
International Journal of Operations Research Vol. 4, No. 1, 1−10 (2007)

Effectiveness of Adaptive Crossover Procedures for a Genetic
Algorithm to Schedule Unrelated Parallel Machines with Setups

Patricia A. Randall1, ∗ and Mary E. Kurz2

1Department of Industrial Engineering, Clemson University, 110 Freeman Hall, Clemson, SC 29634, USA

2Department of Industrial Engineering, Clemson University, 104A Freeman Hall

Received May 2006; Revised August 2006; Accepted September 2006

AbstractThe unrelated parallel machine scheduling problem, in its most general form, is applicable to many
manufacturing and service environments. This problem requires the scheduling of a group of independent jobs on
unrelated parallel machines as well as the sequencing of the jobs on each individual machine. In this paper, we propose a
genetic algorithm with adaptive crossover selection to schedule independent jobs on unrelated parallel machines to minimize
total tardiness. Each job has a unique due date, machine-dependent processing times, and sequence-dependent setup times.
Three general adaptive crossover selection schemes will be compared with a traditional genetic algorithm and tabu search
for large-scale problems (up to 200 jobs and 20 machines). The adaptive genetic algorithm with the tournament selection
scheme is shown to outperform all other heuristics with respect to solution quality although it does require more solving
time than many of the other heuristics.
KeywordsUnrelated parallel machine scheduling, Genetic algorithms, Sequence-dependent setups

∗Corresponding author’s email: patricia.randall@alumni.clemson.edu

1. INTRODUCTION

This paper presents three types of adaptive crossover
selection schemes within a traditional genetic algorithm to
schedule unrelated parallel machines. In the unrelated
parallel machine scheduling problem, denoted R i , a
group of independent jobs are available to be scheduled on
multiple machines at a single stage. Machining
characteristics such as processing times and setup times are
unique to each machine and are unrelated to machining
characteristics of other machines. In the most general case
of this problem, all jobs are ready to be processed at time
zero and all machines are ready to process jobs at time zero.
Each machine is capable of processing every job. A job
must be processed completely by one machine and job
preemption is not allowed. Although completion time
objectives are dominant in early scheduling literature, an
emphasis on satisfying deadlines in industry has caused the
focus of recent unrelated parallel machine scheduling
literature to shift towards due date-related objectives such
as minimizing the total tardiness of the jobs, denoted

jT∑ , and occasionally the total earliness of jobs as well,

denoted ∑ jE . For a review of scheduling notation, see
Graham et al. (1979).

In our problem, N independent jobs are scheduled on M
unrelated machines at a single stage. Each job j has a
unique due date dj, a processing time jkp when it is
processed on machine k, and a setup time ijks when it is

preceded by job i on machine k. The completion time of
job j is Cj and the tardiness of job j is Tj = max{0, Cj − dj}.
A traditional genetic algorithm and tabu search will be
compared with three adaptive crossover selection schemes
(regulatory gene, roulette wheel selection, and tournament
selection).

2. LITERATURE REVIEW

While linear programming models are not able to solve
problems of large sizes for unrelated parallel machine
scheduling in reasonable time, they give optimal solutions
that can be used to test the quality of other non-optimal
solution heuristics. Alidaee and Panwalker (1993), by
employing a common due date for all jobs, are able to
reduce j jR E T+∑ ∑ to a transportation problem that
can be solved in polynomial time. Cheng et al. (1996)
reduce the above problem to an assignment problem with
polynomial complexity through the use of a processing
time compression cost. Logendran and Subur (2004)
develop a mixed integer programming (MIP) model for

jR T∑ where jobs have release times and machines
have availability times. There is also the possibility of
splitting a job into two lots that can be processed on
different machines. Liaw et al. (2003) develop a
branch-and-bound algorithm that incorporates a lower
bound found by solving a j jR E T+∑ ∑ -based
assignment problem.

International Journal of
Operations Research

1813-713X Copyright © 2007 ORSTW

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

2

Search heuristics tend to be more effective for larger
problem sizes than optimal methods because they are able
to quickly consider many different solutions. While an
optimal solution is never guaranteed, many search
heuristics consistently yield optimal or near-optimal
solutions. Randall and Kurz (2005) show that a random
keys genetic algorithm finds optimal and near-optimal
solutions for jR T∑ where jobs have sequence-ependent
setups.

Bank and Werner (2001) first assign each job to a
machine and then compare heuristics to schedule each
machine for j jR E T+∑ ∑ with a common due date and
job release times. Neighborhood search, iterative
improvement, multistart procedures, simulated annealing,
and threshold accepting heuristics are compared against
constructive heuristics. Kim et al. (2002) develop a
simulated annealing heuristic for jR T∑ with
sequence-dependent setups. A job is assumed to be
composed of several items, each of which can be
processed on a different machine.

Several papers have applied genetic algorithms (GAs) to
the parallel machine scheduling problem. Van Hop and
Nagarur (2004) apply GAs to the optimization of printed
circuit board operations to group similar boards, balance
machines, and reduce setups. Cheng et al. (1995) develop a
job partitioning chromosome structure within their GA to
minimize maximum weighted absolute lateness under a
common due date. Luu et al. (2002) sequence batches on
parallel machines with a hybrid GA that includes an
Earliest Due Date-Greedy insertion method. Jou (2005)
develops a genetic algorithm to schedule parallel flow shop
machines where jobs are queued in a bottleneck stage.
Cochran et al. (2003) develop a two-state multi-population
GA with the multiple objectives of minimizing the
makespan, minimizing the total weighted tardiness, and
minimizing the total weighted completion times.

