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AbstractThe distribution service of  commodities has tremendous impacts on cost-effective performance and level of  
customer satisfaction for third party logistics. One of  main concerns is how to balance workloads among vehicles and 
ensure delivery time for each vehicle within the required duration. In this study, a multi-objective mixed zero-one integer 
programming model for the vehicle routing problem with balanced workload and delivery time are presented. In order to 
provide high quality solutions in short period of  computational times, a heuristic-based solution method is developed. In 
the developed heuristic, we first generate an initial solution using savings-based procedures. Next, we devise heuristic-based 
procedures to improve solutions and to make sure that the workload and delivery time for each vehicle are within the limits. 
Then, a search heuristic procedure is used to ensure that every route is balanced in terms of  workload and delivery time. An 
industrial size problem is applied for illustrating the proposed approach. The obtained vehicle routing schedule is better than 
the existing one in terms of  balance in workload and delivery time among each vehicle. We also perform the computational 
efforts by running the developed heuristic for 12 case problems. Results suggest that the developed heuristics performs 
satisfactorily in terms of  solution quality and execution time. 
KeywordsVehicle routing problem, Multi-objective optimization model, Heuristics 
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1. INTRODUCTION 

Due to the evolution of  local economy from 
production-oriented markets to customer-oriented markets, 
a large number of  convenience stores and third party 
logistics companies established in major metropolitan areas. 
The distribution services of  commodities provided by 
third party logistics to convenience stores have tremendous 
impacts on the cost-effective performance and the level of  
customer services. Thereby, the problem of  how to plan 
and manage commodity distribution services has been 
received great concerns in practice. 

The vehicle routing and scheduling is probably the most 
central model in logistics management. In the traditional 
vehicle routing problem, a set of  convenience stores with 
known demand are to be served by a fleet of  vehicles with 
known capacity. Various constraints on the routes exist. 
The objective is to provide services for these convenience 
stores in an efficient and cost-effective manner. The 
general vehicle routing problem could be characterized by 
nature of  demand, information on demand, vehicle fleet, 
delivery time, and solution methods. 

However, the attention to the local vehicle routing 
problem motivated by its practical relevance and 
considerable difficulty is how to balance workloads among 
vehicles and ensure delivery time for each vehicle within 
the required duration. We have observed numerous 
applications in local third party logistics where the current 
routes range between 3 to 8 hours in duration. The crew 
of  fleet that works the 3 hours route may receive a full 

day’s pay. By eliminating the imbalances in workload, 
delivery time, and traveling distance, overtime may be 
reduced, savings may be achieved, and the crews may 
accept the solution, because they will perceive that each 
crew is receiving an equal and fair deal. Hence, the special 
considerations that are encountered in the local thirty party 
logistics when solving vehicle routing problems may focus 
on the requirements of  balanced workload and delivery 
time constraints in addition to the minimal total logistics 
cost. 

In this study, the main concern is how to balance 
workload, delivery time, and traveling distance among 
vehicles in a planned vehicle routing schedule. In addition, 
the vehicle routing problem in this study also concerns the 
following aspects. We want to minimize the number of  
vehicles needed to provide the required distribution 
services and the total travel distance needed to complete 
the total distribution services. We also ensure that the 
delivery time for each routing path should be complete 
within a time period and the workload for every route is 
balanced. A multi-objective optimization model for this 
problem is explored and formulated. Then, a heuristic-type 
solution method is developed. Real-world data collected 
from a third party logistics is used for implementing the 
proposed approach. Finally, we close this paper with a 
description of  some of  our experiences in solving actual 
vehicle routing problems. 

 
2. LITERATURE REVIEW 
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The standard vehicle routing problem was introduced in 
the OR/MS literature about 45 years old. Since then, the 
vehicle routing problem has attracted an enormous amount 
of  research attention. 

The vehicle routing and scheduling problem was initially 
formulated as an integer program by Dantzig and Ramser 
(1959) and small problems were solved. Then in early 
1960s, route-building, route-improvement, and two-phase 
heuristics were proposed to solve problems with 30 to 100 
customers (Clarke et al., 1969). During 1970s, a number of  
two-phase heuristics were proposed to solve larger 
problems and computational efficiency became an issue 
(Gillett and Miller, 1974). During 1980s, mathematical 
programming-based procedures were proposed by Fisher 
and Jaikumar (1981). They showed some problems with 
approximately 50 customers could be solved using exact 
optimal methods. 

