

International Journal of Operations Research Vol. 3, No. 3, 182−192 (2006)

A Tabu Search Algorithm to Minimize the Makespan for the Unrelated
Parallel Machines Scheduling Problem with Setup Times

Magdy Helal1, Ghaith Rabadi2, ∗, and Ameer Al-Salem3
1Industrial Engineering & Management System Department, University of Central Florida, Orlando, Florida 32816, USA

2Department of Engineering Management and Systems Engineering, Old Dominion University, 241 Kaufman Hall, Norfolk,
Virginia 23529, USA

3Department of Mechanical Engineering, University of Qatar, Doha, Qatar, PO Box: 2713

Received June 2005; Revised October 2005; Accepted August 2006

AbstractIn this paper we propose a tabu search implementation to solve the unrelated parallel machines scheduling
problem with sequence- and machine- dependent setup times to minimize the schedule’s makespan. The problem is
NP-hard and finding an optimal solution efficiently is unlikely. Therefore, heuristic techniques are more appropriate to find
near-optimal solutions. The proposed tabu search algorithm uses two phases of perturbation schemes: the intra-machine
perturbation, which optimizes the sequence of jobs on the machines, and the inter-machine perturbation, which balances
the assignment of the jobs to the machines. We compare the proposed algorithm to an existing one that addressed the same
problem. The computational results show that the proposed tabu search procedure generally outperforms the existing
heuristic for small- and large-sized problems.
KeywordsTabu search, Scheduling, Unrelated parallel machines, Setup times

∗ Corresponding author’s email: grabadi@odu.edu

1. INTRODUCTION

The problem addressed in this paper is the non-
preemptive scheduling of N available jobs on M parallel,
unrelated machines where the jobs’ processing times are
machine dependent and there is no relationship between
machine speeds. Free machines are capable of processing
any job without preemption where it may take for example
processing time of pj1 to process job j on machine 1, and pj2
to process job j on machine 2 with pj1 > pj2; while it may
take pi1 to process job i on machine 1, and pi2 to process
job i on machine 2 with pi1 < pi2. In other words, a speed
factor among machines is not identified. The objective is to
minimize the makespan or the maximum completion time
Cmax. Sequence-dependent setup times Sijk are considered.
They are separated from the processing times where Sijk is
the amount of setup time needed if job j is scheduled after
job i on machine k. Sequence-dependent setup times add
tremendous amount of computational complexity as they
significantly increase the number of possible permutations.

This problem is NP-hard as it is a generalization of the
identical parallel machine scheduling problem (PMSP),
which is NP-hard even for two machines and makespan as
scheduling criterion (Garey and Johnson, 1979). In the case
of identical machines, the processing time of a job is the
same regardless of which machine processes it. For the
unrelated PMSP case machines do not necessarily have the
same capacities and/or capabilities, and the same job may

have different processing and setup times on the different
machines.

Having resources in parallel is common in real life
situations to obtain adequate capacity. Setup activities are
often required when switching between jobs. Applications
are common in painting and plastic industries where
thorough cleaning is required between operations. Similar
situations are also common in textile, glass, chemical, and
paper manufacturing industries, as well as some service
industries (Franca et al., 1996; Radhakrishnan and Ventura,
2000; Kurz and Askin, 2001; Randhawa and Kuo, 2001).

Research efforts to solve the PMSPs have dealt with
many variations of the problem; identical and unrelated
machines with and without setup times. Other
characteristics that were studied included preemptive vs.
non-preemptive problems, distinct due vs. common due
date for, and the static vs. dynamic cases (Franca et al.,
1996; Randhawa and Kuo, 1997; Azizoglu and Kirca, 1999;
Sivrikaya-Serifoglu and Ulusoy, 1999; Radhakrishnan and
Ventura, 2000; Kurz and Askin, 2001; Yalaoui and Chu,
2002). Yet the majority of the published work has
concentrated on the case of the identical parallel machines.
Further, most of the reviewed literature used the
minimization of either makespan or maximum tardiness as
scheduling objective. Comprehensive reviews and
state-of-the-art surveys can be found in Graves (1981),
Cheng and Sin (1990), Lawler et al. (1993), and more
recently in Mokotoff (2001). Additionally, Allahverdi et al.

1813-713X Copyright © 2006 ORSTW

International Journal of
Operations Research

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

183

(1999) presented a survey on scheduling problems
involving setup times.

Attempts to generate optimum solution for the PMSP
were conducted by Liaw et al. (2003) and Lancia (2000)
who developed branch-and-bound algorithms to find
optimal solutions without considering setup times. The
objective functions were the total weighted tardiness and
makespan respectively. In Section 2 of this paper we
present a Mixed Integer Programming (MIP) formulation
to find optimal solutions for the problem at hand.

Being NP-hard, various heuristic procedures were
proposed in literature for the different variations of the
PMSP. Horn (1973) and Bruno et al. (1974) examined the
problem for minimizing the total completion time
heuristically. Hariri and Potts (1991) introduced a
two-phase heuristic approach in which they applied linear
programming to generate a partial schedule and then used
the earliest completion time heuristic to schedule the
remaining jobs to minimize the makespan. They did not,
however, consider setup times. Azizoglu and Kirca (1999)
studied the problem considering the total weighted
completion time. Bank and Werner (2001) compared
several constructive and generative algorithms considering
situations with release dates to minimize the weighted sum
of earliness and tardiness. Weng et al. (2001) considered
sequence-dependent setup times where they presented and
tested several heuristics for problems of up to 120 jobs
and 12 machines. Their objective was to minimize the
weighted mean completion time and they only considered
machine-independent setup times.

Meta-heuristic techniques have also been applied to the
unrelated PMSP. Glass et al. (1994) compared genetic
algorithms (GA), simulated annealing (SA), and tabu search
(TS) to minimize makespan without setup times. They
noticeably reported poor performance of GA. Srivastava
(1997) presented a TS formulation for the same problem
addressed in this paper without setup times and reported
that TS can provide good quality solutions for practical size
problems within reasonable computational times. Kim et al.
(2002, 2003) developed SA implementations to minimize
the total tardiness, considering only sequence-dependent
setup times. Ghirardi and Potts (2005) applied a method
called the Recovering Beam Search to minimize the
makespan on unrelated parallel machines without setups.

