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AbstractIn this paper we propose a tabu search implementation to solve the unrelated parallel machines scheduling 
problem with sequence- and machine- dependent setup times to minimize the schedule’s makespan. The problem is 
NP-hard and finding an optimal solution efficiently is unlikely. Therefore, heuristic techniques are more appropriate to find 
near-optimal solutions. The proposed tabu search algorithm uses two phases of  perturbation schemes: the intra-machine 
perturbation, which optimizes the sequence of  jobs on the machines, and the inter-machine perturbation, which balances 
the assignment of  the jobs to the machines. We compare the proposed algorithm to an existing one that addressed the same 
problem. The computational results show that the proposed tabu search procedure generally outperforms the existing 
heuristic for small- and large-sized problems. 
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1. INTRODUCTION 

The problem addressed in this paper is the non- 
preemptive scheduling of  N available jobs on M parallel, 
unrelated machines where the jobs’ processing times are 
machine dependent and there is no relationship between 
machine speeds. Free machines are capable of  processing 
any job without preemption where it may take for example 
processing time of  pj1 to process job j on machine 1, and pj2 
to process job j on machine 2 with pj1 > pj2; while it may 
take pi1 to process job i on machine 1, and pi2 to process 
job i on machine 2 with pi1 < pi2. In other words, a speed 
factor among machines is not identified. The objective is to 
minimize the makespan or the maximum completion time 
Cmax. Sequence-dependent setup times Sijk are considered. 
They are separated from the processing times where Sijk is 
the amount of  setup time needed if  job j is scheduled after 
job i on machine k. Sequence-dependent setup times add 
tremendous amount of  computational complexity as they 
significantly increase the number of  possible permutations. 

This problem is NP-hard as it is a generalization of  the 
identical parallel machine scheduling problem (PMSP), 
which is NP-hard even for two machines and makespan as 
scheduling criterion (Garey and Johnson, 1979). In the case 
of  identical machines, the processing time of  a job is the 
same regardless of  which machine processes it. For the 
unrelated PMSP case machines do not necessarily have the 
same capacities and/or capabilities, and the same job may 

have different processing and setup times on the different 
machines. 

Having resources in parallel is common in real life 
situations to obtain adequate capacity. Setup activities are 
often required when switching between jobs. Applications 
are common in painting and plastic industries where 
thorough cleaning is required between operations. Similar 
situations are also common in textile, glass, chemical, and 
paper manufacturing industries, as well as some service 
industries (Franca et al., 1996; Radhakrishnan and Ventura, 
2000; Kurz and Askin, 2001; Randhawa and Kuo, 2001). 

Research efforts to solve the PMSPs have dealt with 
many variations of  the problem; identical and unrelated 
machines with and without setup times. Other 
characteristics that were studied included preemptive vs. 
non-preemptive problems, distinct due vs. common due 
date for, and the static vs. dynamic cases (Franca et al., 
1996; Randhawa and Kuo, 1997; Azizoglu and Kirca, 1999; 
Sivrikaya-Serifoglu and Ulusoy, 1999; Radhakrishnan and 
Ventura, 2000; Kurz and Askin, 2001; Yalaoui and Chu, 
2002). Yet the majority of  the published work has 
concentrated on the case of  the identical parallel machines. 
Further, most of  the reviewed literature used the 
minimization of  either makespan or maximum tardiness as 
scheduling objective. Comprehensive reviews and 
state-of-the-art surveys can be found in Graves (1981), 
Cheng and Sin (1990), Lawler et al. (1993), and more 
recently in Mokotoff  (2001). Additionally, Allahverdi et al. 
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(1999) presented a survey on scheduling problems 
involving setup times.  

Attempts to generate optimum solution for the PMSP 
were conducted by Liaw et al. (2003) and Lancia (2000) 
who developed branch-and-bound algorithms to find 
optimal solutions without considering setup times. The 
objective functions were the total weighted tardiness and 
makespan respectively. In Section 2 of  this paper we 
present a Mixed Integer Programming (MIP) formulation 
to find optimal solutions for the problem at hand. 

Being NP-hard, various heuristic procedures were 
proposed in literature for the different variations of  the 
PMSP. Horn (1973) and Bruno et al. (1974) examined the 
problem for minimizing the total completion time 
heuristically. Hariri and Potts (1991) introduced a 
two-phase heuristic approach in which they applied linear 
programming to generate a partial schedule and then used 
the earliest completion time heuristic to schedule the 
remaining jobs to minimize the makespan. They did not, 
however, consider setup times. Azizoglu and Kirca (1999) 
studied the problem considering the total weighted 
completion time. Bank and Werner (2001) compared 
several constructive and generative algorithms considering 
situations with release dates to minimize the weighted sum 
of  earliness and tardiness. Weng et al. (2001) considered 
sequence-dependent setup times where they presented and 
tested several heuristics for problems of  up to 120 jobs 
and 12 machines. Their objective was to minimize the 
weighted mean completion time and they only considered 
machine-independent setup times.  

Meta-heuristic techniques have also been applied to the 
unrelated PMSP. Glass et al. (1994) compared genetic 
algorithms (GA), simulated annealing (SA), and tabu search 
(TS) to minimize makespan without setup times. They 
noticeably reported poor performance of  GA. Srivastava 
(1997) presented a TS formulation for the same problem 
addressed in this paper without setup times and reported 
that TS can provide good quality solutions for practical size 
problems within reasonable computational times. Kim et al. 
(2002, 2003) developed SA implementations to minimize 
the total tardiness, considering only sequence-dependent 
setup times. Ghirardi and Potts (2005) applied a method 
called the Recovering Beam Search to minimize the 
makespan on unrelated parallel machines without setups. 