In 1990s, metaheuristic-type methods, such as simulated 
annealing, deterministic annealing, genetic algorithm, 
neural networks, and tabu search, were applied for solving 
vehicle routing and scheduling problems (Chao et al., 1995). 
Some larger problems with 100 to 1,000 customers could 
be efficiently solved using these methods. 

Recently, more research results for the algorithmic 
consideration are obtained. Ruiz et al. (2004) developed a 
decision support system for a real vehicle routing problem 
by using a two-stage exact approach. Firstly, they generated 
all the feasible solutions by means of  an implicit 
enumeration algorithm. Then, an integer programming 
model was designed to select the optimum routes. Toth 
and Vigo (2003) devised a granular tabu search method 
and applied to the vehicle routing problem. Their results 
show that the approach is able to determine very good 
solutions within short computing times. Nikolakopoulou et 
al. (2004) developed a heuristic algorithm to balance the 
vehicle time utilization by partitioning a distribution 
network into subnetworks. Teng et al. (2003) presented 
three metaheuristics, simulated annealing, threshold 
accepting, and tabu search, for the vehicle routing problem 
with stochastic demand. Their results suggest that the 
solution quality of  the tabu search outperforms the other 
heuristics for all the problems tested. Lysgaard et al. (2004) 
used a branch-and-cut algorithm for the capacitated vehicle 
routing problem. Their computational results show that 
their developed algorithm is competitive. Campbell and 
Savelsbergh (2004) demonstrated that insertion heuristics 
can be applied to solve the standard vehicle routing 
problem with a time complexity of  O(n(3)). Li et al. (2005) 
focused on very large vehicle routing problems with many 
as 1200 customers by applying record-to-record travel with 
a variable-length neighbor list. Bazgan et al. (2005) 
designed constant differential approximation algorithms 
for the standard vehicle routing problem. Tarantillis (2005) 
developed an adaptive memory programming method for 
solving the capacitated vehicle routing problem. The 
developed approach provides high quality solutions in 
short computational times for all problems instances.  

Braysy and Gendreau (2005) surveyed the past research 
on the metaheuristics for the vehicle routing problem with 

time windows. They conclude that metaheuristics are 
general solution procedures that explore the solution space 
to identify good solutions and often embed some of  the 
standard route construction and improvement heuristics. 
Chepuri and Homem-de-Mello (2005) proposed a new 
heuristic method to solve the vehicle routing problem with 
stochastic demands using the cross-entropy method. Zeng 
et al. (2005) proposed an assignment-based local search 
method for solving the vehicle routing problem. Their 
computational results show that the proposed method, 
when coupled with metaheuristics such as simulated 
annealing, is comparable with other efficient heuristic 
methods. Altinel and Oncan (2005) pointed out that 
although classical heuristics do not compare with the best 
metaheuristic implementations, some of  them are very fast 
and simple to implement. Hence, they proposed a new 
enhancement of  the Clarke and Wright savings heuristic. 
Mitra (2005) developed a mixed integer linear 
programming formulation and a route construction 
heuristic for the generalized vehicle routing problem with 
backhauling. Funke et al. (2005) provided a review of  both 
classical and modern local search neighborhoods for the 
vehicle routing problem. Their analysis shows how the 
properties of  the partial moves and the constraints of  the 
vehicle routing problem influences the choice of  an 
appropriate search techniques. 

In this study, the vehicle routing problem arising in local 
thirty party logistics is analyzed. Particularly, the following 
criteria are considered: (1) to minimize the number of  
vehicles that need to be provided the required distribution 
services, (2) to ensure that every route is balanced in terms 
of  workload, and (3) to ensure that every route is balanced 
in terms of  delivery time. Our approach is similar to the 
problem solved by Nikolakopoulou et al. (2004). However, 
more considerations are included. Moreover, a 
multi-objective optimization model and its associated 
heuristic are exploded. 
 
3. DEVELOPMENT OF MULTI-OBJECTIVE 

OPTIMIZATION MODEL 

The vehicle routing problem under consideration is 
described as follows. For a depot and many convenience 
stores with known locations and daily demands, we want to 
schedule a distribution route by a fleet of  vehicles with 
capacity constraints and route-length constraints. Each 
vehicle departs from and returns to a depot to deliver a 
certain amount of  commodities. Each convenience store is 
visited exactly once and its demand must be fully satisfied. 
The goals of  this problem are to deliver the commodities 
to all customer at minimum total distance traveled in a set 
of  routes without violating vehicle capacity, to minimize 
the number of  vehicles needed to perform the required 
service, to ensure every route is balanced in terms of  
workload, and to ensure every route is balanced in terms 
of  delivery time. In order to formulate a mathematical 
programming model, we first define the following variables 
and parameters. 
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Index Parameters: 
I  = the set for all convenience stores; 
J  = the set for depots;  
N  = I J∪ = the set for all nodes; 
K  = the set for all vehicles. 
 
