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AbstractThe unrelated parallel machine scheduling problem, in its most general form, is applicable to many 
manufacturing and service environments. This problem requires the scheduling of  a group of  independent jobs on 
unrelated parallel machines as well as the sequencing of  the jobs on each individual machine. In this paper, we propose a 
genetic algorithm with adaptive crossover selection to schedule independent jobs on unrelated parallel machines to minimize 
total tardiness. Each job has a unique due date, machine-dependent processing times, and sequence-dependent setup times. 
Three general adaptive crossover selection schemes will be compared with a traditional genetic algorithm and tabu search 
for large-scale problems (up to 200 jobs and 20 machines). The adaptive genetic algorithm with the tournament selection 
scheme is shown to outperform all other heuristics with respect to solution quality although it does require more solving 
time than many of  the other heuristics. 
KeywordsUnrelated parallel machine scheduling, Genetic algorithms, Sequence-dependent setups 
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1. INTRODUCTION 

This paper presents three types of  adaptive crossover 
selection schemes within a traditional genetic algorithm to 
schedule unrelated parallel machines. In the unrelated 
parallel machine scheduling problem, denoted R i , a 
group of  independent jobs are available to be scheduled on 
multiple machines at a single stage. Machining 
characteristics such as processing times and setup times are 
unique to each machine and are unrelated to machining 
characteristics of  other machines. In the most general case 
of  this problem, all jobs are ready to be processed at time 
zero and all machines are ready to process jobs at time zero. 
Each machine is capable of  processing every job. A job 
must be processed completely by one machine and job 
preemption is not allowed. Although completion time 
objectives are dominant in early scheduling literature, an 
emphasis on satisfying deadlines in industry has caused the 
focus of  recent unrelated parallel machine scheduling 
literature to shift towards due date-related objectives such 
as minimizing the total tardiness of  the jobs, denoted 

jT∑ , and occasionally the total earliness of  jobs as well, 

denoted ∑ jE . For a review of  scheduling notation, see 
Graham et al. (1979). 

In our problem, N independent jobs are scheduled on M 
unrelated machines at a single stage. Each job j has a 
unique due date dj, a processing time jkp when it is 
processed on machine k, and a setup time ijks  when it is 

preceded by job i on machine k. The completion time of  
job j is Cj and the tardiness of  job j is Tj = max{0, Cj − dj}. 
A traditional genetic algorithm and tabu search will be 
compared with three adaptive crossover selection schemes 
(regulatory gene, roulette wheel selection, and tournament 
selection). 

 
2. LITERATURE REVIEW 

While linear programming models are not able to solve 
problems of  large sizes for unrelated parallel machine 
scheduling in reasonable time, they give optimal solutions 
that can be used to test the quality of  other non-optimal 
solution heuristics. Alidaee and Panwalker (1993), by 
employing a common due date for all jobs, are able to 
reduce j jR E T+∑ ∑ to a transportation problem that 
can be solved in polynomial time. Cheng et al. (1996) 
reduce the above problem to an assignment problem with 
polynomial complexity through the use of  a processing 
time compression cost. Logendran and Subur (2004) 
develop a mixed integer programming (MIP) model for 

jR T∑  where jobs have release times and machines 
have availability times. There is also the possibility of  
splitting a job into two lots that can be processed on 
different machines. Liaw et al. (2003) develop a 
branch-and-bound algorithm that incorporates a lower 
bound found by solving a j jR E T+∑ ∑ -based 
assignment problem. 
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Search heuristics tend to be more effective for larger 
problem sizes than optimal methods because they are able 
to quickly consider many different solutions. While an 
optimal solution is never guaranteed, many search 
heuristics consistently yield optimal or near-optimal 
solutions. Randall and Kurz (2005) show that a random 
keys genetic algorithm finds optimal and near-optimal 
solutions for jR T∑ where jobs have sequence-ependent 
setups. 

Bank and Werner (2001) first assign each job to a 
machine and then compare heuristics to schedule each 
machine for j jR E T+∑ ∑ with a common due date and 
job release times. Neighborhood search, iterative 
improvement, multistart procedures, simulated annealing, 
and threshold accepting heuristics are compared against 
constructive heuristics. Kim et al. (2002) develop a 
simulated annealing heuristic for jR T∑ with 
sequence-dependent setups. A job is assumed to be 
composed of  several items, each of  which can be 
processed on a different machine. 

