
spread more uniformly across the different time periods 
and machines. 
 
4. A HEURISTIC APPROACH 

The idea is to include some jobs of the following periods 
in the current period (with due date Dt) in order to realise a 
feasible schedule, to save set-up time and to have fully 
utilised resources. 

First, the jobs that have to be processed before the end 
of the period because of their due date, are included in the 
current period. During the remaining time, some jobs of 
the following periods can be added and these are 
determined by solving a knapsack problem. For each of 
these jobs i, from some family f, a weight wif is defined that 
is related to the performance criteria mentioned above. For 
example, a job gets a larger weight when it is a job from a 
family with a large set-up time and especially when its 
family contains only a few jobs. In addition, jobs from 
overloaded periods have to be given preference. On the 
other hand, care must be taken to process a job not too 
early. 

To describe our heuristic method, let tS  be the set of 
jobs not yet scheduled at the beginning of period t. For 
each period t = 1, 2, …, T: 
• define a subset of jobs not yet scheduled: 

= {( , )| = }t t ifi f d tL∩J S , and include the jobs of Jt in 
the current period by setting xiftk = 1 and yftk = 1 for 
some machine k;  

• when the current period t leaves idle time on some 
machine k, i.e. 

( , )
 +  

t
f ftk if iftkf i f

s y p x L
∈ ∈

<∑ ∑F J
, 

define a set of additional candidates Kt\Jt, 
with = {( , )| ( -1) }t t ifi f r t L≤∩K S , and calculate a weight 
wif for each of these candidates;  

• add some jobs of Kt\Jt (jobs of the following periods) to 
the current period t by solving a knapsack-like problem:  

 
maximize 

∈ ∈
∑ ∑
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w x
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F K
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{0, 1}iftkx ∈ , (i, f)∈Kt, k∈M,                    (13) 

 
{0, 1}ftky ∈ , f∈F, k∈M.                      (14) 

 
Constraint (12) ensures that the total set-up plus 

processing times of the jobs in the sequence is smaller than 
the available capacity in the current period for each 
machine. 

Problem (10)-(14) is a 0-1 multiple knapsack problem 
with the extra complication of set-up times. Martello and 
Toth(1990) suggest a bound-and-bound algorithm in which 
the upper bound is based on the standard surrogate 
relaxation. In this relaxation, the multiple knapsacks are 
replaced by one large knapsack 
 

∈ ∈ ∈

≤∑ ∑ ∑
( , )

+
t

f ft if iftk
f k i f

s y p x
F M K

M × L            (15) 

 
with the binary variables yft indicating whether there has to 
be a set-up in period t for family f or not. Consequently, 
constraints (11) are changed to iftk ftx y≤ . The resulting 
problem is solved with a standard zero-one knapsack 
problem algorithm. However, testing the feasibility of the 
upper bound is an NP-complete problem. Therefore, they 
require in addition a good lower bounding heuristic 
method, in which M individual 0-1 knapsack problems are 
solved. Pisinger (1999) has developed a procedure for 
validating the feasibility of the upper bound by solving a 
series of subset-sum problems. The resulting algorithm 
performs quite well for large multiple knapsack problems. 

Because of the extra complicaton of the set-up times the 
upper bound obtained by (15) is rather weak. Only one 
set-up time is taken into account for each family. In order 
to construct a feasible solution, additional set-up times 
have to be incorporated when two or more jobs of the 
same family are scheduled within the considered period but 
on different machines. Therefore, we suggest the following 
approach that is executed for each period t = 1, 2, …, T. 
First, we assign the jobs that have to be scheduled before 
the end of the period (subset Jt) to a specific machine. This 
method is based on the longest processing time (LPT) rule. 
A priority list is built by ordering the jobs of subset Jt 
according to non-increasing processing times. The jobs are 
scheduled in this order, each time assigning a job to the 
machine with the least amount of processing already 
assigned. In addition, once a job is scheduled, it is checked 
whether there are some jobs of the same family in subset Jt. 
If this is the case and there is still enough time available on 
that machine, these jobs are also added to the sequence of 
that machine. With this rule, the processing load is more or 
less equally spread among the different machines. Then, we 
include a number of additional jobs of following periods 
(subset Kt\Jt) into the current period by solving a 0-1 
knapsack problem for each machine k: 
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maximize 
∈
∑
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if iftk
i f
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                    (18) 