Problem Parameters: 
v  = the maximum capacity for each vehicle; 

ijt  = the traveling duration between node i and node j; 

ic  = the unloading time for convenience store i; 

ih  = the demand from convenience store i; 

ijd  = the travel distance between node i and node j. 
 
Decision Variables: 
xijk = 1, if  vehicle k travels from node i to node j; 0, 

otherwise;  
yjk  = 1, if  vehicle k departs from depot j; 0, otherwise; 
wu  = the maximum achieved workload among vehicles; 
wl  = the minimum achieved workload among vehicles; 
tu  = the maximum achieved delivery time among 

vehicles; 
tl  = the minimum achieved delivery time among 

vehicles. 
 

A multi-objective optimization model for the vehicle 
routing and scheduling problem with balanced workload 
and delivery time may be formulated as follows.  
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The objective function (1) minimizes the total distance 
traveled by all vehicles. The objective function (2) is used 
to balance workloads among the dispatch vehicles. The 
objective function (3) is used to balance delivery times 
among the dispatch vehicles. Constraint (4) asks that every 
convenience store must be on exactly one route. They do 
so by requiring that there be exactly one node served by 
one vehicle preceding every convenience store. Constraint 
(5) is one type of  flow conservation constraints. They state 
that if  vehicle k  enters node j, then it must depart from 
node j. Constraint (6) and (7) states that if  some vehicle is 
assigned to a route emanating from the depot, then at least 
one link goes into the depot and one leaves the depot. 
Constraint (8) imposes the maximal workload capacity on 
each vehicle. Constraint (9) and (10) is used to find the 
maximum and minimum workloads among the vehicles. 
Constraint (11) and (12) is used to find the maximum and 
minimum delivery times among the vehicles. Constraint (13) 
is one type of  sub-tour elimination constraints. They 
prevent a vehicle from being assigned to a set of  nodes 
only. They do so by requiring that for any subset S  of  
nodes of  cardinality 2 or more, the total number of  
connections between pairs of  nodes in the subset must be 
less than or equal to the cardinality of  the subset minus 1. 
By requiring that the number of  links connecting nodes in 
the subset be strictly less than the number of  nodes in the 
subset, constraint (13) precludes the formation of  such 
sub-tours. Constraint (14) and (15) is the integrality 
constraints. And constraint (16) is the non-negativity 
constraints for the maximum and minimum workloads and 
delivery times among vehicles. 

One of  the key problems in the developed optimization 
model is that there are a huge number of  constraints. Not 
only are there 10 different classes of  constraints, but the 
total number of  constraints are very large even for very 
small problems. Constraint (13) represents most of  the 
total number of  constraints, since they apply to all subsets 
of  the nodes. Thus, if  there are N  nodes, the number 

of  constraints in set (13) is 2 ( 1)N N− + . The number 
of  constraints is not polynomially bounded as a function 
of  the size of  the problem. Hence, the presented problem 
is NP-hard. 

Besides, the developed vehicle routing and scheduling 
problem is one type of  multi-objective mixed zero-one 
programming problems. These three goals are not 
commensurate, which means that they cannot be directly 
combined or compared. It is clear that these three goals 
might be conflicting. That is, there are trade-offs in the 
sense that sacrificing the requirements on the balanced 
workload and delivery time goal will tend to produce 
greater distance on the total delivery distance. Although the 
existence of  a solution to the vehicle routing scheduling 
problem depends on the number of  convenience stores, 
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the distance matrix among convenience stores and the 
depot and the maximal capacity of  vehicles, goal 
programming can be used for that purpose. The way of  
handling multiple objectives is to reflect the desired 
balanced workload or delivery time a constraint, not by the 
objective function. Hence, we replace the objective 
function (2) and (3) by the following goal constraint (17) 
and (18). 
 
wu wl wε− ≤                                 (17) 

tu tl tε− ≤                                   (18) 
 
where wε  is the desired gap of  tolerance between 
maximum and minimum workloads among vehicles and 
tε  is the desired gap of  tolerance between maximum and 
minimum delivery times among vehicles. The structure of  
the formulated goal programming problem can be 
expressed by the objective function (1) and constraints (4), 
(5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) 
and (18).  
 