Several papers have applied genetic algorithms (GAs) to 
the parallel machine scheduling problem. Van Hop and 
Nagarur (2004) apply GAs to the optimization of  printed 
circuit board operations to group similar boards, balance 
machines, and reduce setups. Cheng et al. (1995) develop a 
job partitioning chromosome structure within their GA to 
minimize maximum weighted absolute lateness under a 
common due date. Luu et al. (2002) sequence batches on 
parallel machines with a hybrid GA that includes an 
Earliest Due Date-Greedy insertion method. Jou (2005) 
develops a genetic algorithm to schedule parallel flow shop 
machines where jobs are queued in a bottleneck stage. 
Cochran et al. (2003) develop a two-state multi-population 
GA with the multiple objectives of  minimizing the 
makespan, minimizing the total weighted tardiness, and 
minimizing the total weighted completion times.  

Min and Cheng (1999) and Kurz and Askin (2001) use 
GAs to minimize the makespan. After comparing a GA 
with a slicing heuristic, a multiple MULTI-FIT heuristic, 
and an insertion heuristic under the constraints of  job 
release times and sequence-dependent setups, Kurz and 
Askin conclude that the random keys chromosome 
representation (Bean, 1994) could yield better solutions 
than a traditional binary representation. Kurz and Askin 
(2004) develop a GA with the random keys chromosome 
structure to schedule flexible flowlines with 
sequence-dependent setups to minimize the completion 
time. 

Norman and Bean (1999) use the random keys 
chromosome representation to schedule 360 jobs on two 
parallel machines in an automotive plant with job release 
times and sequence-dependent setups to minimize the total 
tardiness. Sivrikaya-Serifoglu and Ulusoy (1999) minimize 
total earliness and total tardiness for the parallel machine 
scheduling problem with job release times and 
sequence-dependent setups through the use of  a GA 
employing their MCUOX crossover operator. Glass et al. 
(1994) compare a GA with a descent algorithm, simulated 

annealing, and tabu search for maxR C  where maxC  is 
the makespan. 

Several papers have developed adaptive genetic 
algorithms (AGAs). Davis (1989) develops an AGA with 
variable rates for both crossover and mutation operators by 
tracking the lineage of  chromosomes through several 
generations. Chromosomes with superior ancestors are 
selected for the majority of  crossover and mutation 
operations performed. Julstrom (1995) expanded the work 
of  Davis to the adaptive operator probabilities mechanism 
that tracks the ancestry of  both chromosomes and 
crossover and mutation operators. Van Hop and 
Tabucanon (2005) adjust operator rates by comparing the 
number of  chromosomes that each operator should 
theoretically create and the number of  chromosomes that 
each operator did create. These ratios of  theoretical to 
actual chromosomes determine the adjusted rates for the 
operators. 

Tuson and Ross (1996) develop an AGA with a 
cost-based operator rate adaptation mechanism that adjusts 
rates at a fixed interval. The operator with the largest 
benefit-to-cost ratio receives the largest operator rate while 
the operator with the smallest benefit-to-cost ratio receives 
the smallest operator rate. Xiao et al. (1996) also develop a 
fixed-period AGA. A performance index, similar to the 
benefit-to-cost ratio of  Tuson and Ross, measures the 
effectiveness of  each operator and is used to rank the 
operators, with the highest ranked operator receiving the 
largest operator rate and the lowest ranked operator 
receiving the smallest operator rate. Chew et al. (2002) 
develop a variable-period AGA that employs two 
populations. The first population is a reference population 
with static operator rates while the operator rates in the 
second population are adjusted based on differences 
between the two populations. 

Tabu search (TS), developed by Glover (1989, 1990a, 
1990b), is a search heuristic that uses a single solution to 
search through a solution neighborhood, often utilizing 
both short-term and long-term memory. Park and Kim 
(1997) use a TS to schedule orders on identical parallel 
machines where each order has a ready time and a due date. 
An order is split into multiple jobs and each job is 
scheduled separately with the objective of  minimizing the 
holding costs of  the orders. Bilge et al. (2004) employ a TS 
to schedule uniform parallel machines with an objective of  
minimizing total tardiness. Jobs have sequence-dependent 
setups and unique arrival dates and due dates. Logendran 
and Subur (2004) develop a TS to solve jR T∑  with 
release times and machine availability times as wells as the 
possibility of  splitting a job into two lots that can be 
processed on different machines. Since the success of  a 
tabu search is based largely on the initial solution as well as 
the search procedure, they test four initial solution 
heuristics and six search procedures within the tabu search. 
Chen and Wu (2006) combine a tabu search with a 
threshold accepting method and an improvement method 
to solve jR T∑  with setups dependent upon the 
machine and the type of  job it is processing.  
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The next section presents a brief  overview of  genetic 
algorithms and tabu search. Section 4 describes the three 
adaptive crossover selection schemes. Section 5 discusses 
the generation of  test problems and the results of  a 
computational study. Section 6 concludes and presents 
future work. 