Min and Cheng (1999) and Kurz and Askin (2001) use
GAs to minimize the makespan. After comparing a GA
with a slicing heuristic, a multiple MULTI-FIT heuristic,
and an insertion heuristic under the constraints of job
release times and sequence-dependent setups, Kurz and
Askin conclude that the random keys chromosome
representation (Bean, 1994) could yield better solutions
than a traditional binary representation. Kurz and Askin
(2004) develop a GA with the random keys chromosome
structure to schedule flexible flowlines with
sequence-dependent setups to minimize the completion
time.

Norman and Bean (1999) use the random keys
chromosome representation to schedule 360 jobs on two
parallel machines in an automotive plant with job release
times and sequence-dependent setups to minimize the total
tardiness. Sivrikaya-Serifoglu and Ulusoy (1999) minimize
total earliness and total tardiness for the parallel machine
scheduling problem with job release times and
sequence-dependent setups through the use of a GA
employing their MCUOX crossover operator. Glass et al.
(1994) compare a GA with a descent algorithm, simulated

annealing, and tabu search for maxR C where maxC is
the makespan.

Several papers have developed adaptive genetic
algorithms (AGAs). Davis (1989) develops an AGA with
variable rates for both crossover and mutation operators by
tracking the lineage of chromosomes through several
generations. Chromosomes with superior ancestors are
selected for the majority of crossover and mutation
operations performed. Julstrom (1995) expanded the work
of Davis to the adaptive operator probabilities mechanism
that tracks the ancestry of both chromosomes and
crossover and mutation operators. Van Hop and
Tabucanon (2005) adjust operator rates by comparing the
number of chromosomes that each operator should
theoretically create and the number of chromosomes that
each operator did create. These ratios of theoretical to
actual chromosomes determine the adjusted rates for the
operators.

Tuson and Ross (1996) develop an AGA with a
cost-based operator rate adaptation mechanism that adjusts
rates at a fixed interval. The operator with the largest
benefit-to-cost ratio receives the largest operator rate while
the operator with the smallest benefit-to-cost ratio receives
the smallest operator rate. Xiao et al. (1996) also develop a
fixed-period AGA. A performance index, similar to the
benefit-to-cost ratio of Tuson and Ross, measures the
effectiveness of each operator and is used to rank the
operators, with the highest ranked operator receiving the
largest operator rate and the lowest ranked operator
receiving the smallest operator rate. Chew et al. (2002)
develop a variable-period AGA that employs two
populations. The first population is a reference population
with static operator rates while the operator rates in the
second population are adjusted based on differences
between the two populations.

Tabu search (TS), developed by Glover (1989, 1990a,
1990b), is a search heuristic that uses a single solution to
search through a solution neighborhood, often utilizing
both short-term and long-term memory. Park and Kim
(1997) use a TS to schedule orders on identical parallel
machines where each order has a ready time and a due date.
An order is split into multiple jobs and each job is
scheduled separately with the objective of minimizing the
holding costs of the orders. Bilge et al. (2004) employ a TS
to schedule uniform parallel machines with an objective of
minimizing total tardiness. Jobs have sequence-dependent
setups and unique arrival dates and due dates. Logendran
and Subur (2004) develop a TS to solve jR T∑ with
release times and machine availability times as wells as the
possibility of splitting a job into two lots that can be
processed on different machines. Since the success of a
tabu search is based largely on the initial solution as well as
the search procedure, they test four initial solution
heuristics and six search procedures within the tabu search.
Chen and Wu (2006) combine a tabu search with a
threshold accepting method and an improvement method
to solve jR T∑ with setups dependent upon the
machine and the type of job it is processing.

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

3

The next section presents a brief overview of genetic
algorithms and tabu search. Section 4 describes the three
adaptive crossover selection schemes. Section 5 discusses
the generation of test problems and the results of a
computational study. Section 6 concludes and presents
future work.

3. OVERVIEW OF GENETIC ALGORITHMS

AND TABU SEARCH

Genetic algorithms were developed by Holland (1975) as
a search and optimization heuristic that mimicked
biological evolution and the Darwinian theory of survival
of the fittest. A population of chromosomes is generated,
where each chromosome represents a problem solution.
Each chromosome is evaluated based on an evaluation
function that determines the value of its solution. During
subsequent generations, or iterations, chromosomes are
randomly changed using genetic operators and then
reevaluated. A reproduction scheme is used to change the
chromosomes in the population in hopes of replacing
some chromosomes currently in the population with new
chromosomes with better evaluation function values. The
population evolves with each new generation until a
stopping criteria is met.

3.1 Chromosome structure

The chromosome structure for scheduling problems is
unique in that each gene, or position, in the chromosome
represents a job. Therefore, a chromosome will have N
genes. A common representation is to randomly assign a
number between 1 and M to each gene in the chromosome
where this number represents the machine the job is
assigned to. For instance, in a problem with 5 jobs and 2
machines, the chromosome [1, 2, 2, 1, 2] assigns jobs 1 and
4 to machine 1 and jobs 2, 3, and 5 to machine 2. In this
representation, the order of jobs on each machine must
still be found. Another common representation is to assign
a job and a machine to each gene and then use the order of
the genes to determine the machine sequences. For
example, the chromosome [3-2, 1-1, 5-2, 2-2, 4-1] assigns
jobs 3, 5, and 2 to machine 2 and jobs 1 and 4 to machine1
where they are processed in the given order.