In the current paper we propose a TS based heuristic
algorithm for solving the PMSP with sequence- and
machine- dependent setup times. Our review identified no
TS implementations for this problem before ours. We
compare the proposed TS heuristic with the Partitioning
Heuristic (PH) algorithm proposed by Al-Salem (2004)
with respect to makespan for different problem sizes. We
also compare the two techniques to the optimal solution
for small problem sizes as obtained by an optimal Integer
Program. Throughout this paper, small problems refer to
instances of up to 9 jobs and 4 machines, while large
problems refer to instances of up to 120 jobs and 12
machines.

Up to our knowledge, only Al-Salem (2004) has
addressed the same problem we are addressing in this

paper where he introduced the PH, which performed well
compared to a lower bound that he proposed in the same
paper. The TS implementation in the current paper was
first proposed by Helal and Hosni (2003). They showed
that the algorithm is effective in improving a random initial
solution and reaching a balanced assignment of jobs to
machines. Improvements of average of 60% in initial
makespan were achieved for problems of up to five
machines and 40 jobs. However they did not evaluate the
performance of the algorithm with respect to any other
technique. There are still no other TS formulations that
addressed the current problem.

2. OPTIMAL SOLUTION FORMULATION

A Mixed Integer Program (MIP) is formulated to find
optimal solutions for the problem at hand. This
formulation is used to evaluate the TS performance for
small-sized problems. Similar formulation was introduced
by Guinet (1991) who addressed the same problem but
with the total completion time as an objective in one
section and the total tardiness as another objective in
another section of the paper. Our objective in this MIP is
to minimize the makespan.

Minimize Cmax (1)

subject to

, ,
0 1

1, 1, ...,
N M

i j k
i k
i j

x j N
= =
≠

= ∀ =∑∑ (2)

, , , ,
0 0

0, 1, ..., , 1, ...,
N N

i h k h j k
i j
i h j h

x x h N k M
= =
≠ ≠

− = ∀ = ∀ =∑ ∑ (3)

(), , , , , , ,
1 1

1
M M

j i i j k i j k j k i j k
k k

C C x S p V x
= =

 
≥ + + + − 

 
∑ ∑

0, ..., , 1, ...,i N j M∀ = ∀ = (4)

0, ,
0

1, 1, ...,
N

j k
j

x k M
=

= ∀ =∑ (5)

, 1, ...,j maxC C j N≤ ∀ = (6)

, , {0,1}, 0, ..., , 0, ..., , 1, ...,i j kx i N j n k M∈ ∀ = ∀ = ∀ = (7)

0 0C = (8)
0, 1, ...,jC j N≥ ∀ = (9)

where

Cmax : Maximum completion time (makespan)
Cj : Completion time of job j

pj, k : Processing time of job j on machine k
Si, j, k : Sequence-dependent setup time to process

job j after job i on machine k
S0, j, k : Setup time to process job j first on machine k
xi, j, k : 1 if job j is processed directly after job i on

machine k and 0 otherwise
x0, j, k : 1 if job j is the first job to be processed on

machine k and 0 otherwise
xj, 0, k : 1 if job j is the last job to be processed on

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

184

machine k and 0 otherwise
V : A large positive number
M : Number of machines
N : Number of Jobs

Objective (1) is to minimize the makespan. Constraints
(2) ensure that each job is scheduled only once and
processed by one machine. Constraints (3) make sure that
each job must neither be preceded nor succeeded by more
than one job. Constraints (4) are used to calculate
completion times and to ensure that no job can precede
and succeed the same job. This is guaranteed by using the
large positive number (in theory V = ∞) where if job j is
scheduled right after job i, then

=
=∑ , , 1

1M
i j kk

x , and so

()=
− =∑ , , 1

1 0M
i j kk

V x . This way, Cj = Ci + Si, j, k + pj, k.

On the other hand, if job j is not scheduled right after job i,

then
=

=∑ , , 1
0M

i j kk
x and so ()=

− = −∑ , , 1
1M

i j kk
V x V ,

and therefore, this constraint becomes redundant and does
not impact the MIP. Constraints (4) are needed because we
do not know which job will precede the other when
including sequence-dependent setup times. Constraints (5)
ensure that no more than one job can be scheduled first at
each machine. In fact, constraints (5) is missing from the
original formulation proposed by Guinet (1991) and if not
included, infeasible schedules may result because without
these constraints more than one job may end up scheduled
first (or last) on the same machine, which can be easily
demonstrated with a numerical example. Note that there is
no need for another set of constraints to guarantee that
only one job is scheduled last on each machine because this
is guaranteed by constraints (5) in conjunction with (3).
Constraints (6) define the makespan Cmax as a variable that
must be larger than any other job’s completion time.
Constraints (7) specify that the decision variable x is binary
over all domains. Constraints (8) state that the completion
time for the dummy job 0 is zero and constraints (9) ensure
that completion times are non-negative. Optimal solutions
for the problem can be obtained by solving the above
formulation using a MIP solver.

3. THE PARTITIONING HEURISTIC ALGORITHM

Al-Salem (2004) developed the Partitioning Heuristic
(PH) algorithm to minimize makespan on unrelated parallel
machines with machine-dependent and sequence-
dependent setup times. The PH algorithm applies three
heuristics: constructive, improvement, and a traveling
salesman problem (TSP)-like heuristic sequentially to
minimize the makespan. The first heuristic is applied to
initially assign jobs to machines. The second is to improve
the solution obtained by the constructive heuristic. The
third deals with each machine as a TSP and determines the
sequence of jobs on each machine.

The constructive heuristic of the PH algorithm develops
an initial assignment of jobs to machines. The processing
time plus the average setup times for each job on each
machine is computed. Then for each job, the ratio of the

minimum machine processing time plus the average
machine setup times to the second shortest minimum
machine processing time plus the average machine setup
times is computed. The job is assigned to the machine with
shortest processing time plus average setup times if the
value of its ratio is small (e.g., < 0.7). The job is considered
pending if the value of its ratio is large (e.g., > 0.7).
Pending jobs are then assigned in a decreasing order of the
average processing times plus average setup times to
machines that result in the lowest partial estimated
makespan. The value of the estimated makespan ˆ

maxC is
obtained similar to the method used by Lee et al. (1997) to
estimate the value of the makespan for the single machine
scheduling problem with sequence-dependent setup times.
Therefore ˆ ()maxC s p nθ= + where θ is a coefficient that
takes into account the effect of the setup times on the
makespan. The average time to process a job including its
setup time is assumed to be ˆ

maxC s pθ= + with θ ≤ 1.
The constructive heuristic of the PH algorithm can be
described in pseudo code as follows:

For j = 1 to n, Do:

Calculate PSjk = 1

n

ijk
i

jk

S
P

n
=+
∑

, k = 1, ..., m

End Do

For j = 1 to n, Do:

Calculate *

min()
min()

jk
jk

jk

First PS
Second PS

ρ = , k = 1, ..., m

If *jk
ρ α≤ assign job j to machine k*.