 
3. OVERVIEW OF GENETIC ALGORITHMS 

AND TABU SEARCH 

Genetic algorithms were developed by Holland (1975) as 
a search and optimization heuristic that mimicked 
biological evolution and the Darwinian theory of  survival 
of  the fittest. A population of  chromosomes is generated, 
where each chromosome represents a problem solution. 
Each chromosome is evaluated based on an evaluation 
function that determines the value of  its solution. During 
subsequent generations, or iterations, chromosomes are 
randomly changed using genetic operators and then 
reevaluated. A reproduction scheme is used to change the 
chromosomes in the population in hopes of  replacing 
some chromosomes currently in the population with new 
chromosomes with better evaluation function values. The 
population evolves with each new generation until a 
stopping criteria is met. 

 
3.1 Chromosome structure 

The chromosome structure for scheduling problems is 
unique in that each gene, or position, in the chromosome 
represents a job. Therefore, a chromosome will have N 
genes. A common representation is to randomly assign a 
number between 1 and M to each gene in the chromosome 
where this number represents the machine the job is 
assigned to. For instance, in a problem with 5 jobs and 2 
machines, the chromosome [1, 2, 2, 1, 2] assigns jobs 1 and 
4 to machine 1 and jobs 2, 3, and 5 to machine 2. In this 
representation, the order of  jobs on each machine must 
still be found. Another common representation is to assign 
a job and a machine to each gene and then use the order of  
the genes to determine the machine sequences. For 
example, the chromosome [3-2, 1-1, 5-2, 2-2, 4-1] assigns 
jobs 3, 5, and 2 to machine 2 and jobs 1 and 4 to machine1 
where they are processed in the given order. 

A less common, but very effective representation is the 
random keys chromosome structure developed by Bean 
(1994). In this representation a random number from the 
distribution U[1.00, M + 1) is generated for each gene. This 
number represents the machine the job is assigned to as 
well as the job’s processing order. The integer part of  the 
gene is the machine assignment. The decimal part of  the 
gene is used to determine machine sequences. Jobs are first 
sorted by the integer part of  the gene where jobs with the 
same integer are assigned to the machine represented by 
that integer. Within each machine, jobs are sorted based on 
the decimal part of  the gene, where jobs with a smaller 
decimal value are processed before jobs with a larger 
decimal value. For example, the chromosome [1.21, 2.98, 
2.10, 1.22, 2.25] assigns jobs 1 and 4 to machine 1 and jobs 

3, 5, and 2 to machine 2 where they are processed in the 
given order. Since a random keys chromosome is just a 
sequence of  random numbers, mutations or crossovers will 
not cause infeasible solutions. A crossover operation on a 
chromosome that assigns both the machine and job for 
each gene could result in a job being assigned to more than 
one gene and another job not being assigned at all, causing 
an infeasible solution. Using a chromosome that can 
become infeasible under crossovers requires an additional 
step to determine the feasibility of  each chromosome, 
which is not needed for random keys genetic algorithms. 
 
3.2 Genetic operators 

Three genetic operators, elitist reproduction, crossover 
and immigration, are used to introduce randomness into 
the GA and hopefully prevent it from getting stuck in a 
local minimum. Elitist reproduction chooses the 
chromosomes with the best fitness (or evaluation function) 
value to remain in the population for the next generation. 
This keeps the strongest known solutions in the population. 
Immigration (Norman and Bean, 1999) randomly 
generates chromosomes to be added to the population for 
the next generation. Crossover randomly selects two 
“parent” chromosomes from the current population to 
create a “child” whose genes are a combination of  its 
parents’ genes.  

During a single-point crossover (SPC), an integer n 
between 1 and N is selected as the crossover gene. For 
genes 1, ..., n − 1, parent 1’s gene values are copied to child 
1 and parent 2’s gene values are copied to child 2. For 
genes n, ..., N, parent 1’s gene values are copied to child 2 
and parent 2’s gene values are copied to child 1. During a 
two-point crossover (TPC), two integers n1 and n2 between 
1 and N are selected as crossover genes where n1 < n2. For 
genes 1, ..., n1 − 1, parent 1’s gene values are copied to child 
1 and parent 2’s gene values are copied to child 2. For 
genes n1, ..., n2 − 1, parent 1’s gene values are copied to 
child 2 and parent 2’s gene values are copied to child 1. For 
genes n2, ..., N, parent 1’s gene values are copied to child 1 
and parent 2’s gene values are copied to child 2. During 
parametric uniform crossover (PUC), for each gene i = 
1, ..., N, a random value is generated from (0,1)U . If  this 
value is less than (W.L.O.G.) the probability of  crossover 
Pc , then child 1 receives gene i from parent 1 and child 2 
receives gene i from parent 2. If  this value is greater than 
or equal to Pc , then child 1 receives gene i from parent 2 
and child 2 receives gene i from parent 1. If  the probability 
of  a crossover Pc is limited to 0.5, the crossover is 
considered a uniform crossover (UC). Figure 1 shows an 
example of  single-point, two-point, uniform, and 
parametric uniform crossovers. 