A less common, but very effective representation is the
random keys chromosome structure developed by Bean
(1994). In this representation a random number from the
distribution U[1.00, M + 1) is generated for each gene. This
number represents the machine the job is assigned to as
well as the job’s processing order. The integer part of the
gene is the machine assignment. The decimal part of the
gene is used to determine machine sequences. Jobs are first
sorted by the integer part of the gene where jobs with the
same integer are assigned to the machine represented by
that integer. Within each machine, jobs are sorted based on
the decimal part of the gene, where jobs with a smaller
decimal value are processed before jobs with a larger
decimal value. For example, the chromosome [1.21, 2.98,
2.10, 1.22, 2.25] assigns jobs 1 and 4 to machine 1 and jobs

3, 5, and 2 to machine 2 where they are processed in the
given order. Since a random keys chromosome is just a
sequence of random numbers, mutations or crossovers will
not cause infeasible solutions. A crossover operation on a
chromosome that assigns both the machine and job for
each gene could result in a job being assigned to more than
one gene and another job not being assigned at all, causing
an infeasible solution. Using a chromosome that can
become infeasible under crossovers requires an additional
step to determine the feasibility of each chromosome,
which is not needed for random keys genetic algorithms.

3.2 Genetic operators

Three genetic operators, elitist reproduction, crossover
and immigration, are used to introduce randomness into
the GA and hopefully prevent it from getting stuck in a
local minimum. Elitist reproduction chooses the
chromosomes with the best fitness (or evaluation function)
value to remain in the population for the next generation.
This keeps the strongest known solutions in the population.
Immigration (Norman and Bean, 1999) randomly
generates chromosomes to be added to the population for
the next generation. Crossover randomly selects two
“parent” chromosomes from the current population to
create a “child” whose genes are a combination of its
parents’ genes.

During a single-point crossover (SPC), an integer n
between 1 and N is selected as the crossover gene. For
genes 1, ..., n − 1, parent 1’s gene values are copied to child
1 and parent 2’s gene values are copied to child 2. For
genes n, ..., N, parent 1’s gene values are copied to child 2
and parent 2’s gene values are copied to child 1. During a
two-point crossover (TPC), two integers n1 and n2 between
1 and N are selected as crossover genes where n1 < n2. For
genes 1, ..., n1 − 1, parent 1’s gene values are copied to child
1 and parent 2’s gene values are copied to child 2. For
genes n1, ..., n2 − 1, parent 1’s gene values are copied to
child 2 and parent 2’s gene values are copied to child 1. For
genes n2, ..., N, parent 1’s gene values are copied to child 1
and parent 2’s gene values are copied to child 2. During
parametric uniform crossover (PUC), for each gene i =
1, ..., N, a random value is generated from (0,1)U . If this
value is less than (W.L.O.G.) the probability of crossover
Pc , then child 1 receives gene i from parent 1 and child 2
receives gene i from parent 2. If this value is greater than
or equal to Pc , then child 1 receives gene i from parent 2
and child 2 receives gene i from parent 1. If the probability
of a crossover Pc is limited to 0.5, the crossover is
considered a uniform crossover (UC). Figure 1 shows an
example of single-point, two-point, uniform, and
parametric uniform crossovers.

3.3 Evaluation function, stopping criteria, and

parameters

Our evaluation function is total weighted tardiness
which we want to minimize. The GA will stop once a set
number of iterations have passed since a better (lower)

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

4

evaluation function value was found. The minimum
number of iterations that must pass without finding a
lower evaluation function value MinIter was set to 200. The
traditional GA was tested with populations of size 100,
200, 300, 400, and 500. This initial testing showed that
while a population size of 200 was statistically better than a
population size of 100, there was not statistical difference
between a population of size 200, 300, 400, and 500.
Therefore, the number of chromosomes in the population
PopSize was set to 200. For each generation, 20% of the
population is generated through elitist reproduction, 79%
is generated through crossover, and 1% is generated
through immigration as suggested by Norman and Bean
(1999).

3.4 Tabu search

To generate the initial solution for our tabu search, we
will randomly generate PopSize solutions, where PopSize is
the number of chromosomes in our GA’s population, and
evaluate these solutions based on the same objective
function used to judge chromosome fitness in the GA,
total tardiness. During a job swap, two jobs switch
positions in their respective schedules. These jobs may
both be scheduled on the same machine or they may be
scheduled on different machines. During a job insert, a job
is randomly placed in a new position in the schedule of
either its current machine or the schedule of another

machine. All possible job swaps and job inserts will be
performed on this solution with the result of each
neighborhood move added to the candidate list. This
results in ((1))/ 2N N − swaps and N(M − 1) inserts.
After all possible neighborhood moves have been made,
the candidate list is evaluated and the best solution from
the candidate list is checked to determine if it is tabu. The
tabu list will hold the objective value of the seven most
recent starting solutions. A tabu list length of seven has
been shown to be effective in machine scheduling (Glover,
1990a; Glass et al., 1994; Hsieh et al., 2003). If the
selection solution is not tabu, then it becomes the starting
solution for the next iteration. If the selected solution is
tabu, it is then checked against the aspiration criteria. If the
solution has a better objective value than the best known
solution, then it will become non-tabu and will be chosen
as the starting solution for the next iteration. Otherwise it
remains tabu and the next best solution is checked to see if
it is tabu. This continues until a tabu solution exceeds the
aspiration criteria or a non-tabu solution is found. If all
solutions are tabu, the best solution in the candidate list is
selected. After choosing the next starting solution, its
objective value is added to the tabu list and the objective
value that has been in the tabu list the longest is removed
from the tabu list. The TS employs the same stopping
criteria as the GA: 200 iterations without a new best
solution.