In the current paper we propose a TS based heuristic 
algorithm for solving the PMSP with sequence- and 
machine- dependent setup times. Our review identified no 
TS implementations for this problem before ours. We 
compare the proposed TS heuristic with the Partitioning 
Heuristic (PH) algorithm proposed by Al-Salem (2004) 
with respect to makespan for different problem sizes. We 
also compare the two techniques to the optimal solution 
for small problem sizes as obtained by an optimal Integer 
Program. Throughout this paper, small problems refer to 
instances of  up to 9 jobs and 4 machines, while large 
problems refer to instances of  up to 120 jobs and 12 
machines. 

Up to our knowledge, only Al-Salem (2004) has 
addressed the same problem we are addressing in this 

paper where he introduced the PH, which performed well 
compared to a lower bound that he proposed in the same 
paper. The TS implementation in the current paper was 
first proposed by Helal and Hosni (2003). They showed 
that the algorithm is effective in improving a random initial 
solution and reaching a balanced assignment of  jobs to 
machines. Improvements of  average of  60% in initial 
makespan were achieved for problems of  up to five 
machines and 40 jobs. However they did not evaluate the 
performance of  the algorithm with respect to any other 
technique. There are still no other TS formulations that 
addressed the current problem. 

 
2. OPTIMAL SOLUTION FORMULATION 

A Mixed Integer Program (MIP) is formulated to find 
optimal solutions for the problem at hand. This 
formulation is used to evaluate the TS performance for 
small-sized problems. Similar formulation was introduced 
by Guinet (1991) who addressed the same problem but 
with the total completion time as an objective in one 
section and the total tardiness as another objective in 
another section of  the paper. Our objective in this MIP is 
to minimize the makespan. 
 
Minimize Cmax (1) 
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where 

Cmax : Maximum completion time (makespan) 
Cj : Completion time of  job j 

pj, k : Processing time of  job j on machine k 
Si, j, k : Sequence-dependent setup time to process 

job j after job i on machine k 
S0, j, k : Setup time to process job j first on machine k 
xi, j, k : 1 if  job j is processed directly after job i on 

machine k and 0 otherwise 
x0, j, k : 1 if  job j is the first job to be processed on 

machine k and 0 otherwise 
xj, 0, k : 1 if  job j is the last job to be processed on 
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machine k and 0 otherwise 
V : A large positive number 
M : Number of  machines 
N : Number of  Jobs 

Objective (1) is to minimize the makespan. Constraints 
(2) ensure that each job is scheduled only once and 
processed by one machine. Constraints (3) make sure that 
each job must neither be preceded nor succeeded by more 
than one job. Constraints (4) are used to calculate 
completion times and to ensure that no job can precede 
and succeed the same job. This is guaranteed by using the 
large positive number (in theory V = ∞) where if  job j is 
scheduled right after job i, then 

=
=∑ ,  ,  1

1M
i j kk

x , and so 

( )=
− =∑ ,  ,  1

1 0M
i j kk

V x . This way, Cj = Ci + Si, j, k + pj, k. 

On the other hand, if  job j is not scheduled right after job i, 

then 
=

=∑ ,  ,  1
0M

i j kk
x  and so ( )=

− = −∑ ,  ,  1
1M

i j kk
V x V , 

and therefore, this constraint becomes redundant and does 
not impact the MIP. Constraints (4) are needed because we 
do not know which job will precede the other when 
including sequence-dependent setup times. Constraints (5) 
ensure that no more than one job can be scheduled first at 
each machine. In fact, constraints (5) is missing from the 
original formulation proposed by Guinet (1991) and if  not 
included, infeasible schedules may result because without 
these constraints more than one job may end up scheduled 
first (or last) on the same machine, which can be easily 
demonstrated with a numerical example. Note that there is 
no need for another set of  constraints to guarantee that 
only one job is scheduled last on each machine because this 
is guaranteed by constraints (5) in conjunction with (3). 
Constraints (6) define the makespan Cmax as a variable that 
must be larger than any other job’s completion time. 
Constraints (7) specify that the decision variable x is binary 
over all domains. Constraints (8) state that the completion 
time for the dummy job 0 is zero and constraints (9) ensure 
that completion times are non-negative. Optimal solutions 
for the problem can be obtained by solving the above 
formulation using a MIP solver. 
 
3. THE PARTITIONING HEURISTIC ALGORITHM  

Al-Salem (2004) developed the Partitioning Heuristic 
(PH) algorithm to minimize makespan on unrelated parallel 
machines with machine-dependent and sequence- 
dependent setup times. The PH algorithm applies three 
heuristics: constructive, improvement, and a traveling 
salesman problem (TSP)-like heuristic sequentially to 
minimize the makespan. The first heuristic is applied to 
initially assign jobs to machines. The second is to improve 
the solution obtained by the constructive heuristic. The 
third deals with each machine as a TSP and determines the 
sequence of jobs on each machine. 

The constructive heuristic of the PH algorithm develops 
an initial assignment of jobs to machines. The processing 
time plus the average setup times for each job on each 
machine is computed. Then for each job, the ratio of the 

minimum machine processing time plus the average 
machine setup times to the second shortest minimum 
machine processing time plus the average machine setup 
times is computed. The job is assigned to the machine with 
shortest processing time plus average setup times if the 
value of its ratio is small (e.g., < 0.7). The job is considered 
pending if the value of its ratio is large (e.g., > 0.7). 
Pending jobs are then assigned in a decreasing order of the 
average processing times plus average setup times to 
machines that result in the lowest partial estimated 
makespan. The value of the estimated makespan ˆ

maxC  is 
obtained similar to the method used by Lee et al. (1997) to 
estimate the value of the makespan for the single machine 
scheduling problem with sequence-dependent setup times. 
Therefore ˆ ( )maxC s p nθ= +  where θ is a coefficient that 
takes into account the effect of the setup times on the 
makespan. The average time to process a job including its 
setup time is assumed to be ˆ

maxC s pθ= + with θ ≤ 1. 
The constructive heuristic of the PH algorithm can be 
described in pseudo code as follows: 