 
3.3 Evaluation function, stopping criteria, and 

parameters 

Our evaluation function is total weighted tardiness 
which we want to minimize. The GA will stop once a set 
number of  iterations have passed since a better (lower) 
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evaluation function value was found. The minimum 
number of  iterations that must pass without finding a 
lower evaluation function value MinIter was set to 200. The 
traditional GA was tested with populations of  size 100, 
200, 300, 400, and 500. This initial testing showed that 
while a population size of  200 was statistically better than a 
population size of  100, there was not statistical difference 
between a population of  size 200, 300, 400, and 500. 
Therefore, the number of  chromosomes in the population 
PopSize was set to 200. For each generation, 20% of  the 
population is generated through elitist reproduction, 79% 
is generated through crossover, and 1% is generated 
through immigration as suggested by Norman and Bean 
(1999). 

 
3.4 Tabu search 

To generate the initial solution for our tabu search, we 
will randomly generate PopSize solutions, where PopSize is 
the number of  chromosomes in our GA’s population, and 
evaluate these solutions based on the same objective 
function used to judge chromosome fitness in the GA, 
total tardiness. During a job swap, two jobs switch 
positions in their respective schedules. These jobs may 
both be scheduled on the same machine or they may be 
scheduled on different machines. During a job insert, a job 
is randomly placed in a new position in the schedule of  
either its current machine or the schedule of  another 

machine. All possible job swaps and job inserts will be 
performed on this solution with the result of  each 
neighborhood move added to the candidate list. This 
results in ( ( 1))/ 2N N −  swaps and N(M − 1) inserts. 
After all possible neighborhood moves have been made, 
the candidate list is evaluated and the best solution from 
the candidate list is checked to determine if  it is tabu. The 
tabu list will hold the objective value of  the seven most 
recent starting solutions. A tabu list length of  seven has 
been shown to be effective in machine scheduling (Glover, 
1990a; Glass et al., 1994; Hsieh et al., 2003). If  the 
selection solution is not tabu, then it becomes the starting 
solution for the next iteration. If  the selected solution is 
tabu, it is then checked against the aspiration criteria. If  the 
solution has a better objective value than the best known 
solution, then it will become non-tabu and will be chosen 
as the starting solution for the next iteration. Otherwise it 
remains tabu and the next best solution is checked to see if  
it is tabu. This continues until a tabu solution exceeds the 
aspiration criteria or a non-tabu solution is found. If  all 
solutions are tabu, the best solution in the candidate list is 
selected. After choosing the next starting solution, its 
objective value is added to the tabu list and the objective 
value that has been in the tabu list the longest is removed 
from the tabu list. The TS employs the same stopping 
criteria as the GA: 200 iterations without a new best 
solution. 

 
          
 Parent 1  1.23 3.42 2.99 3.23 1.22 2.00  
 Parent 2  3.45 2.35 1.67 2.84 1.11 3.75  
          
Child under SPC  1.23 3.42 1.67 2.84 1.11 3.75  

 n = 3         
         

Child under TPC  1.23 2.35 1.67 3.23 1.22 2.00  
n1 = 2, n2 = 4         

         
Child under UC  1.23 2.35 2.99 2.84 1.22 3.75  
Crossover Prob  0.25 0.65 0.37 0.99 0.01 0.86  

          
Child under PUC  1.23 3.42 2.99 2.84 1.22 3.75  

Crossover Prob  0.25 0.65 0.37 0.99 0.01 0.86  
          

Figure 1. Example of  SPC, TPC, UC, and PUC. 
 

      
  Parent 1 Solution Genes Reg Gene  
  Parent 2 Solution Genes Reg Gene  
       
  Parent 2   
  0 1   
 0 00 01   
 Pa

re
nt

 1
 

1 10 11   
    
 00 
 01 
 10 
 11 

Single-Point Crossover 
Two-Point Crossover 
Uniform Crossover 
Parametric Uniform Crossover 

       

Figure 2. Regulatory gene pairings for the 0-1 RGS representation. 
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   Parent 2  
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  02  10  21 Two-Point Crossover 
  01  11  20 Uniform Crossover 
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Figure 3. Regulatory gene pairings for the 0-1-2 RGS representation. 
 

4. ADAPTIVE CROSSOVER SELECTION 
SCHEMES 

Three adaptive crossover selection schemes (regulatory 
gene selection, roulette wheel selection, and tournament 
selection) will be employed during the crossover phase of  a 
GA. Single-point crossover (SPC), two-point crossover 
(TPC), uniform crossover (UC), and parametric uniform 
crossover (PUC) will be tested under the adaptive 
crossover selection schemes while the traditional GA will 
use only PUC. 