Calculate the estimated *
ˆ ()

k
C s p nθ= +

Else, job j is considered pending.
End Do
Order the pending jobs in a decreasing value order of

1

1

1 ()

n

ijkm
i

jk
k

S
P

m n
=

=

+
∑

∑

Following the pending jobs order, Do:

Find min()Kk
C

−
. Let the corresponding k be k**

Assign job j to machine k** and Update **
ˆ

k
C

End Do

To improve the estimated value of the makespan ˆ
maxC ,

the improvement heuristic is applied to the schedule
generated by the constructive heuristic. In this application,
the composite exchange heuristic developed by Hariri and
Potts (1991) is modified to account for the sequence-
dependent setup times. The modified composite exchange
heuristic consists of two phases. In Phase 1, a job is

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

185

removed from the machine that generates the largest ˆ
maxC

and is inserted into a machine that generates the lowest
ˆ

maxC . In Phase 2, two jobs are exchanged, one from the

machine that produces the largest ˆ
maxC and one from the

machine that produces the lowest ˆ
maxC . All jobs and all

possible assignment are considered. Phase 1 is applied by
first using the constructive schedule as an input. Then
using the resulting improved schedule as an input to Phase
2 and further reduction in the ˆ

maxC is attempted. The
procedure continues by repeatedly applying Phases 1 and 2
until no further reduction in makespan is possible. At this
point, the sequence of jobs on each machine and the actual
value of the makespan are unknown. To determine the
sequence and the value of the makespan on each machine,
the following procedure is executed:

1. Use the nearest neighbor heuristic (NNH) to find the

initial sequence and the value of the makespan on each
machine.

2. Among all available machines, select the one that
produces the largest makespan and the one that
produces the second largest makespan.

3. Solve the related TSP using the adjacent pairwise
interchange heuristic (API) for the machine that
produces the largest makespan.

4. If solution is improved and less than the second largest
makespan, go to 2; otherwise stop.

Using Quicksort with the PH stages that require sorting

and finding minimum and maximum values, it can be
shown that the complexity of the PH is O(n2log n) because
the complexity of the Quicksort procedure is O(nlog n).
For greater detail on the PH heuristic, see Al-Salem (2004).

4. THE TABU SEARCH APPROACH

TS is a meta-heuristic that has its origins in the
combinatorial optimization procedures applied to some
non-linear problems in the late 1970s. Principles of the
technique in a broader sense are laid out in Glover (1989,
1990). Unlike other methodologies such as SA and GA, TS
is a deterministic technique that does not utilize random
numbers. This has been shown to be advantageous in Helal
et al. (2000). A typical TS implementation starts with an
initial solution that is to be perturbed by a set of alterations
(moves) to move from this initial solution (or current
solution after starting up) to neighbor solutions, searching
for better results. The components of the TS methodology
work to guide this search process and ensure its
effectiveness.

The three basic components of TS are the tabu list (T),
the long-term memory (LTM), and the aspiration level
function. T is comprised of a list of recent moves that are
not allowed (called tabu moves) at the current iteration
because such moves would take the search process back to
a previously tested solution. Prohibiting recently visited
solutions avoids local optima and cycling, which saves

computational time. LTM records features of the best trial
solutions generated during a particular period of the search
process. Features that are common are considered regional
attributes of a good solution. The TS method then seeks
new solutions that exhibit these features (search
intensification). Alternatively, LTM may be used to guide
the process to avoid those attributes and investigate
regions that contrast with those examined so far (search
diversification). In either use, LTM accumulates the
experience gained during the search process to enhance the
effectiveness of the search during subsequent search
phases. The aspiration level function adds flexibility to
choosing good moves by allowing the tabu status of a
move to be overridden if this aspiration level is fulfilled.
The most commonly used aspiration level is to allow a tabu
move if an overall improvement can be achieved.

Definitions and implementation of these components
are application-based. The tabu list T gives the technique
its name and the speed of convergence of the heuristic is a
function of T’s size. If it is too long, its use becomes time
consuming while if it is too short, it becomes ineffective in
escaping local optima. A tabu list size between five and
twelve is recommended by the developer of TS (Glover,
1989) and by Zolfaghari and Liang (2002). Glover also
recommended seven as the preferred tabu list size. Yet an
appropriate size T should be determined by experimenting
different sizes. We show the results of our experiments
later in this paper.

4.1 The proposed TS implementation

The proposed TS implementation starts with an initial
solution and works to improve that solution through the
application of two perturbation schemes: intra-machine
perturbation and inter-machine perturbation. A heuristic to
develop the initial solution is proposed as described in the
following subsection. Our implementation of the TS
components is described in the sections that follow.

There are N jobs to be assigned to M parallel machines
and sequenced such that the maximum completion time
(Cmax) among all machines is minimized. Processing times
and setup times for each job are presented in a matrix
format. For N jobs an N × N matrix is used where each
entry aij (i = j = 1, 2, …, N) represents the sum of the
setup time and processing time for job j if it is scheduled
immediately after job i. If i = j it means that the job is in
the first position on the machines. A matrix for each
machine is used since the setup times are not only
sequence-dependent, but also machine-dependent. The
solution of the problem should describe how the N jobs
are divided among the M machines such that each machine
k (k = 1, 2, …, M) is assigned nk jobs where .kk

n N=∑

Makespan for the solution is the maximum makespan
among all M machines.

4.1.1 The initial solution

A complete schedule consists of M sequences of jobs
for the M parallel machines. The following algorithm is

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

186

proposed to construct an initial complete solution. This
initial solution algorithm is based on the well-known
shortest processing time (SPT) dispatching rule as follows:
1. For each of the M machines:

a. For each of the N jobs:
i. Compute the SPTavg index by averaging the sum of

the job’s processing times as if it is scheduled after
each of the other jobs or the first on the machine.

2. Construct a complete schedule by assigning jobs, one at
a time, to the machines based on ascending order of the
SPTavg index. Assign the job to the machine on which it
has the smallest SPTavg value. In case of a tie assign the
job to the least utilized machine so far.

3. Identify the sequence of jobs on each machine and its
makespan. The makespan for the complete solution is
the maximum makespan across all machines.

