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AbstractSoftware has been developed for studying and understanding a price change of  the US wholesale power market 
(Sueyoshi and Tadiparthi, 2005). The software can be used as an effective decision making tool by traders for simulating and 
modeling of  the power market. It can be also considered as a worthy effort towards creating a framework for assessing new 
trading strategies in a competitive electricity trading environment. This paper covers the broad areas of  simulation, trading 
strategies and machine learning as well as the procedure to use the software. An effort has been made to find the best 
strategic technique for traders in supply and demand sides. 
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1. INTRODUCTION 

Power industry, mostly dominated by vertically 
integrated utilities, is undergoing significant changes in the 
structure of its market and regulations. The power industry 
is now becoming competitive, unlike in the past where it 
was controlled by monopoly utilities. The traditional 
centralized-operation approach is being replaced by a 
market environment. This is called “deregulation of the 
electricity market.” The deregulation allows new players to 
compete for providing wholesale electric services by setting 
their own prices in an auction format, rather than 
negotiating with state regulators on a fixed rate. Numerous 
wholesale power markets are moving towards liberalization 
and competition. Along with the deregulation, many 
corporate leaders and policy makers face a difficulty in 
both predicting and understanding a price change of the 
wholesale electricity. The price change occurs due to many 
un-controllable factors such as a weather condition, a 
demographic change and different trading strategies among 
traders. Software tools are required for the power industry 
to predict the price change and understand such market 
activities. 

Furthermore, we need both a new approach that studies 
evolution of the wholesale power market and a strategic 
reaction to changing economic and regulatory environment 
in which they operate using a simulation. 

In this study, we have developed a new simulation 
system, referred to as “EPTS (Electric Power Trading 
System)”, where software agents represent market entities 
such as generators and wholesalers. The software agents 

have their own trading objectives and strategies. They can 
also adjust their trading strategies in the simulation process 
on the basis of  previous trading efforts’ success or failure. 
(See Sueyoshi and Tadipathi (2005), for a detailed 
description on the computer algorithm.) 

The simulator proposed in this study includes several 
types of  negotiation mechanisms found in electricity 
markets to let the user test his/her trading strategies and 
learn the best way to negotiate in each mechanism. The 
user can define the model for simulation. 

The structure of  this article is organized as follows: The 
next section conducts a literature survey that indicates the 
position of  the proposed power trading system by 
comparing itself  with other studies concerning on-line 
trading auctions. Section 3 briefly describes the structure 
of  the US wholesale power market. Section 4 describes a 
numerical representation of  the wholesale market that is 
incorporated into the proposed power trading simulator. 
Section 5 presents a computational scheme for the power 
trading. Section 6 provides a description on the software. 
Section 7 documents the simulation functions of  the 
proposed simulator. A concluding comment and future 
extensions are summarized in Section 8. 
 
2. PREVIOUS WORKS 

Online trading is a typical electronic commerce 
application. A seller places merchandise online, noting a 
bid price and a cut-off date. A buyer can tell suppliers what 
he or she is looking for, and then wait for the appropriate 
merchandise to come up for bid. Many commercial trading 
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companies have recently established an Internet presence. 
One such company is Netmarket which is an example of a 
single company that sells a variety of products at 
discounted prices (compared to the original manufacturer's 
suggested price). Although the products sold at this site are 
bought from different vendors, this is not a true “multiple 
sellers-multiple buyers” center. Rather, Netmarket abstracts 
out the many sellers and thus shows each example as a 
single individual selling product. Netbill is another 
electronic commerce system (see Sirbu and Tygar (1995)). 
This system allows merchants to sell images and articles 
over the Internet in a safe and secure manner. 

Unlike traditional auctions where bidders and 
auctioneers gather at a physical location, online sellers and 
buyers worldwide can interact 24 hours a day and seven 
days a week. Negotiation is probably among the least 
supported of the trading processes in electronic commerce 
(see Kumar and Feldman (1998)) Similarly, a number of 
agent-based auction systems such as AuctionBot, Kasbah 
and Tete-a-Tete have emerged (see Bunn and Oliveira 
(2001)). AuctionBot is a general purpose Internet auction 
server developed at the university of Michigan. It allows 
users to choose from a selection of auction types. Buyers 
and sellers can bid according to the multi-lateral 
distributive negotiation protocols of the created auction, 
although price is the only comparison allowed in the 
system. Kasbah is a web-based multi-agent classified 
advertising system. It provides users with several 
negotiation strategies based on linear, quadratic, and 
exponential functions without much consideration on 
dynamic changing market conditions. Tete-a-Tete presents 
a negotiation approach to retail sales by providing value 
comparisons and the ability to find the best matching 
buyers and sellers based on different distributed constraint 
satisfaction technique.  

Artificial Intelligence technologies used in many of  the 
other trading agent systems have been discussed in 
Greenwald (2003). Recent research has also focused on 
combinatorial auctions. They are auctions where agents 
may submit bids to multiple goods. A technique to deal 
with the complexity of  combinatorial auctions has been 
explored in Tennenholtz (2002). They have employed the 
b-matching techniques in various ways to efficiently 
address the complexity of  the combinatorial auction 
problems. Recent research has focused on using agents to 
support auction services because of  their autonomous 
nature. A multi-access and multi-functional auction system 
which can be accessed through the web and Wireless 
Application Protocol (WAP) enabled devices has been 
developed by Chan et al. (2003). Ezhilchelvan and Morgan 
(2001) discussed distributed system architecture and an 
implementation framework for conducting dependable 
Internet based on-line auctions. In this model, there is a 
server for each local market which exercises policies best 
suited to local conditions and these servers are connected 
to each other by Internet or by a high bandwidth private 
network. An Internet auction method which uses 
decentralized servers reducing the superfluous information 
derived from bidders has been proposed in Funasaka et al. 