 
For j = 1 to n, Do: 
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End Do 
 
For j = 1 to n, Do: 
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Else, job j is considered pending.  
End Do 
Order the pending jobs in a decreasing value order of  
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Following the pending jobs order, Do: 

Find min( )Kk
C

−
. Let the corresponding k be k** 

Assign job j to machine k** and Update **
ˆ

k
C  

End Do 
 

To improve the estimated value of  the makespan ˆ
maxC , 

the improvement heuristic is applied to the schedule 
generated by the constructive heuristic. In this application, 
the composite exchange heuristic developed by Hariri and 
Potts (1991) is modified to account for the sequence- 
dependent setup times. The modified composite exchange 
heuristic consists of  two phases. In Phase 1, a job is 
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removed from the machine that generates the largest ˆ
maxC  

and is inserted into a machine that generates the lowest 
ˆ

maxC . In Phase 2, two jobs are exchanged, one from the 

machine that produces the largest ˆ
maxC  and one from the 

machine that produces the lowest ˆ
maxC . All jobs and all 

possible assignment are considered. Phase 1 is applied by 
first using the constructive schedule as an input. Then 
using the resulting improved schedule as an input to Phase 
2 and further reduction in the ˆ

maxC  is attempted. The 
procedure continues by repeatedly applying Phases 1 and 2 
until no further reduction in makespan is possible. At this 
point, the sequence of  jobs on each machine and the actual 
value of  the makespan are unknown. To determine the 
sequence and the value of  the makespan on each machine, 
the following procedure is executed:  

 
1. Use the nearest neighbor heuristic (NNH) to find the 

initial sequence and the value of the makespan on each 
machine. 

2. Among all available machines, select the one that 
produces the largest makespan and the one that 
produces the second largest makespan. 

3. Solve the related TSP using the adjacent pairwise 
interchange heuristic (API) for the machine that 
produces the largest makespan. 

4. If solution is improved and less than the second largest 
makespan, go to 2; otherwise stop. 
 
Using Quicksort with the PH stages that require sorting 

and finding minimum and maximum values, it can be 
shown that the complexity of  the PH is O(n2log n) because 
the complexity of  the Quicksort procedure is O(nlog n). 
For greater detail on the PH heuristic, see Al-Salem (2004). 
 
4. THE TABU SEARCH APPROACH 

TS is a meta-heuristic that has its origins in the 
combinatorial optimization procedures applied to some 
non-linear problems in the late 1970s. Principles of the 
technique in a broader sense are laid out in Glover (1989, 
1990). Unlike other methodologies such as SA and GA, TS 
is a deterministic technique that does not utilize random 
numbers. This has been shown to be advantageous in Helal 
et al. (2000). A typical TS implementation starts with an 
initial solution that is to be perturbed by a set of alterations 
(moves) to move from this initial solution (or current 
solution after starting up) to neighbor solutions, searching 
for better results. The components of the TS methodology 
work to guide this search process and ensure its 
effectiveness.  

The three basic components of TS are the tabu list (T), 
the long-term memory (LTM), and the aspiration level 
function. T is comprised of a list of recent moves that are 
not allowed (called tabu moves) at the current iteration 
because such moves would take the search process back to 
a previously tested solution. Prohibiting recently visited 
solutions avoids local optima and cycling, which saves 

computational time. LTM records features of the best trial 
solutions generated during a particular period of the search 
process. Features that are common are considered regional 
attributes of a good solution. The TS method then seeks 
new solutions that exhibit these features (search 
intensification). Alternatively, LTM may be used to guide 
the process to avoid those attributes and investigate 
regions that contrast with those examined so far (search 
diversification). In either use, LTM accumulates the 
experience gained during the search process to enhance the 
effectiveness of the search during subsequent search 
phases. The aspiration level function adds flexibility to 
choosing good moves by allowing the tabu status of a 
move to be overridden if this aspiration level is fulfilled. 
The most commonly used aspiration level is to allow a tabu 
move if an overall improvement can be achieved.  

Definitions and implementation of these components 
are application-based. The tabu list T gives the technique 
its name and the speed of convergence of the heuristic is a 
function of T’s size. If it is too long, its use becomes time 
consuming while if it is too short, it becomes ineffective in 
escaping local optima. A tabu list size between five and 
twelve is recommended by the developer of TS (Glover, 
1989) and by Zolfaghari and Liang (2002). Glover also 
recommended seven as the preferred tabu list size. Yet an 
appropriate size T should be determined by experimenting 
different sizes. We show the results of our experiments 
later in this paper. 
 
4.1 The proposed TS implementation 

The proposed TS implementation starts with an initial 
solution and works to improve that solution through the 
application of two perturbation schemes: intra-machine 
perturbation and inter-machine perturbation. A heuristic to 
develop the initial solution is proposed as described in the 
following subsection. Our implementation of the TS 
components is described in the sections that follow.  

There are N jobs to be assigned to M parallel machines 
and sequenced such that the maximum completion time 
(Cmax) among all machines is minimized.  Processing times 
and setup times for each job are presented in a matrix 
format.  For N jobs an N × N matrix is used where each 
entry aij (i = j = 1, 2, …, N) represents the sum of the 
setup time and processing time for job j if it is scheduled 
immediately after job i. If i = j it means that the job is in 
the first position on the machines. A matrix for each 
machine is used since the setup times are not only 
sequence-dependent, but also machine-dependent. The 
solution of the problem should describe how the N jobs 
are divided among the M machines such that each machine 
k (k = 1, 2, …, M) is assigned nk jobs where .kk

n N=∑  

Makespan for the solution is the maximum makespan 
among all M machines. 
 