4. DEVELOPMENT OF MULTI-OBJECTIVE 

HEURISTIC 

The formulated optimization model is one type of  
mixed zero-one integer programming problems. This 
problem is NP-hard. Since most real-world vehicle routing 
problems applications are larger-scale, heuristics may be 
only option in practical use. In this study, a multi-objective 
heuristic solution approach that is capable of  producing 
high-quality, near-optimal solutions are developed. Some 
of  the constraints in the developed multi-objective 
optimization model are used as criteria to evaluate the 
conditions in the heuristic, such as Eq. (17) and (18). 
However, the procedures in the developed multi-objective 
heuristic are mostly based on the criteria and conditions 
that are demanded in the vehicle routing problem we are 
interested. 

The developed heuristic approach consists of  three 
phases. In the initialization phase, we generate an initial 
feasible solution by modifying the savings-based method. 
In the route improvement phase, five procedures of  
one-point movement, two-point exchange, intra-route arc 
exchange, re-initialization, and infeasibility improvement 
are applied to improve the obtained solution and to make 
sure that each vehicle’s workload and delivery time is 
within the assigned limit. In the balancing workload and 
delivery time phase, we devise a searching procedure to 
ensure that every route is balanced in terms of  workload 
and delivery time. The detailed procedures are given as 
follows. 
 
4.1 Initialization 

An initial feasible solution is constructed by modifying a 
savings-based method. The obtained solution satisfies the 
delivery time constraint and the workload capacity 
constraint, while reaching the minimum number of  

vehicles required. The detail procedure is given as follows. 
Step 1. Determine the starting solution with each route for 

each convenience store. 
Step 2. Compute the savings value for each pair of  

convenience stores. 
Step 3. Sequence the savings values in the order of  quantity. 
Step 4. Select a pair of  convenience stores with the largest 

savings value. If  the selected convenience stores are 
not located at the end point of  the route, go to Step 
7. Otherwise, consider to join the convenience 
stores in one route. Proceed to Step 5. 

Step 5. Check the workload for the jointing route. If  the 
workload exceeds the maximum capacity, go to Step 
7. Otherwise, proceed to Step 6. 

Step 6. Check the time constraint for the jointing route. If  
the delivery time satisfies the time constraint, 
complete the joint of  the convenience stores in one 
route. Proceed to Step 7. 

Step 7. Update the savings list. If  the savings list is empty, 
stop with a feasible solution and proceed to Step 8. 
Otherwise, return to Step 4. 

Step 8. Compute the delivery time, the delivery distance and 
the workload for each route, and the total travel 
distance for the solution. 

 
4.2 Route improvement 

In the second phase, we adopt five procedures of  
one-point movement, two-point exchange, intra-route arc 
exchange, re-initialization, and infeasibility improvement as 
route improvement heuristics to obtain a satisfactory 
solution. These five procedures are constructed and 
described as follows. 
 
4.2.1 One-point movement 

The one-point movement procedure utilizes an 
inter-route node exchange to improve the current obtained 
solution. The inter-route node exchange method for the 
one-point movement procedure was originally proposed by 
Lin (1969). The idea is to remove one node from a route 
and then to insert into the other route using an adjacent 
point insertion rule. The adjacent point insertion rule 
determines which route and what position the inserting 
node should move to. We consider additional rules in this 
procedure to limit the capacity of  vehicle and the delivery 
time of  the route. The procedure is given as follows. 
 
Step 0. Obtain an initial feasible solution and compute the 

delivery time, the delivery distance, and the 
workload for each route. 

Step 1. Calculate the distance-savings value for each node if  
this node were removed from the route. Create the 
distance-savings list.  

Step 2. Select from the distance-savings list the node with 
the largest distance-savings value and the associated 
route. Consider for removing this node from the 
route.  

Step 3. Select the node nearest to the removing node and 
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not in the same route. Insert the removing node 
into the route that contains the node nearest to the 
removing node.  

Step 4. Check the limits on the capacity and the delivery 
time for the inserting route. If  these limits are not 
satisfied, go to Step 6. Otherwise, compute the 
increment of  distance for the inserting route and 
proceed to Step 5.  

Step 5. Compare the distance-savings value and the 
increment of  distance. If  the distance-savings value 
is greater than the increment of  distance, complete 
the insertion and go to Step 7. Otherwise, proceed 
to the Step 6.  

Step 6. Check the node next nearest to the removing node 
and not in the same route. If  no such a node can be 
found, go to Step 8. Otherwise, select the route 
containing this node for inserting the removing 
node. Return to Step 4.  

Step 7. Update the current solution and compute the 
delivery time, delivery distance, and workload for 
each route. Calculate the total distance for the 
current solution.  

Step 8. Update the distance-savings list. If  the 
distance-savings list is empty, stop with the obtained 
solution. Otherwise, return to Step 2.  

