
International Journal of Operations Research Vol. 3, No. 2, 144−154 (2006)

Parallel Machine Scheduling by Family Batching with
Sequence-independent Set-up Times

H.A.J. Crauwels1, ∗, P. Beullens2, and D. Van Oudheusden3
1Hogeschool voor Wetenschap & Kunst, De Nayer instituut, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium

2University of Portsmouth, Department of Mathematics, Buckingham Building, Lion Terrace, Portsmouth PO1 3HE,
England

3K.U.Leuven, Centre for Industrial Management, Celestijnenlaan 300A, B-3001 Leuven, Belgium

Received November 2005; Revised June 2006; Accepted July 2006

AbstractThis paper presents a new approach for transforming MRP orders, planned periodically, e.g. on a weekly base,
into a detailed schedule of jobs. In this model for a parallel machine environment, the jobs are partitioned into families and
a family specific set-up time is required at the start of each period and of each batch, where a batch is a maximal set of jobs
in the same family, that are processed consecutively. An integer program is formulated for both the problem of minimising
the number of overloaded periods and the problem of minimising the total overtime. These programs generate benchmark
results for the heuristic approach. A heuristic model is developed that constructs a schedule in which overloaded periods are
relieved and set-up time is saved. In this approach, the job sequence is constructed by repeatedly solving a knapsack
problem for each machine. The weights used in this knapsack problem relate to the preferred priorities of the jobs not yet
scheduled and determine the quality of the final sequence. The different features of the heuristic model are compared using
a large set of test problems. The results show that the quality of the final schedule depends on an appropriate choice of the
weights.
KeywordsSet-up times, Family batching, Parallel machine scheduling

∗ Corresponding author’s e-mail: hcr@denayer.wenk.be
1813-713X copyright © 2006 ORSTW

1. INTRODUCTION

In an MRP II environment, the MRP module generates
a set of planned orders, each having a release date and a
due date. Because MRP assumes an infinite capacity, there
is a need for detailed scheduling in order to construct a
feasible schedule. The quality of the resulting schedule can
be evaluated using a number of criteria, for example:
meeting due dates, minimising lead time, minimising
in-process-inventory, minimising total set-up time or
maximising machine utilisation. The responsability of
specifying when and how the planned orders (or jobs) are
to be processed is delegated to the shop floor scheduler.
There are several possible ways to derive the detailed
schedule, depending on the objectives the scheduler has in
mind.

In many practical situations, the jobs to be processed are
divided into different families such that jobs of different
families require different sets of processing facilities. In
such problems, a set-up time is necessary for rearranging
processing facilities whenever there is a switch from
processing a job in one family to another job from a
different family. In general, these set-up times are sequence
dependent. As a consequence, decisions about the sizes of

the production batches and the sequencing of the batches
have to be taken simultaneously. Most research has been
dedicated to single machine problems. Several results can
be found in survey papers, e.g. Webster and Baker (1995),
Drexl and Kimms (1997), and Potts and Kovalyov (2000).
A comprehensive review of scheduling problems involving
set-up considerations is provided by Allahverdi et al.(1999).
In this review scheduling problems are classified into batch
and non-batch, and sequence-independent and
sequence-dependent set-ups. Since the appearance of that
survey paper, there has been an increasing interest in
scheduling problems with set-up times or costs. An
up-to-date survey is conducted by Allahverdi et al. (2006).

When a large number of jobs have to be processed,
several parallel machines can be used. In this situation, also
the assignment of the production batches to single
machines has to be determined. Quadt and Kuhn (2000)
describe for example the back-end assembly operations of
the semiconductor manufacturing process, which are die
attach, wire bonding and molding. The set-up times are
relatively long between product families (up to 12 hours)
and are in reality sequence dependent. But the degree of
sequence-dependency is modest, and therefore Quadt and
Kuhn use average product family set-up times which are

International Journal of
Operations Research

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

145

sequence independent.
Chen and Powell (2003) consider two particular parallel

machine problems with multiple job families: minimising
total weighted completion time and minimising the number
of weighted tardy jobs. They propose exact solution
algorithms based on column generation. Their
computational experiments show that these algorithms are
capable of solving problems with up to 40 jobs on up to
six machines within reasonable computation time. For the
total weighted completion time problem, Dunstall and
Wirth (2005) develop a number of simple, effective and
efficient heuristic methods based on ideas that have
appeared previously in the literature for the analogous
single machine problem, the parallel machine problem
without set-ups and the parallel machine makespan
problem with set-ups.

Several research papers about lotsizing on parallel
machines are inspired by a technical report from
Chesapeake Decision Sciences, Inc. Baker and Muckstadt
(1989) provide in this report the CHES problems, a set of
problem instances, based on existing business problems.
These problems comprise parallel production lines and
sequence-dependent set-up costs, but no set-up times. The
objective is to find a production schedule that minimises
the sum of set-up, production and holding costs minus
sales revenue taking into account the product demand and
the capacity of the machines. Kang et al. (1999) designed
the sequence splitting model for solving the CHES
problems. This model splits an entire schedule into
subsequences, leading to tractable subproblems. Column
generation and branch and bound are the basic elements of
the heuristic solution method.

Meyr (2002) proposes a combination of local search
metastrategies with local reoptimization for solving the
problem of simultaneous lotsizing and scheduling on
non-identical parallel machines. In his model sequence-
dependent set-up times are integrated as a further
reduction of the limited capacity of the machines. The
solution procedure is quite flexible, because - after some
minor modifications - it can solve the CHES problems.

Clark (2003) develops models for constructing a capacity
feasible master production schedule (MPS) in material
requirements planning (MRP) systems. The exact MIP
model minimises the total costs associated with stocks and
backorders and takes into account sequence-dependent
set-up times. It is optimally solvable only for small product
structures. He proposes an approximate model and
solution method in which set-ups and lots are scheduled
on a period-by-period basis. This model is able to schedule
set-ups of up to 100 products on 10 machines over 5
periods in reasonable computing time.