4.1.2 Perturbation schemes

Two perturbation schemes are used in the search for
better schedules. The first scheme is the intra-machine
perturbation in which jobs on each machine are rearranged
in order to find the shortest makespan for that machine.
This perturbation scheme is meant to optimize the
sequence of jobs on the machines. The second scheme is
the inter-machines perturbation in which a job is taken
from the busiest machine and inserted onto one of the
other machines. This is meant to balance the assignment of
jobs to machines. The busiest machine is the one that has
the maximum makespan so far. We remove a job from
busiest machine such that makespan is reduced the most
after the job is removed. The search process iterates
between these two perturbation schemes as described in
the algorithm listing below.

4.1.3 The tabu list (T)

T will contain the best trial sequences selected during the
perturbation actions. There will be a list for each machine
with a size of 9. Glover (1989) who developed the generic
technique of TS recommended T of 5 to 12 elements. In
our experiments we found that for smaller problems, sizes
of 8 and 9 led to the best makespan in 13 out of 18
problem sizes tested as shown in Table 1 where the shaded
cells in the table indicate the best makespans. A problem
size with no shaded cell indicates that the best makespan
was obtained with a T size different than 8 or 9.
Computational times were less than one second for all
sizes and there was no trend that could be identified due to
changing the size of T. Each T size was tested with 15
instances of each of the 18 problem sizes resulting 270
problems for each T size, a total of 18 × 15 × 8 = 2160
instances. In all instances, the processing and setup times
were balanced where both times were drawn from
Uniform [50, 100] as will be described in the
Computational Experience section.

Similar experiments were conducted for larger problems
with 15 instances (with balanced processing and setup
times) for each problem size and each T size between 5

and 12, resulting 960 instances. T sizes of 9 and 10 gave the
best TS performance for all cases. As shown in Table 2 size
9 led to the best makespan in most cases with a maximum
time of about 6.7 minutes per problem.

Table 1. Results for tabu list (T) sizes of 8 and 9 for small

problems
Makespan CPU Time (seconds) Problem Size

(N / M) T = 8 T = 9 T = 8 T = 9
6 / 2 395.27 397.20 0.15 0.44
6 / 4 251.27 249.07 0.02 0.01
7 / 2 494.73 502.00 0.20 0.21
7 / 4 264.27 259.53 0.26 0.02
8 / 2 521.20 522.07 0.08 0.26
8 / 4 270.47 268.93 0.03 0.07
8 / 6 240.27 235.47 0.29 0.03
9 / 2 607.33 614.53 0.29 0.31
9 / 4 346.47 347.73 0.86 0.93
9 / 6 249.27 244.33 0.05 0.06
10 / 2 645.33 649.60 0.34 0.37
10 / 4 360.33 363.27 0.98 0.95
10 / 6 259.13 254.67 0.08 0.06
10 / 8 232.00 230.07 0.08 0.09
11 / 2 722.53 724.47 0.44 0.44
11 / 4 276.30 375.80 0.99 0.96
11 / 6 273.80 265.87 0.04 0.04
11 / 8 235.20 232.87 0.12 0.11

Table 2. Results for tabu list sizes of 9 and 10 for large

sized problems
Makespan CPU Time (seconds) Problem Size

(N / M) T = 9 T = 10 T = 9 T = 10
100 / 2 6165.27 6175.67 377.91 401.85
100 / 6 1934.87 1936.13 119.74 152.64
100 / 10 1142.40 1146.60 197.63 212.49
60 / 6 1174.40 1184.27 85.16 89.60
60 / 10 688.20 688.96 38.89 36.38
80 / 4 2366.80 2367.47 185.93 201.31
80 / 10 920.10 918.00 263.35 210.02
80 / 12 773.13 777.47 66.15 66.42

The nature of elements stored in T has a significant

impact on the efficiency of the TS algorithm. In the
current implementation, T records the best trial sequences
found during the search process. Upon each perturbation,
the resulting sequence is appended to T and the oldest
sequence is pushed off of it. The elements of T could have
been implemented as moves that are performed during
perturbations. However, in the perturbation schemes
described above, a job can be moved from, say, machine A
to machine B resulting in a certain sequence, and after
some iterations the same job may need to be moved back
from B to A, which would result in a different sequence. If
T contains the moves themselves, then a move from B
back to A will be a tabu because it is the reverse of a recent
move, although it may result in an improvement (or a step
towards improvement) due to the existence of
sequence-dependent setup times on each machine. When
the sequences themselves are stored in T, the search

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

187

process has more flexibility to perform moves as long as
they do not return to a previously tested solution, even if
they are the reverses of each other. This way of
implementation is more meaningful to pursue an optimal
(or near-optimal) solution. During perturbations, T is
checked to ensure that a resulting trial sequence is not on
the list (not tabu sequence). If it is tabu, then the move that
led to it is a tabu move and is canceled and the current trial
sequence for the machine being worked is recovered.

4.1.4 The long-term-memory (LTM)

LTM consists of M matrices each of size N × N. An
element aij (i = j = 1, 2, …, N) of the LTMk matrix of
machine k (k = 1, 2, …, M) represents the number of
times job i came after job j on machine k. Each time a new
trial solution is identified or LTM matrices are used to
create a new starting solution, the appropriate elements in
the matrices are incremented by one. Thus LTM for a
machine is a frequency matrix that records the number of
times each job happened to be after each of the other jobs
during the best trial solutions. The diagonal elements of the
matrix are the number of times that each job happened to
be in the first position on the machine.

To use the LTM matrices, the search process is divided
into a number of phases. After every phase the frequency
information in LTM is used to construct a complete
solution to use it as a re-starting solution in the following
phase. In the proposed implementation, LTM is used to
generate a new re-starting solution based on the maximum
entries in the matrix (search intensification). This is done
by letting each job to be after the job it used to succeed for
the largest number of times in the best trial solutions
during the previous search phases. As such, the jobs are
kept in the relative positions that previously resulted in

good sequences, which is likely to result in a good quality
re-starting solution for the remaining search phases. It
should be noted that the incumbent solution (the best
complete solution found so far) is maintained all the time
and is only updated when an iteration results in a better
solution.

When running the TS algorithm, we used LTM three

times to generate three new re-starting solutions.
Considering the first run to collect the frequency data for
the LTM for the first time, the proposed algorithm has
four search phases in total. The first phase is a complete
run of the algorithm that starts with an initial solution
generated by the SPTave index algorithm. Each phase after
that is another complete run of the algorithm that starts
with an LTM-based starting solution. The number of
phases was determined by testing different values. Tables 3
and 4 compare the use of 4, 5, and 6 search phases for the
small and large problems respectively. The number of
instances solved for small problems (Table 3) is 2160 (as
explained in section 4.1.3) for each of the three phase,
resulting a total of 3 × 2160 = 6480 instances. For large
problems the number of instances solved is 960 (see
section 4.1.3) for a total of 2880 instances for all three
phases. In both tables, ∆ (4 to 6) indicates the change in
makespan or computational time (CPU) if 6 phases are
used instead of 4. At T size of 9 there was insignificant
improvement in the solution quality (makespan) and
significant increase in CPU (up to 25%) when the number
of phases is increased from 4 to 6 as can be seen in Table 3.
Similar results were obtained for the larger problems
(Table 4). Consequently, the number of search phases was
fixed to 4 in this implementation.