 
4.1 Regulatory gene selection  

While biological cell reproduction occurs within the 
nucleus of  the cell, outside genetic material sometimes 
controls the reproduction process. We will mimic this 
phenomenon in our GA by adding a regulatory gene to 
each chromosome. Whenever a crossover operation is 
required, two parents are randomly chosen and their 
regulatory genes are combined to select the crossover 
operator to be performed. The first regulatory gene 
representation is the 0-1 representation. In this 
representation, each regulatory gene receives a value of  0 
or 1. Figure 2 shows the regulatory gene pairings for the 
0-1 representation. In this representation, each crossover 
operator is represented by one regulatory gene pairing. 
Initial testing shows that during the use of  this 
representation, either the value of  0 or 1 quickly dominates 
the other value, making it almost impossible to perform 
three of  the crossover operator. For example, if  most of  
the chromosomes in the population contain a regulatory 
gene value of  0, the crossover operators TPC, UC, and 
PUC will rarely occur. 

The 0-1-2 representation was developed to prevent the 
GA from converging to a single regulatory gene value and 
therefore, a single crossover operator. In this 
representation, each regulatory gene receives a value of  0, 1, 
or 2. Figure 3 shows the regulatory gene pairings for this 
representation. This representation does not include SPC 
because it is a subset of  TPC. With this representation, if  
one of  the regulatory gene values is dominated by the 
other values, each crossover operator can still be selected 
and the GA is less likely to converge to a single crossover 
operator. 

The Rand representation was also developed to prevent 
the GA from converging to a single regulatory gene value. 
The regulatory gene receives a random value from (0,1)U . 
When a crossover operation is required, two random values 

r1 and r2 are generated from (0,1)U . The regulatory gene 
value of  parent 1 is compared to r1 and the regulatory gene 
value of  parent 2 is compared to r2. The results of  these 
comparisons determine the crossover operator to be 
performed. Since r1 and r2 are randomly generated each 
time a crossover operation is required, none of  the 
crossover operators will be able to dominate the other 
crossover operators. 

The Species representation was developed to mimic 
natural environments where several species coexist. These 
species are similar enough to compete for the same 
resources, but are different enough to not reproduce with 
other species. In this representation, each crossover 
operator will be considered a separate species, which will 
be denoted by an additional gene in chromosome. The 
starting population will be split evenly among the different 
species. When a crossover is required, two parents will be 
randomly chosen until the parents contain the same species 
gene. The crossover operator designated by this species 
gene will then be performed on these parents. Elite 
reproduction and immigration will be performed without 
regard to the species gene.  

 
4.2 Roulette wheel selection  

Roulette wheel selection (Goldberg, 1989) is often used 
in reproduction because it rewards chromosomes based on 
their fitness in proportion to the overall fitness of  the 
entire population. This encourages the evolutionary 
procedure to focus on the strongest portion of  the 
population while occasionally allowing the inclusion of  a 
weaker chromosome. We will use roulette wheel selection 
(RWS) to choose a crossover operator by awarding 
“credits” to a crossover operator for producing “good” 
children. Each crossover operator will receive the same 
base roulette value b. Then, whenever a crossover operator 
produces a child that has a lower total tardiness value than 
the current lowest total tardiness value, its roulette value 
will increase by one.  

The use of  a roulette wheel allows the GA to choose 
crossover operators based on their past performance. 
Operators that produce better children will have higher 
roulette values and should therefore be chosen more often 
than operators that produce worse children and thus have 
lower roulette values. Since an operator’s roulette value can 
increase throughout the run of  the GA, the initial worth of  
each operator does not determine the outcome of  the 
entire run. Operators who produce poor children in the 
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early stages of  the GA, but then produce many good 
children in the later stages will gradually increase their 
portion of  the roulette wheel to reflect their growing merit 
to the GA. Conversely, operators who produce good 
children in the early stages, and thus initially comprise a 
large portion of  the roulette wheel, can later lose much of  
their share of  the roulette wheel if  they fail to continue to 
produce good children.  

The choice of  a base value can significantly affect the 
overall performance of  this representation. For the first 
iteration, every crossover operator has a 25% chance of  
being chosen whenever a crossover operation is required. 
If  a base value of  1 is used, then the first crossover 
operator that produces a “good” child will give that 
crossover operator a 40% chance of  being chosen, an 
increase of  160%. But if  a base value of  100 is used, the 
first crossover operator that produces a “good” child will 
give that crossover operator a 25.19% chance of  being 
chosen, only a 101% increase. Since the base value 
determines how much a single “good” child affects the 
overall distribution of  the roulette wheel among each 
crossover operator, we will test base values of  1, 50, 100, 
and 150. 
 