 Parent 1 1.23 3.42 2.99 3.23 1.22 2.00
 Parent 2 3.45 2.35 1.67 2.84 1.11 3.75

Child under SPC 1.23 3.42 1.67 2.84 1.11 3.75

 n = 3

Child under TPC 1.23 2.35 1.67 3.23 1.22 2.00
n1 = 2, n2 = 4

Child under UC 1.23 2.35 2.99 2.84 1.22 3.75
Crossover Prob 0.25 0.65 0.37 0.99 0.01 0.86

Child under PUC 1.23 3.42 2.99 2.84 1.22 3.75

Crossover Prob 0.25 0.65 0.37 0.99 0.01 0.86

Figure 1. Example of SPC, TPC, UC, and PUC.

 Parent 1 Solution Genes Reg Gene
 Parent 2 Solution Genes Reg Gene

 Parent 2
 0 1
 0 00 01
 Pa

re
nt

 1

1 10 11

 00
 01
 10
 11

Single-Point Crossover
Two-Point Crossover
Uniform Crossover
Parametric Uniform Crossover

Figure 2. Regulatory gene pairings for the 0-1 RGS representation.

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

5

 Parent 2
 0 1 2
 0 00 01 02
 1 10 11 12
 Pa

re
nt

 1

2 20 21 22

 02 10 21 Two-Point Crossover
 01 11 20 Uniform Crossover
 00 12 22 Parametric Uniform Crossover

Figure 3. Regulatory gene pairings for the 0-1-2 RGS representation.

4. ADAPTIVE CROSSOVER SELECTION
SCHEMES

Three adaptive crossover selection schemes (regulatory
gene selection, roulette wheel selection, and tournament
selection) will be employed during the crossover phase of a
GA. Single-point crossover (SPC), two-point crossover
(TPC), uniform crossover (UC), and parametric uniform
crossover (PUC) will be tested under the adaptive
crossover selection schemes while the traditional GA will
use only PUC.

4.1 Regulatory gene selection

While biological cell reproduction occurs within the
nucleus of the cell, outside genetic material sometimes
controls the reproduction process. We will mimic this
phenomenon in our GA by adding a regulatory gene to
each chromosome. Whenever a crossover operation is
required, two parents are randomly chosen and their
regulatory genes are combined to select the crossover
operator to be performed. The first regulatory gene
representation is the 0-1 representation. In this
representation, each regulatory gene receives a value of 0
or 1. Figure 2 shows the regulatory gene pairings for the
0-1 representation. In this representation, each crossover
operator is represented by one regulatory gene pairing.
Initial testing shows that during the use of this
representation, either the value of 0 or 1 quickly dominates
the other value, making it almost impossible to perform
three of the crossover operator. For example, if most of
the chromosomes in the population contain a regulatory
gene value of 0, the crossover operators TPC, UC, and
PUC will rarely occur.

The 0-1-2 representation was developed to prevent the
GA from converging to a single regulatory gene value and
therefore, a single crossover operator. In this
representation, each regulatory gene receives a value of 0, 1,
or 2. Figure 3 shows the regulatory gene pairings for this
representation. This representation does not include SPC
because it is a subset of TPC. With this representation, if
one of the regulatory gene values is dominated by the
other values, each crossover operator can still be selected
and the GA is less likely to converge to a single crossover
operator.

The Rand representation was also developed to prevent
the GA from converging to a single regulatory gene value.
The regulatory gene receives a random value from (0,1)U .
When a crossover operation is required, two random values

r1 and r2 are generated from (0,1)U . The regulatory gene
value of parent 1 is compared to r1 and the regulatory gene
value of parent 2 is compared to r2. The results of these
comparisons determine the crossover operator to be
performed. Since r1 and r2 are randomly generated each
time a crossover operation is required, none of the
crossover operators will be able to dominate the other
crossover operators.

The Species representation was developed to mimic
natural environments where several species coexist. These
species are similar enough to compete for the same
resources, but are different enough to not reproduce with
other species. In this representation, each crossover
operator will be considered a separate species, which will
be denoted by an additional gene in chromosome. The
starting population will be split evenly among the different
species. When a crossover is required, two parents will be
randomly chosen until the parents contain the same species
gene. The crossover operator designated by this species
gene will then be performed on these parents. Elite
reproduction and immigration will be performed without
regard to the species gene.

4.2 Roulette wheel selection

Roulette wheel selection (Goldberg, 1989) is often used
in reproduction because it rewards chromosomes based on
their fitness in proportion to the overall fitness of the
entire population. This encourages the evolutionary
procedure to focus on the strongest portion of the
population while occasionally allowing the inclusion of a
weaker chromosome. We will use roulette wheel selection
(RWS) to choose a crossover operator by awarding
“credits” to a crossover operator for producing “good”
children. Each crossover operator will receive the same
base roulette value b. Then, whenever a crossover operator
produces a child that has a lower total tardiness value than
the current lowest total tardiness value, its roulette value
will increase by one.

The use of a roulette wheel allows the GA to choose
crossover operators based on their past performance.
Operators that produce better children will have higher
roulette values and should therefore be chosen more often
than operators that produce worse children and thus have
lower roulette values. Since an operator’s roulette value can
increase throughout the run of the GA, the initial worth of
each operator does not determine the outcome of the
entire run. Operators who produce poor children in the

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

6

early stages of the GA, but then produce many good
children in the later stages will gradually increase their
portion of the roulette wheel to reflect their growing merit
to the GA. Conversely, operators who produce good
children in the early stages, and thus initially comprise a
large portion of the roulette wheel, can later lose much of
their share of the roulette wheel if they fail to continue to
produce good children.