(2002).  
There have been quite a few software applications 

developed based on agent-based simulation for competitive 
electricity markets (see Nicolaisen et al. (2001)). For 
example, PowerWeb (see Bakos (1997), Zimmerman (2001)) 
considers single uniform auction with fixed demand. The 
Auction Agents for Electric Power Industry project (see 
Acronymics (2004), Bakos (1998)) implements a Dutch 
auction, which is a specific type of  auction mechanism. 
SEPIA (Simulator for Electric Power Industry Agents) 
studies just bilateral contracts (see Benassi (1999), Samad 
and Harp (1996)). A computational aspect of  auction 
mechanism for the power industry can be found in his 
research (see Sheblae (1999)). 

The research efforts of  Bunn and Oliveira (2001), 
Monclar and Quatrain (2001), and Nicolaisen et al. (2001) 
are relevant to our research in agent-based simulation. 
Unfortunately, they discuss only the market in England and 
Wales. Villar and Rudnick (2003) present another 
important simulation application focusing particularly on 
hydroelectric power station parameters. Meanwhile, their 
study (see Contreras et al. (2002)) presents an interesting 
lab experience that shows the practical utility of  electricity 
market simulators. The Electricity Market Complex 
Adaptive System (EMCAS) (see North et al. (2002)) 
provides an interesting e-laboratory for testing regulatory 
structures where agents have strategies based on learning 
and adaptation. 

Comparing the previous research works on on-line 
trading and its related software development for the power 
industry, we can identify the following unique features of  
this research: (a) First, the wholesale power market 
incorporated in this study is functionally separated into two 
markets (day ahead market and real time market) A trader 
can make a bidding decision in the day ahead (DA) market 
and then make another decision in the real time (RT) 
market, depending upon the result in the DA market. Thus, 
two-settlement system (TSS) auctions are incorporated into 
the proposed simulator. Such a research effort cannot be 
found in the previous research works. (b) Second, each 
trader is designed to have his/her own learning capability. 
The learning capability is based upon a sigmoid function 
that provides a winning probability from previous bidding 
results. Such a learning capability cannot be found in the 
previous research. (c) Finally, traders can communicate 
with each other through a network capability incorporated 
into the proposed software. That is unique, as well. 
 
3. MARKET STRUCTURE 

The main objectives of  an electricity market are to 
ensure the security of  the system, efficient operation and 
further to decrease the cost of  electricity through 
competition (see Shahidehpour et al. (2002)). The market 
environment typically consists of  a pool as well as a floor 
for bilateral contracts. The pool market can be found in an 
Independent System Operator (ISO) such as PJM 
(Pennsylvania-New Jersey-Maryland). Meanwhile, the 
bilateral contract market can be found in California ISO. 
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The proposed software can be used for the PJM type of  
wholesale power market. 

The electricity industry is functionally separated into the 
following four divisions: (a) generation, (b) transmission, (c) 
distribution and (d) retailing. An electric utility, maintaining 
all the four functions, is referred to as an “IOU 
(Investor-Owned Utility)”. An IOU participates in the 
wholesale power market, along with other power 
generators. Many electricity retailers and wholesalers buy 
electricity through the wholesale power market and retailers 
distribute it to consumers (end-users).  

As mentioned previously, the proposed software 
considers the pool market that is a marketplace where 
electricity-generating companies submit production bids 
and prices and wholesale companies submit consumption 
bids. A market operator, like ISO, regulates the pool using 
a market-clearing tool to set the market price. This results 
in a market-clearing price that is listed, along with a set of  
accepted production and consumption bids. In the pool 
market, an appropriate market-clearing tool is an auction 
mechanism (see Klemperer (1999) and Sheblae (1999)). 

The US wholesale power market is functionally 
separated into transmission market and power exchange 
market. The software focuses upon only the power 
exchange market. The US wholesale power exchange 
market is further functionally broken down into a RT 
market (transaction on a five minute interval), an 
hour-ahead market, a DA market and a long-term market 
(transaction from one week to five or more years). Each 
market has unique features in terms of  an 
auction/exchange process and transmission agreement.  

The software mainly focuses upon trading strategies for 
both DA and RT markets, because the bidding behaviors 
of  traders in both DA and RT markets have a close 
bidding linkage between them. Moreover, the two markets 
are important in the investigation of  a price fluctuation in 
the wholesale power market. In this study, the RT market 
implies not only the real time market but also the 
hour-ahead market, because the two are functionally similar 
and decided on the same day. All traders enter the market 
to correspond to actual power flows. Hence, the aspect of  
financial speculation is very limited in the RT market. Thus, 
the RT can be considered as a physical market. In the RT 
market, traders need to make their decisions within a 
limited time (e.g., one hour or five minutes). So, it can be 
considered as a spot market in this study. Meanwhile, the 
DA market can be considered as a financial market, 
because a decision for the market is for the next day power 
delivery, so that there is a time for making a profit based 
upon demand forecasting and speculation. 
 
4. NUMERICAL REPRESENTATION OF POWER 

MARKET 

The power market, virtually created on simulation, is 
structured by the TSS in DA and RT markets. In each 
market, each generator or wholesaler (including a retailer) 
is represented by an intelligent agent. Each trading 
intelligent (autonomous) agent has an objective to 

maximize his/her profit. They gain their knowledge from 
previous data and from experience. Based on the agent’s 
previous bidding result (success/failure), each agent 
accumulates knowledge for future bidding strategy. 
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Figure 1. Bidding structure for wholesale market. 

