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AbstractWe propose a solution methodology for the multi-product newsboy model with constraints that is based on 
quadratic programming and a triangular presentation of  the area under the cumulative probability distribution function of  
the demand. The methodology allows easier application of  this important inventory control model that could be of  
particular interest in supply chain management as well as in offering a portable means to pedagogy in this field. 
KeywordsOptimization, Quadratic programming, Newsboy 
 
 

                                                 
∗ Corresponding author’s email: malek@njit.edu 

1. INTRODUCTION 

The newsboy problem is becoming increasingly relevant 
in today’s global environment. Denardo (2001) states that 
the classical newsboy model developed earlier by Hadley 
and Whitin (1963) is considered one of  the most important 
inventory models of  the present time. This is because of  
its numerous applications in different fields ranging from 
those in fashion industry, airline seats pricing, and drugs’ 
lot-sizing to management of  perishable food supplies in 
super-markets. 

Motivated by the interest of  the community in Hadley 
and Whitin’s seminal model, researchers have developed 
this model further covering a wide spectrum of  extensions. 
The interested reader is referred to the reviews by Gallego 
and Moon (1993), and Khouja (1999). Since the 
publication of  these two reviews, many articles have also 
appeared addressing variations of  the modeling aspects of  
the earlier problem as well as introducing solution methods 
to this type of  problem. Among these articles that 
addressed solution methods for the multi-product newsboy 
are those briefly discussed in the following paragraphs. 

Lau and Lau (1995, 1996) have introduced a Lagrangian 
based numerical method to solve the multi-product multi 
constraint newsboy problem. To initiate their numerical 
procedures, the proposed approach requires first obtaining 
the solution for the unconstrained model. Ben-Daya and 
Raouf  (1993) developed a model for solving the 
constrained problem when the demand probability density 
function is uniform. Their approach is also Lagrangian 
based. Erlebacher (2000) has addressed the model of  the 
capacitated newsboy problem in cases where the cost 
structure is similar. He developed exact and heuristic 
solutions depending on the types of  the demand 
probability distribution functions for the considered 

products. Recently, Mostard et al. (2005) published an 
article addressing the distribution free newsboy problem 
for resalable products. Their work is concerned with 
situations where the probability distribution of  the demand 
is not known and the customers have the option of  
returning the items.  

It should be noted that most of  the aforementioned 
models, except those of  Lau and Lau, did not pay enough 
attention to the lower bounds of  the products’ demand. 
And, as Lau and Lau observed, this could lead to negative 
order quantities particularly when the constraints are tight 
and the number of  product considered is large. Some of  
the recent works that included the lower bounds of  the 
order quantities are those by Abdel-Malek and Montanari 
(2005), and Niederhoff  (2004). In the first article, 
Abdel-Malek and Montanari present models based on the 
dual program of  the newsboy for the case with two 
constraints. In the second one, Niederhoff  proposes linear 
approximation of  the model’s objective function. Both of  
the models introduced in these two articles require some 
effort to apply. 

To complement these models, in this paper we develop a 
model that is easier to implement than those currently 
published for the multi-product newsboy with constraints 
while considering order quantities’ lower bounds. It is 
based on triangular presentation of  the areas resulting 
from integrals that are included in the objective function. 
This facilitates expressing the objective function in 
quadratic terms. Consequently, one can use familiar linear 
programming packages to solve the problem. 

The rest of  the paper is organized as follows. In Section 
2 we show the basic newsboy model and the solution 
methodology development. Section 3 exhibits the 
application of  the developed methodology to different 
distribution functions. In Section 4, numerical examples are 
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shown comparing the developed method to results of  
some existing models. In Section 5, we present conclusion 
of  the paper. 