4.3 Tournament selection 

Tournament selection is often used within a crossover 
operation to choose the best child among all the children 
created by this crossover. This will ensure that the best 
child produced by the crossover will always continue to the 
next generation. Whenever a crossover operation is 
required, two parents will be chosen and each of  the four 
crossover operator will be performed on these parents. 
Tournament selection (TMT) will then be applied to this 
pool of  children and the best child will continue to the 
next generation. 

 
5. COMPUTATIONAL EVALUATION AND 

RESULTS 

The adaptive crossover selection genetic algorithms 
(ACSGAs) and TS were tested against a traditional GA on a 
Pentium IV 3.8 GHz with 1 GB of  RAM. All programs 
were coded in C and run in Visual Studio .NET with 
Windows XP as the operating system. Processing times were 
generated from the distribution U[100, 200]. Due dates are 
dependent upon processing times and were generated from 
two distributions generated by the formula 

[ (1 / 2), (1 / 2)]U P Pτ ρ τ ρ− − − + , where P controls the 
makespan, τ controls the priority factor, and ρ controls the 
due date range where ρ = 0.5 and τ = 0.3 (L) or 0.6 (H), as 
suggested by Kim et al. (2003). The due date formula 
generates a tight (low variability due to τ = 0.3) due date 
distribution and a loose (high variability due to τ = 0.6) due 
date distribution. P is estimated as the average processing 
time of  a job multiplied by the average number of  jobs per 
machine (the number of  jobs divided by the number of  
machines). The setup times are asymmetric (i.e. sijk may not 

be equal to sjik) and are generated from the distributions 
U[40,60] (L), U[20,80] (M), and U[0,100] (H), where 50 is 
the mean setup time. This allows for setups with low, 
medium, and high variability. The setup times satisfy the 
triangle inequality (i.e. sijk + sjlk ≥ silk). The following problem 
sizes were considered: 50 jobs with 5 or 10 machines, 100 
jobs with 5, 10, or 20 machines, and 200 jobs with 10 or 20 
machines. Ten problem instances were generated for each of  
the 6 problem sets (setup distribution, and τ value) within 
each problem size (i.e. each job-machine combination). Each 
algorithm was run sixteen times for each problem instance. 
Table 1 shows the average total tardiness of  the GA, 
ACSGAs, and TS for each problem size. 

The GA, ACSGAs, and TS will be compared based on 
solution quality using Fisher’s LSD test, which is basically a 
multiple t-test. When an algorithm is statistically worse 
than the GA for all six problem sets for two consecutive 
iterations (problem sizes), this algorithm will be excluded 
from future comparisons. By requiring two consecutive 
iterations with inferior results, we ensure that the poor 
performance of  the specific algorithm is not due to 
randomness. Table 2 shows the LSD comparison of  
average tardiness of  the GA, ACSGAs, and TS for several 
problem sizes. A O denotes that the algorithm is 
statistically worse than the GA (i.e. the algorithm and the 
GA are statistically different and the algorithm has a higher 
average total tardiness than the GA) while a P denotes that 
the algorithm is statistically better than the GA (i.e. the 
algorithm and the GA are statistically different and the 
algorithm has a lower average total tardiness than the GA). 
Otherwise, the GA and algorithm are statistically the same. 

In the first iteration (50 jobs and 5 machines), RGS with 
the Species representation and TS were statistically worse 
than the GA for all six problem sets while RWC with b = 
50, 100, and 150 were statistically worse than the GA for at 
least one problem set. No ACSGA schemes were 
statistically better than the GA. In the second iteration (50 
jobs and 10 machines), RGS with the Species 
representation, RWS with b = 150, and TS were all 
statistically worse than the GA for all six problem sets 
while RWS with b = 50 and RWS with b = 100 were 
statistically worse than the GA for at least one problem set. 
This is the second consecutive iteration that RGS with the 
Species representation and TS were statistically worse than 
the GA for all problem sets. Therefore, the ACSGA 
scheme and TS are inferior to the GA. No ACSGA 
schemes were statistically better than the GA. 

In the third iteration (100 jobs and 5 machines), RGS 
with the Species representation and TS are not compared 
against the GA due to their previous performances. RGS 
with the Rand representation and RWS with b = 1 were 
statistically worse than the GA for all six problem sets. 
TMT was statistically better than the GA for three of  the 
six problem sets. Since RWS b = 150 was not statistically 
worse than the GA for all problem sets (it was actually 
statistically the same for all six problem sets), it will not be 
excluded from further iterations. 