4.1.1 The initial solution 

A complete schedule consists of M sequences of jobs 
for the M parallel machines. The following algorithm is 
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proposed to construct an initial complete solution. This 
initial solution algorithm is based on the well-known 
shortest processing time (SPT) dispatching rule as follows: 
1. For each of the M machines:  

a. For each of the N jobs: 
i. Compute the SPTavg index by averaging the sum of 

the job’s processing times as if it is scheduled after 
each of the other jobs or the first on the machine. 

2. Construct a complete schedule by assigning jobs, one at 
a time, to the machines based on ascending order of the 
SPTavg index. Assign the job to the machine on which it 
has the smallest SPTavg value. In case of a tie assign the 
job to the least utilized machine so far. 

3. Identify the sequence of jobs on each machine and its 
makespan. The makespan for the complete solution is 
the maximum makespan across all machines.  

 
4.1.2 Perturbation schemes 

Two perturbation schemes are used in the search for 
better schedules. The first scheme is the intra-machine 
perturbation in which jobs on each machine are rearranged 
in order to find the shortest makespan for that machine. 
This perturbation scheme is meant to optimize the 
sequence of jobs on the machines. The second scheme is 
the inter-machines perturbation in which a job is taken 
from the busiest machine and inserted onto one of the 
other machines. This is meant to balance the assignment of 
jobs to machines. The busiest machine is the one that has 
the maximum makespan so far. We remove a job from 
busiest machine such that makespan is reduced the most 
after the job is removed. The search process iterates 
between these two perturbation schemes as described in 
the algorithm listing below. 
 
4.1.3 The tabu list (T) 

T will contain the best trial sequences selected during the 
perturbation actions. There will be a list for each machine 
with a size of 9. Glover (1989) who developed the generic 
technique of TS recommended T of 5 to 12 elements. In 
our experiments we found that for smaller problems, sizes 
of 8 and 9 led to the best makespan in 13 out of 18 
problem sizes tested as shown in Table 1 where the shaded 
cells in the table indicate the best makespans. A problem 
size with no shaded cell indicates that the best makespan 
was obtained with a T size different than 8 or 9. 
Computational times were less than one second for all 
sizes and there was no trend that could be identified due to 
changing the size of T. Each T size was tested with 15 
instances of each of the 18 problem sizes resulting 270 
problems for each T size, a total of 18 × 15 × 8 = 2160 
instances. In all instances, the processing and setup times 
were balanced where both times were drawn from 
Uniform [50, 100] as will be described in the 
Computational Experience section. 

Similar experiments were conducted for larger problems 
with 15 instances (with balanced processing and setup 
times) for each problem size and each T size between 5 

and 12, resulting 960 instances. T sizes of 9 and 10 gave the 
best TS performance for all cases. As shown in Table 2 size 
9 led to the best makespan in most cases with a maximum 
time of about 6.7 minutes per problem. 

 
Table 1. Results for tabu list (T) sizes of 8 and 9 for small 

problems 
Makespan CPU Time (seconds) Problem Size 

(N / M) T = 8 T = 9 T = 8 T = 9 
6 / 2 395.27 397.20 0.15 0.44 
6 / 4 251.27 249.07 0.02 0.01 
7 / 2 494.73 502.00 0.20 0.21 
7 / 4 264.27 259.53 0.26 0.02 
8 / 2 521.20 522.07 0.08 0.26 
8 / 4 270.47 268.93 0.03 0.07 
8 / 6 240.27 235.47 0.29 0.03 
9 / 2 607.33 614.53 0.29 0.31 
9 / 4 346.47 347.73 0.86 0.93 
9 / 6 249.27 244.33 0.05 0.06 
10 / 2 645.33 649.60 0.34 0.37 
10 / 4 360.33 363.27 0.98 0.95 
10 / 6 259.13 254.67 0.08 0.06 
10 / 8 232.00 230.07 0.08 0.09 
11 / 2 722.53 724.47 0.44 0.44 
11 / 4 276.30 375.80 0.99 0.96 
11 / 6 273.80 265.87 0.04 0.04 
11 / 8 235.20 232.87 0.12 0.11 

 
Table 2. Results for tabu list sizes of 9 and 10 for large 

sized problems 
Makespan CPU Time (seconds) Problem Size 

(N / M) T = 9 T = 10 T = 9 T = 10 
100 / 2 6165.27 6175.67 377.91 401.85 
100 / 6 1934.87 1936.13 119.74 152.64 
100 / 10 1142.40 1146.60 197.63 212.49 
60 / 6 1174.40 1184.27 85.16 89.60 
60 / 10 688.20 688.96 38.89 36.38 
80 / 4 2366.80 2367.47 185.93 201.31 
80 / 10 920.10 918.00 263.35 210.02 
80 / 12 773.13 777.47 66.15 66.42 

 
The nature of elements stored in T has a significant 

impact on the efficiency of the TS algorithm. In the 
current implementation, T records the best trial sequences 
found during the search process. Upon each perturbation, 
the resulting sequence is appended to T and the oldest 
sequence is pushed off of it. The elements of T could have 
been implemented as moves that are performed during 
perturbations. However, in the perturbation schemes 
described above, a job can be moved from, say, machine A 
to machine B resulting in a certain sequence, and after 
some iterations the same job may need to be moved back 
from B to A, which would result in a different sequence. If 
T contains the moves themselves, then a move from B 
back to A will be a tabu because it is the reverse of a recent 
move, although it may result in an improvement (or a step 
towards improvement) due to the existence of 
sequence-dependent setup times on each machine. When 
the sequences themselves are stored in T, the search 
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process has more flexibility to perform moves as long as 
they do not return to a previously tested solution, even if 
they are the reverses of each other. This way of 
implementation is more meaningful to pursue an optimal 
(or near-optimal) solution. During perturbations, T is 
checked to ensure that a resulting trial sequence is not on 
the list (not tabu sequence). If it is tabu, then the move that 
led to it is a tabu move and is canceled and the current trial 
sequence for the machine being worked is recovered. 
 