 
4.2.2 Two-point exchange 

The two-point exchange procedure utilizes an 
inter-route node exchange to improve the current obtained 
solution. The idea is to select two nodes in the distinct 
routes and then to exchange these two nodes using an 
adjacent point insertion rule. The adjacent point insertion 
rule determines which route and what position the 
inserting node should move to. This rule we proposed also 
considers the limit on the capacity of  vehicle and the 
delivery time of  the route. The procedure is given as 
follows. 
 
Step 0. Obtain an initial feasible solution and compute the 

delivery time, the delivery distance, and the 
workload for each route.  

Step 1. Calculate the distance-savings value for each node if  
this node were removed from the route. Create the 
distance-savings list.  

Step 2. Select from the distance-savings list the node with 
the largest distance-savings value and the associated 
route. Consider for exchanging this node with 
another node in the distinct route.  

Step 3. Pick the node nearest to the selecting node and not 
in the same route. Exchange the two selecting 
nodes.  

Step 4. Check the limits on the capacity and the delivery 
time for the inserting route. If  these limits are not 
satisfied, go to Step 6. Otherwise, compute the 
increment of  distance for both the exchanging 
routes and proceed to Step 5.  

Step 5. Compare the distance-savings value and the 
increment of  distance. If  the distance-savings value 

is greater than the increment of  distance, complete 
the exchange and go to Step 7. Otherwise, proceed 
to the Step 6.  

Step 6. Pick the node next nearest to the selecting node and 
not in the same route. If  no such a node can be 
found, go to Step 8. Otherwise, exchange the two 
selecting nodes. Return to Step 4.  

Step 7. Update the current solution and compute the 
delivery time, delivery distance, and workload for 
each route. Calculate the total distance for the 
current solution.  

Step 8. Update the distance-savings list. If  the distance- 
savings list is empty, stop with the obtained solution. 
Otherwise, return to Step 2.  

 
4.2.3 Intra-route arc exchange 

The intra-route arc exchange procedure utilizes a 2-opt 
improvement to improve the current obtained solution. 
The idea is to adjust the sequence of  nodes in one route in 
order to improve the solution. During the 2-opt 
improvement procedure, we need to check the limit on the 
workload and delivery time for the route. The procedure is 
given as follows. 
 
Step 0. Obtain an initial feasible solution and compute the 

delivery time, the delivery distance, and the 
workload for each route.  

Step 1. Examine one route from the current solution. Select 
from the route a pair of  arcs.  

Step 2. For all of  the nodes connected by this pair of  arcs, 
reverse the sequence of  delivery direction. Check 
the limit on the delivery time for this exchange. If  
the delivery time exceeds the time limit, give up this 
exchange and go to Step 4. Otherwise, proceed to 
Step 3.  

Step 3. Compute the distance-savings value for this 
exchange. If  the distance-savings value is greater 
than zero, complete the exchange and update the 
current solution. Otherwise, give up this exchange.  

Step 4. If  all pairs of  arcs in this route are selected, go to 
Step 5. Otherwise, select the next pair of  arcs and 
return to Step 2.  

Step 5. If  all routes are examined, stop with the obtained 
solution and compute the delivery time, the delivery 
distance and the workload for each route. Otherwise, 
examine the next route and select from this route a 
pair of  arcs. Return to Step 2.  

 
4.2.4 Re-initialization 

The re-initialization procedure is used to reschedule the 
delivery path in the current solution in the hope to obtain a 
better solution. This procedure can be applied using either 
of  the following two methods. The first method is to 
remove and insert a certain amount of  nodes according to 
the distance-savings rule and the adjacent point insertion 
rule. The detail procedure for the first method is described 
as follows. 
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Step 1. Pick several nodes from the current solution with 
larger distance-savings values.  

Step 2. Select the node with the largest distance-saving 
value from these 10 nodes as the candidate for 
removing and inserting.  

Step 3. Pick the route with a node that is nearest to the 
candidate for inserting. 

Step 4. Check the workload capacity and delivery time for 
the inserting route. If  these conditions are not 
satisfied, give up the insertion and go to Step 6. 
Otherwise, proceed to Step 5. 

Step 5. Compute the increment of  distance. If  the 
distance-savings value is larger than the increment 
of  distance, complete the insertion and update the 
current solution. Proceed to Step 6. 

Step 6. Select a node with the next largest distance-savings 
value as the candidate and return to Step 3. If  no 
such a node can be found, stop with the obtained 
solution. 