The choice of a base value can significantly affect the
overall performance of this representation. For the first
iteration, every crossover operator has a 25% chance of
being chosen whenever a crossover operation is required.
If a base value of 1 is used, then the first crossover
operator that produces a “good” child will give that
crossover operator a 40% chance of being chosen, an
increase of 160%. But if a base value of 100 is used, the
first crossover operator that produces a “good” child will
give that crossover operator a 25.19% chance of being
chosen, only a 101% increase. Since the base value
determines how much a single “good” child affects the
overall distribution of the roulette wheel among each
crossover operator, we will test base values of 1, 50, 100,
and 150.

4.3 Tournament selection

Tournament selection is often used within a crossover
operation to choose the best child among all the children
created by this crossover. This will ensure that the best
child produced by the crossover will always continue to the
next generation. Whenever a crossover operation is
required, two parents will be chosen and each of the four
crossover operator will be performed on these parents.
Tournament selection (TMT) will then be applied to this
pool of children and the best child will continue to the
next generation.

5. COMPUTATIONAL EVALUATION AND

RESULTS

The adaptive crossover selection genetic algorithms
(ACSGAs) and TS were tested against a traditional GA on a
Pentium IV 3.8 GHz with 1 GB of RAM. All programs
were coded in C and run in Visual Studio .NET with
Windows XP as the operating system. Processing times were
generated from the distribution U[100, 200]. Due dates are
dependent upon processing times and were generated from
two distributions generated by the formula

[(1 / 2), (1 / 2)]U P Pτ ρ τ ρ− − − + , where P controls the
makespan, τ controls the priority factor, and ρ controls the
due date range where ρ = 0.5 and τ = 0.3 (L) or 0.6 (H), as
suggested by Kim et al. (2003). The due date formula
generates a tight (low variability due to τ = 0.3) due date
distribution and a loose (high variability due to τ = 0.6) due
date distribution. P is estimated as the average processing
time of a job multiplied by the average number of jobs per
machine (the number of jobs divided by the number of
machines). The setup times are asymmetric (i.e. sijk may not

be equal to sjik) and are generated from the distributions
U[40,60] (L), U[20,80] (M), and U[0,100] (H), where 50 is
the mean setup time. This allows for setups with low,
medium, and high variability. The setup times satisfy the
triangle inequality (i.e. sijk + sjlk ≥ silk). The following problem
sizes were considered: 50 jobs with 5 or 10 machines, 100
jobs with 5, 10, or 20 machines, and 200 jobs with 10 or 20
machines. Ten problem instances were generated for each of
the 6 problem sets (setup distribution, and τ value) within
each problem size (i.e. each job-machine combination). Each
algorithm was run sixteen times for each problem instance.
Table 1 shows the average total tardiness of the GA,
ACSGAs, and TS for each problem size.

The GA, ACSGAs, and TS will be compared based on
solution quality using Fisher’s LSD test, which is basically a
multiple t-test. When an algorithm is statistically worse
than the GA for all six problem sets for two consecutive
iterations (problem sizes), this algorithm will be excluded
from future comparisons. By requiring two consecutive
iterations with inferior results, we ensure that the poor
performance of the specific algorithm is not due to
randomness. Table 2 shows the LSD comparison of
average tardiness of the GA, ACSGAs, and TS for several
problem sizes. A O denotes that the algorithm is
statistically worse than the GA (i.e. the algorithm and the
GA are statistically different and the algorithm has a higher
average total tardiness than the GA) while a P denotes that
the algorithm is statistically better than the GA (i.e. the
algorithm and the GA are statistically different and the
algorithm has a lower average total tardiness than the GA).
Otherwise, the GA and algorithm are statistically the same.

In the first iteration (50 jobs and 5 machines), RGS with
the Species representation and TS were statistically worse
than the GA for all six problem sets while RWC with b =
50, 100, and 150 were statistically worse than the GA for at
least one problem set. No ACSGA schemes were
statistically better than the GA. In the second iteration (50
jobs and 10 machines), RGS with the Species
representation, RWS with b = 150, and TS were all
statistically worse than the GA for all six problem sets
while RWS with b = 50 and RWS with b = 100 were
statistically worse than the GA for at least one problem set.
This is the second consecutive iteration that RGS with the
Species representation and TS were statistically worse than
the GA for all problem sets. Therefore, the ACSGA
scheme and TS are inferior to the GA. No ACSGA
schemes were statistically better than the GA.

In the third iteration (100 jobs and 5 machines), RGS
with the Species representation and TS are not compared
against the GA due to their previous performances. RGS
with the Rand representation and RWS with b = 1 were
statistically worse than the GA for all six problem sets.
TMT was statistically better than the GA for three of the
six problem sets. Since RWS b = 150 was not statistically
worse than the GA for all problem sets (it was actually
statistically the same for all six problem sets), it will not be
excluded from further iterations.

In the fourth iteration (100 jobs and 10 machines), RGS
with the Rand representation and RWS with b = 1 were

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

7

statistically worse than the GA for all six problem sets
while RWS with b = 50, 100, and 150 were statistically
worse than the GA for at least one problem set. This is the
second consecutive iteration the RGS with the Rand
representation and RWS with b = 1 were statistically worse
than the GA for all problem sets. Therefore, these ACSGA

schemes are inferior to the GA. For the second
consecutive iteration, TMT was statistically better than the
GA for at least one problem set. In this iteration, it was
statistically better for five of the six problem sets.