4.1.4 The long-term-memory (LTM) 

LTM consists of M matrices each of size N × N. An 
element aij (i = j = 1, 2, …, N) of the LTMk matrix of 
machine k (k = 1, 2, …, M) represents the number of 
times job i came after job j on machine k. Each time a new 
trial solution is identified or LTM matrices are used to 
create a new starting solution, the appropriate elements in 
the matrices are incremented by one. Thus LTM for a 
machine is a frequency matrix that records the number of 
times each job happened to be after each of the other jobs 
during the best trial solutions. The diagonal elements of the 
matrix are the number of times that each job happened to 
be in the first position on the machine.  

To use the LTM matrices, the search process is divided 
into a number of phases. After every phase the frequency 
information in LTM is used to construct a complete 
solution to use it as a re-starting solution in the following 
phase. In the proposed implementation, LTM is used to 
generate a new re-starting solution based on the maximum 
entries in the matrix (search intensification). This is done 
by letting each job to be after the job it used to succeed for 
the largest number of times in the best trial solutions 
during the previous search phases. As such, the jobs are 
kept in the relative positions that previously resulted in 

good sequences, which is likely to result in a good quality 
re-starting solution for the remaining search phases. It 
should be noted that the incumbent solution (the best 
complete solution found so far) is maintained all the time 
and is only updated when an iteration results in a better 
solution. 

 
When running the TS algorithm, we used LTM three 

times to generate three new re-starting solutions. 
Considering the first run to collect the frequency data for 
the LTM for the first time, the proposed algorithm has 
four search phases in total. The first phase is a complete 
run of the algorithm that starts with an initial solution 
generated by the SPTave index algorithm. Each phase after 
that is another complete run of the algorithm that starts 
with an LTM-based starting solution. The number of 
phases was determined by testing different values. Tables 3 
and 4 compare the use of 4, 5, and 6 search phases for the 
small and large problems respectively. The number of 
instances solved for small problems (Table 3) is 2160 (as 
explained in section 4.1.3) for each of the three phase, 
resulting a total of 3 × 2160 = 6480 instances. For large 
problems the number of instances solved is 960 (see 
section 4.1.3) for a total of 2880 instances for all three 
phases. In both tables, ∆ (4 to 6) indicates the change in 
makespan or computational time (CPU) if 6 phases are 
used instead of 4. At T size of 9 there was insignificant 
improvement in the solution quality (makespan) and 
significant increase in CPU (up to 25% ) when the number 
of phases is increased from 4 to 6 as can be seen in Table 3. 
Similar results were obtained for the larger problems 
(Table 4). Consequently, the number of search phases was 
fixed to 4 in this implementation. 

 
Table 3. The effect of more search phases on makespan and computational time – small problems 

Makespan CPU Time (seconds) Problem Size 
N / M 4 Phases 5 Phases 6 Phases ∆ 

(4 to 6) 4 Phases 5 Phases 6 Phases ∆ 
(4 to 6) 

6 / 2 396.40 396.40 396.40 0.00% 0.150 0.160 0.170 11.88% 
6 / 4 251.73 251.73 251.73 0.00% 0.012 0.013 0.014 8.56% 
7 / 2 495.07 495.07 495.07 0.00% 0.210 0.230 0.246 14.47% 
7 / 4 265.07 263.07 263.07 0.75% 0.018 0.019 0.024 25.67% 
8 / 2 522.60 522.60 521.87 0.14% 0.262 0.273 0.291 9.74% 
8 / 4 271.27 271.20 270.80 0.17% 0.068 0.075 0.083 18.76% 
8 / 6 242.07 241.93 240.67 0.58% 0.031 0.036 0.036 15.73% 
9 / 2 603.80 603.80 603.80 0.00% 0.309 0.320 0.344 9.97% 
9 / 4 346.40 346.40 346.20 0.06% 0.927 0.963 1.036 10.53% 
9 / 6 249.53 249.53 249.53 0.00% 0.060 0.061 0.065 6.06% 
10 / 2 645.33 645.20 645.20 0.02% 0.368 0.381 0.424 13.25% 
10 / 4 361.60 361.60 361.60 0.00% 0.985 1.075 1.153 14.61% 
10 / 6 259.47 259.00 259.00 0.18% 0.060 0.069 0.076 20.73% 
10 / 8 232.00 231.40 231.40 0.26% 0.087 0.091 0.092 5.47% 
11 / 2 721.27 721.27 721.27 0.00% 0.442 0.465 0.503 12.21% 
11 / 4 374.33 374.33 373.47 0.23% 1.062 1.123 1.198 11.39% 
11 / 6 274.53 273.00 272.60 0.70% 0.042 0.050 0.054 23.06% 
11 / 8 235.60 235.60 235.60 0.00% 0.105 0.109 0.113 6.56% 
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Table 4. The effect of more search phases on makespan and computational time – larger problems 
Makespan CPU Time (seconds) Problem Size 

N / M 4 Phases 5 Phases 6 Phases ∆ 
(4 to 6) 4 Phases 5 Phases 6 Phases ∆ 

(4 to 6) 
100 / 2 6180.87 6180.87 6180.87 0.00% 133.22 143.06 155.01 14.06% 
100 / 6 1940.60 1940.60 1940.60 0.00% 222.05 233.43 245.51 9.56% 
100 / 10 1153.27 1152.40 1152.40 0.08% 379.36 390.83 412.90 8.12% 
60 / 6 692.73 692.73 692.73 0.00% 87.71 91.77 94.55 7.23% 
80 / 4 778.47 777.93 777.93 0.07% 223.81 234.76 244.67 8.53% 
80 / 10 1179.27 1178.27 1178.00 0.11% 38.90 41.45 43.42 10.42% 
80 / 12 920.80 920.80 920.80 0.00% 188.53 196.79 199.91 5.69% 

 

4.1.5 The aspiration level function 
We use the commonly used aspiration level function by 

which the tabu status of a move is overridden if an overall 
improvement is possible by that move. At any iteration, if 
the makespan of a trial solution resulting from a tabu move 
is better than current incumbent makespan then the tabu 
status of the move is ignored and the move is executed. 
The aspiration level function is checked only if a candidate 
move is found to be tabu. 