 
{0, 1}iftkx ∈ , (i, f)∈Kt,                         (19) 

 
{0, 1}ftky ∈ , f∈F.                           (20) 

 
The order in which these problems are solved is based 

on the remaining available time, starting with the problem 
for the machine with the least available time in period t. In 
this way, the easiest jobs (with smaller processing times) 
are first tried to be added to the most loaded machines. 

We now propose a number of options (j = 1, 2, …, 6) 
for the weight calculations ( )j

ifw of the knapsack problem of 
(16)-(20). The value of a weight is determined by two 
factors: a scaling factor ifγ and a preference indicator ( )j

ifv : 
 

( ) ( ) = j j
if if ifw vγ                                 (21) 

 
The scaling factor ifγ  gives preference to a job i 

belonging to family f of which there is already a job 
scheduled in period t on that machine. The factor is based 
on the average processing time ∑ =1

 = /N
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P p N . 
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For the preference indicator, we consider four basic 

options (j∈{1, 2, 3, 4}) and in addition two combinations 
of these (j ∈  {5, 6}). As already indicated, a more 
interesting job might be a job from a family with a large 
set-up time and especially when its family only contains a 
few yet to be processed jobs. In addition, care must be 
taken to process the job not too early. 
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A fourth preference indicator is proposed which aims to 
give preference to jobs with a due date equal to the end of 
more ‘loaded’ future periods. The initial load 0

sP of a 
period s∈T can be defined as: 
 

∈ ∈

= +∑ ∑
0 0

0

( ,  )

,
s s

s f if
f F i f S
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where ∈0  =  {( , )  : = }s ifS i f d sLN  and 0  sF  

0
s= {  : ( , ) }f i f S∈ ∈F . However, at the start of iteration 

t∈T some of these jobs may already have been allocated to 
previous periods. Therefore, define the subset t

sS of jobs 
yet to be scheduled at iteration t ∈T and with a due date 
at the end of period s ∈T, s > t: 
 

{( ,  ) : = }.t
s t ifS i f S d sL= ∈ ∩N  

 
Define a proper partition of the set t

sS  into a subset 
 

t, 0={( , )  :  < }= ( \ )K t
s s if s t tS i f S r tL S∈ ∩ K J  

 
of jobs having their release date before or at the start of 
period t, and another subset ,t

sS ∅  of jobs of which the 
release dates fall at the end or later than period t. 

The jobs in ,t K
sS  are reordered according to 

non-increasing processing times. Let , ,( , )t K t K
s sS i f S⊆  

denote the subset containing job (i, f) and all jobs of 
smaller order. For every period s∈T, s > t and every job (i, 
f) ,t K

sS∈ , we now calculate a fourth preference indicator as 
follows: 
 

(4 ) = ,
if

s
if

i f t

P
v

d D−
 

 
where if

sP is the sum of the processing times of the jobs 
that still have to be considered (in decreasing order) in 
period s and the set-up times of the corresponding families. 
So,  
 

, ,( ,  ) ( ,  ) ( ,  )
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if
s f if

t K tf F i f i f S i f Ss s

P s p
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and  
 

, ,( , ) { : ( , ) ( , ) }.t t K t
s s sF i f f F i f S i f S ∅= ∈ ∈ ∪  

 
The factor (4)

ifv  will make a job with a due date equal to 
the end of a more loaded period s more attractive for 
inclusion in the current period t, especially when this 
period is near to the current period. Furthermore, the 
proposed approach aims to relieve overloaded periods in a 
greedy fashion by giving jobs with larger processing times a 
larger weight. 



Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times 
IJOR Vol. 3, No. 2, 144−154 (2006) 
 

149 

In conclusion, the first preference indicator gives a 
larger weight to jobs of the nearer periods; it is calculated 
by considering the total number of periods divided by the 
number of periods that the job will be early. The second 
option is larger when there are only a few jobs not yet 
scheduled in the family compared to the maximum number 
of jobs in a family. The third expression favours a job with 
a large set-up time relative to its processing time. The last 
factor gives preference to jobs from more loaded periods: 
the load if

sP  is divided by the time the job will be early, 
when it is processed in the current period t. 

A number of combinations of preference indicators are 
also considered: 

 
(5) (1) = if ifv v  × (2)

ifv  × (3)
ifv  

(6) (1) = if ifv v  × (2)
ifv  × (3)

ifv  × (4) .ifv  
 

In this way, distinct preferences can be given to two jobs 
of the same period but belonging to a small family or a 
family with a large set-up time ( (5)

ifv ). In addition, (6)
ifv  

assigns a larger preference to the larger job of an 
overloaded period. Note that (2)

ifv , (3)
ifv  or (4)

ifv  are only 
calculated when some specific conditions are satisfied. 
When this is not the case, these factors are replaced by a 
value of 1 in the above formulas. 

Thus, the heuristic approach proceeds iteratively for 
each value of t (t = 1, 2, …, T). First, the LPT rule is 
applied for allocating the jobs that have to be scheduled 
before the end of the period, to machines. Then, the 
knapsack-like problem (16)-(20) is solved for each machine 
with the same technique as we used for the single machine 
problem and all the appropriate job allocations to the 
current period are made. In (16)-(20) ( )j

ifw  coefficients are 
precalculated by selecting one of the six presented options. 
Obviously, this approach can be easily adapted to a rolling 
horizon decision environment. 
 
5. COMPUTATIONAL EXPERIENCE 

In the previous section the heuristic approach presented 
by Crauwels and Van Oudheusden(2003) for the single 
machine case is extended to the parallel machine 
environment. In order to make computational comparisons 
between the two cases the test sets with T = 13 periods 
and a bucketlength L = 40 that were generated for the one 
machine case (Crauwels and Van Oudheusden, 2003), are 
used again. For the number of jobs N and the number of 
families F, we have used the combinations (N, F) = (20, 4); 
(30, 6) and (30, 10) to generate three test sets of 120 
instances each. 

Each test set is composed of four groups of thirty 
problems. The first group has an equally distributed load 
across the time horizon, where load is defined as in (22). 
For the second group this load varies periodically. The 
third and fourth group have an increasing and a decreasing 
load, respectively. According to this load a due date is 
assigned to each job. The release date is set to the 

corresponding due date minus a random number of 
periods. Each group contains three subsets of ten 
problems (five problems with uniformly distributed jobs 
across families and five with unequally distributed jobs). 

The subsets have respectively a smaller, equal and larger 
average set-up time compared to the average processing 
time. These set-up and processing times are randomly 
generated integers from the uniform distribution defined 
on [1, B]. For equal ranges of set-up and processing times, 
the maximum B value, denoted Bmax, is equal to ρTL/N 
with ρ equal to the average load across the time horizon. 
For the subset with smaller set-up times, we use a 
maximum value of 2Bmax/3 for the set-up times and 
4Bmax/3 for the processing times. For the subset with larger 
set-up times, this value is 4Bmax/3 for the set-up times and 
2Bmax/3 for the processing times. 

In order to get a comparable workload when several 
machines are available, the release dates and the due dates 
are adjusted: 
 

′ =jr L  × 
 
 
 

jr
ML

 and =jd L′ × 
 
 
 

jd
ML

  

for j = 1, …, N. 
 

This also reduces the number of periods: 
 

max
= .j jd

T
ML

 
′  

 
                            (23) 

 
By this reduction of the time horizon, it is possible that 

several jobs of a family have the same due date. In a single 
machine environment, this is not realistic because these 
jobs would be integrated into one large job so that only 
one set-up time has to be included. However, in a parallel 
machine environment it is possible that these jobs are 
scheduled on different machines in order to not overload 
the period. 