Table 3. The effect of more search phases on makespan and computational time – small problems

Makespan CPU Time (seconds) Problem Size
N / M 4 Phases 5 Phases 6 Phases ∆

(4 to 6) 4 Phases 5 Phases 6 Phases ∆
(4 to 6)

6 / 2 396.40 396.40 396.40 0.00% 0.150 0.160 0.170 11.88%
6 / 4 251.73 251.73 251.73 0.00% 0.012 0.013 0.014 8.56%
7 / 2 495.07 495.07 495.07 0.00% 0.210 0.230 0.246 14.47%
7 / 4 265.07 263.07 263.07 0.75% 0.018 0.019 0.024 25.67%
8 / 2 522.60 522.60 521.87 0.14% 0.262 0.273 0.291 9.74%
8 / 4 271.27 271.20 270.80 0.17% 0.068 0.075 0.083 18.76%
8 / 6 242.07 241.93 240.67 0.58% 0.031 0.036 0.036 15.73%
9 / 2 603.80 603.80 603.80 0.00% 0.309 0.320 0.344 9.97%
9 / 4 346.40 346.40 346.20 0.06% 0.927 0.963 1.036 10.53%
9 / 6 249.53 249.53 249.53 0.00% 0.060 0.061 0.065 6.06%
10 / 2 645.33 645.20 645.20 0.02% 0.368 0.381 0.424 13.25%
10 / 4 361.60 361.60 361.60 0.00% 0.985 1.075 1.153 14.61%
10 / 6 259.47 259.00 259.00 0.18% 0.060 0.069 0.076 20.73%
10 / 8 232.00 231.40 231.40 0.26% 0.087 0.091 0.092 5.47%
11 / 2 721.27 721.27 721.27 0.00% 0.442 0.465 0.503 12.21%
11 / 4 374.33 374.33 373.47 0.23% 1.062 1.123 1.198 11.39%
11 / 6 274.53 273.00 272.60 0.70% 0.042 0.050 0.054 23.06%
11 / 8 235.60 235.60 235.60 0.00% 0.105 0.109 0.113 6.56%

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

188

Table 4. The effect of more search phases on makespan and computational time – larger problems
Makespan CPU Time (seconds) Problem Size

N / M 4 Phases 5 Phases 6 Phases ∆
(4 to 6) 4 Phases 5 Phases 6 Phases ∆

(4 to 6)
100 / 2 6180.87 6180.87 6180.87 0.00% 133.22 143.06 155.01 14.06%
100 / 6 1940.60 1940.60 1940.60 0.00% 222.05 233.43 245.51 9.56%
100 / 10 1153.27 1152.40 1152.40 0.08% 379.36 390.83 412.90 8.12%
60 / 6 692.73 692.73 692.73 0.00% 87.71 91.77 94.55 7.23%
80 / 4 778.47 777.93 777.93 0.07% 223.81 234.76 244.67 8.53%
80 / 10 1179.27 1178.27 1178.00 0.11% 38.90 41.45 43.42 10.42%
80 / 12 920.80 920.80 920.80 0.00% 188.53 196.79 199.91 5.69%

4.1.5 The aspiration level function
We use the commonly used aspiration level function by

which the tabu status of a move is overridden if an overall
improvement is possible by that move. At any iteration, if
the makespan of a trial solution resulting from a tabu move
is better than current incumbent makespan then the tabu
status of the move is ignored and the move is executed.
The aspiration level function is checked only if a candidate
move is found to be tabu.

4.1.6 Stopping criteria and iteration counters

The TS algorithm is run in four search phases, in each
phase there are two iteration counters: the inter-machine
perturbations counter and the overall iteration counter
(referred to simply as the iteration counter). The
inter-machine perturbations counter counts the number of
iterations performed in the inter-machine perturbation step
where the maximum number of this inter-machine
perturbation = Max{25, N/(LTM_restart + 1}, where x
is floor of x. The minimum number of iterations is thus 25.

Additional iterations resulted in longer computational
time with no significant improvement. It should be noted
that the inter-machine perturbation counter is reset each
time the incumbent solution is updated. So the algorithm
switches to the intra-machine perturbation if no
improvements are obtained in a number of iterations equal
to Max{25, N/(LTM_restart + 1}. If improvements were
obtained the counter is reset to zero and the algorithm
continuous in this perturbation scheme.

On the other hand the iteration counter keeps track of
the overall number of iterations. In each iteration, the
intra-machine perturbations are performed for every
machine and then the algorithm switches to perform the
inter-machine perturbations. The iteration is over if the
inter-machine perturbation iterations are performed
without a change in the current solution. The number of
overall iterations varies with the number of machines, M
and it is equal to M2/(LTM_restart counter+1), where
LTM_restart is the number of search phases. The proposed
TS algorithm is described below. The following parameters
are used in the description.

• Ω0 and Ω* : A complete solution where Ω0 is the
current solution and Ω* is the incumbent solution.

• 0
maxC and *

maxC : Makespan for Ω0 and Ω*

respectively.
• Tk: Tabu list for machine k where k = 1, 2, …, M.
• LTMk: Long term memory for machine k where

k = 1, 2, …, M.
• nk: number of jobs on machine k where k = 1, 2,

…, M.
• LTM_restart: number of times LTM is utilized to

develop new starting solutions.

I. Initialization & Reinitialization

Step 1. Let Tk and LTMk be zero matrices. Set
LTM_restart = 3, LTM_restart counter = 0, and
the iteration counter = 0. Create an initial
complete solution using the SPTavg algorithm. Let
this solution be the current solution Ω0 and its
makespan be 0

max .C Let Ω* = Ω0 and *
maxC

= 0
maxC . Go to Step 3.

Step 2. Use the LTMk to construct a complete new
starting solution. Increment the LTM_restart
counter by one. Let the newly generated solution
be the current solution Ω0 and its makespan 0

maxC .
If 0

maxC < *
maxC , then let Ω* = Ω0 and

0
maxC = *

maxC .