 
It is very difficult to perfectly duplicate the real trading 

behaviors in our artificial wholesale power market. Hence, 
this study needs to consider on how to represent the DA 
and RT markets. The combination of  different parameters 
is used to express various bidding amounts and prices of  
the trading agents. The bidding processes of  the traders in 
the two markets can be visualized in Figure 1. (The figure 
is originally discussed in Sueyoshi and Tadiparthi (2005).) 
The notation used in Figure 1 is explained as follows: The 
superscript ‘1’ is used for representing DA and the other 
superscript ‘0’ is used for representing RT.  

It is assumed that “n” generators and “k” wholesalers 
participate in the competitive market. The simulator can be 
run for the total time “T”. Each period represents a DA 
and RT market at time t (t = 1 to T). The subscript ‘i’ 
indicates ith generator (i = 1 to n) and subscript ‘j’ indicates 
jth wholesaler (j = 1 to k). 
 
4.1 DA market 

In the DA market, traders submit their respective bids 
for auction. A bid can be considered as a 2-tuple (price and 
quantity).  

Supply Side: The ith generator bids 1 1( ,  )it its p . 1
its  is the 

amount of  power generation in Kilowatt Hours (KWH) 
that the generator makes available in the DA market. 1

itp  
is the price that the generator is charging per unit electricity 
($/KWH). m

its  is the maximum power generation capacity 
of  the ith generator (i = 1, 2, …, n) at the tth period. The 
available power generation is expressed in terms of  the 
maximum power 1   m

it it its sα= × , where itα  ( 0 1itα≤ ≤ ) 
is a parameter to express the ratio of  bidding amount of  
electricity to the maximum generating capacity of  the i-th 
generator at the t-th period of  the power delivery day. The 
price, 1

itp , is expressed in terms of  the marginal cost 
( 1

itMC ). Marginal Cost (MC) of  generation is defined as 
the operations and maintenance (O&M) cost of  the 



Sueyoshi and Tadiparthi: An Electric Power Trading System: Network-based Framework and Simulator with Learning Capabilities 
IJOR Vol. 3, No. 3, 193−203 (2006) 
 

196 

generating plant needed to supply the immediate demand 
for electricity. Usually, the marginal cost is listed on the 
website of  ISO. Since the decisional making of  each trader 
is myopic, the MC serves as a basis of  cost computation in 
a short run. (Of  course, we know that a long-run cost is 
different from the MC-based cost calculation. It is hardly 
acceptable that a trader bids on a basis of  the long-term 
cost.) It is given by 1 1 /(1 ).it it itp MC β= −  Here, itβ  
( 0 1itβ≤ < ) is a mark-up rate. The mark-up rate is used to 
express the numerical increase of  the bidding price from 
the marginal cost. The mark-up rate reflects the trader’s 
pricing strategy toward the DA trading. 

Demand Side: The jth wholesaler bids 1 1( ,  )jt jtd p . 1
jtd  is 

the amount of  power (KWH) that the wholesaler predicts 
for the next day consumption. 1

jtp  is the price that the 
wholesaler is ready to pay per unit of  electricity ($/KWH). 
The wholesaler uses its own demand- forecasting algorithm 
to predict the demand on a particular day. Let jte  be the 
demand estimated by the jth wholesaler or ISO. The 
wholesaler predicts a bidding price by using an inverse 
function (IF) of  demand, i.e. 1 ( )jt jtw I F e= . 1

jtd  is 

expressed in terms of  jte  given by: 1
jt jt jtd eδ= , where 

jtδ  ( 0 1jtδ≤ ≤ ) is a parameter to express the strategic 
reduction of  each bid from the demand estimate. Similarly, 
a bidding price for demand is determined by 1 1

jt jt jtp wλ= . 
Here, jtλ  ( 0 1jtλ≤ ≤ ) is a parameter for price 
adjustment from the estimated price.  

After all the generators and wholesalers submit their 
respective bids to the market, a market clearing algorithm is 
employed to find out the power allocation. Such an 
algorithm gives out results, at every period, such as 1ˆ

jtd  (a 

real power allocation to the jth wholesaler), 1
îts  (a real 

power generation amount for ith generator) and 1ˆ
tp  (a 

market clearing price in the DA market). 
 
4.2 RT market 

In the RT market, generators submit their bids in the 
form of  a 2-tuple (price and quantity). But, wholesalers 
have to specify only their real demand on electricity. 
Therefore, it is assumed that they must purchase all the 
necessary electricity in the RT market in order to satisfy an 
actual power demand (so, it is a physical market, not a 
financial market like DA). 

Supply Side: The ith generator bids ( 0 0,  it its p ). 0
its  is the 

amount of  power generation (KWH) that the generator 
makes available in the RT market. 0

itp  is the price that the 
generator is charging per unit electricity ($/KWH). 0

its  is 
expressed as the remaining amount of  power that the 
generator can produce after the allocation in the DA 
market (so, 0 1ˆm

it it its s s= − ). The price, 0
itp , is expressed in 

terms of  the marginal cost ( 0
itMC ). It is given by 

0 0 /(1 )it it itp MC η= − . Here, itη  ( 0 1itη≤ < ) is a mark-up 
rate. The mark-up rate reflects the trader’s price strategy 
toward the RT trading. 