The integer programming models described in Section 3 
are solved by the ‘gnu lp kit’ of Makhorin (2006) on a HP 
9000/rp5430. The performance is characterised by the 
average computation time in seconds (ACT), the number 
of unsolved problems (NU) because of a CPU time limit of 
300 seconds and the average number of branch-and-bound 
nodes (ANN). When there are unsolved problems, the 
values listed under ACT and ANN are lower bounds on 
the true averages. 

Table 1 presents the cumulated values of number of 
overloaded periods for each problem set with 120 
instances when M = 1, 2, 3 machines are available. The 
row labeled with “initial” gives this cumulated value when 
each job is scheduled in the period just before its due date. 
For the row labeled with “optimal” the value is obtained by 
solving the first integer programming model with no limit 
on the possible overload in a period. By comparing the two 
rows corresponding to a test case, we see that a large 
improvement can be obtained by grouping together jobs of 
different periods whenever there is the opportunity. 
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In Table 2 the results on the number of overloaded 
periods model with a limit on overtime equal to L of the 
problem sets with N = 20 and 30 jobs are compared for 
one machine and two and three identical parallel machines. 

 
Table 1. Cumulated number of overloaded periods 

  N=20  F=4 N = 30 ρ = 0.8 
  ρ=0.7 ρ=0.8 ρ=0.9 F = 6 F = 10 

M = 1 initial 
optimal 

357 
51 

443 
83 

546 
166 

514 
58 

441 
81 

M = 2 initial 
optimal 

192 
38 

251 
66 

360 
154 

233 
41 

255 
63 

M = 3 initial 
optimal 

119 
23 

176 
54 

270 
131 

152 
25 

169 
50 

 
Most problems can be solved to optimality when there is 

only one machine. The problem with parallel machines is 
harder to solve and a lot of problem instances cannot be 
solved to optimality within the computation time limit of 
300 seconds. When there are more parallel machines 
available, the problem gets harder. The effect of the other 
problem parameters is comparable with the one machine 
case. The problem set with a high load (ρ = 0.9) is the most 
difficult to solve. Instances with more jobs are also more 
difficult to solve. The number of families parameter seems 
to have less effect on the performance of the IP model. 

The results of the total overtime model (Table 3) show 
that these problems are still harder to solve. A lot of 
instances remain unsolved after 300 seconds of 
computation time. Again, the harder problems correspond 
with a higher average load, more jobs, and more machines. 
The average computation time for the test sets with N = 
30 jobs on 2 and 3 machines is smaller than some ACT 
values for test sets with N = 20 jobs. This can be explained 
by the fact that for these test sets with N = 20 jobs a larger 
number of instances remains unsolved and each such 
instance ‘consumes’ the full 300 CPU seconds. 

A conclusion of these first computational experiments is 
that the integer programming models, minimising the 
number of overloaded periods and minimising the total 
overtime, for the parallel machine problem are too hard to 
solve for realistic problem sizes. 

Secondly, computational experiments were carried out 
following the heuristic approach described in Section 4, to 
examine the effectiveness of the different weights. Table 4 
shows the results of the heuristic method regarding the 
number of overloaded periods. It tabulates the number of 
times the optimal solution (or, when the problem was not 
solved because of the computation time limit, the best 
known value) is found for each test set of 120 problems 
with N = 20 jobs and each type of weight.  