Table 1. Average total tardiness for the GA, ACSGAs, and TS

N-M GA RGS
0-1

RGS
0-1-2

RGS
Rand

RGS
Species

RWS
 b = 1

RWS
b = 50

RWS
b = 100

RWS
b = 150 TMT TS

50-5 9994 10037 9992 10157 12466 10185 10310 10310 10312 9871 10576
50-10 5966 6019 5961 6107 7442 6117 6208 6211 6222 5863 6833
100-5 40602 40764 40573 41797 - 41915 41152 41101 41034 39705 -
100-10 23086 23283 23059 23889 - 23916 23445 23432 23383 22676 -
100-20 14192 14396 14183 - - - 14427 14356 14377 13978 -
200-10 96338 97185 96052 - - - 99293 98981 98956 91196 -
200-20 53896 54603 53825 - - - 55793 55488 55547 51446 -

Table 2. LSD average tardiness comparison for the GA, ACSGAs, and TS

τ Value

RG
S

0-
1

RG
S

0-
1-

2

RG
S

Ra
nd

RG
S

Sp
ec

ie
s

RW
S

b

=
 1

RW
S

b

=
 5

0

RW
S

b

=
 1

00

RW
S

b

=
 1

50

TM
T

TS
 N

M
Setup
Value

L H L H L H L H L H L H L H L H L H L H

L O O O O O O
M O O O O O O O O

50
5

H O O O O O O O
L O O O O O O O O O O
M O O O O O O O O O O

50
10

H O O O O O O O O
L O O O O P
M O O O O P P

100
5

H O O O O
L O O O O O O O P
M O O O O O O P P

100
10

H O O O O O O P P
L O O
M

100
20

H
L O O O O O O P P
M O O O O O O P P

200
10

H O O O O O O O P P
L O O O O O O O P P
M O O O O O O O P P

200
20

H O O O O O O P P
Legend: O Statistically worse than the GA

 P Statistically better than the GA

Table 3. Average solving time (seconds) for the GA, ACSGAs, and TS

N-M GA
RGS
0-1

RGS
0-1-2

RGS
Rand

RGS
Species

RWS
b = 1

RWS
b = 50

RWS
b = 100

RWS
b = 150

TMT TS

50-5 3.38 3.61 3.57 4.18 3.42 3.90 2.11 2.15 2.19 9.16 8.62
50-10 3.21 3.51 3.45 3.61 3.24 3.72 2.07 2.05 2.01 9.05 11.00
100-5 8.36 9.21 8.48 9.16 - 10.38 8.51 8.36 8.18 41.36 -
100-10 9.91 11.01 10.07 10.31 - 11.43 9.88 9.79 9.74 40.81 -
100-20 11.16 11.20 12.29 - - - 11.12 11.28 11.13 38.77 -
200-10 12.11 13.08 13.87 - - - 11.96 11.90 11.84 48.54 -
200-20 12.97 14.50 14.93 - - - 12.30 12.22 12.06 52.72 -

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

8

Table 4. Maximum Solving Time (seconds) for the GA, ACSGAs, and TS

N-M GA
RGS
0-1

RGS
0-1-2

RGS
Rand

RGS
Species

RWS
b = 1

RWS
b = 50

RWS
b = 100

RWS
b = 150

TMT TS

50-5 4.12 4.36 4.20 6.01 4.98 4.54 2.59 2.73 2.69 11.04 10.78
50-10 3.71 4.21 4.15 4.25 4.51 4.55 2.46 2.57 2.38 10.90 14.40
100-5 11.08 11.22 10.46 11.14 - 12.26 11.12 10.55 10.93 48.27 -
100-10 12.24 12.97 11.70 12.41 - 14.06 11.60 10.98 11.10 53.29 -
100-20 12.36 12.99 14.31 - - - 12.97 13.07 12.56 46.69 -
200-10 13.78 15.04 16.14 - - - 14.35 15.19 13.76 59.08 -
200-20 14.60 16.61 17.81 - - - 14.01 13.53 13.52 63.48 -

In the fifth iteration (100 jobs and 20 machines), RGS

with the Rand representation and RWS with b = 1 are not
compared with the GA due to their previous poor
performance. RWS b = 50 was statistically worse than the
GA for at least one problem set, but there were no
ACSGA schemes that were statistically worse than the GA
for all six problem sets. Also, no ACSGA schemes were
statistically better than the GA.

In the sixth iteration (200 jobs and 10 machines), RWS
with b = 50, 100, and 150 were all statistically worse than
the GA for all six problem sets while TMT was statistically
better than GA for all six problem sets. In the seventh
iteration (200 jobs and 20 machines), RWS with b = 50,
100, and 150 were all statistically worse than the GA for all
six problem sets. This is the second consecutive iteration
these ACSGA schemes were statistically worse than the
GA for all problem sets, therefore, these schemes are
inferior to the GA. Also, for the second consecutive
iteration, TMT was statistically better than the GA for all
six problem sets. Therefore, we can conclude that TMT
performs better than the GA, RGS with the 0-1 and 0-1-2
representations perform equally to the GA, and TS, RGS
with the Rand and Species representations, and RWS with
all levels of b perform worse than the GA. Table 3 shows
the average solving time (in seconds) of the GA, ACSGAs,
and TS while Table 4 shows the maximum solving time (in
seconds). The average and maximum solving times are
similar for the GA and all of the ACSGAs except TMT
and TS. The average solving time of TMT is two to five
times longer than that of the GA. This increase in solving
time of the TMT is mainly due to its crossover selection
procedure. Each time a crossover operation is needed in
TMT, four crossover operations are performed with the
best child proceeding to the next generation. Therefore,
TMT is generating four times more crossovers per iteration
than the GA and other ACSGAs.