 
2. METHODOLOGY DEVELOPMENT 

One of  the common forms of  the multi-product 
newsvendor model with constraints is 
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where Z is the expected cost to be optimized, N is the 
number of  items, M is the number of  resource constraints, 
τ is the item index, cτ is the unit cost of  item τ, ξi,τ is the 
coefficient of  resource i of  item τ, Lτ is lower bound of  
order quantity of  item τ, xτ is the amount to be ordered of  
item τ, hτ is the cost incurred per each item leftover at the 
end of  the specified period, Dτ a random variable of  item’s 
τ demand, fτ(Dτ) is the probability  density function of  
demand for item τ, F(Dτ) is the probability cumulative 
density function (CDF) of  demand for item τ, vτ is the 
revenue per unit of  item τ, µτ is the mean of  the demand 
for item τ, Bg is the firm’s available budget, and Ri is the 
amount of  available resource i. (See Appendix A for proof  
of  Eq. (2).) 

The objective function given in Eq. (2) can be expressed 
in the following quadratic form 
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where ( )

τ
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τ
. ,B  and ( ).C τ are constants to be determined 

for each product τ according to its demand probability 
distribution; (.). 

In the following, we show in general how to apply what 

we designate as triangular approach to obtain these 
constants. We first note that the second term of  Eq. (2) 
includes the integral of  the cumulative distribution 
function. This area can be either expressed or 
approximated as that of  a triangle using the following 
equation: 
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(See Figures 1 and 2) 
 
where, xτ − xl,τ is the length of  the triangle base, F(xτ) = 
∆τ(xτ − xl,τ) is the height of  the triangle with respect to xτ, 
and ∆τ = [F(xu,τ)/(xu,τ − xl,τ)] represents the slope of  
triangle. (More details about these parameters and how to 
obtain them for each probability density function are given 
in Section 3). 

The error of  the approximated area can be calculated 
using the following equation. 
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As shown in Eq. (4), substituting Eq. (5) into Eq. (2), 

one can arrange its terms to obtain a quadratic form. 
Hence, the values of  the coefficients of  the objective 
function can be expressed as follows: 
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It should be noted that the shape of  the cumulative 

distribution function, F(Dτ), plays a significant role in 
determining the values of  (xl,τ , xu,τ , F(xu,τ)). The next 
section lays out the procedures of  obtaining the quadratic 
form of  the objective function for different demand 
cumulative distribution functions (F(Dτ)). 
 
3. MODELING THE OBJECTIVE FUNCTION FOR 

DIFFERENT DEMAND DISTRIBUTIONS 

As mentioned before, the triangular approach is used for 
estimating the area under the curve of  items’ τ demand 
distribution function. Generally, we can divide these 
curves’ shapes into three major silhouettes; the ramp 
shapes, the parabola shapes with zero lower bounds, and 
the S shapes with non zero lower bounds (see Appendix B). 
For each silhouette, the values of  the parameters (xl,τ , xu,τ , 
F(xu,τ)) have to be first appropriately defined. The 
following sub-sections present the necessary explanations. 
Also, in Table 1, we summarize the coefficients’ formulae 
( ( )

τ
. ,A ( )

τ
. ,B and ( ).C τ ) for three major probability 

distributions; the uniform, the exponential, and the normal. 
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In addition, based on these formulae, we show the 
application of  a general distribution case in Section 4.4. 
 
3.1 Silhouette I: The ramp shape distribution function 

The first silhouette describes the characteristic of  the 
uniform distribution. Eq. (8) and its pictorial in Figure 1 
exhibit the CDF. As can be seen, the area under the curve 
is a right-angle triangle which yields the exact solutions. 
 

 
Figure 1. Triangular presentation (shaded area) for uniform 

distribution. 
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Since the values of  both aτ  and bτ are known (i.e. xl,τ = 
aτ , xu,τ = bτ , thus, F(xu,τ) = 1), we can determine in a 
straightforward manner the parameters of  the triangle ( the 
value of  the integral) as follows: 
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Then, we obtain the area of  triangle for this case as 

follows: 
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Consequently, substituting Eq. (10) into Eq. (2), we 

obtain formulae for the coefficients of  the objective 
function. 
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Table 1. Summary of  the coefficients of  the objective function for common probability distributions 
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3.2 Silhouette II: The parabola shape distribution 

function with zero lower bound 

Among the members of  probability distribution 
functions that belong to this family of  shapes are the 
Exponential, the Weibull and the Lognormal distributions. 
The steps to determine the coefficients of  the objective 
function for these types are as follows: 
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2) Calculate τ τθ−=* 1( ),x F  where *xτ denotes the 
unconstrained optimal solution (If  constraints are 
redundant, unbinding, the approach will give the 
solutions equal to that obtained in step (2).) 