For the non-combined weights, we observe that by using 
the first or fourth weight, an additional number of 
instances can be solved to optimality compared to the case 
where all weights are equal to one and no preference is 
giving to specific jobs. As for the single machine 
environment (see Crauwels and Van Oudheusden, 2003), 
weight (1)

ifw  performs quite well: it gives preference to 

jobs of nearer periods and by doing so, it can reduce the 
number of overloaded periods drastically. This is an 
interesting result because using weight (1)

ifw  in the 
knapsack problem can be translated into a simple rule for 
the dispatcher in the workshop: ‘if there is some idle time 
in the current period on some machine, just add one or 
more jobs from the next period to the current period’.  
An additional advantage of this rule is its applicability in a 
dynamic environment where the MRP software frequently 
reschedules planned orders. This rule only uses 
information of jobs from periods in the near future to 
construct the batches for the current period and changes in 
later periods have no impact at all. Weights (2)

ifw  and (3)
ifw , 

when used separately, do not improve on the number of 
times the optimal solution is found. However, when used 
in combination with the two other weights, a small 
improvement can be observed for some test sets. For a 
number of test sets, the best performance is obtained with 
weight (6)

ifw .   
Analogous to the performance of the integer 

programming model, the heuristic method performs worse 
when the average load ρ or the number of jobs increase. 
The number of parallel machines seems to have the 
opposite effect. When there are more machines available, 
more times the optimal value can be obtained and there is 
less difference between the different weights. 

Apart from the number of overloaded periods other 
performance characteristics can be considered, e.g. the 
total overtime, the number of set-ups and the total 
earliness. Because optimal values for these objective values 
cannot be computed easily, the best known solution that is 
obtained from any of the methods using different weights, 
is recorded and the comparison is based on the number of 
times this best known solution is found. Tables 5, 6 and 7 
show the results for the test sets with N = 30 jobs. Table 5, 
which shows the performance on the number of 
overloaded periods, confirms our findings of Table 4. 
Weight (1)

ifw  giving preference to jobs of nearer periods, 
performs quite well. The more complex weights (4)

ifw , (5)
ifw  

and (6)
ifw  give analogous results. For example, the number 

of instances where the deviation from the best known 
solution is more than one overloaded period turns out to 
be 21 (on a total of 720 problems) with weight (1)

ifw , 
compared to 10 instances when weight (4)

ifw  is used. This 
weight (4)

ifw  was specifically defined for obtaining a 
minimal number of overloaded periods, because it gives 
preference to the jobs of the more loaded periods. 
Although weight (2)

ifw  and weight (3)
ifw perform a little 

worse than the other weights for the number of times the 
best solution is found, the deviation from this best known 
solution is in most cases only one extra overloaded period. 

The computational results for the total overtime 
performance characteristic are quite similar to the ones for 
the number of overloaded periods characteristic. The best 
results are almost always obtained with the combined 
weight (6)

ifw . And also weight (1)
ifw  performs quite well.  
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Table 2. Performance of integer programming model: number of overloaded periods 
   one machine two machines three machines 

N F ρ ACT NU ANN ACT NU ANN ACT NU ANN 
20 4 0.7 4.9 1 11168 16.1 3 33027 46.9 14 98069 
  0.8 9.0 0 16687 52.6 14 102574 80.2 24 153879 
  0.9 31.2 5 58297 110.2 37 185562 172.4 63 282756 

30 6 0.8 38.2 13 77747 62.4 21 117412 51.1 19 93707 
 10 0.8 26.8 4 50848 49.0 15 95524 65.3 21 132132 

 
Table 3. Performance of integer programming model: total overtime 

   one machine two machines three machines 
N F ρ ACT NU ANN ACT NU ANN ACT NU ANN 
20 4 0.7 9.7 1 18765 21.6 5 38943 54.4 20 109684 
  0.8 9.6 2 16806 59.4 16 105921 106.3 39 170279 
  0.9 17.8 4 28678 122.8 39 190870 182.7 78 239566 

30 6 0.8 34.6 9 57510 78.1 28 110579 58.9 23 83099 
 10 0.8 36.8 10 58848 76.2 24 115408 96.0 37 159017 