Demand Side: Let jtR  be the real demand for the 
wholesaler on the delivery day. Then, the wholesaler needs 
to specify the demand procured from the RT market, in 
order to satisfy the real demand that is computed by 

0 1ˆ
jt jt jtd R d= − . In the RT market, ISO adjusts all the 

requests from market participants to obtain 0ˆ
jtd  (a real 

amount of  power allocation) and determines 0ˆ
tp  (a 

market price in the RT market) through a competitive 
market clearing function. 
 
5. MARKET CLEARING ALGORITHMS 

A few market clearing algorithms for the power market 
can be found in the literature. All of  them are structured 
by a single settlement system, not TSS which is 
incorporated into the proposed software. The TSS auction 
is widely used in ISO like PJM. The algorithm of  the 
software can be specified in the following manner. 
  
5.1 Market clearing algorithm for DA market 

Let the pair ( 1 1,it its p ) represent the bid submitted by the 
ith generator in the DA market. Let the pair ( 1 1,jt jtd p ) 
represent the bid submitted by the jth wholesaler. The 
power allocation algorithm for the tth period can be 
specified as below: 
1. Sort the pairs ( 1 1,it its p ) in the ascending order with 

respect to 1
itp . 

2. Calculate the cumulative supply for each generator (i = 
1, …, n). The cumulative supply of  ith generator is the 
sum of  supply quantities (including its own supply) 
whose bidding price is less than the bidding price of  ith 
generator. The cumulative supply of  ith generator is 

represented by 1 1

1

 
i

it at
a

S s
=

 
= 

 
∑ . 

3. Sort the pairs ( 1 1,jt jtd p ) in the descending order with 

respect to 1
jtp . 

4. Calculate the cumulative demand for each wholesaler (j 
= 1, …, k). The cumulative demand of  jth wholesaler is 
the sum of  demand quantities (including its own 
demand) whose bidding price is greater than the bidding 
price of  jth wholesaler. The cumulative demand of  jth 

wholesaler is represented by 1 1

1

 
j

jt bt
b

D d
=

 
= 

 
∑ . 

5. Find an equilibrium point in this market by comparing 
the cumulative amount of  supply with that of  the 
demand. If  there is the equilibrium point, go to Step  6. 
If  there is no equilibrium point, the market clearing price 
is set to 0 and no trading was possible in the DA market. 
Go to Step 8. 

6. A projection of  the equilibrium point on the Y-axis gives 
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the market clearing price 1ˆ
tp of  the DA market. 

7. Allocate electricity for the tth period. All generators with 
1
itp ≤ 1ˆ

tp  can supply power ( 1
its ) for price 1ˆ

tp to the DA 

market and all wholesalers with 1
jtp ≥ 1ˆ

tp  can receive 

power ( 1
jtd ) for the same price 1ˆ

tp  from the DA market. 

All the other traders, who did not obtain any power 
allocation in DA, still have a bidding chance in the RT 
market for selling and buying. 

8. Stop. 
 
5.2 Market clearing algorithm for RT market 

In RT market, only the generators bid and the 
wholesalers have to accept the price decided by the market 
clearing algorithm. Let ( 0 0,it its p ) be the bid posted by ith 
generator in the RT market. This can also be considered as 
a supply function where 0 0  ( )it itp f s= . Let 0

jtd  be the 
quantity required for jth wholesaler in the RT market. The 
market clearing algorithm can be described as below: 
1. Sort the pairs ( 0 0,it its p ) in ascending order with respect to 

0
itp . 

2. Calculate the cumulative supply for each generator (i = 1 
to n). The cumulative supply of  ith generator is 

represented by 0 0

1

 
i

it at
a

S s
=

 
= 

 
∑ . 

3. Calculate the aggregate demand of  the wholesalers at the 

t-th period 0 0

1

 
m

t jt
j

D d
=

 
= 

 
∑ . 

4. If 0 0

1

n

t it
i

D s
=

≤ ∑ , then go to Step  5. Otherwise, go to Step  

7. 
5. The equilibrium point is determined via comparing the 

cumulative amount of  supply by the total demand. 
6. Allocate the electricity. Let 0ˆ

tp  be the market clearing 
price that is obtained from the equilibrium point. Then, 
all generators with 0 0ˆ

it tp p<  can supply power ( 0
its ) for 

price 0ˆ
tp  to the RT market and all wholesalers receive 

power ( 0
jtd ) for the same price 0ˆ

tp  from the RT market. 

7. Stop. 
 
5.3 A reward for generators and wholesalers 

A reward for the i-th generator may be specified in the 
following manner: If  1 1ˆ

t itp p< , then the generator cannot 
have any chance to produce power, so resulting in no profit 
in the DA market. Meanwhile, if  1 1ˆ

t itp p≥ , then the 
generator receives a total profit 1 1ˆ ˆ( )t it itp MC s− . Similarly, 
if  0 0ˆ

t itp p< , the generator loses a chance to generate 
electricity, so resulting in no profit in the RT market. 
Meanwhile, if  0 0ˆ

t itp p≥ , the generator can provide 
electricity so that it produces a profit 0 0ˆ ˆ( )t it itp MC s− .  

Consequently, the reward for the i-th generator can be 
summarized as follows: 
 
If  1 1ˆ

t itp p≥  and 0 0ˆ
t itp p≥ ,  

then 1 1 0 0ˆ ˆˆ ˆ( ) ( )t it it t it itp MC s p MC s− + − ,  
If  1 1ˆ

t itp p<  and 0 0ˆ
t itp p≥ , then 0 0ˆ ˆ( )t it itp MC s− , 

If  1 1ˆ
t itp p≥  and 0 0ˆ

t itp p< , then 1 1ˆ ˆ( )t it itp MC s− , and 
If  1 1ˆ

t itp p<  and 0 0ˆ
t itp p< , then the reward becomes zero. 