The second method is to apply the developed 
initialization procedure to resolve several routes in the 
current solution. In practice, we group the scheduled 
routes in the current solution into several clusters. For each 
cluster, the developed initialization procedure is applied to 
obtain a different delivery path. If  the obtained solution is 
better that the current solution, replace the current one.  
 
4.2.5 Infeasibility improvement  

In this procedure, we apply local searching and global 
searching rules as well as a record-to-record travel rule. 
The record-to-record travel rule was proposed by Dueck 
(1993). The record-to-record travel rule is used to prevent 
from a local solution. These rules are integrated with the 
developed initialization procedure, the route improvement 
procedure and the re-initialization procedure to obtain a 
better solution. The local searching rule utilizes the 
developed intra-route arc exchange method to improve the 
incumbent solution. The global searching rule applies 
one-point movement, two-point exchange, 2-opt approach, 
and re-initialization to obtain a better solution. The detail 
solution is stated as follows. 

 
Step 0. Apply initialization procedures to obtain a feasible 

solution as an incumbent solution. Compute the 
incumbent value.  

Step 1. Apply one-point improvement procedure to search 
neighborhood solutions. Compute the objective 
value. If  the obtained objective is better than the 
incumbent value, proceed to Step 2. Otherwise, go 
to Step 3. 

Step 2. Apply intra-route arc exchange procedure to search 
neighborhood solutions. Update the incumbent 
solution and return to Step 1. 

Step 3. Apply two-point exchange procedure to search 
neighborhood solutions. Compute the objective 
value. If  the obtained objective is better than the 
incumbent value, proceed to Step 4. Otherwise, go 
to Step 5. 

Step 4. Apply intra-route arc exchange procedure to search 
neighborhood solutions. Update the incumbent 
solution and return to Step 3. 

Step 5. Apply one-point improvement procedure, two-point 
exchange procedure and intra-route arc exchange 
procedure to search neighborhood solutions. If  the 
obtained solution is better than the incumbent 
solution, update the incumbent solution. 

Step 6. Apply re-initialization procedure to search global 
solutions. If  the obtained solution is better than the 
incumbent solution, proceed to Step 7. Otherwise, 
go to Step 8. 

Step 7. Apply intra-route arc exchange procedure to search 
neighborhood solutions. Update the incumbent 
solution and return to Step 1. 

Step 8. If  the total number of  looping procedures exceeds 
the required number, stop with a satisfactory 
solution. Otherwise return to Step 1. 

 
4.3 Balancing workload and delivery time 

In this phase, we develop a searching procedure to 
minimize the gap between the desired maximum workload 
and the desired minimum workload among the delivery 
routes or the vehicles. Since the customer demand should 
be delivered unsplitly, it is not possible to exactly balance 
the workload. Hence, we need to set up a tolerance of  gap 
for balancing each vehicle’s workload. The detail procedure 
is described as follows. 

 
Step 0. Set the current maximal capacity for vehicles and 

the tolerance gap for between maximum and 
minimum of  workload and delivery time among 
vehicles. 

Step 1. Examine the solution obtained from the developed 
initialization and route improvement methods. 
Compute the required number of  vehicles. If  the 
required number of  vehicles exceeds the previous 
one, go to Step 3. Otherwise, return to Step 2. 

Step 2. If  the calculated gap between the maximal workload 
and the minimal workload is less that or equal to the 
tolerance gap, stop with the obtained solution. 
Otherwise, update the current maximal capacity and 
proceed to Initialization phase and Route 
Improvement phase. 

Step 3. Increase the maximal capacity for vehicles and 
proceed to Initialization and Route Improvement 
phases. 

 
The developed heuristic procedures for the vehicle 

routing and scheduling problem with balanced workload 
and delivery time are coded by using a computer 
programming language, Borland C++, and compiled into 
an execution file. This execution file can be run on the 
Windows platform for solving practical problems. 
 
5. IMPLENMENTATION 

A case study using real-world data collected from a local 
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third party logistics is illustrated. The third party logistics is 
located in Taichung metropolitan area, Taiwan and 
responsible for delivery of  daily demand from a 
distribution center to a large number of  convenience stores. 
The data required for the vehicle routing problem 
application include vehicle fleet characteristics, customer 
order information, and geographic data. Particularly, we 
collected data for travel distance among convenience stores 
and travel distance between the distribution center and 
convenience stores, daily demand from convenience stores, 
delivery time from the distribution center to each 
convenience store, and fleet information in the distribution 
center. These convenience stores are dispersed in the 
metropolitan area. The travel distance of  the shortest path 
between two points in kilometer is measured according to 
the street network map and stored in a database of  
geography information system. The daily demand 
measured in volume unit is collected according to the order 
information.  