3) Set the values of  the parameters for the  triangle area as 
follows: 

, 0lx τ = , *
,ux xτ τ= , *

,( ) ( ).uF x F xτ τ=  

(see Figure 2) 
 

Then, one can proceed in the similar fashion as 
mentioned in the previous sub-section to obtain the 
triangle’s parameters. The coefficients of  the objective 
function are shown in Eq. (12) and (13) respectively. 
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To illustrate further the application for this type of  

silhouette, let us consider the case of  an exponentially 
distributed demand function. Its distribution function is 
given by Eq. (14). 
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Using Eq. (13), we obtain coefficients of  the objective 
function as follows: 
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The error of  the approximated area in this case is 

 
*

2

*

11 1
2

xx x
error x e e

x

τ τ

τ τµ µτ
τ τ

τ

µ
−−   

 = − − − −       
         (16) 

 
where, *0 x xτ τ≤ ≤ . Thus, the lower bound of  the error 
of  the approximated area is given by taking 

0
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upper bound of  the error is given by taking
*
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result shows in the following Eq. (17). 
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3.3 Silhouette III: The S shape distribution function 

with non zero lower bound 

Among the CDFs that belong in this category are the 
Normal, the Student (t), and the Beta distributions. Their 
silhouettes look similar to that which is shown in Figure 3. 
From that figure, one can see that setting the value of  xl,τ 
= 0 is not suitable. Therefore, we have to find the 
appropriate value for xl,τ. It should be noted that by 
allowing xl,τ > 0, we are truncating the tail of  the 
distribution function. Hence, the range of  possible optimal 

solutions of  item τ will be within *
,lx x xτ τ τ≤ ≤ . 

Because of  the different nature of  this type of  
distribution function, we propose two approximation 
procedures. One can apply both and then compare which 
of  them yields less cost  The first approach is based on 
Taylor expansion of  the demand distribution function, 
while the second is based on the calculation of  the 
triangular area for the following specific values of  F(x); 
(0.001 and 0.9). Note that the triangular area which is 
calculated for that range of  F(x) in essence covers the area 
under the CDF. 
 

 
Figure 2. Triangular approximation (shaded area) for 

exponential distribution. 
 

 
Figure 3. Triangular approximation (shaded area) obtained 

for Taylor’s expansion. 
 
3.3.1 The first approach (Taylor series expansion) 

We expand the CDF of  the demand using Taylor series 
around the expected value for item τ. 
 

( ) ( ) ( )( )F x F f xτ τ τ τ τµ µ µ= + −                (18) 
 
where F(xτ) represents the CDF, F(µτ) represents the value 
of  the CDF at µτ, f(µτ) represents the value of  density 
function at µτ. Letting F(xτ) = 0 in Eq. (18), we obtain the 
formulae for xl,τ and ∆τ as shown 
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Substituting Eq. (20) into Eq. (7), we obtain the 

objective function coefficients as shown in Eq. (21-23). 
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3.3.2 The second approach (Covering range approach) 

For this approach, ∆τ and xl,τ are calculated by using the 
following equations: 
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In a similar fashion, we can obtain the coefficients of  

the objective function. Figure 4 and the numerical 
examples show the details of  these approaches. 