 
Next, we return to the reward to the j-th wholesaler. If  

1 1ˆ
t jtp p>  then the wholesaler cannot access a power 

supply through the DA market. Meanwhile, if  1 1ˆ
t jtp p≤ , 

then the wholesaler can obtain the power from the DA 
market. Similarly, if  0ˆ 0jtd > , then the wholesaler can 
access the power supply in the RT market. An opposite 
case can be found if  0ˆ 0jtd = . The wholesaler usually 
provides electricity whose price is ruled by a regulatory 
agency. Hence, let Rp  be the retail price. Then, the 
reward for the j-th wholesaler can be specified as follows: 
 
If  1 1ˆ

t jtp p≤  and 0ˆ 0jtd > ,  

then 1 0 1 1 0 0ˆ ˆ ˆ ˆˆ ˆ( )R
jt jt t jt t jtp d d p d p d+ − − , 

If  1 1ˆ
t jtp p>  and 0ˆ 0jtd > , then 0 0 0ˆ ˆˆ( )R

jt t jtp d p d− ,  

If  1 1ˆ
t jtp p≤  and 0ˆ 0jtd = , then 1 1 1ˆ ˆˆ( )R

jt t jtp d p d− , and 

If  1 1ˆ
t jtp p>  and 0ˆ 0jtd = , then the reward becomes zero. 

 
6. DESCRIPTION ON THE SOFTWARE 

Figure 2 depicts the virtual wholesale market where 
three generators (green) and three wholesalers (red) 
participate to trade electricity between them. Each trader 
can connect to the wholesale market via Internet that is 
linked to a system operator who controls the market. A 
server, along with a data base system, opens the wholesale 
power market under the control of  the system operator. 
 

In te r n e t

M a r k e t

D a ta

`

 
Figure 2. Network-based auction. 

 
To operate the proposed network-based power auction, 

it needs to include a scientific programming language that 
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must provide tools to measure performance and must 
allow developers to express the problem domain easily and 
effectively. It should also be able to produce efficient 
high-performance code, which can be carefully fine-tuned. 
C# is one of  the languages which can be used for such a 
purpose (see Gilani (2004)). Like all other .NET-targeted 
languages, C# compiles to Microsoft intermediate language 
(MSIL), which runs on the common language runtime 
(CLR).  
 
6.1 Main window 

Figure 3 depicts the welcome screen on main window 
where all the menu options of  our software are listed. 
 

 
Figure 3. Main window. 

 
There are four trading functions on main window: 

(a) Existing: It opens up the previously saved power 
trading setup that can be modified for a new trading. 

(b) Real trading: It provides a wholesale power trading 
where we participate in a virtual market as traders. The 
virtual market functions like a real power market. It is 
possible for us to use it as a real power trading system 
at ISO. 

(c) Simulation: It creates a new wholesale power trading 
where all traders are artificially generated with their 
learning capabilities. 

(d) Real/Virtual co-existence: It provides a power trading 
where we (as real traders) participate in the trading 
with artificially generated traders equipped with their 
learning capabilities. The market provides real traders 
with an opportunity to learn their trading strategies by 
competing with the virtual traders with artificial 
smartness. 

 
Hereafter, our description focuses upon the operation 

of  simulation, because the other three functions are very 
similar to the simulation function. Figure 4 documents a 
sequence of  steps that has to be performed to conduct the 
simulation. First, the user is prompted to enter the number 
of  iterations (i.e. total number of  cycles or days he would 
like to simulate) to be simulated. After entering the number 
of  iterations, the user has to create generator and 
wholesaler entities and then start the simulation. All the 
above choices are provided as hyperlinks. The “review 
settings” and “save settings” options are provided as 
buttons. 

6.2 Design of  generators 

By clicking the “create generators” option, the user can 
model the generator entity. A user-interface is presented to 
create “generators”. The interface is conceptually divided 
into 4 divisions. This is illustrated in Figure 5. The user can 
input the maximum supply and marginal cost either in the 
form of  a text file or a constant value. The data, if  
supplied in a text file, should be in the form of  a “tab 
limited text file” with the first column representing the 
price and the second column representing the quantity. The 
bidding strategy that the user would like to use can be 
specified by choosing one of  the radio buttons next to the 
strategy names. 
 

 
Figure 4. New simulation system setting. 

 
In Figure 5, eight (= 2 × 4) different combinations of  

parameters are examined to investigate their market 
strategies of  generators (GN). Table 1 summarizes the 
parameter settings from the perspective of  trading 
strategies. A data set for each generator is obtained 
randomly on the range of  the three parameters.  

 

 
Figure 5. Generator creation wizard. 

 
The user can either decide to include learning or not, 

depending upon a simulation model he/she is trying to 
build. If  the user chooses a learning generator, he can 
specify the knowledge accumulation period (< total 
number of  iterations) and the minimum probability of  
success (between 0 and 1). This pertains to the sigmoid 
learning settings and is explained in appendix of  this article. 
Each generator is given a trader identification number. The 
user can specify the number of  generators of  this kind of  
settings and create them by pressing the “create” button. 
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This action will create the specified number of  generators 
and then go back to the main window. 