6. CONCLUSIONS AND FUTURE WORK

Scheduling unrelated parallel machines to minimize
completion time without any other considerations such as
setups or due dates is an NP-hard problem. Therefore,
adding due dates and sequence-dependent setups with an
objective to minimize total tardiness makes the problem
difficult to solve for even small problem sizes and nearly
impossible to solve with most traditional solution
techniques for the larger sized problems studied in this
paper.

Genetic algorithms (GAs) are often able to find
near-optimal solutions to problems while maintaining
performance as the problem size increases. We have
attempted to improve the performance of a traditional GA
by allowing it to choose from several crossover operators
whenever a crossover operation is required. This allows the
GA to adapt to the different conditions that arise during
the run of the GA that might favor one crossover operator
over another.

Three adaptive crossover selection genetic algorithms
(ACSGAs) and a tabu search (TS) were tested against a
traditional GA for solution quality over seven problem
sizes ranging from 50 jobs and 5 machines to 200 jobs and
20 machines. The regulatory gene selection (RGS) scheme
with Species representation and TS performed worse than
the GA and other ACSGA schemes for even the smallest
problem size of 50 jobs and 5 machines. The RGS with the
Rand representation and the roulette wheel selection (RWS)
scheme with a base value b = 1 were the next ACSGA
schemes to be excluded from further iterations after 100
jobs and 10 machines. RWS with a base value of b = 50,
100, and 150 were excluded from further iterations after
200 jobs and 20 machines. RGS with the 0-1 and 0-1-2
representations were found to be statistically the same as
the GA even for 200 jobs and 20 machines. The
tournament selection (TMT) scheme was the only ACSGA
scheme that was statistically better than the GA. For 200
jobs and 10 machines and 200 jobs and 20 machines
problems, TMT outperformed the GA for all six problem
levels.

While TMT produces solutions superior to the GA’s
solutions, it also requires two to five times as much solving
time, on average. TMT performs four crossover operations
each time a crossover is required so it is reasonable that it
would require more solving time. As long as there is not a
constraint on the amount of solving time, TMT produces
better solutions. If there is a constraint on the amount of
solving time that can be allowed, the traditional GA might
be sufficient.

The effectiveness of RWS is heavily dependent upon the
choice of the base credit value as well as the first few
successful crossover operations. Because the first few
successful crossovers have such a large effect on the
proportioning of the roulette wheel, crossover operators
that initially produce better children could gain an unfair
advantage. These operators will be chosen more often due
to their larger roulette values, and therefore have more
opportunities to produce good children and continue to

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

9

increase their roulette values. This could cause a cycle that
would favor these operators even after they stop produce
better children. To prevent this possible bias, as well as
increase the overall performance of RWS, the roulette
credits given for good children could increase as the run of
the GA continued, rather than remaining static. This would
allow good children produced late in the run of the GA,
when it is harder to find better solutions, to have a greater
effect on the roulette values than those good children
produce early in the run of the GA, when it is relatively
easy to find better solutions.

Future work will focus on forming serial batches of jobs
with different job types and scheduling these batches on
unrelated parallel machines. A new chromosome
interpretation, based on the random keys representation
used in this research, will be used to simultaneously batch
and schedule jobs on these unrelated parallel machines.
This new chromosome interpretation will be tested with
the traditional GA, the RWS AGA, and the RGS AGA
with the 0-1 and 0-1-2 representations as well as with TMT
to determine if TMT will continue to outperform the GA
and other ACSGAs under a more complex problem. The
use of an increasing roulette credit with the RWS AGA will
also be implemented to test its effect on the quality of
solutions produced by the AGA.

REFERENCES

1. Alidaee, B. and Panwalkar, S.S. (1993). Single stage
minimum absolute lateness problem with a common
due date on non-identical Machines. Journal of the
Operational Research Society, 44(1): 29-36.

2. Bank, J. and Werner, F. (2001). Heuristic algorithms for
unrelated parallel machine scheduling with a common
due date, release dates, and linear earliness and
tardiness penalties. Mathematical and Computer Modelling,
33(4-5): 363-383.

3. Bean, J.C. (1994). Genetic algorithms and random keys
for sequencing and optimization. ORSA Journal on
Computing, 6(2): 154-160.

4. Bilge, U., Kirac, F., Kurtulan, M., and Pekgun, P. (2004).
A tabu search algorithm for parallel machine total
tardiness problem. Computers and Operations Research, 31:
397-414.

5. Chen, J.F. and Wu, T.H. (2006). Total Tardiness
minimization on unrelated parallel machine scheduling
with auxiliary equipment constraints. OMEGA, 34(1):
81-89.

6. Cheng, T.C.E., Chen, Z.L., and Li, C.L. (1996).
Parallel-machine scheduling with controllable
processing times. Institute of Industrial Engineers
Transactions, 28(2): 177-180.

7. Cheng, R., Gen, R., and Tosawa, T. (1995). Minmax
earliness/tardiness scheduling in identical parallel
machines system using genetic algorithms. Computers
and Industrial Engineering, 29(1-4): 513-517.

8. Chew, E.P., Ong, C.J., and Lim, K.H. (2002). Variable
period adaptive genetic algorithm. Computers and
Industrial Engineering, 42: 353-360.