 
4.1.6 Stopping criteria and iteration counters 

The TS algorithm is run in four search phases, in each 
phase there are two iteration counters: the inter-machine 
perturbations counter and the overall iteration counter 
(referred to simply as the iteration counter). The 
inter-machine perturbations counter counts the number of 
iterations performed in the inter-machine perturbation step 
where the maximum number of this inter-machine 
perturbation = Max{25, N/(LTM_restart + 1}, where x 
is floor of x. The minimum number of iterations is thus 25. 

Additional iterations resulted in longer computational 
time with no significant improvement. It should be noted 
that the inter-machine perturbation counter is reset each 
time the incumbent solution is updated. So the algorithm 
switches to the intra-machine perturbation if no 
improvements are obtained in a number of iterations equal 
to Max{25, N/(LTM_restart + 1}. If improvements were 
obtained the counter is reset to zero and the algorithm 
continuous in this perturbation scheme. 

On the other hand the iteration counter keeps track of 
the overall number of iterations. In each iteration, the 
intra-machine perturbations are performed for every 
machine and then the algorithm switches to perform the 
inter-machine perturbations. The iteration is over if the 
inter-machine perturbation iterations are performed 
without a change in the current solution. The number of 
overall iterations varies with the number of machines, M 
and it is equal to M2/(LTM_restart counter+1), where 
LTM_restart is the number of search phases. The proposed 
TS algorithm is described below. The following parameters 
are used in the description. 
 

• Ω0 and Ω* : A complete solution where Ω0 is the 
current solution and Ω* is the incumbent solution. 

• 0
maxC and *

maxC : Makespan for Ω0 and Ω* 

respectively. 
• Tk: Tabu list for machine k where k = 1, 2, …, M. 
• LTMk: Long term memory for machine k where 

k = 1, 2, …, M. 
• nk: number of  jobs on machine k where k = 1, 2, 

…, M. 
• LTM_restart: number of  times LTM is utilized to 

develop new starting solutions. 
 

I. Initialization & Reinitialization 

Step 1. Let Tk and LTMk be zero matrices. Set 
LTM_restart = 3, LTM_restart counter = 0, and 
the iteration counter = 0. Create an initial 
complete solution using the SPTavg algorithm. Let 
this solution be the current solution Ω0 and its 
makespan be 0

max .C  Let Ω* = Ω0 and *
maxC  

= 0
maxC . Go to Step 3. 

Step 2. Use the LTMk to construct a complete new 
starting solution. Increment the LTM_restart 
counter by one. Let the newly generated solution 
be the current solution Ω0 and its makespan 0

maxC . 
If 0

maxC  < *
maxC , then let Ω* = Ω0 and 

0
maxC = *

maxC . 
 

II. Perturbation 

Step 3. Intra-machine Perturbation: ∀ machine k, 
perturb the sequence on k by reinserting each 
job in the sequence, one at a time, into each of 
the other nk − 1 positions. While doing so, keep 
the relative positions of other jobs on the 
machine intact. Let the resulting complete 
schedule after perturbing all machines become 
the current solution Ω0 and its makespan 
become 0

maxC . If 0
maxC < *

maxC then let Ω* = Ω0 
and *

maxC = 0
maxC . ∀ k, increment LTMk by one 

to reflect the new Ω0. Update Tk with Ω0. 
Step 4. Inter-machine perturbation: Set the inter- achine 

iteration counter equal to 0. For the current 
solution Ω0 take each job on the busiest machine 
(the machine with the largest makespan) one at a 
time, and try inserting it into all possible 
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positions on the other M − 1 machines. At any 
one time, only the busiest machine and one 
other machine should be altered by this insertion 
action. Identify the best resulting solution and let 
it replace the current Ω0 and its makespan 
replace the current 0

maxC . Increment the 
inter-machine iteration counter by one. Update 
LTMk and Tk with the new Ω0. If 0

maxC < *
maxC , 

then let Ω* = Ω0 and *
maxC = 0

maxC and restart the 
current inter-machine perturbation step, Else if 
no improvement in Ω* is achieved in this step 
and the inter-machine iteration counter is equal 
to the Max{25, N/(LTM_restart + 1} Then 
continue to Step 5.  

 
III. Stopping criteria 

Step 5. If the iteration counter < (M2 / (LTM_restart 
counter + 1)) then go to Step 3, Else if 
LTM_restart counter < 3 Then go to Step 2, Else 
record the final solution Ω* and its *

maxC  and 
STOP.  

 
5. COMPUTATIONAL ANALYSIS 

Ideally, it will be best to compare the performance of  
the proposed TS to benchmark problems. However, such 
problems do not exist for the problem addressed in this 
paper. Therefore, two sets of  experiments were conducted 
where the TS performance was compared to optimal 
solutions for small problems (up to 9 jobs and 4 machines), 
and to the PH algorithm for larger problems (up to 120 
jobs and 12 machines). In the first set, solutions from both 
TS and BH algorithms were also compared to the optimal 
solutions, which were obtained using OPL (Optimization 
Programming Language) to solve the MIP presented in 
section 2. OPL Studio 3.7 is a modeling environment that 
utilizes OPL as a modeling language and CPLEX 7.0 as a 
solver (see Van Hentenryck (2001) for more details). In the 
second experiment, large problem instances were generated 
and solved using both TS and the PH algorithms. Optimal 
solutions were unattainable for large instances. 