 
6.3 Design of  wholesalers 

By clicking “create wholesaler” option, the user can 
model the wholesaler entity. A user-interface for creating 
wholesalers pops up. This interface is conceptually divided 
into 7 categories. This is shown in Figure 6. The real 
demand to be used for simulation purposes can be either 
given in the form of  a text file or using a formula. The user 
can select the appropriate option. The user can choose a 
historical file which contains previous consumptions for 
the wholesaler. Historical demand data is plotted as a graph 
to facilitate the visualization of  the usage in the past. The 
user can create his/her own price estimation graph. The 
yellow colored line segment represents the price function 
for residential customers and the red colored line segment 
the price function for commercial customers. The slope of  
these lines and the functions can be modified by changing 
the parameters below the graph and by clicking “re-draw” 
on the graph. An option to include learning is included. 
This means that the wholesaler is an entity with learning 
capabilities. The parameters are the same as explained in 
the previous section. There are four options for choosing a 
forecasting method. They are “moving average”, 
“exponential smoothing”, “random” and “average”. 
Choosing the respective option will prompt for the 
corresponding required parameters. The user also needs to 
enter the retail price (expressed in dollars) of  the 
wholesaler throughout this simulation. The bidding 
strategy for this set of  wholesalers can be chosen by using 
the radio buttons provided. 

Table 2 documents trading strategies of  wholesalers and 
the range of  two parameters. After this the user can create 
as many such replications as required using the last text 
box by specifying the number of  such wholesalers. The 
trader IDs of  these wholesalers can be specified. 

 
Figure 6. Wholesaler creation wizard. 

 
7. SIMULATION 

7.1 Description on computer monitor 

After creating the simulation model, the user clicks 
“simulation” in the main window. This creates a new 
display window to show the simulations status. The 
simulation window, depicted in Figure 7, is showing four 
different graphs. The first graph shows the demand-supply 
curve in the DA market. The second graph shows the 
graph in the RT market. The third graph shows the price 
fluctuation, during every run, in the DA and RT market. 
The fourth graph shows the volume fluctuation and 
volume share of  DA and RT market. This gives a 
simulation outline on how much the price and volume 
fluctuates during the whole simulation. 

 

 
Figure 7. Computer monitor. 

 
Table 1. Market and pricing strategies of  generators 

Risk Preference (Price) Parameter Range 
Generator 

Preferred 
Market Focus 

(Quantity) DT RT αit βit ηit 

GN-A Risk-taker (0.50, 1.00) (0.50, 0.99) (0.50, 0.99) 
GN-B Rick-taker Rick-avoider (0.50, 1.00) (0.50, 0.99) (0.01, 0.49) 
GN-C Rick-avoider Rick-taker (0.50, 1.00) (0.01, 0.49) (0.50, 0.99) 
GN-D 

DA 

Rick-avoider (0.50, 1.00) (0.01, 0.49) (0.01, 0.49) 
GN-E Rick-taker (0.01, 0.49) (0.50, 0.99) (0.50, 0.99) 
GN-F Rick-taker Rick-avoider (0.01, 0.49) (0.50, 0.99) (0.01, 0.49) 
GN-G Rick-avoider Rick-taker (0.01, 0.49) (0.01, 0.49) (0.50, 0.99) 
GN-H 

RT 

Rick-avoider (0.01, 0.49) (0.01, 0.49) (0.01, 0.49) 
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Table 2. Market and pricing strategies of  wholesaler 

Rick Preference (Price) Parameter Range 
Wholesaler Preferred Market Focus (Quantity) 

DA δit λit 

WS-A Risk-taker (0.50, 1.00) (0.01, 0.49) 
WS-B 

DA 
Rick-avoider (0.50, 1.00) (0.50, 1.00) 

WS-C Risk-taker (0.01, 0.49) (0.01, 0.49) 
WS-D 

RT 
Rick-avoider (0.01, 0.49) (0.50, 1.00) 

 
Table 3. Summary statistics for power prices ($/MWH) 

Market Mean Median Standard Deviation Skewness Kurtosis Sample Size 
PJM-DA 49.62 49.29 9.03 0.38 1.20 289 
PJM-RT 49.62 49.09 9.07 0.44 1.42 289 

PV 50.03 48.99 8.50 0.74 0.16 411 
4C 49.60 47.35 9.29 1.05 0.98 411 

 
7.2 Simulation Results 

Data description: To document the practicality of  the 
proposed simulator, we apply it to estimate the market 
price of  US wholesale electricity. The estimation accuracy 
is compared with other well-known methods that are 
widely used in the power industry. Each data set is obtained 
from the website: http://www.theice.com. The wholesale 
price is measured in $/MWH (US dollars per mega watt 
hour) and the quantity to be traded is measured in MWH. 
The obtained data set consists of  information on Trade 
Date, Average Price and Volume. Since we are interested in 
predicting the wholesale price, Table 3 documents a 
statistical summary on the four markets.  

The first data set on PJM-DA represents the daily 
average market price obtained from PJM-West Peak for the 
DA market during the period from November 7th, 2003 to 
January 4th, 2005. Here, PJM stands for a power market 
covering Pennsylvania, New Jersey and Mainland A high 
volatility of  the wholesale price is observed when the price 
has suddenly spiked up from a low of  $25.95 (MWH) on 
December 24th, 2003 to a high of  $82.58 (MWH) on 
January 14th, 2004. 