II. Perturbation

Step 3. Intra-machine Perturbation: ∀ machine k,
perturb the sequence on k by reinserting each
job in the sequence, one at a time, into each of
the other nk − 1 positions. While doing so, keep
the relative positions of other jobs on the
machine intact. Let the resulting complete
schedule after perturbing all machines become
the current solution Ω0 and its makespan
become 0

maxC . If 0
maxC < *

maxC then let Ω* = Ω0
and *

maxC = 0
maxC . ∀ k, increment LTMk by one

to reflect the new Ω0. Update Tk with Ω0.
Step 4. Inter-machine perturbation: Set the inter- achine

iteration counter equal to 0. For the current
solution Ω0 take each job on the busiest machine
(the machine with the largest makespan) one at a
time, and try inserting it into all possible

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

189

positions on the other M − 1 machines. At any
one time, only the busiest machine and one
other machine should be altered by this insertion
action. Identify the best resulting solution and let
it replace the current Ω0 and its makespan
replace the current 0

maxC . Increment the
inter-machine iteration counter by one. Update
LTMk and Tk with the new Ω0. If 0

maxC < *
maxC ,

then let Ω* = Ω0 and *
maxC = 0

maxC and restart the
current inter-machine perturbation step, Else if
no improvement in Ω* is achieved in this step
and the inter-machine iteration counter is equal
to the Max{25, N/(LTM_restart + 1} Then
continue to Step 5.

III. Stopping criteria

Step 5. If the iteration counter < (M2 / (LTM_restart
counter + 1)) then go to Step 3, Else if
LTM_restart counter < 3 Then go to Step 2, Else
record the final solution Ω* and its *

maxC and
STOP.

5. COMPUTATIONAL ANALYSIS

Ideally, it will be best to compare the performance of
the proposed TS to benchmark problems. However, such
problems do not exist for the problem addressed in this
paper. Therefore, two sets of experiments were conducted
where the TS performance was compared to optimal
solutions for small problems (up to 9 jobs and 4 machines),
and to the PH algorithm for larger problems (up to 120
jobs and 12 machines). In the first set, solutions from both
TS and BH algorithms were also compared to the optimal
solutions, which were obtained using OPL (Optimization
Programming Language) to solve the MIP presented in
section 2. OPL Studio 3.7 is a modeling environment that
utilizes OPL as a modeling language and CPLEX 7.0 as a
solver (see Van Hentenryck (2001) for more details). In the
second experiment, large problem instances were generated
and solved using both TS and the PH algorithms. Optimal
solutions were unattainable for large instances.

The processing and setup times were randomly drawn
from two uniform distributions: U[50, 100] and U[125,
175]. Uniform distribution is widely used for this purpose
as many real world instances match such data settings. It
has high variance, which allows testing the algorithms
under unfavorable conditions (Weng et al., 2001). The
selection of the uniform distribution bounds for
processing and setup times determines the level of
dominance. That is, when processing and setup times are
balanced (denoted B), they are both drawn from U[50, 100].
When processing times are dominant (denoted by P), the
processing and setup times are drawn from U[125, 175]
and U[50, 100] respectively. When the setup times are
dominant (denoted as S), the processing and setup times
are drawn from [50, 100] and [125, 175] respectively. Both

algorithms were implemented in C++ and the experiments
were run on a Pentium IV- 1.7 GHz personal computer.
Data sets for both small and large problems as well as
solutions using TS and the PH algorithm are available at
SchedulingResearch (2005).

5.1 Analysis of performance for small problems

For the small problems the percent deviation δ from the
optimum is calculated using (10) where C is the average
makespan.

100heuristic Optimal

Optimal

C C
C

δ
−

= × (10)

Optimal solutions are available for up to nine jobs on

two machines and eight jobs on four machines. It became
prohibitively time consuming to solve for larger problems,
and therefore, the MIP solver was interrupted after
running hours without reaching a solution. For example,
for two-machine problems, the computational time on
average was 12 seconds only when the number of jobs was
6 and grew exponentially to take an average of 5 hours
when the number of jobs was increased to 9. Similarly, for
4 machines, the average time was 48 seconds when the
number of jobs was 6, and increased to 1.5 hours when the
number of jobs was increased to 8. Table 5 shows the
average percent deviation of both algorithms from the
optimal solution for the balanced (B), processing-time-
dominated (P), and setup-time-dominated (S) problems.
The number of random instances generated and solved for
each configuration was 15 resulting in a total of 3 × 7 × 15
= 315.

One can see that TS outperforms the PH algorithm in
most cases. For the 2-machine problems, TS was better in
all cases and for the 4-machine problems it was better for
seven out of nine configurations. For the 2-machine
problems, TS was between 0.2 to 1.0% away from the
optimal while the PH algorithm was 1.5 to 6% away. For
the 4-machine problems, the two algorithms were close; TS
was about 1 to 5% away from the optimum compared to 2
to 4.5 % for PH. It can also be observed that both
algorithms tend to perform relatively better for problems
with dominant processing or setup times than for the
balanced problems. But there are no identifiable trends that
can be observed for any of the three cases as the number
of jobs or number of machines increases, possibly due to
the small sizes of the problems.

In summary, TS is better than PH for the 2-machine
problems but the two algorithms approach each other for
the 4-machine problems. It is worth noticing that the PH
algorithm maintains its level of performance for the 2- and
4-machine cases. On the other hand, TS seems to be more
sensitive to increasing the number of machines, as it was
more inferior to itself when the number of machines
increased from 2 to 4.

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

190

Table 5. Percent deviation of TS and PH algorithm from optimal solution
 M = 2 M = 4
 N N
 6 7 8 9 6 7 8
 TS PH TS PH TS PH TS PH TS PH TS PH TS PH

B 0.42 3.70 0.84 4.90 0.99 3.30 0.88 5.69 2.76 3.30 5.15 4.22 2.51 2.79
P 0.39 1.69 0.44 3.19 0.21 2.67 0.42 2.57 1.14 2.35 2.93 3.44 0.88 2.12
S 0.29 1.97 0.54 2.16 0.54 2.67 0.85 2.85 2.52 2.86 2.74 3.41 2.62 2.31

When both algorithms are compared to each other, with

TS being the baseline, the impact of increasing the number
of machines becomes clear (see Table 6). Note that
optimal solutions are not available for many cases. The
negative values in the table indicate that the PH algorithm
is better than TS. As the number of machines increases,
the PH algorithm performance tends to be closer to the
performance of the TS. However this trend does not
continue beyond 6 machines indicating that the TS may be
more robust and better for larger problems.