 
Table 4. Performance characteristic: number of overloaded periods 

M N F ρ wif = 1 (1)
ifw  (2)

ifw  (3)
ifw  (4)

ifw  (5)
ifw  (6)

ifw  

20 4 0.7 80 98 85 85 105 99 105 
  0.8 48 78 58 57 77 77 80 

1 

  0.9 45 62 45 45 68 58 63 
20 4 0.7 85 93 91 90 94 94 94 
  0.8 63 77 62 60 80 76 79 

2 

  0.9 35 42 37 37 40 42 41 
20 4 0.7 101 104 101 102 104 104 104 
  0.8 75 81 81 81 81 83 82 

3 

  0.9 51 49 49 50 54 50 55 
 

Table 5. Performance characteristic: number of overloaded periods 
M N F wif = 1 (1)

ifw  
(2)
ifw  

(3)
ifw  

(4)
ifw  

(5)
ifw  

(6)
ifw  

30 6 67 103 76 76 102 101 105 1 
30 10 75 99 84 84 95 103 104 
30 6 94 112 111 110 112 111 118 2 
30 10 93 113 105 104 114 115 114 
30 6 110 119 113 113 117 118 119 3 
30 10 107 116 111 111 118 115 119 

 
Table 6. Performance characteristic: total number of set-ups 

M N F wif = 1 (1)
ifw

 
(2)
ifw

 
(3)
ifw

 
(4)
ifw

 
(5)
ifw

 
(6)
ifw

 
30 6 48 43 60 54 49 52 44 1 
30 10 49 44 63 59 53 57 45 
30 6 49 52 78 72 67 65 69 2 
30 10 50 62 79 80 70 73 79 
30 6 48 66 74 68 68 76 78 3 
30 10 52 79 83 79 80 84 87 

 
Table 7. Performance characteristic: total number of periods too early 

M N F wif = 1 (1)
ifw

 
(2)
ifw

 
(3)
ifw

 
(4)
ifw

 
(5)
ifw

 
(6)
ifw

 
30 6 44 33 22 22 42 26 46 1 
30 10 42 39 24 25 54 29 58 
30 6 86 55 57 56 58 50 53 2 
30 10 93 64 68 69 72 63 68 
30 6 92 67 60 64 61 65 58 3 
30 10 96 75 67 68 75 72 70 
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The computational requirement for the heuristic method 
is very low, less than one second for a problem instance. 
Although a lot of knapsack problems (16)-(20) have to be 
solved for each instance, the number of candidate jobs 
(elements of Kt) is quite small. For the problem instances 
with 30 jobs, the number is on average equal to six with a 
maximum of 17 candidate jobs for some single machine 
problem instances. 

When the primary objective is to save many set-ups, 
weight (2)

ifw  should be used according to Table 6. This 
weight gives preference to jobs of rare families: when a job 
of a family is sequenced in the current period and there is 
just one other non-scheduled job in this family, it is best to 
include that job in the current period and on the same 
machine, if possible. The maximum deviation from the 
best known solution is for all weights on average five 
additional set-ups. Only the results with equal weights and 
with weight (1)

ifw  show a slightly larger maximum 
deviation. 

Table 7 presents the results for the total earliness 
performance measure. In the context of traditional 
lotsizing, total earliness correlates with the inventory cost. 
For the single machine case, weight (6)

ifw  gives the best 

results. Weight (4)
ifw  performs more or less similarly. With 

these two weights, jobs from more loaded periods get 
preference and as a result, less jobs are rescheduled from 
their due date period to earlier periods. With the other 
weights, it is possible that jobs from the next period are 
shifted into the actual period, thereby creating additional 
available time in that next period. As a consequence, 
additional jobs from subsequent periods are shifted. In this 
way, a lot of jobs can be assigned to earlier periods. 

The maximum deviation from the best known solution 
is for the single machine case with equal weights and 
weights (2)

ifw  and (3)
ifw  quite large, more than twenty 

periods. For the other weights, this deviation is somewhat 
smaller, but still more than 15. For the parallel machine 
cases, this maximum deviation is smaller than ten for all 
weights and the smallest maximum deviation is observed 
for the equal weights case. 