In this paper, the method proposed by Crauwels and
Van Oudheusden (2003), for transforming planned MRP
orders into a detailed schedule in a single machine
environment, is extended to the parallel machine
environment. We assume that the planning horizon is
segmented into a finite number of time buckets of equal
length, e.g. into weeks. The end times of these periods
constitute the different due dates of the jobs. The jobs are

divided into a number of families: a sequence-independent
set-up time is incurred between jobs of different families
and whenever a job is the first to be processed in a period.
A job has to be processed (inclusive a specific set-up of its
own) without interruption in such a period.

When all jobs are scheduled in the single period just
before their common due date, there is a large probability
that the resulting sequence is not feasible. Some periods
will have idle time and in other periods there will be not
enough capacity to process all the scheduled jobs. Thus,
the jobs from the overloaded periods should be shifted to
the underloaded periods. Probably, several jobs may be
worth being considered for shifting. A more interesting job
is a job that saves set-up time, relieves overloaded periods
and helps to maximise the utilisation of the resources.

The main objective of this study is to adapt a number of
simple heuristic rules that were developed for the single
machine case so that they can be conveniently applied by a
dispatcher in a parallel machine environment. The
constructed schedules can be evaluated on different
performance criteria. And, because different circumstances
in the workshop require different performance criteria to
be optimised, we also investigate the relation between a
specific rule and a specific criterion. In addition, two
integer programming models are formulated, mainly for
using their outcomes as benchmarks. They are probably
not very useful in practice because of their complexity and
the fact that, at one time, only a single objective can be
optimised.

On the one hand our approach is inspired by the
research carried out in the area of scheduling with family
batching. In this context, the motivation for batching jobs
is a gain in efficiency: it may be cheaper or faster to process
jobs in a batch than to process them individually. On the
other hand, our technique is also related to lotsizing:
grouping together planned MRP orders of consecutive
periods in order to minimise the sum of inventory and
set-up costs (Maes and Van Wassenhove, 1988). One of
the first reviews about the integration of scheduling with
batching and lotsizing is presented by Potts and Van
Wassenhove (1992).

In Section 2, we give a formal statement of our problem
and Section 3 introduces the integer programming models.
In Section 4, the new heuristic approach is described.
Section 5 reports on computational experience and some
concluding remarks are contained in Section 6.

2. PROBLEM FORMULATION

To state our scheduling problem more precisely, we are
given N jobs divided into F families. Each family f, for 1
≤ f ≤ F, contains nf jobs. The jobs are numbered 1,
2, …, N. Sometimes it is more convenient to refer to job (i,
f), which is the ith job in family f, for 1 ≤ i ≤ nf. There
are M identical parallel machines available on which these
jobs can be scheduled. We let pif denote the processing
time of job (i, f). The planning horizon is segmented into a
finite number (T) of equal length time (L) periods. Each
job has a release date rif, the moment it becomes available

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

146

for processing, which corresponds to the start time of such
a period. Each job has a due date dif which is the end time
of such a period. There are at most T different end times
and sometimes we refer to them as Dt with 1 ≤ t ≤ T.
In a single machine environment, all jobs in one family can
be assumed to have different due dates. If there are two or
more jobs of some family with the same due date, they can
in many practical situations be considered as one large job
that requires only one set-up. In a parallel machine
environment several jobs of a family with the same due
date can be scheduled on different machines each requiring
a set-up. In both cases jobs are labeled in order of
non-decreasing due dates dif. A sequence-independent
set-up time sf is incurred whenever a job in family f is
processed immediately after a job of a different family.
Also, an initial set-up time sf is required if a job from family
f is the first to be processed in a period. In addition, the
complete processing of a job, possibly preceded by a job
specific set-up has to be carried out in one period.

Note that in this formulation real set-up times are used
and not set-up costs as is usually the case in more classical
lotsizing models. We believe that set-up time is a much
more practical concept. As long as costs (for set-up,
overtime, and inventory) are directly proportional to their
respective use of time, the approach will also find
cost-efficient solutions. In certain situations, however,
costs may not be proportional to time and then the
application of the presented approach should be done with
caution. The cost, for example, could be high for switching
between certain families even though the changeover time
is relatively small (Allahverdi et al., 1999), or vice versa.
Likewise, the cost of keeping inventory for one additional
period may be relatively high for certain families and small
for other families. Finally, the cost of production of certain
families may be relatively high compared to their
production time when, for example, more or higher skilled
operators are needed.

In a first attempt for solving a parallel machine
scheduling problem, the capacity of the M parallel
machines can be taken together. The resulting virtual single
machine problem can be solved with single machine
techniques and the sequence of jobs has then to be
subdivided across the different parallel machines. In our
problem however, this approach would be too simplistic
because of the family set-up times. During the last phase,
when the jobs have to be subdivided across the different
machines, additional set-up times would have to be
incorporated. Probably, this would take too much time of
the available machine capacity.

3. INTEGER PROGRAMMING FORMULATIONS

By defining variables

1, (,) ,
0, , iftk

job i j is processed in period t on machine k
x

otherwise

=

(i, f)∈N, t∈T, k∈M,

1, - ,
0, ,ftk

a set up for family f occurs in period t on machine k
y

otherwise

=

f∈F , t∈T , k∈M,

1, ,
0, ,tk

period t on machine k is overloaded
z

otherwise

=

t ∈T, k∈M,

with 1

{1,..., }
{(1,1),..., (,1), (1, 2),..., (,)}

{1,..., }
{1,..., }

f

F
n n F

T
M

=
 =

=
 =

F
Ν
T
M

we obtain the following formulation for minimising the
number of overloaded periods:

minimize

∈ ∈
∑ ∑ tk

k t

z
M T

 (1)

subject to

∈ ∈
∑ ∑ =1iftk

k t

x
M T

, (i, f)∈N, (2)

≤iftk ftkx y , (i, f)∈N, t∈T , k∈M, (3)

∈ ∈

≤∑ ∑
(,)