5.2 Analysis of performance for large problems

The TS results are used here as the reference value and
CTS (Makespan by TS) replaces COptimal to calculate δ in (10).
The average relative difference between both algorithms
are shown in Table 7 based on solving 15 instances per
machine-job configuration for balanced, dominant
processing times, and dominant setup times (a total of 15
× 6 × 6 × 3 = 1620 instances). The negative values for

some of the 2- and 4-machine problems indicate that the
PH performs better than the TS. This happened in
instances with large number of jobs on the two and four
machines; however, TS was always better with instances
with more than four machines. In terms of performance
frequencies, TS was better than PH in 95 out of 108 cases.
In terms of percent deviation, TS outperformed PH by up
to 8% in some cases.

The difference between both algorithms is clearer for
the balanced problems. Smaller differences are observable
when either the processing times or the setup times are
dominant. In addition, for the same number of machines,
the difference between TS and PH decreases as the
number of jobs increases. This is clearly observable for 2, 4,
5 and 8 machines. It is also noted that the difference is
larger for the balanced problems than for problems with
dominant processing or setup times and this difference is
even bigger for the larger number of machines. Recall that
the larger the deviation, the better the TS performs over
the PH algorithm.

Table 6. Percent deviation of the PH algorithm from the TS
 M = 2 M = 4
 N N
 6 7 8 9 10 11 6 7 8 9 10 11

B 3.28 4.06 2.29 4.77 4.34 2.83 0.59 -0.74 0.41 4.04 2.49 2.85
P 1.30 2.75 2.46 2.14 2.39 1.94 1.22 0.54 1.24 2.65 1.79 0.85
S 1.68 1.63 2.12 1.99 2.30 1.72 0.38 0.72 -0.24 3.28 3.32 1.47
 M = 6 M = 8
 N N
 n/a n/a 8 9 10 11 n/a n/a n/a n/a 10 11

B -- -- 0.59 -0.14 -0.16 -3.88 -- -- -- -- 2.12 3.00
P -- -- -1.22 -2.68 -2.59 -3.80 -- -- -- -- 1.8 1.58
S -- -- 1.09 1.09 -0.81 -0.75 -- -- -- -- 2.16 2.38

Table 7. Percent deviation of the PH algorithm relative to TS for large problems

 M = 2 M = 4
 N N
 20 40 60 80 100 120 20 40 60 80 100 120

B 2.49 1.40 -0.08 -0.31 -0.85 -1.49 4.54 3.24 1.83 1.13 0.89 0.65
P 1.82 0.95 0.06 -0.30 -0.88 -0.98 3.32 2.11 0.83 0.72 -0.03 -0.11
S 1.67 1.17 0.13 -0.31 -0.69 -1.18 3.53 1.96 0.77 0.29 -0.49 0.00
 M = 6 M = 8
 N N
 20 40 60 80 100 120 20 40 60 80 100 120

B 6.92 5.49 4.51 3.68 1.69 1.76 7.09 6.26 6.54 4.65 4.54 2.21
P 3.85 2.13 1.31 2.03 0.82 0.57 3.46 3.78 3.14 1.75 1.87 0.44
S 3.60 2.58 1.95 2.29 0.71 0.90 4.47 3.89 2.22 1.69 1.46 1.65
 M = 10 M = 12
 N N
 20 40 60 80 100 120 20 40 60 80 100 120

B 0.47 7.35 7.01 6.92 4.77 5.59 2.05 8.38 8.74 6.59 7.24 6.82
P -1.42 4.36 3.73 2.03 0.90 1.01 1.56 4.47 2.98 3.17 3.35 0.91
S -0.42 5.40 3.47 2.03 1.65 1.54 0.61 4.41 3.41 3.59 3.33 0.88

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

191

When the number of jobs is fixed and the number of

machines is increased, the percent deviation between the
two algorithms increases. For the 2-machine problems
both algorithms can be equal or sometimes the PH
algorithm is better. But for more machines TS is always
better and the difference reaches 8% for the largest
problems. And like before, TS seems to perform better for
the balanced problems than for problems with dominant
processing or setup times. As for computational times, TS
takes in general more time (see Tables 1 through 4) than
the PH algorithm, which took less than one minute to
reach its solution for the largest instances.

In conclusion, TS outperformed the PH algorithm in
most cases; yet it seems to be unstable for the smaller
problems. As more machines are considered, TS shows
observable advantage and robustness over the PH
algorithm. These conclusions are true for the balanced
problems as well as for the problems with dominant
processing or setup times, but it is more obvious in the
balanced problems.

6. POTENTIAL TABU SEARCH IMPROVEMENTS

TS offers the flexibility of redefining all of its three
components to best fit the application. This includes the
selection of the tabu list elements, the nature of
information included in the long term memory, and the
definition of the aspiration level. Since TS is not a
randomized technique, its performance is only a function
of the way its components are implemented. The
difference in the proposed TS algorithm performance for
small and large problems indicates the need to consider
redefining the TS components. Possible directions for
further improvement in the proposed implementation
include:

• The use of a variable size tabu list T to fit the
different problem sizes. The list size can
significantly impact the effectiveness and efficiency
of the algorithm.

• The long term memory LTM, was defined as a
frequency matrix. It could be worth investigating
including information about the relative
improvements occurring during the search process
with the frequency information in LTM as a
potential approach to improve the TS performance.

• Multidimensional aspiration criteria can be
investigated in addition to the overall improvement
in the objective function.

Additional perturbation schemes may also be investigated.

7. CONCLUSIONS AND FURTHER EXTENSIONS

A tabu search algorithm (TS) was proposed in this paper
to solve the unrelated parallel machine scheduling problem
with machine- and sequence-dependent setup times. The
problem is known to be NP-hard, yet few attempts have
been made to develop heuristic techniques to solve it. The
TS performance was compared to the Partitioning
Heuristic (PH), an existing algorithm introduced by

Al-Salem (2004), and to the optimal solution for small
problems. The results favored the proposed TS algorithm
for large and small problems; yet, TS showed slightly less
robustness for the smaller problems. The TS also
outperformed the PH in terms of the number of times it
did better than PH.

Based on the computational analysis, directions for
future modifications to improve the performance of the
proposed TS were suggested. Those included the use of a
variable size tabu list, more search-based information in
the long term memory matrices, the use of multi-
dimensional aspiration criteria, and investigating other
perturbation schemes for the search process.

REFERENCES

1. Al-Salem, A. (2004). Scheduling to minimize
makespan on unrelated Parallel machines with
sequence dependent setup times. Engineering Journal of
the University of Qatar, 17: 177-187.