Table 1 displays daily demand information from 81 
convenience stores. The total demand is 67.47 volume 
units. The fleet of  vehicles in this distribution center has 
tens of  trucks, each truck with a maximum capacity of  9 
units. The company asks that the workloads for each 
routing path should be balanced within the tolerance gap 
of  1.5 units. The delivery time from the distribution center 
to a convenience store includes the traveling time and the 
unloading time. The traveling time is proportionate to the 
distance between the distribution center and the 
convenience store, while the unloading time depends on 
the amount of  ordered commodity. The company requires 
that the total delivery time for each routing path should be 
within 180 minutes. Eighty-one convenience stores are 
included in this problem. 

In practice, the vehicle routing and scheduling problem 
incurred in this company has been done by experiences 
and rule-of-thumb. The existing vehicle schedule is shown 
in Table 2. In the existing vehicle schedule, the total 

number of  vehicles needed for this distribution service is 
nine trucks. The total distance is 262.37 kilometers and the 
total distribution time is 1468 minutes. The workloads for 
each truck are between 8.58 and 5.46 units. The travel 
distances for each routing path are between 41.57 and 
21.82 kilometers. The delivery times for each truck are 
between 193 and 127 minutes.  

By applying the proposed approach to this vehicle 
routing problem, the obtained result is also displayed in 
Table 2. Eight trucks are needed for delivering the whole 
unsplit demand. The workloads for each truck are between 
8.96 and 7.65 units. The total travel distance is 181.6 
kilometers. The travel distances for each routing path are 
between 28.61 and 17.6 kilometers. The total delivery time 
is 1,219 minutes. The delivery times for each truck are 
between 175 and 131 minutes. The execution time for 
solving this problem is 2.7 CPU seconds. From Table 2 we 
can see that the achieved solution has a better performance 
in terms of  total number of  vehicles, total traveling 
distance, and total delivery time, compared with the 
existing routing schedule. From the viewpoint of  balance 
in workload, traveling distance, and delivery time among 
each vehicle, the achieved vehicle schedule outperforms the 
existing one.  

Furthermore, we perform the computational effort for 
the developed heuristic procedure in terms of  
computational efficiency and solution quality. We generate 
12 test problems with number of  nodes from 10 to 115. 
The test problems are generated by expanding the collected 
real-world data to simulate the large-scale problem. Table 3 
shows the computational results. For small-size problems, 
the developed heuristics can provide better solutions with a 
much fewer CPU time. For median to large size of  
problems, the developed heuristics can provide good 
solutions within several minutes of  CPU time. These 
results suggest that the developed solution method can be 
used to solve for many practical problems. 

 
 

Table 1. Data of  daily demand from 81 convenience stores, measured in volume unit 
Store No. Demand Store No. Demand Store No. Demand Store No. Demand 

1 1.38 21 1.05 41 0.02 61 0.98 
2 0.78 22 0.77 42 0.82 62 1.13 
3 0.83 23 0.77 43 0.80 63 0.02 
4 0.92 24 0.90 44 0.87 64 0.85 
5 0.70 25 0.77 45 0.95 65 1.43 
6 1.08 26 0.48 46 0.98 66 0.90 
7 0.01 27 0.97 47 0.85 67 1.87 
8 0.83 28 0.67 48 0.63 68 1.07 
9 1.37 29 0.85 49 0.73 69 0.73 
10 1.20 30 0.98 50 0.90 70 0.65 
11 1.17 31 0.75 51 0.75 71 0.62 
12 0.87 32 0.77 52 0.01 72 0.60 
13 0.53 33 0.80 53 0.90 73 0.68 
14 1.20 34 0.60 54 0.90 74 0.72 
15 0.62 35 1.28 55 0.90 75 1.12 
16 0.63 36 0.92 56 1.08 76 1.03 
17 0.63 37 0.63 57 0.65 77 0.65 
18 1.25 38 0.55 58 0.77 78 0.90 
19 0.58 39 0.57 59 1.35 79 1.03 
20 0.82 40 0.57 60 0.90 80 0.88 
      81 0.80 
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Table 2. Comparison of  results for the existing routing schedule and the achieved routing schedule 
Alternative Vehicle 

No. 
Routing Path for Each Vehicle Delivery 

Time (min) 
Delivery 
Distance 

(km) 

Workload 
(unit) 