The processing and setup times were randomly drawn 
from two uniform distributions: U[50, 100] and U[125, 
175]. Uniform distribution is widely used for this purpose 
as many real world instances match such data settings. It 
has high variance, which allows testing the algorithms 
under unfavorable conditions (Weng et al., 2001). The 
selection of  the uniform distribution bounds for 
processing and setup times determines the level of  
dominance. That is, when processing and setup times are 
balanced (denoted B), they are both drawn from U[50, 100]. 
When processing times are dominant (denoted by P), the 
processing and setup times are drawn from U[125, 175] 
and U[50, 100] respectively. When the setup times are 
dominant (denoted as S), the processing and setup times 
are drawn from [50, 100] and [125, 175] respectively. Both 

algorithms were implemented in C++ and the experiments 
were run on a Pentium IV- 1.7 GHz personal computer. 
Data sets for both small and large problems as well as 
solutions using TS and the PH algorithm are available at 
SchedulingResearch (2005). 
 

5.1 Analysis of performance for small problems 

For the small problems the percent deviation δ from the 
optimum is calculated using (10) where C is the average 
makespan. 
 

100heuristic Optimal

Optimal

C C
C

δ
−

= ×                       (10) 

 
Optimal solutions are available for up to nine jobs on 

two machines and eight jobs on four machines. It became 
prohibitively time consuming to solve for larger problems, 
and therefore, the MIP solver was interrupted after 
running hours without reaching a solution. For example, 
for two-machine problems, the computational time on 
average was 12 seconds only when the number of jobs was 
6 and grew exponentially to take an average of 5 hours 
when the number of jobs was increased to 9. Similarly, for 
4 machines, the average time was 48 seconds when the 
number of jobs was 6, and increased to 1.5 hours when the 
number of jobs was increased to 8. Table 5 shows the 
average percent deviation of both algorithms from the 
optimal solution for the balanced (B), processing-time- 
dominated (P), and setup-time-dominated (S) problems. 
The number of random instances generated and solved for 
each configuration was 15 resulting in a total of 3 × 7 × 15 
= 315. 

One can see that TS outperforms the PH algorithm in 
most cases. For the 2-machine problems, TS was better in 
all cases and for the 4-machine problems it was better for 
seven out of nine configurations. For the 2-machine 
problems, TS was between 0.2 to 1.0% away from the 
optimal while the PH algorithm was 1.5 to 6% away. For 
the 4-machine problems, the two algorithms were close; TS 
was about 1 to 5% away from the optimum compared to 2 
to 4.5 % for PH. It can also be observed that both 
algorithms tend to perform relatively better for problems 
with dominant processing or setup times than for the 
balanced problems. But there are no identifiable trends that 
can be observed for any of the three cases as the number 
of jobs or number of machines increases, possibly due to 
the small sizes of the problems. 

In summary, TS is better than PH for the 2-machine 
problems but the two algorithms approach each other for 
the 4-machine problems. It is worth noticing that the PH 
algorithm maintains its level of performance for the 2- and 
4-machine cases. On the other hand, TS seems to be more 
sensitive to increasing the number of machines, as it was 
more inferior to itself when the number of machines 
increased from 2 to 4.  
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Table 5. Percent deviation of  TS and PH algorithm from optimal solution 
 M = 2 M = 4 
 N N 
 6 7 8 9 6 7 8 
 TS PH TS PH TS PH TS PH TS PH TS PH TS PH 

B 0.42 3.70 0.84 4.90 0.99 3.30 0.88 5.69 2.76 3.30 5.15 4.22 2.51 2.79 
P 0.39 1.69 0.44 3.19 0.21 2.67 0.42 2.57 1.14 2.35 2.93 3.44 0.88 2.12 
S 0.29 1.97 0.54 2.16 0.54 2.67 0.85 2.85 2.52 2.86 2.74 3.41 2.62 2.31 

 
When both algorithms are compared to each other, with 

TS being the baseline, the impact of  increasing the number 
of  machines becomes clear (see Table 6). Note that 
optimal solutions are not available for many cases. The 
negative values in the table indicate that the PH algorithm 
is better than TS. As the number of  machines increases, 
the PH algorithm performance tends to be closer to the 
performance of  the TS. However this trend does not 
continue beyond 6 machines indicating that the TS may be 
more robust and better for larger problems. 

 
5.2 Analysis of  performance for large problems 

The TS results are used here as the reference value and 
CTS (Makespan by TS) replaces COptimal to calculate δ in (10). 
The average relative difference between both algorithms 
are shown in Table 7 based on solving 15 instances per 
machine-job configuration for balanced, dominant 
processing times, and dominant setup times (a total of  15 
× 6 × 6 × 3 = 1620 instances). The negative values for  

 

some of  the 2- and 4-machine problems indicate that the 
PH performs better than the TS. This happened in 
instances with large number of  jobs on the two and four 
machines; however, TS was always better with instances 
with more than four machines. In terms of  performance 
frequencies, TS was better than PH in 95 out of  108 cases. 
In terms of  percent deviation, TS outperformed PH by up 
to 8% in some cases. 