 
4. NUMERICAL EXAMPLES 

This section illustrates numerically the applications of  
the proposed model and compares them, when applicable, 
to existing ones. These examples are extracted from Lau 
and Lau (1996) and Abdel-Malek et al. (2004).  (In these 
papers, however, the only constraint considered was that 
of  the budget and the lower bounds, Lτ’s of  the demands 
are set to be zero. Therefore, ξi,τ which are the coefficients 
of  the additional constraints and Lτ’s are set to zero in our 
analysis for comparison purposes). The first example 
demonstrates the application to silhouette I, the second to 
silhouette II, the third to silhouette III, and the last 
example considers a mix of  all silhouettes. These examples 

bring to focus the generality of  the proposed models as 
compared to the existing ones and its structured way of  
application as well as the quality of  the solutions rendered. 

 

 
Figure 4. Triangular approximation (shaded area) for 

second approach. 
 
4.1 Uniform distribution 

Lau and Lau (1996) consider a three-product case. Their 
pertinent data are shown in Table 2. Applying the steps 
introduced in Section 3.1, the values of  the coefficients of  
the objective function, Eq. (11), are calculated and 
exhibited in Table 2. 
 

Table 2. Example’s numerical data and calculated 
coefficients of  the objective function 

Item vτ hτ cτ aτ bτ Aτ Bτ Cτ 
1 4 1 1 5 195 −0.0132 4.1316 −400.3289 
2 3 2 1 15 585 −0.0044 3.1316 −900.9868 
3 2 6 2 10 190 −0.0222 6.4444 −602.2222 

 
It should be noted that, in their paper, Lau and Lau 

denote cτ as the unit usage capacity instead of  unit cost and 
also they vary the level of  available capacity between 50 
and 804 units. The comparison of  the results between Lau 
and Lau (1996) and the triangular approach is shown in 
Table 3. 

From Table 3, one can see that the triangular approach 
gives a lower total cost than that of  Lau and Lau. It should 
be noted that despite the approximate and simple nature of  
our approach, as opposed to the numerical iterative 
approach of  Lau and Lau, our results are similar or slightly 
better. 

 
4.2 The exponential distribution 

Let us consider again the example of  Lau and Lau (1996) 
for the case of  exponentially distributed demand function. 
The pertinent data are shown in Table 4. Implementing the 
steps introduced in Section 3.2, the values of  coefficients 
of  the objective function are calculated and also shown in 
Table 4. 
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Table 3. Comparison between that of  Lau & Lau and triangular approach 
Capacity Item 1 ( **

1x ) Item 2 ( **
2x ) Item 3 ( **

3x ) Total Cost ($) 

 Lau & Lau 
Triangular 
Approach 

Lau & Lau 
Triangular 
Approach 

Lau & Lau 
Triangular 
Approach 

Lau & Lau 
Triangular 
Approach 

% Diff 

>804 157 157 357 357 145 145 553 553 0.000 
80 43.31 43.31 15.94 15.94 10.37 10.37 1636 1636 0.000 
70 43 27.14286 7 0 10 42.85714 1666 1565 6.062 
50 43 21.42857 0 0 3.5 28.57143 1726 1654 4.172 

Note: **
1x is the constrained optimal solution. 

 
Table 4. Example’s numerical data and calculated 

coefficients of  the objective function 
Item vτ hτ cτ µτ Aτ Bτ Cτ 

1 4 1 1 100 −0.0124 4 −400 
2 1 1 1 500 −0.0014 1 −500 
3 2 2 1 300 −0.0048 2 −600 
 
The comparison of  the results between those of  Lau 

and Lau and the triangular approach is shown in Table 5. 
As can be seen, the results obtained from the two models 
are almost identical. However, the proposed approach is 
more systematically structured. 
 
4.3 The Beta distribution 

To illustrate the triangular approach for a Beta 
distribution function, we consider the example given in 
Abdel-Malek et al. (2004) where an iterative method called 
GIM is used. In their example, six products are examined 
with a budget constraint of  $ 6,500.00. We implement the 
steps of  Section 3.3. Table 6 shows the pertinent data and 
the obtained optimum results. From the table, one can see 
that the solution obtained by the triangular approach is 
better and requires less computational effort. 