 + +f ftk if iftk tk
f i f

s y p x L Qz
F N

, t∈T, k∈M, (4)

≤=0 if or >iftk if ifx tL r tL d , (i, f)∈N, k∈M, (5)

∈ {0, 1}iftkx , (i, f)∈N, t∈T, k∈M, (6)

∈ {0 , 1}ftky , f∈F, t∈T, k∈M, (7)

∈ {0, 1}tkz , t∈T, k∈M. (8)

Constraints (2) ensure that each job is processed in

exactly one period on one machine. Constraints (3) ensure
that the necessary set-ups are executed: if job (i, f) is
processed in period t, a set-up for family f is required in
period t. A capacity restriction has been imposed on each
machine and on each period by constraints (4): the
required set-ups plus the processing times must be less
than the length of the period (L), except for the overloaded
periods where this length is increased by a term Q.
Constraints (5) ensure that each job is processed between
its release date and its due date.

When Q in constraints (4) is set to a very large value, the
minimisation of the number of overloaded periods often
results in an unrealistic schedule where all the overload is
assembled into just one period on one specific machine. In
practical situations, a restriction on the magnitude of the
overload is imposed. For the computational experiments,
we choose to set Q equal to the length of a period (L). For
some problem instances, the time window established by

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

147

constraints (5) is rather narrow. Therefore, it is possible
that because of the limited overtime, no feasible solution
can be calculated for the model. By taking a rather large
value for Q, we eliminate this phenomenon as much as
possible.

By changing the variables ztk, with t∈T and k∈M, from
binary to positive real and by replacing the capacity
constraints (4) with

∈ ∈

≤∑ ∑
(,)

+ +f ftk if iftk tk
f i f

s y p x L z
F N

, t∈T, k∈M, (9)

we formulate a mixed integer programme for minimising
the total overtime. In this model the overload will be
spread more uniformly across the different time periods
and machines.

4. A HEURISTIC APPROACH

The idea is to include some jobs of the following periods
in the current period (with due date Dt) in order to realise a
feasible schedule, to save set-up time and to have fully
utilised resources.

First, the jobs that have to be processed before the end
of the period because of their due date, are included in the
current period. During the remaining time, some jobs of
the following periods can be added and these are
determined by solving a knapsack problem. For each of
these jobs i, from some family f, a weight wif is defined that
is related to the performance criteria mentioned above. For
example, a job gets a larger weight when it is a job from a
family with a large set-up time and especially when its
family contains only a few jobs. In addition, jobs from
overloaded periods have to be given preference. On the
other hand, care must be taken to process a job not too
early.

To describe our heuristic method, let tS be the set of
jobs not yet scheduled at the beginning of period t. For
each period t = 1, 2, …, T:
• define a subset of jobs not yet scheduled:

= {(,)| = }t t ifi f d tL∩J S , and include the jobs of Jt in
the current period by setting xiftk = 1 and yftk = 1 for
some machine k;

• when the current period t leaves idle time on some
machine k, i.e.

(,)
 +

t
f ftk if iftkf i f

s y p x L
∈ ∈

<∑ ∑F J
,

define a set of additional candidates Kt\Jt,
with = {(,)| (-1) }t t ifi f r t L≤∩K S , and calculate a weight
wif for each of these candidates;

• add some jobs of Kt\Jt (jobs of the following periods) to
the current period t by solving a knapsack-like problem:

maximize

∈ ∈
∑ ∑

(,) \t t

if iftk
k i f

w x
M K J

 (10)

subject to

≤iftk ftkx y , (i, f)∈Kt, k∈M, (11)

∈ ∈

≤∑ ∑
(,)

+
t

f ftk if iftk
f i f

s y p x L
F K

, k∈M, (12)

{0, 1}iftkx ∈ , (i, f)∈Kt, k∈M, (13)

{0, 1}ftky ∈ , f∈F, k∈M. (14)

Constraint (12) ensures that the total set-up plus

processing times of the jobs in the sequence is smaller than
the available capacity in the current period for each
machine.

Problem (10)-(14) is a 0-1 multiple knapsack problem
with the extra complication of set-up times. Martello and
Toth(1990) suggest a bound-and-bound algorithm in which
the upper bound is based on the standard surrogate
relaxation. In this relaxation, the multiple knapsacks are
replaced by one large knapsack

∈ ∈ ∈

≤∑ ∑ ∑
(,)

+
t

f ft if iftk
f k i f

s y p x
F M K

M × L (15)

with the binary variables yft indicating whether there has to
be a set-up in period t for family f or not. Consequently,
constraints (11) are changed to iftk ftx y≤ . The resulting
problem is solved with a standard zero-one knapsack
problem algorithm. However, testing the feasibility of the
upper bound is an NP-complete problem. Therefore, they
require in addition a good lower bounding heuristic
method, in which M individual 0-1 knapsack problems are
solved. Pisinger (1999) has developed a procedure for
validating the feasibility of the upper bound by solving a
series of subset-sum problems. The resulting algorithm
performs quite well for large multiple knapsack problems.

Because of the extra complicaton of the set-up times the
upper bound obtained by (15) is rather weak. Only one
set-up time is taken into account for each family. In order
to construct a feasible solution, additional set-up times
have to be incorporated when two or more jobs of the
same family are scheduled within the considered period but
on different machines. Therefore, we suggest the following
approach that is executed for each period t = 1, 2, …, T.
First, we assign the jobs that have to be scheduled before
the end of the period (subset Jt) to a specific machine. This
method is based on the longest processing time (LPT) rule.
A priority list is built by ordering the jobs of subset Jt
according to non-increasing processing times. The jobs are
scheduled in this order, each time assigning a job to the
machine with the least amount of processing already
assigned. In addition, once a job is scheduled, it is checked
whether there are some jobs of the same family in subset Jt.
If this is the case and there is still enough time available on
that machine, these jobs are also added to the sequence of
that machine. With this rule, the processing load is more or
less equally spread among the different machines. Then, we
include a number of additional jobs of following periods
(subset Kt\Jt) into the current period by solving a 0-1
knapsack problem for each machine k:

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

148

maximize
∈
∑

(,) \t t

if iftk
i f

w x
K J

 (16)

subject to ≤iftk ftkx y , (i, f)∈Kt, (17)

(,)

+ ,
t

f ftk if iftk
f i f

s y p x L
∈ ∈

≤∑ ∑
F K

 (18)

{0, 1}iftkx ∈ , (i, f)∈Kt, (19)

{0, 1}ftky ∈ , f∈F. (20)

The order in which these problems are solved is based

on the remaining available time, starting with the problem
for the machine with the least available time in period t. In
this way, the easiest jobs (with smaller processing times)
are first tried to be added to the most loaded machines.