In the fourth iteration (100 jobs and 10 machines), RGS 
with the Rand representation and RWS with b = 1 were 
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statistically worse than the GA for all six problem sets 
while RWS with b = 50, 100, and 150 were statistically 
worse than the GA for at least one problem set. This is the 
second consecutive iteration the RGS with the Rand 
representation and RWS with b = 1 were statistically worse 
than the GA for all problem sets. Therefore, these ACSGA 

schemes are inferior to the GA. For the second 
consecutive iteration, TMT was statistically better than the 
GA for at least one problem set. In this iteration, it was 
statistically better for five of  the six problem sets. 

 

 
Table 1. Average total tardiness for the GA, ACSGAs, and TS 

N-M GA RGS 
0-1 

RGS 
0-1-2 

RGS 
Rand 

RGS 
Species 

RWS 
 b = 1 

RWS  
b = 50 

RWS  
b = 100 

RWS  
b = 150 TMT TS 

50-5 9994 10037 9992 10157 12466 10185 10310 10310 10312 9871 10576 
50-10 5966 6019 5961 6107 7442 6117 6208 6211 6222 5863 6833 
100-5 40602 40764 40573 41797 - 41915 41152 41101 41034 39705 - 
100-10 23086 23283 23059 23889 - 23916 23445 23432 23383 22676 - 
100-20 14192 14396 14183 - - - 14427 14356 14377 13978 - 
200-10 96338 97185 96052 - - - 99293 98981 98956 91196 - 
200-20 53896 54603 53825 - - - 55793 55488 55547 51446 - 

 
Table 2. LSD average tardiness comparison for the GA, ACSGAs, and TS 
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10 

H     O O   O O O  O    P P   
L           O O         
M                     

100  
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M  O         O O O O O O P P   

200 
20 
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Legend: O  Statistically worse than the GA  

  P  Statistically better than the GA  
 

Table 3. Average solving time (seconds) for the GA, ACSGAs, and TS 

N-M GA 
RGS 
0-1 

RGS 
0-1-2 

RGS 
Rand 

RGS 
Species 

RWS  
b = 1 

RWS  
b = 50 

RWS  
b = 100 

RWS  
b = 150 

TMT TS 

50-5 3.38 3.61 3.57 4.18 3.42 3.90 2.11 2.15 2.19 9.16 8.62 
50-10 3.21 3.51 3.45 3.61 3.24 3.72 2.07 2.05 2.01 9.05 11.00 
100-5 8.36 9.21 8.48 9.16 - 10.38 8.51 8.36 8.18 41.36 - 
100-10 9.91 11.01 10.07 10.31 - 11.43 9.88 9.79 9.74 40.81 - 
100-20 11.16 11.20 12.29 - - - 11.12 11.28 11.13 38.77 - 
200-10 12.11 13.08 13.87 - - - 11.96 11.90 11.84 48.54 - 
200-20 12.97 14.50 14.93 - - - 12.30 12.22 12.06 52.72 - 
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Table 4. Maximum Solving Time (seconds) for the GA, ACSGAs, and TS 

N-M GA 
RGS 
0-1 

RGS 
0-1-2 

RGS 
Rand 

RGS 
Species 

RWS  
b = 1 

RWS  
b = 50 

RWS  
b = 100 

RWS  
b = 150 

TMT TS 

50-5 4.12 4.36 4.20 6.01 4.98 4.54 2.59 2.73 2.69 11.04 10.78 
50-10 3.71 4.21 4.15 4.25 4.51 4.55 2.46 2.57 2.38 10.90 14.40 
100-5 11.08 11.22 10.46 11.14 - 12.26 11.12 10.55 10.93 48.27 - 
100-10 12.24 12.97 11.70 12.41 - 14.06 11.60 10.98 11.10 53.29 - 
100-20 12.36 12.99 14.31 - - - 12.97 13.07 12.56 46.69 - 
200-10 13.78 15.04 16.14 - - - 14.35 15.19 13.76 59.08 - 
200-20 14.60 16.61 17.81 - - - 14.01 13.53 13.52 63.48 - 

 
In the fifth iteration (100 jobs and 20 machines), RGS 

with the Rand representation and RWS with b = 1 are not 
compared with the GA due to their previous poor 
performance. RWS b = 50 was statistically worse than the 
GA for at least one problem set, but there were no 
ACSGA schemes that were statistically worse than the GA 
for all six problem sets. Also, no ACSGA schemes were 
statistically better than the GA. 