2. Allahverdi, A., Gupta, J., and Aldowaisan, T. (1999). A
review of scheduling research involving setup
considerations. Omega, 27: 219-39.

3. Azizoglu, M. and Kirka, O. (1999). Scheduling jobs on
unrelated parallel machines to minimize regular total
cost functions. IIE Transactions, 31: 153-159.

4. Bank, J. and Werner, F. (2001). Heuristic algorithms
for unrelated parallel machine scheduling with a
common due date, release dates, and linear earliness
and tardiness penalties. Mathematical and Computer
Modelling, 33: 363-383.

5. Bruno, L.G., Coffman, E.G., and Sethi, R. (1974).
Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM, 17:
382-387.

6. Cheng, T. and Sin, C. (1990). A state-of-the-art review
of parallel-machine scheduling research. European
Journal of Operation Research, 47: 271-292.

7. Franca, P.M., Gendreau, M., Laporte, G., and Muller,
F.M. (1996). A tabu search heuristic for the
multiprocessor scheduling problem with sequence
dependent setup times. International Journal of Production
Economics, 43: 79-89.

8. Garey, M.R. and Johnson. D.S. (1979). Computers and
Intractability: A Guide to the Theory of NP-completeness, W.
H. Freeman and Company, USA.

9. Ghirardi, M. and Potts, C.N. (2005). Makespan
minimization for scheduling unrelated parallel
machines: A recovering beam search approach.
European Journal of Operational Research, 165(2): 457-467.

10. Glass, C.A., Potts, C.N., and Shade, P. (1994).
Unrelated parallel machine scheduling using local
search. Mathematical and Computer Modeling, 20(2): 41-52.

11. Glover, F. (1989). Tabu search - Part I. ORSA Journal
of Computing, 1: 190-206.

12. Glover, F. (1990). Tabu search - Part II. ORSA Journal
of Computing, 2: 4-32.

13. Graves, S.C. (1981). A review of production
scheduling. Operation Research, 29: 646-675.

Helal, Rabadi, and Al-Salem: A Tabu Search Algorithm to Minimize the Makespan for the Unrelated Parallel Machines Scheduling Problem with Setup Times
IJOR Vol. 3, No. 3, 182−192 (2006)

192

14. Guinet, A. (1991). Textile production systems: A
succession of non-identical parallel processor shops.
Journal of the Operational Research Society, 42(8): 655-671.

15. Hariri, A.M.A. and Potts, C.N. (1991). Heuristics for
scheduling unrelated parallel machines. Computers and
Operations Research, 18(3): 323-331.

16. Helal, M., Badr, M., and Huzayyin, A. (2000). An
investigation of the group scheduling heuristics in a
flow-line cell. Current Advances in Mechanical Design &
Production. Proceedings of 7th Cairo University International
MDP Conference, Cairo, Egypt, pp. 361-373.

17. Helal, M. and Hosni, Y. (2003). A tabu search
approach for the non-identical parallel-machines
scheduling problem with sequence-dependent setup
times. Proceedings of the IERC2003, IIE Annual Research
Conference, Portland, Oregon.

18. Horn, W. (1973). Minimizing average flow time with
parallel machines. Operations Research, 21: 846-847.

19. Kim, D.W., Kim, K.H., Jang, W., and Chen, F.F. (2002).
Unrelated parallel machine scheduling with setup
times using simulated annealing. Robotics and Computer
Integrated Manufacturing, 18: 223-231.

20. Kim, D.W., Na, D.G., and Chen, F.F. (2003). Unrelated
parallel machine scheduling with setup times and total
weighted tardiness objective. Robotics and Computer
Integrated Manufacturing, 19: 173-181.

21. Kurz, M.E. and Askin, R.G. (2001). Heuristic
scheduling of parallel machines with sequence-
dependent set-up times. International Journal of
Production Research, 39: 3747-3769.

22. Lancia, G. (2000). Scheduling jobs with release dates
and tails on two unrelated parallel machines to
minimize the makespan. European Journal of Operational
Research, 120: 277-288.

23. Lawler, E.L., Lenstra, J.K., Rinnooy-Kan, A.H., and
Shmoys, D.B. (1993). Sequencing and scheduling:
Algorithms and complexity. Handbooks in Operations
Research and Management Science 4: Logistics of Production
and Inventory, North Holland, Amsterdam, pp. 445-524.

24. Lee, H., Bhaskaran, K., and Pinedo, M. (1997). A
heuristic to minimize the total weighted tardiness with
sequence-dependent setups. IIE Transactions, 100:
464-474.

25. Liaw, C.F., Lin, Y.K., Chen, C.Y., and Chen, M. (2003).
Scheduling unrelated parallel machines to minimize
total weighted tardiness. Computers & Operations
Research, 30: 1777-1789.

26. Mokotoff, E. (2001). Parallel machine scheduling
problems: A survey. Asia-Pacific Journal of Operational
research, 18: 193-242.

27. Radhakrishnan, S. and Ventura, J.A. (2000). Simulated
annealing for parallel machine scheduling with
earliness/tardiness penalties and sequence-dependent
set-up times. International Journal of Production Research,
38: 2233-2252.

28. Randhawa, S.U. and Kuo, C.H. (1997). Evaluating
scheduling heuristics for non-identical parallel
processors. International Journal of Production Research, 35:
969-981.

29. SchedulingResearch (2005), http://www.
SchedulingResearch.com, a web site that includes
benchmark problem data sets and solutions for
scheduling problems.

30. Sivrikaya-Serifoglu, F. and Ulusoy, G. (1999). Parallel
machine scheduling with earliness and tardiness
penalties. Computers and Operations Research, 26: 773-787.

31. Srivastava, B. (1997). An effective heuristic for
minimizing makespan on unrelated parallel machines.
Journal of the Operational Research Society, 49: 886-894.

32. Van Hentenryck, P. (2001). ILOG OPL Studio 3.5
Language Manual, ILOG, France.

33. Weng, M., Lu, J., and Ren, H. (2001). Unrelated
parallel machine scheduling with setup consideration
and a total weighted completion time objective.
International Journal of Production Economics, 70: 215-226.

34. Yalaoui, F. and Chu, C. (2002). Parallel machine
scheduling to minimize total tardiness. International
Journal of Production Economics, 76: 265-279.

35. Zolfaghari, S. and Liang, M. (2002). Comparative study
of simulated annealing, genetic algorithms and tabu
search for solving binary and comprehensive
machine-grouping problems. International Journal of
Production Research, 40: 2141-2158.