We now propose a number of options (j = 1, 2, …, 6)
for the weight calculations ()j

ifw of the knapsack problem of
(16)-(20). The value of a weight is determined by two
factors: a scaling factor ifγ and a preference indicator ()j

ifv :

() () = j j
if if ifw vγ (21)

The scaling factor ifγ gives preference to a job i

belonging to family f of which there is already a job
scheduled in period t on that machine. The factor is based
on the average processing time ∑ =1

 = /N
ii

P p N .

ifγ =

3
,with a family member on the same machine;

2
, with no family member;

, with a family member on another machine.
2

P

P

P

For the preference indicator, we consider four basic

options (j∈{1, 2, 3, 4}) and in addition two combinations
of these (j ∈ {5, 6}). As already indicated, a more
interesting job might be a job from a family with a large
set-up time and especially when its family only contains a
few yet to be processed jobs. In addition, care must be
taken to process the job not too early.

=
−

(1)
if

if t

TLv
d D

;

=
′

(2) max ,if
f

nv
n

with

 ′

max the number of jobs in the l arg est family
and the number of jobs of family not yet scheduled; f

n
n f

+
=(3) f if

if
if

s p
v

p
.

A fourth preference indicator is proposed which aims to
give preference to jobs with a due date equal to the end of
more ‘loaded’ future periods. The initial load 0

sP of a
period s∈T can be defined as:

∈ ∈

= +∑ ∑
0 0

0

(,)

,
s s

s f if
f F i f S

P s p (22)

where ∈0 = {(,) : = }s ifS i f d sLN and 0 sF

0
s= { : (,) }f i f S∈ ∈F . However, at the start of iteration

t∈T some of these jobs may already have been allocated to
previous periods. Therefore, define the subset t

sS of jobs
yet to be scheduled at iteration t ∈T and with a due date
at the end of period s ∈T, s > t:

{(,) : = }.t
s t ifS i f S d sL= ∈ ∩N

Define a proper partition of the set t

sS into a subset

t, 0={(,) : < }= (\)K t
s s if s t tS i f S r tL S∈ ∩ K J

of jobs having their release date before or at the start of
period t, and another subset ,t

sS ∅ of jobs of which the
release dates fall at the end or later than period t.

The jobs in ,t K
sS are reordered according to

non-increasing processing times. Let , ,(,)t K t K
s sS i f S⊆

denote the subset containing job (i, f) and all jobs of
smaller order. For every period s∈T, s > t and every job (i,
f) ,t K

sS∈ , we now calculate a fourth preference indicator as
follows:

(4) = ,
if

s
if

i f t

P
v

d D−

where if

sP is the sum of the processing times of the jobs
that still have to be considered (in decreasing order) in
period s and the set-up times of the corresponding families.
So,

, ,(,) (,) (,)

t

s

if
s f if

t K tf F i f i f S i f Ss s

P s p
∅∈ ∈ ∪

= +∑ ∑

and

, ,(,) { : (,) (,) }.t t K t
s s sF i f f F i f S i f S ∅= ∈ ∈ ∪

The factor (4)

ifv will make a job with a due date equal to
the end of a more loaded period s more attractive for
inclusion in the current period t, especially when this
period is near to the current period. Furthermore, the
proposed approach aims to relieve overloaded periods in a
greedy fashion by giving jobs with larger processing times a
larger weight.

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

149

In conclusion, the first preference indicator gives a
larger weight to jobs of the nearer periods; it is calculated
by considering the total number of periods divided by the
number of periods that the job will be early. The second
option is larger when there are only a few jobs not yet
scheduled in the family compared to the maximum number
of jobs in a family. The third expression favours a job with
a large set-up time relative to its processing time. The last
factor gives preference to jobs from more loaded periods:
the load if

sP is divided by the time the job will be early,
when it is processed in the current period t.

A number of combinations of preference indicators are
also considered:

(5) (1) = if ifv v × (2)

ifv × (3)
ifv

(6) (1) = if ifv v × (2)
ifv × (3)

ifv × (4) .ifv

In this way, distinct preferences can be given to two jobs
of the same period but belonging to a small family or a
family with a large set-up time ((5)

ifv). In addition, (6)
ifv

assigns a larger preference to the larger job of an
overloaded period. Note that (2)

ifv , (3)
ifv or (4)

ifv are only
calculated when some specific conditions are satisfied.
When this is not the case, these factors are replaced by a
value of 1 in the above formulas.

Thus, the heuristic approach proceeds iteratively for
each value of t (t = 1, 2, …, T). First, the LPT rule is
applied for allocating the jobs that have to be scheduled
before the end of the period, to machines. Then, the
knapsack-like problem (16)-(20) is solved for each machine
with the same technique as we used for the single machine
problem and all the appropriate job allocations to the
current period are made. In (16)-(20) ()j

ifw coefficients are
precalculated by selecting one of the six presented options.
Obviously, this approach can be easily adapted to a rolling
horizon decision environment.