The second data set on PJM-RT represents the daily 
average market price for PJM-RT peak price during the 
period from November 7th, 2003 to January 4th, 2005. 
The correlation coefficient between PJM-RT demand and 
price is 0.0624, exhibiting that there is almost no 
correlation. It is interesting to know that the spike is similar 
to that of  the DA market, occurring from a low of  $26.75 
(MWH) on December 24th, 2003 to a high of  $84.13 
(MWH) on January 15th, 2004. 

The third data set on PV consists of  Palo Verde peak 
prices from December 13th, 2002 to January 25th, 2005. 
The lowest price occurs on October 16th, 2003 with a 
price of  $35.74 (MWH) and the highest price occurs on 
July 13th, 2004 with a price of  $77.32 (MWH).  

The fourth data set on 4C consists of  Four Corners 
peak prices from December 13th, 2002 to January 25th, 
2005. The highest price occurs on July 14th, 2004 with a 
price of  $84.06 (MWH). The lowest price occurs on May 
1st, 2003 with $34.00 (MWH). The correlation coefficient 

between demand and price in 4C is -0.0100.  
An approximate market composition and market share 

of  the PJM market is prepared from western 
hub-definition file, available from PJM website 
(http://www.pjm.com/markets/energy-market/downloads
/20050101-hub-definitions.xls), in which 24 generators and 
69 wholesalers are listed in the western hub. The generator 
market share is listed as follows: 15 generators’ share is 2% 
each, 7 generators’ share is 4.2% each, 1 generator’s share 
is 18%, and 1 generator’s share is 22.6%. The wholesaler 
market share is separated as follows: 16 wholesalers’ share 
is 0.61% each, 44 wholesalers’ share is 1.45% each, 8 
wholesalers’ share is 2.85% each, and 1 wholesaler’s share 
is 3.64%. Our simulator uses this market composition. 
Unfortunately, this kind of  market and trader information 
is not available for PV and 4C. Therefore, we use the same 
composition and market information of  PJM to investigate 
PV and 4C. The regulatory maximum price is set to be 
(85.00 $/MWH) and the regulatory minimum price as 
25.00 ($/MWH). 

Evaluation criterion: The performance of  the proposed 
approach is compared with those of  the other three 
approaches. An evaluation criterion for such a 
methodological comparison is the total deviation of  
predicted values from real observations. This provides 
estimation accuracy (%) which is defined as 
 

1

Real Market Price ( ) Estimated Market Price ( )11
Average Real Market Price ( )

N

t

t t
N t=

−
− ∑  

 
where N stands for the number of  periods (transactions) 
used for our performance evaluation. This criterion is 
suggested by Shahidehpour et al. (2002, p. 79). 

Methodology alternatives: As the first alternative, we 
employ a direct formula (DF) in which a wholesale price is 
considered to be proportional to load. The following 
formula is used for predicting the price: 
 
Price(t) = (Load(t)/Load(t - 1)) × Price(t - 1) 
 
(see Shahidehpour et al. (2002), p. 77). A spreadsheet 
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application, like Microsoft Excel, is used to compute the 
DF. 

The second alternative is neural network (NN) whose 
use for price estimation has been recommended by many 
researchers (e.g., Shahidehpour et al. (2002, Ch. 2)). We use 
radial basis function neural networks (RBFNN) to forecast 
the price of  wholesale electricity. (see, for example, 
MATLAB neural network toolbox, version 6.1.0.450 
release 12.1, that is listed in a website: 
(http://www.mathworks.com/products/neuralnet/)) The 
RBFNN is widely used for finding an approximation of  a 
non-linear function as well as for finding interpolating 
values of  a function defined only on a finite subset of  real 
numbers. As found in many NN methods, the structure of  
the proposed use of  NN is separated into an input layer, 
an output layer and a hidden layer(s). The hidden layer 
consists of  neurons with a Gaussian activation function. 
There is a non-linear mapping from the input layer to the 
hidden layer and there is a linear mapping from the hidden 
layer to the output layer. The NN operation consists of  the 
following two steps: training and testing. For PJM-DA and 
PJM-RT, the first 72 data points were used for training and 
the next 217 data points were used for testing. For PV and 
4C, the first 102 data points were used for training and the 
remaining 309 data points were used for testing. The most 
commonly used neural network is a feed forward NN 
because it uses very less number of  neurons. In the case of  
a radial basis network, the number of  neurons used in the 
input layer and hidden layer is equal to the number of  
input vectors. In our experiments, we use a radial basis 
network because of  its prediction accuracy. We created the 
radial basis network with the function “newrbe”. We 
initialize the bias to be 0.8326 (sqrt(-ln(0.5))), i.e., the 
spread is set to 1.  

As the third alternative, we use the genetic algorithm 
toolbox for MATLAB, developed at the department of  
automatic control and systems engineering of  university of  
Sheffield, UK, for running our experiments (source: 
http://www.shef.ac.uk/acse/research/ecrg/gat.html). The 
parameters used in the genetic algorithm were specified as 
follows: population size = 120, crossover probability = 0.8, 
mutation probability = 0.001, maximum generation = 
12000. The objective of  each artificial trader is to maximize 
the total profit obtained after n number of  iterations. 
Therefore, the objective function of  the genetic algorithm 
is to maximize the total profit obtained by traders.  

Table 4 compares the performance of  the agent-based 
approach with those of  Direct Formulation (DF), Neural 
Network (NN) and Genetic Algorithm (GA). The values in 
Table 4 show average estimation accuracies over 289,000 
simulations (= 289 transactions × 1000 duplications) for 
PJM market and 411,000 simulations (= 411 transactions 
× 1000 duplications) for PV-4C market. The estimation 
accuracy is listed by a percentage expression. To examine 
how the agent-based approach estimates properly a price 
fluctuation of  electricity, Figure 8 visually compares an 
observed real price fluctuation of  PJM-DA with its 
estimate obtained from the agent-based approach. A close 
approximation can be identified between the two 

fluctuations in Figure 8. 
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Figure 8. Real price and price estimate. 