 
4.4 General distributions 

This numerical example is also extracted from Lau and 
Lau (1996). It considers a newsvendor problem with seven 
products and five constraints. The products parameters are 
given in Table 7, and those of  resources and their usage for 
each product are shown in Table 8. 

In this example we can first group items into two sets 
based on their distribution function shapes. The first set of  
items {1, 3, 5, 6, 7} has the parabola distribution shape, 
silhouette II given in section 3.2, and the second set of  
items {2, 4} has the S shape distribution, silhouette III 
which is given in section 3.3. After grouping the set of  
items, we can implement the steps described for each type 
of  silhouette. And noting that there are two possible 
approaches to silhouette III set of  products, we apply both 
of  them and present the results of  both in Tables (9 and 
10). The obtained coefficients of  the objective function 
( ( ).Aτ , ( ).B τ , and ( ).C τ ) are shown in Table 9 and the optimal 
results as well as the comparison to those of  Lau and Lau 
are exhibited in Table 10. 

 
Table 5. Comparison between that of  Lau & Lau and triangular approach 

Capacity Item 1 ( **
1x ) Item 2 ( **

2x ) Item 3 ( **
3x ) Total Cost ($) 

 Lau & Lau Triangular 
Approach Lau & Lau Triangular 

Approach Lau & Lau Triangular 
Approach Lau & Lau Triangular 

Approach 
% Diff 

> 1755.2 161.9 160.94 346.6 346.57 207.9 207.94 923.41 923.40 0.00% 
1300 155 157.72 236.5 235.66 198.9 199.63 936.92 936.95 0.00% 
1000 150.5 155.6029 164.4 162.56 191.9 194.14 962.46 962.62 0.02% 
500 142.1 152.07 44.9 40.73 178.4 185.01 1041 1042 0.10% 
25 25 25 0 0 0 0 1414 1414 0.00% 

 
Table 6. Comparison between the iterative GIM and the triangular approach 

Total Cost ($) 
item vτ hτ cτ xτ min xτ max ατ βτ Aτ Bτ Cτ 

GIM 
( **xτ

) 

Triangular 
Approach 

( **xτ
) GIM 

Triangular 
Approach 

1 7 1 4 100 300 2 1 -0.03 11.74 -2357.32 206.83 207.83 1094.12 1093.43 
2 12 2 7 50 250 1 1.2 -0.04 8.54 -1772.63 95.69 95.53 1298.74 1298.94 
3 30 4 15 75 150 1 2 -0.33 61.94 -4670.91 90.10 89.96 1617.57 1617.06 
4 17 3 10 50 200 2 2 -0.10 21.66 -2669.56 100.12 100.45 1517.38 1516.79 
5 27 5 15 50 200 2 3 -0.19 36.72 -3779.24 90.072 90.15 2027.19 2026.98 
6 10 2 6 73 275 0.8 0.2 -0.04 17.56 -3596.91 209.35 215.65 1699.30 1693.12 

% Diff 

Summation of  total cost ($) 9254.29 9246.31 0.09% 
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Table 10 reveals that the quality of  the optimum 
solutions yielded by the developed methods. In addition, it 
should be that among the differences between the 
methodology proposed here and that of  Lau and Lau that 
the latter seems to consider only products when their 
purchase costs are equal as opposed to the former 
approach where there is the flexibility of  accommodating 
products with varying purchase costs; and that Lau and 
Lau method is based on numerical iterative models 
developed for this particular purpose in contrast to the 
method here that could utilize familiar linear programming 
software. 