5. COMPUTATIONAL EXPERIENCE

In the previous section the heuristic approach presented
by Crauwels and Van Oudheusden(2003) for the single
machine case is extended to the parallel machine
environment. In order to make computational comparisons
between the two cases the test sets with T = 13 periods
and a bucketlength L = 40 that were generated for the one
machine case (Crauwels and Van Oudheusden, 2003), are
used again. For the number of jobs N and the number of
families F, we have used the combinations (N, F) = (20, 4);
(30, 6) and (30, 10) to generate three test sets of 120
instances each.

Each test set is composed of four groups of thirty
problems. The first group has an equally distributed load
across the time horizon, where load is defined as in (22).
For the second group this load varies periodically. The
third and fourth group have an increasing and a decreasing
load, respectively. According to this load a due date is
assigned to each job. The release date is set to the

corresponding due date minus a random number of
periods. Each group contains three subsets of ten
problems (five problems with uniformly distributed jobs
across families and five with unequally distributed jobs).

The subsets have respectively a smaller, equal and larger
average set-up time compared to the average processing
time. These set-up and processing times are randomly
generated integers from the uniform distribution defined
on [1, B]. For equal ranges of set-up and processing times,
the maximum B value, denoted Bmax, is equal to ρTL/N
with ρ equal to the average load across the time horizon.
For the subset with smaller set-up times, we use a
maximum value of 2Bmax/3 for the set-up times and
4Bmax/3 for the processing times. For the subset with larger
set-up times, this value is 4Bmax/3 for the set-up times and
2Bmax/3 for the processing times.

In order to get a comparable workload when several
machines are available, the release dates and the due dates
are adjusted:

′ =jr L ×

jr
ML

 and =jd L′ ×

jd
ML

for j = 1, …, N.

This also reduces the number of periods:

max
= .j jd

T
ML

′

 (23)

By this reduction of the time horizon, it is possible that

several jobs of a family have the same due date. In a single
machine environment, this is not realistic because these
jobs would be integrated into one large job so that only
one set-up time has to be included. However, in a parallel
machine environment it is possible that these jobs are
scheduled on different machines in order to not overload
the period.

The integer programming models described in Section 3
are solved by the ‘gnu lp kit’ of Makhorin (2006) on a HP
9000/rp5430. The performance is characterised by the
average computation time in seconds (ACT), the number
of unsolved problems (NU) because of a CPU time limit of
300 seconds and the average number of branch-and-bound
nodes (ANN). When there are unsolved problems, the
values listed under ACT and ANN are lower bounds on
the true averages.

Table 1 presents the cumulated values of number of
overloaded periods for each problem set with 120
instances when M = 1, 2, 3 machines are available. The
row labeled with “initial” gives this cumulated value when
each job is scheduled in the period just before its due date.
For the row labeled with “optimal” the value is obtained by
solving the first integer programming model with no limit
on the possible overload in a period. By comparing the two
rows corresponding to a test case, we see that a large
improvement can be obtained by grouping together jobs of
different periods whenever there is the opportunity.

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

150

In Table 2 the results on the number of overloaded
periods model with a limit on overtime equal to L of the
problem sets with N = 20 and 30 jobs are compared for
one machine and two and three identical parallel machines.

Table 1. Cumulated number of overloaded periods

 N=20 F=4 N = 30 ρ = 0.8
 ρ=0.7 ρ=0.8 ρ=0.9 F = 6 F = 10

M = 1 initial
optimal

357
51

443
83

546
166

514
58

441
81

M = 2 initial
optimal

192
38

251
66

360
154

233
41

255
63

M = 3 initial
optimal

119
23

176
54

270
131

152
25

169
50

Most problems can be solved to optimality when there is

only one machine. The problem with parallel machines is
harder to solve and a lot of problem instances cannot be
solved to optimality within the computation time limit of
300 seconds. When there are more parallel machines
available, the problem gets harder. The effect of the other
problem parameters is comparable with the one machine
case. The problem set with a high load (ρ = 0.9) is the most
difficult to solve. Instances with more jobs are also more
difficult to solve. The number of families parameter seems
to have less effect on the performance of the IP model.

The results of the total overtime model (Table 3) show
that these problems are still harder to solve. A lot of
instances remain unsolved after 300 seconds of
computation time. Again, the harder problems correspond
with a higher average load, more jobs, and more machines.
The average computation time for the test sets with N =
30 jobs on 2 and 3 machines is smaller than some ACT
values for test sets with N = 20 jobs. This can be explained
by the fact that for these test sets with N = 20 jobs a larger
number of instances remains unsolved and each such
instance ‘consumes’ the full 300 CPU seconds.

A conclusion of these first computational experiments is
that the integer programming models, minimising the
number of overloaded periods and minimising the total
overtime, for the parallel machine problem are too hard to
solve for realistic problem sizes.

Secondly, computational experiments were carried out
following the heuristic approach described in Section 4, to
examine the effectiveness of the different weights. Table 4
shows the results of the heuristic method regarding the
number of overloaded periods. It tabulates the number of
times the optimal solution (or, when the problem was not
solved because of the computation time limit, the best
known value) is found for each test set of 120 problems
with N = 20 jobs and each type of weight.

For the non-combined weights, we observe that by using
the first or fourth weight, an additional number of
instances can be solved to optimality compared to the case
where all weights are equal to one and no preference is
giving to specific jobs. As for the single machine
environment (see Crauwels and Van Oudheusden, 2003),
weight (1)

ifw performs quite well: it gives preference to

jobs of nearer periods and by doing so, it can reduce the
number of overloaded periods drastically. This is an
interesting result because using weight (1)

ifw in the
knapsack problem can be translated into a simple rule for
the dispatcher in the workshop: ‘if there is some idle time
in the current period on some machine, just add one or
more jobs from the next period to the current period’.
An additional advantage of this rule is its applicability in a
dynamic environment where the MRP software frequently
reschedules planned orders. This rule only uses
information of jobs from periods in the near future to
construct the batches for the current period and changes in
later periods have no impact at all. Weights (2)

ifw and (3)
ifw ,

when used separately, do not improve on the number of
times the optimal solution is found. However, when used
in combination with the two other weights, a small
improvement can be observed for some test sets. For a
number of test sets, the best performance is obtained with
weight (6)

ifw .
Analogous to the performance of the integer

programming model, the heuristic method performs worse
when the average load ρ or the number of jobs increase.
The number of parallel machines seems to have the
opposite effect. When there are more machines available,
more times the optimal value can be obtained and there is
less difference between the different weights.