Rather remarkable is that in the multi-machine 
environment, the case where all weights are equal to one, 
performs best. With equal weights, the knapsack algorithm 
gives preference to the smaller jobs. In the first periods, it 
is possible that there is only capacity left for adding just 
one job from a following period. With equal weights, a 
small job is chosen and, as a consequence, in the following 
period also, not that much additional capacity becomes 
available. When here again a small job is added, we get the 
same phenomenon. As a result, only a few jobs will be 
shifted from subsequent to earlier periods resulting in a 
less total number of periods too early. When non-equal 
weights are used, larger jobs are shifted to previous periods, 
thereby creating more additional capacity in a following 
period, so that possibly more than one job can be shifted 
into that period. This is confirmed by the fact that with 
equal weights the average idle time in each period is larger 

that what is observed with non-equal weights. 
The results presented for the test sets with N = 20 and 

30 jobs seem to indicate that the difference between the 
weights is less pronounced when there are more parallel 
machines. But in these test sets the number of periods is 
reduced according to the number of machines in order to 
get a comparable load across the time horizon (see (23)). 
For example, a test set used in combination with M = 3 
machines only considers ′T = 5 periods compared to the 
T = 13 periods in the single machine environment. Maybe, 
because of this small number of periods, there is less 
opportunity for constructing a better solution based on 
some particular weight. 

Therefore, new test sets with N = 60 jobs, F = 5, 10, 15 
families and T = 13 periods are generated. In order to get a 
comparable workload when a different number of 
machines is used, the set-up and processing times are 
randomly generated integers from the uniform distribution 
defined on [1, B] with the maximum B value also 
depending on the number of machines: Bmax = ρMTL/N 
with ρ = 0.9. 

Tables 8, 9 and 10 show the results for these new test 
sets with M = 2, 3 and 4 machines. In these tables, we have 
replaced the results for weights (2)

ifw  and (3)
ifw  by the 

results for the preference indicators (1)
ifv  and (4)

ifv  in 
order to show the effect of the scaling factor ifγ . These 
two weights (2)

ifw  and (3)
ifw  only perform good for the 

total number of set-ups characteristic, as is shown in the 
tables with N = 30 jobs. 

In most cases, our findings from the test sets with N = 
30 jobs are confirmed. For the performance characteristics 
‘number of overloaded periods’ (Table 8) and ‘total 
number of set-ups’ (Table 9), the performance can be 
improved by using non-equal weights. The difference 
between the weights becomes more pronounced when 
there are a lot of small families (F = 15). For the sets with 
only a few families, a large part of the instances can be 
solved to a feasible solution with no overloaded periods 
irrespective of the kind of weight that is used. For example, 
in the set with F = 5 families only 9 instances have an 
overloaded period when 4 machines are considered. For 
the number of overloaded periods (Table 8), weight (j)

ifw  
again performs quite well, and there is no reason for using 
the more complex weight (5)

ifw . For a number of cases, 

weights (4)
ifw  and (6)

ifw  give slightly better results.  
Tables 8 and 9 show that there is a positive effect on the 

results by using the scaled weights (1)
ifw  instead of just the 

preference indicators ( )j
ifv . The effect is more pronounced 

for (4)
ifw  than for (1)

ifw . 
For the performance characteristic ‘total number of 

periods too early’ (Table 10), the best performance is 
obtained by using equal weights in most cases. It is 
remarkable that the preference indicator (4)

ifv also performs 
quite well, a behaviour that is also observed in the single 
machine problem. 
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Table 8. Performance characteristic: number of overloaded periods 
M N F wif = 1 (1)

ifv  (4)
ifv  (1)

ifw  (4)
ifw  (5)

ifw  (6)
ifw  

60 5 98 113 99 118 118 117 118 
60 10 83 108 83 114 113 110 115 

2 

60 15 60 91 66 96 102 95 112 
60 5 98 116 104 117 115 114 117 
60 10 78 109 94 112 110 111 114 