 
Table 7. Products parameters and costs 

Product 
# 

Distribution Parameters 
vτ 

[$/item] 
hτ 

[$/item] 
1 Exponential (335) 3 2 
2 Normal (150, 45) 2.5 1.5 
3 Weibull (1.8, 100) 3 2.5 
4 Beta (50, 850, 3, 4) 4 3 
5 Weibull (2, 60) 5 5 
6 Lognormal (5.19, 0.47) 6 7 
7 Exponential (600) 7 2 

 
Table 8. Numerical data for operating constraints 

Resources Usage for Product # Constraint 
# 

Resources 
availability 1 2 3 4 5 6 7 

1 2800 1 1 4 4 1 2.5 0.5 
2 1900 2 2 3 1 1 0.5 0.7 
3 2000 3 1 1 1 4 1.5 2.5 
4 5800 4 1 2 1.5 5.5 6 4.2 
5 2400 1 3 1 2 3 0.5 4 

5. CONCLUSION 

The multi-product newsboy with constraints has been 
found suitable for modeling many situations particularly in 
today’s supply chain environment. Motivated by the interest 
of  the community in this problem, in this paper we 
complement the existing solution methodologies by 
developing an approach that utilizes the familiar linear 
programming software as opposed to the existing 
numerical methods that are mainly Lagrangian based. The 
developed approach converts the objective newsboy cost 
function to a quadratic form. The value of  each integral of  
the cost function is estimated by a triangular area which 
yields exact solutions in case of  uniform distribution of  
the demand probability function, or approximate 
otherwise. 

In addition to the systematic steps of  the developed 
models and the high quality of  the solutions rendered, they 
present the decision maker with the ability to conduct post 
optimality analysis for the solutions obtained. Moreover, 
the methods here include the lower bounds of  the order 
quantity which many of  the existing methods ignore. This 
protects against obtaining erroneous solutions particularly 
when the resources are tight and the number of  products 
considered is large. 

Finally, the models here are portable to the class room 
environment given exposure to students to these important 
models of  the newsboy problem. Also, the methods 
here have the potential of  being extended to cover other 
cost structures of  the original models which is our intent 
for future development. 

 
Table 9. Coefficients of  the objective function 

1st approach 2nd approach 
Product # ( ).Aτ  ( ).B τ  ( ).C τ  ( ).Aτ  ( ).B τ  ( ).C τ  

1 0.00 3.00 -1005.00 -0.0049 3 -1005 
2 -0.02 5.82 -530.34 -0.0174 5.7306 -524.6479 
3 -0.02 3.00 -300.00 -0.0207 3.6193 -10.0431 
4 -0.01 8.96 -2345.63 -0.0101 8.7819 -355.7650 
5 -0.04 4.00 -240.00 -0.0632 5.8185 -21.0723 
6 -0.01 2.00 -0.94 -0.0231 5.7805 -165.2614 
7 0.00 5.00 -3000.00 -0.0033 5 -3000 

 
Table 10. Cost comparison between triangular approach and Lau & Lau 

**xτ
 (items) Total cost ($) % Diff Product # 

1st approach 2nd approach Lau & Lau 1st approach 2nd approach Lau & Lau 1st approach 2nd approach 
1 210.73 189.64 188.7 644.40 660.25 661.039 
2 95.77 37.85 105.9 145.50 280.71 125.751 
3 63.08 64.73 71.7 125.14 123.44 117.667 
4 356.38 331.90 324.6 506.34 552.567 568.714 
5 16.45 16.59 29.2 150.522 150.05 115.247 
6 95.84 89.40 115.1 223.51 231.77 207.507 
7 257.22 318.45 256.9 2050.00 1907.00 2051 

  

Summation of  total cost ($) 3845.412 3905.787 3846.925 0.04% 1.54% 
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APPENDIX A 

This Appendix shows how to derive the objective function shown in Eq. (2) from this given in Eq. (1). 
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Integrating by parts the function, 
0

( )
x

D f D dD
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τ τ τ∫ , we obtain 
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τ τ τ τ τ τ τ= −∫ ∫                                                             (A-2) 

 
And Substituting Eq. (A-1) into (A-2) and converting the problem into maximization, we obtain Eq. (2). 
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APPENDIX B 

This following figures show the silhouettes of  the functions for the considered probability distributions. 
 

Silhouette I: 

 
 
Silhouette II: 

 
 
Silhouette III: 

 

Trapezoidal CDF Uniform CDF 