9. Cochran, J.K., Horng, S.M., and Fowler, J.W. (2003). A
multi-population genetic algorithm to solve multi-
objective scheduling problems for parallel machines.
Computers and Operations Research, 20: 1087-1102.

10. Davis, L. (1989). Adapting operator probabilities in
genetic algorithms. In: J.D. Schaffer (Ed.), Proceedings of
the Third International Conference on Genetic Algorithms and
their Applications, San Mateo, pp. 61-69.

11. Glass, C.A., Potts, C.N., and Shade, P. (1994).
Unrelated parallel machine scheduling using local
search. Mathematical and Computer Modelling, 20(2):
41-52.

12. Glover, F. (1989). Tabu search−Part I. ORSA Journal on
Computing, 1(3): 190-206.

13. Glover, F. (1990a). Tabu search: A tutorial. Interfaces,
20(4): 74-94.

14. Glover, F. (1990b). Tabu search−Part II. ORSA Journal
on Computing, 2(1):4-32.

15. Goldberg, D.E. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, Massachusetts.

16. Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy
Kan, A.H.G. (1979). Optimization and approximation
in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5: 287-326.

17. Holland, J.H. (1975). Adaptation in Natural and Artificial
Systems, The University of Michigan Press, Ann Arbor.

18. Hsieh, J.C., Chang, P.C., and Hsu, L.C. (2003).
Scheduling of drilling operations in printed circuit
board factory. Computers and Industrial Engineering, 22:
461-473.

19. Jou, C. (2005). A genetic algorithm with sub-indexed
partitioning genes and its application to production
scheduling of parallel machines. Computers and Industrial
Engineering, 48: 39-54.

20. Julstrom, B.A. (1995). What have you done for me
lately? Adapting operator probabilities in a steady-state
genetic algorithm. Proceedings of the Sixth International
Conference on Genetic Algorithms, University of Pittsburgh,
pp. 81-87.

21. Kim, D.W., Kim, K.H., Jang, W., and Chen, F.F. (2002).
Unrelated parallel machine scheduling with setup times
using simulated annealing. Robotics and Computer
Integrated Manufacturing, 18(3-4): 223-231.

22. Kim, D.W., Na, D.G., and Chen, F.F. (2003). Unrelated
parallel machine scheduling with setup times and a
total weighted tardiness objective. Robotics and Computer
Integrated Manufacturing, 19(1-2):173-181.

23. Kurz, M.E. and Askin, R.G. (2001). Heuristic
scheduling of parallel machines with sequence-
dependent set-up times. International Journal of
Production Economics, 39(16): 3747-3769.

24. Kurz, M.E. and Askin, R.G. (2004). Scheduling flexible
flow lines with sequence-dependent setup times.
European Journal of Operational Research, 159: 66-82.

25. Liaw, C.H., Lin, Y.K., Cheng, C.Y., and Chen, M.
(2003). Scheduling unrelated parallel machines to
minimize total weighted tardiness. Computers and
Operations Research, 30(12): 1777-1789.

Randall and Kurz: Effectiveness of Adaptive Crossover Procedures for a Genetic Algorithm to Schedule Unrelated Parallel Machines with Setups
IJOR Vol. 4, No. 1, 1−10 (2007)

10

26. Logendran, B. and Subur, F. (2004). Unrelated parallel
machine scheduling with job splitting. Institute of
Industrial Engineers Transactions, 36(4): 359-372.

27. Luu, D.T., Bohez, E.L.J., and Techanitisawad, A. (2002).
A hybrid genetic algorithm for the batch sequencing
problem on identical parallel machines. Production
Planning and Control, 13(3): 243-252.

28. Min, L. and Cheng, W. (1999). A genetic algorithm for
minimizing the makespan in the case of scheduling
identical parallel machines. Artificial Intelligence in
Engineering, 13: 399-403.

29. Norman, B.A. and Bean, J.C. (1999). A genetic
algorithm methodology for complex scheduling
problems. Naval Research Logistics, 46: 199-211.

30. Park, M.-W. and Kim, Y.-D. (1997). Search heuristics
for a parallel machine scheduling problem with ready
times and due dates. Computers and Industrial Engineering,
33(3-4): 793-796.

31. Randall, P. and Kurz, M.E. (2005). Scheduling
unrelated parallel machines using a random keys
genetic algorithm. Proceedings of the IIE 2005 Annual
Conference, Atlanta GA.

32. Sivrikaya-Serifoglu, F. and Ulusoy, G. (1999). Parallel
machine scheduling with earliness and tardiness
penalties. Computers and Operations Research, 26: 773-787.

33. Tuson, A. and Ross, P. (1996). Cost based operator rate
adaptation: An investigation. In: H.M. Voigt, W.
Ebeling, I. Rechenberg, and H.P. Schwefel (Eds.),
Parallel Problem Solving from Nature-PPSN IV, Springer,
Berlin.

34. Van Hop, N. and Nagarur, N.N. (2004). The
scheduling problem of PCBs for multiple
non-identical parallel machines. European Journal of
Operational Research, 158: 577-594.

35. Van Hop N. and Tabucanon, M.T. (2005). Adaptive
genetic algorithm for lot-size problem with
self-adjustment operation rate. International Journal of
Production Economics, 98(2): 129-135.

36. Xiao, J., Michalewicz, Z., and Zhang, L. (1996).
Evolutionary planner/navigator operator performance
and self-tuning. Proceedings of IEEE International
Conference on Evolutionary Computation, pp. 366-371.