Apart from the number of overloaded periods other
performance characteristics can be considered, e.g. the
total overtime, the number of set-ups and the total
earliness. Because optimal values for these objective values
cannot be computed easily, the best known solution that is
obtained from any of the methods using different weights,
is recorded and the comparison is based on the number of
times this best known solution is found. Tables 5, 6 and 7
show the results for the test sets with N = 30 jobs. Table 5,
which shows the performance on the number of
overloaded periods, confirms our findings of Table 4.
Weight (1)

ifw giving preference to jobs of nearer periods,
performs quite well. The more complex weights (4)

ifw , (5)
ifw

and (6)
ifw give analogous results. For example, the number

of instances where the deviation from the best known
solution is more than one overloaded period turns out to
be 21 (on a total of 720 problems) with weight (1)

ifw ,
compared to 10 instances when weight (4)

ifw is used. This
weight (4)

ifw was specifically defined for obtaining a
minimal number of overloaded periods, because it gives
preference to the jobs of the more loaded periods.
Although weight (2)

ifw and weight (3)
ifw perform a little

worse than the other weights for the number of times the
best solution is found, the deviation from this best known
solution is in most cases only one extra overloaded period.

The computational results for the total overtime
performance characteristic are quite similar to the ones for
the number of overloaded periods characteristic. The best
results are almost always obtained with the combined
weight (6)

ifw . And also weight (1)
ifw performs quite well.

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

151

Table 2. Performance of integer programming model: number of overloaded periods
 one machine two machines three machines

N F ρ ACT NU ANN ACT NU ANN ACT NU ANN
20 4 0.7 4.9 1 11168 16.1 3 33027 46.9 14 98069
 0.8 9.0 0 16687 52.6 14 102574 80.2 24 153879
 0.9 31.2 5 58297 110.2 37 185562 172.4 63 282756

30 6 0.8 38.2 13 77747 62.4 21 117412 51.1 19 93707
 10 0.8 26.8 4 50848 49.0 15 95524 65.3 21 132132

Table 3. Performance of integer programming model: total overtime

 one machine two machines three machines
N F ρ ACT NU ANN ACT NU ANN ACT NU ANN
20 4 0.7 9.7 1 18765 21.6 5 38943 54.4 20 109684
 0.8 9.6 2 16806 59.4 16 105921 106.3 39 170279
 0.9 17.8 4 28678 122.8 39 190870 182.7 78 239566

30 6 0.8 34.6 9 57510 78.1 28 110579 58.9 23 83099
 10 0.8 36.8 10 58848 76.2 24 115408 96.0 37 159017

Table 4. Performance characteristic: number of overloaded periods

M N F ρ wif = 1 (1)
ifw (2)

ifw (3)
ifw (4)

ifw (5)
ifw (6)

ifw

20 4 0.7 80 98 85 85 105 99 105
 0.8 48 78 58 57 77 77 80

1

 0.9 45 62 45 45 68 58 63
20 4 0.7 85 93 91 90 94 94 94
 0.8 63 77 62 60 80 76 79

2

 0.9 35 42 37 37 40 42 41
20 4 0.7 101 104 101 102 104 104 104
 0.8 75 81 81 81 81 83 82

3

 0.9 51 49 49 50 54 50 55

Table 5. Performance characteristic: number of overloaded periods
M N F wif = 1 (1)

ifw
(2)
ifw

(3)
ifw

(4)
ifw

(5)
ifw

(6)
ifw

30 6 67 103 76 76 102 101 105 1
30 10 75 99 84 84 95 103 104
30 6 94 112 111 110 112 111 118 2
30 10 93 113 105 104 114 115 114
30 6 110 119 113 113 117 118 119 3
30 10 107 116 111 111 118 115 119

Table 6. Performance characteristic: total number of set-ups

M N F wif = 1 (1)
ifw

(2)
ifw

(3)
ifw

(4)
ifw

(5)
ifw

(6)
ifw

30 6 48 43 60 54 49 52 44 1
30 10 49 44 63 59 53 57 45
30 6 49 52 78 72 67 65 69 2
30 10 50 62 79 80 70 73 79
30 6 48 66 74 68 68 76 78 3
30 10 52 79 83 79 80 84 87

Table 7. Performance characteristic: total number of periods too early

M N F wif = 1 (1)
ifw

(2)
ifw

(3)
ifw

(4)
ifw

(5)
ifw

(6)
ifw

30 6 44 33 22 22 42 26 46 1
30 10 42 39 24 25 54 29 58
30 6 86 55 57 56 58 50 53 2
30 10 93 64 68 69 72 63 68
30 6 92 67 60 64 61 65 58 3
30 10 96 75 67 68 75 72 70

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

152

The computational requirement for the heuristic method
is very low, less than one second for a problem instance.
Although a lot of knapsack problems (16)-(20) have to be
solved for each instance, the number of candidate jobs
(elements of Kt) is quite small. For the problem instances
with 30 jobs, the number is on average equal to six with a
maximum of 17 candidate jobs for some single machine
problem instances.

When the primary objective is to save many set-ups,
weight (2)

ifw should be used according to Table 6. This
weight gives preference to jobs of rare families: when a job
of a family is sequenced in the current period and there is
just one other non-scheduled job in this family, it is best to
include that job in the current period and on the same
machine, if possible. The maximum deviation from the
best known solution is for all weights on average five
additional set-ups. Only the results with equal weights and
with weight (1)

ifw show a slightly larger maximum
deviation.