3 

60 15 61 101 75 103 105 101 106 
60 5 114 119 117 120 118 119 118 
60 10 104 115 113 116 118 116 118 

4 

60 15 79 111 94 114 111 114 115 
 

Table 9. Performance characteristic: total number of set-ups 
M N F wif = 1 (1)

ifw  (2)
ifw  (3)

ifw  (4)
ifw  (5)

ifw  (6)
ifw  

60 5 16 1 20 3 30 10 8 
60 10 19 3 18 6 25 18 7 

2 

60 15 21 6 21 7 27 16 22 
60 5 15 5 18 11 21 13 18 
60 10 18 2 21 9 25 12 16 

3 

60 15 32 7 21 7 27 12 27 
60 5 12 4 12 15 24 18 20 
60 10 11 6 16 14 32 23 26 

4 

60 15 20 15 29 14 38 20 33 
 

Table 10. Performance characteristic: total number of periods too early 
M N F wif = 1 (1)

ifw  (2)
ifw  (3)

ifw  (4)
ifw  (5)

ifw  (6)
ifw  

60 5 56 18 34 4 7 2 15 
60 10 35 23 41 8 6 3 12 

2 

60 15 37 19 36 9 16 7 19 
60 5 72 14 46 6 5 6 5 
60 10 54 16 52 4 10 2 13 

3 

60 15 48 15 60 4 5 2 7 
60 5 61 10 60 5 5 4 3 
60 10 60 16 48 6 4 5 3 

4 

60 15 63 10 43 5 7 6 13 
 
6. CONCLUSIONS 

This paper presents some methods for scheduling 
planned MRP orders consisting of jobs with family set-up 
times in a parallel machine environment. The 
computational experiments on the integer programming 
models illustrate the combinatorial nature of the problem. 
A number of problems with only twenty jobs cannot be 
solved to optimality within a moderate computation time. 
Furthermore, with the first model it is not always possible 
to construct a feasible schedule because, for some problem 
instances, more overtime is required in some periods than 
is allowed by the model. 
  The proposed heuristic approach does not suffer from 
these two drawbacks. A detailed job sequence can be 
computed simply and quickly. The approach also aims at 
satisfying a number of performance criteria, such as 
reducing the overload and set-ups without heavily 
increasing the earliness of some jobs. Equal use of the 
capacity in each period, especially in the beginning of the 
time horizon, is also obtained. The simple rule where jobs 

of the nearer periods are selected for inclusion in the 
current period, performs very well on a large number of 
important criteria. By changing the nature of the weights in 
the knapsack problem formulation, the heuristic algorithm 
can furthermore compute sequences that perform well on 
very specific criteria. 

The proposed heuristic approach, using a knapsack-like 
problem with different possible weights to ‘optimise’ the 
available resources of the current time period, seems to be 
a practical and very flexible decision device that, very likely, 
can be useful in different short-term scheduling 
environments. The study and computational experiments 
in this paper clearly indicate the applicability and usefulness 
of this method in the realistic context of MRP and parallel 
machine scheduling, with families of jobs sharing a 
common set-up time. Thus, in many cases, the proposed 
approach can be a valuable alternative to dynamic, 
capacitated lot-sizing techniques often recommended in 
the MRP context. It is indeed easy to incorporate the 
typical lot-sizing trade-off between inventory and set-up 
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cost by means of careful weight selection. 
The approach can be extended in several ways. Firstly, 

the constraint that each period of the time horizon has to 
be of equal length, is easily relaxed. Secondly, it is possible 
that in some processing environments the first set-up in a 
time period is not necessary when the first job of the 
period belongs to the same family as the last job of the 
previous period. Another possible complication is 
preemption: when a job cannot be completely processed in 
one period, it can without any set-up be continued in the 
next period. An area that should be further investigated is 
when costs are not proportional to time. Probably, the 
current set of weights can be extended to incorporate cost 
related trade-offs. Also interesting for future research are 
sequence-dependent set-up times and costs both in a single 
and parallel machine environment. 
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