1 0ð1ð6ð28ð7ð11ð24ð25ð30ð23ð 29ð0 183 30.87 8.58 
2 0ð14ð5ð19ð17ð12ð18ð31ð4ð3ð2ð0 150 30.80 8.51 
3 0ð13ð10ð9ð26ð8ð22ð21ð15ð20ð38ð0 152 41.57 8.22 
4 0ð36ð37ð39ð53ð71ð63ð16ð61ð62ð60ð0 181 27.52 7.30 
5 0ð35ð46ð47ð48ð45ð32ð0 127 23.34 5.46 
6 0ð40ð69ð49ð51ð50ð54ð70ð55ð72ð0 150 26.69 6.73 
7 0ð44ð41ð27ð43ð42ð56ð58ð59ð57ð0 166 21.82 7.33 
8 0ð64ð65ð76ð68ð67ð66ð52ð34ð33ð0 166 23.88 8.56 
9 0ð73ð77ð81ð75ð79ð78ð80ð74ð0 193 35.88 6.78 

The Existing 
Vehicle 
Routing 
Schedule 

Total  1468 262.37 67.47 
1 0ð1ð10ð9ð11ð4ð3ð2ð0 132 18.48 7.65 
2 0ð12ð31ð32ð46ð61ð62ð34ð47ð35ð16ð0 154 21.95 8.84 
3 0ð29ð44ð57ð59ð58ð56ð71ð70ð69ð38ð0 157 25.17 8.12 
4 0ð5ð14ð18ð19ð17ð15ð21ð6ð8ð0 132 17.60 7.94 
5 0ð7ð22ð27ð28ð42ð43ð30ð26ð25ð24ð23ð13ð0 148 21.18 8.47 
6 0ð36ð48ð65ð80ð81ð73ð72ð54ð55ð41ð40ð37ð0 175 28.61 8.96 
7 0ð39ð49ð50ð51ð53ð68ð67ð66ð52ð20ð0 147 20.74 8.52 
8 0ð64ð63ð76ð77ð78ð79ð75ð74ð60ð45ð33ð0 173 27.87 8.97 

The Vehicle 
Routing 
Schedule 

Achieved by 
the Proposed 

Heuristic 

Total  1218 181.60 67.47 
 

Table 3. Computational results by running the proposed heuristic 
Heuristic Prob.    

No. 
No. of  
Nodes 

Max. 
Capacity 

Limit on Delivery 
Time  (min.) 

No. of  
Trucks Total Distance (km) CPU Time (sec) 

1 10 10.5 120 2 28.38 1.64 
2 20 10.5 120 3 53.98 4.98 
3 30 10.5 120 5 87.80 3.94 
4 40 10.5 120 6 111.59 5.70 
5 50 10.5. 120 7 135.73 2.65 
6 60 10.5 120 9 179.16 2.85 
7 70 10.5 120 11 223.71 16.91 
8 80 15.5 120 13 273.74 12.43 
9 90 15.5 120 13 272.15 16.14 
10 100 15.5 120 15 229.19 77.92 
11 110 15.5 120 16 230.85 37.73 
12 115 15.5 120 17 268.50 186.11 

 
 
6. CONCLUSIONS 

The distribution services of  commodities provided by 
third party logistics have tremendous impacts on the 
cost-effective performance and the level of  customer 
satisfaction. The planning of  commodity distribution have 
been received great concerns in practice. In this paper, we 
describe the goals for a vehicle routing problem and show 
how these goals may differ from the goals of  traditional 
routing and scheduling problems. A multi-objective 
optimization model for describing the vehicle routing and 
scheduling problem with balanced workload and delivery 
time is presented. The model can be used to minimize the 
number of  vehicles, to minimize the total travel distance 
needed to complete the distribution service, to ensure that 
every route is balanced in terms of  workload and delivery 
time. A heuristic-type solution method is developed. 
Real-world data collected from a local third party logistics 
are used for illustrating the proposed approach. The 
achieved routing schedule provides smaller total travel 
distance, shorter total delivery time, smaller number of  
trucks required, and balanced workload and delivery time. 

Results from computational effort also suggest that the 
developed solution method can be used to efficiently solve 
median to large-scale practical vehicle routing problems. 

The significance and originality of  our study are at least 
two-fold. One is to construct a multi-objective 
optimization model for representing the vehicle routing 
problem with balanced workload and delivery time. The 
formulated model possesses its own originality in nature. 
The other is to propose a heuristic method for solving the 
problem. Especially, in the proposed heuristic, we modified 
and integrated five procedures, one-point movement, 
two-point exchange, intra-route arc exchange, 
re-initialization, and infeasibility improvement, to improve 
the obtained solutions. The computational results show its 
significance in terms of  efficiency. 
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