Table 7 presents the results for the total earliness
performance measure. In the context of traditional
lotsizing, total earliness correlates with the inventory cost.
For the single machine case, weight (6)

ifw gives the best

results. Weight (4)
ifw performs more or less similarly. With

these two weights, jobs from more loaded periods get
preference and as a result, less jobs are rescheduled from
their due date period to earlier periods. With the other
weights, it is possible that jobs from the next period are
shifted into the actual period, thereby creating additional
available time in that next period. As a consequence,
additional jobs from subsequent periods are shifted. In this
way, a lot of jobs can be assigned to earlier periods.

The maximum deviation from the best known solution
is for the single machine case with equal weights and
weights (2)

ifw and (3)
ifw quite large, more than twenty

periods. For the other weights, this deviation is somewhat
smaller, but still more than 15. For the parallel machine
cases, this maximum deviation is smaller than ten for all
weights and the smallest maximum deviation is observed
for the equal weights case.

Rather remarkable is that in the multi-machine
environment, the case where all weights are equal to one,
performs best. With equal weights, the knapsack algorithm
gives preference to the smaller jobs. In the first periods, it
is possible that there is only capacity left for adding just
one job from a following period. With equal weights, a
small job is chosen and, as a consequence, in the following
period also, not that much additional capacity becomes
available. When here again a small job is added, we get the
same phenomenon. As a result, only a few jobs will be
shifted from subsequent to earlier periods resulting in a
less total number of periods too early. When non-equal
weights are used, larger jobs are shifted to previous periods,
thereby creating more additional capacity in a following
period, so that possibly more than one job can be shifted
into that period. This is confirmed by the fact that with
equal weights the average idle time in each period is larger

that what is observed with non-equal weights.
The results presented for the test sets with N = 20 and

30 jobs seem to indicate that the difference between the
weights is less pronounced when there are more parallel
machines. But in these test sets the number of periods is
reduced according to the number of machines in order to
get a comparable load across the time horizon (see (23)).
For example, a test set used in combination with M = 3
machines only considers ′T = 5 periods compared to the
T = 13 periods in the single machine environment. Maybe,
because of this small number of periods, there is less
opportunity for constructing a better solution based on
some particular weight.

Therefore, new test sets with N = 60 jobs, F = 5, 10, 15
families and T = 13 periods are generated. In order to get a
comparable workload when a different number of
machines is used, the set-up and processing times are
randomly generated integers from the uniform distribution
defined on [1, B] with the maximum B value also
depending on the number of machines: Bmax = ρMTL/N
with ρ = 0.9.

Tables 8, 9 and 10 show the results for these new test
sets with M = 2, 3 and 4 machines. In these tables, we have
replaced the results for weights (2)

ifw and (3)
ifw by the

results for the preference indicators (1)
ifv and (4)

ifv in
order to show the effect of the scaling factor ifγ . These
two weights (2)

ifw and (3)
ifw only perform good for the

total number of set-ups characteristic, as is shown in the
tables with N = 30 jobs.

In most cases, our findings from the test sets with N =
30 jobs are confirmed. For the performance characteristics
‘number of overloaded periods’ (Table 8) and ‘total
number of set-ups’ (Table 9), the performance can be
improved by using non-equal weights. The difference
between the weights becomes more pronounced when
there are a lot of small families (F = 15). For the sets with
only a few families, a large part of the instances can be
solved to a feasible solution with no overloaded periods
irrespective of the kind of weight that is used. For example,
in the set with F = 5 families only 9 instances have an
overloaded period when 4 machines are considered. For
the number of overloaded periods (Table 8), weight (j)

ifw
again performs quite well, and there is no reason for using
the more complex weight (5)

ifw . For a number of cases,

weights (4)
ifw and (6)

ifw give slightly better results.
Tables 8 and 9 show that there is a positive effect on the

results by using the scaled weights (1)
ifw instead of just the

preference indicators ()j
ifv . The effect is more pronounced

for (4)
ifw than for (1)

ifw .
For the performance characteristic ‘total number of

periods too early’ (Table 10), the best performance is
obtained by using equal weights in most cases. It is
remarkable that the preference indicator (4)

ifv also performs
quite well, a behaviour that is also observed in the single
machine problem.

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

153

Table 8. Performance characteristic: number of overloaded periods
M N F wif = 1 (1)

ifv (4)
ifv (1)

ifw (4)
ifw (5)

ifw (6)
ifw

60 5 98 113 99 118 118 117 118
60 10 83 108 83 114 113 110 115

2

60 15 60 91 66 96 102 95 112
60 5 98 116 104 117 115 114 117
60 10 78 109 94 112 110 111 114

3

60 15 61 101 75 103 105 101 106
60 5 114 119 117 120 118 119 118
60 10 104 115 113 116 118 116 118

4

60 15 79 111 94 114 111 114 115

Table 9. Performance characteristic: total number of set-ups
M N F wif = 1 (1)

ifw (2)
ifw (3)

ifw (4)
ifw (5)

ifw (6)
ifw

60 5 16 1 20 3 30 10 8
60 10 19 3 18 6 25 18 7

2

60 15 21 6 21 7 27 16 22
60 5 15 5 18 11 21 13 18
60 10 18 2 21 9 25 12 16

3

60 15 32 7 21 7 27 12 27
60 5 12 4 12 15 24 18 20
60 10 11 6 16 14 32 23 26

4

60 15 20 15 29 14 38 20 33

Table 10. Performance characteristic: total number of periods too early
M N F wif = 1 (1)

ifw (2)
ifw (3)

ifw (4)
ifw (5)