The difference between both algorithms is clearer for 
the balanced problems. Smaller differences are observable 
when either the processing times or the setup times are 
dominant. In addition, for the same number of machines, 
the difference between TS and PH decreases as the 
number of jobs increases. This is clearly observable for 2, 4, 
5 and 8 machines. It is also noted that the difference is 
larger for the balanced problems than for problems with 
dominant processing or setup times and this difference is 
even bigger for the larger number of machines. Recall that 
the larger the deviation, the better the TS performs over 
the PH algorithm. 

Table 6. Percent deviation of  the PH algorithm from the TS 
 M = 2 M = 4 
 N N 
 6 7 8 9 10 11 6 7 8 9 10 11 

B 3.28 4.06 2.29 4.77 4.34 2.83 0.59 -0.74 0.41 4.04 2.49 2.85 
P 1.30 2.75 2.46 2.14 2.39 1.94 1.22 0.54 1.24 2.65 1.79 0.85 
S 1.68 1.63 2.12 1.99 2.30 1.72 0.38 0.72 -0.24 3.28 3.32 1.47 
 M = 6 M = 8 
 N N 
 n/a n/a 8 9 10 11 n/a n/a n/a n/a 10 11 

B -- -- 0.59 -0.14 -0.16 -3.88 -- -- -- -- 2.12 3.00 
P -- -- -1.22 -2.68 -2.59 -3.80 -- -- -- -- 1.8 1.58 
S -- -- 1.09 1.09 -0.81 -0.75 -- -- -- -- 2.16 2.38 

 
Table 7. Percent deviation of  the PH algorithm relative to TS for large problems 

 M = 2 M = 4 
 N N 
 20 40 60 80 100 120 20 40 60 80 100 120 

B 2.49 1.40 -0.08 -0.31 -0.85 -1.49 4.54 3.24 1.83 1.13 0.89 0.65 
P 1.82 0.95 0.06 -0.30 -0.88 -0.98 3.32 2.11 0.83 0.72 -0.03 -0.11 
S 1.67 1.17 0.13 -0.31 -0.69 -1.18 3.53 1.96 0.77 0.29 -0.49 0.00 
 M = 6 M = 8 
 N N 
 20 40 60 80 100 120 20 40 60 80 100 120 

B 6.92 5.49 4.51 3.68 1.69 1.76 7.09 6.26 6.54 4.65 4.54 2.21 
P 3.85 2.13 1.31 2.03 0.82 0.57 3.46 3.78 3.14 1.75 1.87 0.44 
S 3.60 2.58 1.95 2.29 0.71 0.90 4.47 3.89 2.22 1.69 1.46 1.65 
 M = 10 M = 12 
 N N 
 20 40 60 80 100 120 20 40 60 80 100 120 

B 0.47 7.35 7.01 6.92 4.77 5.59 2.05 8.38 8.74 6.59 7.24 6.82 
P -1.42 4.36 3.73 2.03 0.90 1.01 1.56 4.47 2.98 3.17 3.35 0.91 
S -0.42 5.40 3.47 2.03 1.65 1.54 0.61 4.41 3.41 3.59 3.33 0.88      
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When the number of jobs is fixed and the number of 

machines is increased, the percent deviation between the 
two algorithms increases. For the 2-machine problems 
both algorithms can be equal or sometimes the PH 
algorithm is better. But for more machines TS is always 
better and the difference reaches 8% for the largest 
problems. And like before, TS seems to perform better for 
the balanced problems than for problems with dominant 
processing or setup times. As for computational times, TS 
takes in general more time (see Tables 1 through 4) than 
the PH algorithm, which took less than one minute to 
reach its solution for the largest instances. 

In conclusion, TS outperformed the PH algorithm in 
most cases; yet it seems to be unstable for the smaller 
problems. As more machines are considered, TS shows 
observable advantage and robustness over the PH 
algorithm. These conclusions are true for the balanced 
problems as well as for the problems with dominant 
processing or setup times, but it is more obvious in the 
balanced problems. 

 
6. POTENTIAL TABU SEARCH IMPROVEMENTS  

TS offers the flexibility of  redefining all of  its three 
components to best fit the application. This includes the 
selection of  the tabu list elements, the nature of  
information included in the long term memory, and the 
definition of  the aspiration level. Since TS is not a 
randomized technique, its performance is only a function 
of  the way its components are implemented. The 
difference in the proposed TS algorithm performance for 
small and large problems indicates the need to consider 
redefining the TS components. Possible directions for 
further improvement in the proposed implementation 
include:  

• The use of  a variable size tabu list T to fit the 
different problem sizes. The list size can 
significantly impact the effectiveness and efficiency 
of  the algorithm.  

• The long term memory LTM, was defined as a 
frequency matrix. It could be worth investigating 
including information about the relative 
improvements occurring during the search process 
with the frequency information in LTM as a 
potential approach to improve the TS performance.  

• Multidimensional aspiration criteria can be 
investigated in addition to the overall improvement 
in the objective function. 

Additional perturbation schemes may also be investigated. 
 

7. CONCLUSIONS AND FURTHER EXTENSIONS 

A tabu search algorithm (TS) was proposed in this paper 
to solve the unrelated parallel machine scheduling problem 
with machine- and sequence-dependent setup times. The 
problem is known to be NP-hard, yet few attempts have 
been made to develop heuristic techniques to solve it. The 
TS performance was compared to the Partitioning 
Heuristic (PH), an existing algorithm introduced by 

Al-Salem (2004), and to the optimal solution for small 
problems. The results favored the proposed TS algorithm 
for large and small problems; yet, TS showed slightly less 
robustness for the smaller problems. The TS also 
outperformed the PH in terms of  the number of  times it 
did better than PH. 

Based on the computational analysis, directions for 
future modifications to improve the performance of  the 
proposed TS were suggested. Those included the use of  a 
variable size tabu list, more search-based information in 
the long term memory matrices, the use of  multi- 
dimensional aspiration criteria, and investigating other 
perturbation schemes for the search process. 
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