 
Finding from Simulation: Table 4 and Figure 8 indicate 

that DF is the most error-prone method and hence 
inefficient. All the estimation accuracies of  DF are much 
less than those of  the other three approaches in the four 
markets. The agent-based approach outperforms the other 
approaches in the four markets.  
 
8. CONCLUSIONS 

As an extension of  the previous study (see Sueyoshi and 
Tadiparthi (2005)), this research has discussed the software 
to analyze the competitive wholesale electricity market that 
can be separated into DA and RT markets. Using the 
software, we can predict the market clearing price in the 
two markets. Furthermore, we can investigate the bidding 
strategies of  traders, controlling parameters incorporated 
into the software.  

There are some shortcomings in this software which 
need to be addressed as future research tasks. First, the 
learning algorithm incorporated into the software needs to 
be further extended in a way that it can reflect different 
bidding strategies of  traders. For example, the Bayes’ 
theory can be added to the proposed sigmoid learning so 
that the combined use can enhance a winning probability. 
Moreover, a game theoretic approach adds another 
perspective on the learning capabilities addressed in this 
study. The basic communication framework needed for 
such a study has already been implemented. Second, the 
proposed approach should be extended to network 
capabilities so that a market operator exists in one place 
and traders exist physically in other places. They are linked 
on Internet, as designed in the software. An important task 
to be explored in the extension is to study how many 
traders obtain some consensus on the market clearing 
prices, under the price monitoring processes of  public 
authority. This is an important extension of  this software. 

Finally, it is hoped that the software makes a small 
contribution for power trading. We are looking forward to 
observing future research extensions, as indicated in this 
study. 
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Table 4. Comparison among four approaches 
Estimation Accuracy (%) 

Market Direct Formula 
(DF) 

Genetic Algorithms 
(GA) 

Neural Network 
(NN) 

Agent-based Approach 
(Type I) 

Agent-based Approach 
(Type II) 

PJM-DA 52.39 77.33 69.53 75.46 90.29 
PJM-RT 6.63 80.56 82.97 81.24 91.51 

PV 52.07 81.34 83.10 79.77 88.66 
4C 18.79 80.66 80.92 80.98 79.34 

Mean 32.47 79.97 79.13 79.36 87.45 
Note: PV and 4C stand for palo verde RT market and four corners RT market. 
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APPENDIX: CHOICE OF SIGMOID FUNCTION 

In this Appendix, we discuss about the different 
strategies by which a trader benefits in a competitive power 
market. Since the space of  this article is limited, we discuss 
the trader’s strategy from the generator’s point of  view. Of  
course, our description here can be easily extended to the 
strategy of  a wholesaler. Figure A-1 represents the 
conceptual diagram of  a generator. The generator is an 
intelligent agent with a sensor, to sense the environment, 
and an actuator which takes the appropriate action after 
decision making. The controller is the module which takes 
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decisions. The Knowledge Base is a collection of  previous 
data and future data stored in the form of  a table. The 
learning algorithm module is the one which implements 
the different learning algorithms of  the generator. 

The sequence of  learning inside the generator can be 
elaborated as follows: 
1. The generator receives data at its sensor input 

periodically. 
2. The sensor deposits the data into the knowledge base 

and lets the controller know that an input has arrived. 
3. The controller, based on a decision making rule, chooses 

the appropriate learning algorithm and makes a decision 
on what the output should be. 

4. Finally the controller outputs via the actuator in to the 
system environment. 
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Figure A-1. Generator as a learning agent. 

 
A win or loss at an auction is considered as a binary 

response. A sigmoid model, as one of  the four learning 
algorithms, can be used to predict the winning probability. 
The reward of  any generator is predicted by a 

α β η ε= + + + +0 1 2 3  .reward c c c c  Here, ε is the 
observational error. c0, c1, c2 and c3 are parameters of  the 
sigmoid model which can be estimated by OLS (ordinary 
least squares) regression. The winning probability of  a 

generator can be specified by σ− ×=
+

1( )
1 rewardProb Win

e
. 

Here, a prescribed value (σ) is the slope of  the sigmoid 
function. Let 0 1 2 3ˆ ˆ ˆ ˆ, ,    c c c and c  be the estimates for c0, c1, c2 
and c3 which satisfy the following condition:  
 

1
1 rewarde σ θ− × >

+
, (A-1) 

 
where θ is the threshold value of  the winning probability. 
The probability implies a likelihood that a generator wins 
the power trading auction. This does not necessarily imply 
the generator’s win. That is a theoretical guess. The trading 
market determines the real winning probability.  However, 
it is not a bad idea for each generator to develop his/her 
bidding strategy based upon the estimate of  the winning 
probability. 
1. Initialize the upper and lower bounds of  bidding strategy 

parameters (α, β and η). 
2. Using OLS obtain the parameter estimates of  the 

sigmoid function from the knowledge base. 

3. The upper limits and lower limits of  the parameters are 
reset by the parameter estimates of  the sigmoid 
function. 

4. Change the values of  α, β and η according to those 
upper and lower bounds in a manner that such a change 
increases the winning probability. If  t = T, stop. 
Otherwise, repeat Steps 2 to 3 for all t. 

 