ifw (6)
ifw

60 5 56 18 34 4 7 2 15
60 10 35 23 41 8 6 3 12

2

60 15 37 19 36 9 16 7 19
60 5 72 14 46 6 5 6 5
60 10 54 16 52 4 10 2 13

3

60 15 48 15 60 4 5 2 7
60 5 61 10 60 5 5 4 3
60 10 60 16 48 6 4 5 3

4

60 15 63 10 43 5 7 6 13

6. CONCLUSIONS

This paper presents some methods for scheduling
planned MRP orders consisting of jobs with family set-up
times in a parallel machine environment. The
computational experiments on the integer programming
models illustrate the combinatorial nature of the problem.
A number of problems with only twenty jobs cannot be
solved to optimality within a moderate computation time.
Furthermore, with the first model it is not always possible
to construct a feasible schedule because, for some problem
instances, more overtime is required in some periods than
is allowed by the model.
 The proposed heuristic approach does not suffer from
these two drawbacks. A detailed job sequence can be
computed simply and quickly. The approach also aims at
satisfying a number of performance criteria, such as
reducing the overload and set-ups without heavily
increasing the earliness of some jobs. Equal use of the
capacity in each period, especially in the beginning of the
time horizon, is also obtained. The simple rule where jobs

of the nearer periods are selected for inclusion in the
current period, performs very well on a large number of
important criteria. By changing the nature of the weights in
the knapsack problem formulation, the heuristic algorithm
can furthermore compute sequences that perform well on
very specific criteria.

The proposed heuristic approach, using a knapsack-like
problem with different possible weights to ‘optimise’ the
available resources of the current time period, seems to be
a practical and very flexible decision device that, very likely,
can be useful in different short-term scheduling
environments. The study and computational experiments
in this paper clearly indicate the applicability and usefulness
of this method in the realistic context of MRP and parallel
machine scheduling, with families of jobs sharing a
common set-up time. Thus, in many cases, the proposed
approach can be a valuable alternative to dynamic,
capacitated lot-sizing techniques often recommended in
the MRP context. It is indeed easy to incorporate the
typical lot-sizing trade-off between inventory and set-up

Crauwels, Beullens, and Oudheusden: Parallel Machine Scheduling by Family Batching with Sequence-independent Set-up Times
IJOR Vol. 3, No. 2, 144−154 (2006)

154

cost by means of careful weight selection.
The approach can be extended in several ways. Firstly,

the constraint that each period of the time horizon has to
be of equal length, is easily relaxed. Secondly, it is possible
that in some processing environments the first set-up in a
time period is not necessary when the first job of the
period belongs to the same family as the last job of the
previous period. Another possible complication is
preemption: when a job cannot be completely processed in
one period, it can without any set-up be continued in the
next period. An area that should be further investigated is
when costs are not proportional to time. Probably, the
current set of weights can be extended to incorporate cost
related trade-offs. Also interesting for future research are
sequence-dependent set-up times and costs both in a single
and parallel machine environment.

REFERENCES

1. Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T.
(1999). A review of scheduling research involving
setup considerations. Omega, International Journal of
Management Science, 27: 219-239.

2. Allahverdi, A., Ng, C.T., Cheng, T.C.E., and Kovalyov,
M.Y. (2006). A survey of scheduling problems with
setup times or costs. European Journal of Operations
Research (to appear).

3. Baker, T. and Muckstadt, J.A., Jr. (1989). The CHESS
problems. Technical Paper, Chesapeake Decision
Sciences, Inc., 200 South Street, New Providence, NJ.

4. Clark, A. (2003). Approximations for capacity
constrained MPS problems. International Journal of
Production Economics, 84: 115-131(internal research
report MS-2002-2, School of Mathematical Sciences,
University of the Westof England, Bristol).

5. Chen, Z.-L. and Powell, W.B. (2003). Exact algorithms
for scheduling multiple families of jobs on parallel
machines. Naval Research Logistics, 50 (7): 623-640.

6. Crauwels, H.A.J. and Van Oudheusden, D. (2003).
Transforming an MRP plan into a short-term schedule.
Production Planning & Control, 14 (7): 647-655.

7. Drexl, A. and Kimms, A. (1997). Lot sizing and
scheduling: survey and extensions. European Journal of
Operational Research, 99: 221-235.

8. Dunstall, S. and Wirth, A. (2005). Heuristic methods
for the identical parallel machine flowtime problem
with set-up times. Computers & Operations Research, 32:
2479-2491.

9. Kang, S., Malik K., and Thomas, L.J. (1999). Lotsizing
and scheduling on parallel machines with
sequence-dependent setup costs. Management Science, 45
(2): 273-289.

10. Maes, J. and Van Wassenhove, L.N. (1988). Multi-item
single-level capacitated dynamic lot-sizing heuristics: a
general review. Journal of the Operational Research Society,
39(11): 991-1004.

11. Magnusson, T. (2001). The capacitated lot-sizing and
scheduling problem with sequence-dependent setup costs and
setup times. Master of Science thesis, Graduate School

of the University of Minnesota.
12. Makhorin, A. (2006). GLPK (GNU Linear Programming

Kit), Department for Applied Informatics, Moscow
Aviation Institute, Russia. Available:
http://www.gnu.org/software/glpk/glpk.html.

13. Martello, S. and Toth, P. (1990). Knapsack problems:
algorithms and computer implementations. Johm Wiley &
Sons Ltd.

14. Meyr, H. (2002). Simultaneous lotsizing and
scheduling on parallel machines. European Journal of
Operational Research, 139: 277-292.

15. Pisinger, D. (1999). An exact algorithm for large
multiple knapsack problems. European Journal of
Operational Research, 114: 528-541.

16. Potts, C.N. and Kovalyov, M.Y. (2000). Scheduling
with batching: a review. European Journal of Operational
Research, 120: 228-249.

17. Potts, C.N. and VanWassenhove, L.N. (1992).
Integrating scheduling with batching and lot-sizing: a
review of algorithms and complexity. Journal of the
Operational Research Society, 43: 395-406.

18. Quadt, D. and Kuhn, H. (2003). Production planning
in semiconductor assembly. Fourth Aegean International
Conference on “Analysis of Manufacturing Systems”,
University of the Aegean, Samos Island, Greece, pp.
181-189.

19. Staggemeier, A.T. and Clark, A. (2001). A survey of
lot-sizing and scheduling models. University of the West of
England, Bristol.

20. Webster, S. and Baker, K.R. (1995). Scheduling groups
of jobs on a single machine. Operations Research, 43:
692-703.