In the sixth iteration (200 jobs and 10 machines), RWS 
with b = 50, 100, and 150 were all statistically worse than 
the GA for all six problem sets while TMT was statistically 
better than GA for all six problem sets. In the seventh 
iteration (200 jobs and 20 machines), RWS with b = 50, 
100, and 150 were all statistically worse than the GA for all 
six problem sets. This is the second consecutive iteration 
these ACSGA schemes were statistically worse than the 
GA for all problem sets, therefore, these schemes are 
inferior to the GA. Also, for the second consecutive 
iteration, TMT was statistically better than the GA for all 
six problem sets. Therefore, we can conclude that TMT 
performs better than the GA, RGS with the 0-1 and 0-1-2 
representations perform equally to the GA, and TS, RGS 
with the Rand and Species representations, and RWS with 
all levels of  b perform worse than the GA. Table 3 shows 
the average solving time (in seconds) of  the GA, ACSGAs, 
and TS while Table 4 shows the maximum solving time (in 
seconds). The average and maximum solving times are 
similar for the GA and all of  the ACSGAs except TMT 
and TS. The average solving time of  TMT is two to five 
times longer than that of  the GA. This increase in solving 
time of  the TMT is mainly due to its crossover selection 
procedure. Each time a crossover operation is needed in 
TMT, four crossover operations are performed with the 
best child proceeding to the next generation. Therefore, 
TMT is generating four times more crossovers per iteration 
than the GA and other ACSGAs. 

 
6. CONCLUSIONS AND FUTURE WORK 

Scheduling unrelated parallel machines to minimize 
completion time without any other considerations such as 
setups or due dates is an NP-hard problem. Therefore, 
adding due dates and sequence-dependent setups with an 
objective to minimize total tardiness makes the problem 
difficult to solve for even small problem sizes and nearly 
impossible to solve with most traditional solution 
techniques for the larger sized problems studied in this 
paper. 

Genetic algorithms (GAs) are often able to find 
near-optimal solutions to problems while maintaining 
performance as the problem size increases. We have 
attempted to improve the performance of  a traditional GA 
by allowing it to choose from several crossover operators 
whenever a crossover operation is required. This allows the 
GA to adapt to the different conditions that arise during 
the run of  the GA that might favor one crossover operator 
over another. 

Three adaptive crossover selection genetic algorithms 
(ACSGAs) and a tabu search (TS) were tested against a 
traditional GA for solution quality over seven problem 
sizes ranging from 50 jobs and 5 machines to 200 jobs and 
20 machines. The regulatory gene selection (RGS) scheme 
with Species representation and TS performed worse than 
the GA and other ACSGA schemes for even the smallest 
problem size of  50 jobs and 5 machines. The RGS with the 
Rand representation and the roulette wheel selection (RWS) 
scheme with a base value b = 1 were the next ACSGA 
schemes to be excluded from further iterations after 100 
jobs and 10 machines. RWS with a base value of  b = 50, 
100, and 150 were excluded from further iterations after 
200 jobs and 20 machines. RGS with the 0-1 and 0-1-2 
representations were found to be statistically the same as 
the GA even for 200 jobs and 20 machines. The 
tournament selection (TMT) scheme was the only ACSGA 
scheme that was statistically better than the GA. For 200 
jobs and 10 machines and 200 jobs and 20 machines 
problems, TMT outperformed the GA for all six problem 
levels.  

While TMT produces solutions superior to the GA’s 
solutions, it also requires two to five times as much solving 
time, on average. TMT performs four crossover operations 
each time a crossover is required so it is reasonable that it 
would require more solving time. As long as there is not a 
constraint on the amount of  solving time, TMT produces 
better solutions. If  there is a constraint on the amount of  
solving time that can be allowed, the traditional GA might 
be sufficient. 

The effectiveness of  RWS is heavily dependent upon the 
choice of  the base credit value as well as the first few 
successful crossover operations. Because the first few 
successful crossovers have such a large effect on the 
proportioning of  the roulette wheel, crossover operators 
that initially produce better children could gain an unfair 
advantage. These operators will be chosen more often due 
to their larger roulette values, and therefore have more 
opportunities to produce good children and continue to 
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increase their roulette values. This could cause a cycle that 
would favor these operators even after they stop produce 
better children. To prevent this possible bias, as well as 
increase the overall performance of  RWS, the roulette 
credits given for good children could increase as the run of  
the GA continued, rather than remaining static. This would 
allow good children produced late in the run of  the GA, 
when it is harder to find better solutions, to have a greater 
effect on the roulette values than those good children 
produce early in the run of  the GA, when it is relatively 
easy to find better solutions. 

Future work will focus on forming serial batches of  jobs 
with different job types and scheduling these batches on 
unrelated parallel machines. A new chromosome 
interpretation, based on the random keys representation 
used in this research, will be used to simultaneously batch 
and schedule jobs on these unrelated parallel machines. 
This new chromosome interpretation will be tested with 
the traditional GA, the RWS AGA, and the RGS AGA 
with the 0-1 and 0-1-2 representations as well as with TMT 
to determine if  TMT will continue to outperform the GA 
and other ACSGAs under a more complex problem. The 
use of  an increasing roulette credit with the RWS AGA will 
also be implemented to test its effect on the quality of  
solutions produced by the AGA. 
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