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AbstractWe consider the problem of  scheduling a set of  simultaneously available jobs on a single machine. The objective 
is to determine a schedule that minimizes the class-based completion time variance (CB-CTV) of  the jobs while reducing 
the overall CTV is taken as the secondary objective. This non-regular performance measure is closely related to service 
stability and of  practical significance in many areas. We prove that a CB-CTV problem can be transformed into a series of  
CTV minimization problems, which allows us to apply the existing well developed properties and scheduling methods of  
CTV. Computational results are presented to show the trade-off  between the overall CTV and CB-CTV and indicate that it 
is desirable to minimize CB-CTV with regard to service stability and consistency from customers’ point of  view. 
KeywordsCompletion time variance (CTV), Class-based completion time variance (CB-CTV), Job scheduling, 
Optimization 
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1. INTRODUCTION 

In the scheduling field, there are two types of 
performance measures: regular and non-regular measures 
(Pinedo, 2002). Regular measures are defined as objective 
functions that are nondecreasing in job completion times. 
Numerous earlier works have focused on regular 
performance measures, such as makespan, mean lateness, 
and total weighted completion time. However, the 
emphasis has changed to non-regular performance 
measures with the increasing interest in just-in-time (JIT) 
product, which espouses the notion that both earliness and 
tardiness should be penalized (Baker and Scudder, 1990). 
Examples of non-regular performance measures include 
mean squared deviation (MSD) of completion times, 
completion time variance (CTV), and waiting time variance 
(WTV). This study addresses the class-based completion 
time variance (CB-CTV) minimization problem on a single 
machine, denoted by 1||CB-CTV, using the well-known 
α|β|γ notation introduced by Graham et al. (1979). 

CTV minimization problems have been extensively 
investigated since the early 1970s. Minimizing CTV of jobs 
means giving jobs a uniform treatment. That is, each job is 
kept in system for nearly the same time (Merten and Muller, 
1972). The CTV minimization problem was first proposed 
for the computer file organization problem and it applies 
to many other practical problems that involve offering 
uniform services. Many favorable properties of CTV 
minimization problems have been discovered in the 
literature. For example, Merten and Muller (1972) showed 

that the optimal scheduling sequence that minimizes CTV 
is antithetical to the optimal scheduling sequence that 
minimizes WTV and the minimum values of these two 
variance measures are equal. Moveover, they showed that 
leaving the first job unmoved and reversing the order of 
the last n − 1 jobs will not change CTV. It follows that 
there exist at least two optimal sequences, i.e., if (n, n − 1, ..., 
2, 1) is an optimal sequence, then (n, 1, 2, ..., n − 1) is also 
optimal. Schrage (1975) conjectured that for CTV 
minimization problems, the largest job should be 
scheduled first, the second largest one should be scheduled 
last, and the third and fourth largest ones should be 
scheduled in the second and third positions respectively. 
Eilon and Chowdhury (1977) presented that the optimal 
scheduling sequence is of V-shape. In other words, jobs 
before the smallest job are scheduled in the decreasing 
order of processing times and jobs after the smallest job 
are scheduled in the increasing order of processing times. 
Kanet (1981) gave a counterexample of Schrage’s 
conjecture about the scheduling position of the fourth 
largest job. On the other hand, Hall and Kubiak (1991) 
verified Schrage’s conjecture of the placement of the first 
three largest jobs. Manna and Prasad (1999) further 
contributed to this field and proposed the bounds for the 
position of the smallest job in an optimal sequence. In 
spite of so many dominant properties, it is unlikely that 
there exists a polynomial time algorithm for the derivation 
of an optimal sequence. Kubiak (1993) proved that the 
CTV minimization problem is NP-hard. Many heuristic 
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methods (Eilon and Chowdhury, 1977; Kanet, 1981; Vani 
and Raghavachari, 1987; Manna and Prasad, 1997, 1999) 
have been developed to obtain near optimal solutions. 
Meanwhile, some algorithms have also been proposed to 
minimize CTV, including a dynamic programming 
algorithm (De et al., 1992), a genetic algorithm (Gupta et 
al., 1993), a simulated annealing method (Mittenthal et al., 
1993), a tabu search method (Al-Turki et al., 2001), a 
branch and bound method (Viswanathkumar and 
Srinivasan, 2003), and an ant-colony optimization 
algorithm (Gajpal and Rajendran, 2006). 

However, previous research on CTV minimization deals 
with problems mainly from the viewpoint of the system. In 
this point of view, jobs are assumed to be independent of 
each other, which is often not practical in the real world. In 
general, some jobs are related to some other jobs. For 
instance, jobs requested by the same user, such as multiple 
requests to a web server from the same client, often need 
to be considered together as a class. Thus, the system CTV 
performance measure may result in the dissatisfaction of a 
certain user with the service, because CTV of the jobs 
belonging to this user may be very large even though the 
overall CTV of all jobs in the system has reached the 
minimum. Consequently, the dissatisfaction with the 
service may cause the user to leave a system and turn to its 
rival. Such a result is undesirable to service providers. It is 
necessary, therefore, to investigate CTV minimization 
problems from the viewpoint of users. The CB-CTV 
minimization problem arises accordingly. CB-CTV is 
closely related to service stability since it penalizes both 
earliness and tardiness, and it is further related to customer 
satisfaction because it takes into account customer 
preferences. CB-CTV minimization has wide applications 
in many areas such as packet scheduling for Internet 
communications and reservation systems, modern 
manufacturing systems, supply chain management, and 
others where it is desirable to achieve service stability while 
considering customer preference. Since CTV is important 
from the perspective of the system, reducing the overall 
CTV is taken as the secondary objective in this paper. 

In section 2 of this paper, the formulation of the 
problem is presented and a small example is illustrated. In 
section 3, we present several dominant properties for CTV 
problems and prove that CB-CTV problems can be 
transformed into a series of CTV problems on a single 
machine. In section 4, computational results are presented 
for both small and large problem instances and a trade-off 
relationship between CB-CTV and the overall CTV is 
revealed. In section 5, we summarize our results. 

 
2. PROBLEM FORMULATION 

In this paper, we consider the problem of scheduling 
L-class jobs on a single machine. All jobs are released at 

time zero and their processing times are known 
deterministically. Preemption is not allowed, i.e., jobs 
cannot be interrupted during their processing. Also, we 
assume that there is no setup time between two 
consecutive jobs. These assumptions are the same as those 
adopted by Merten and Muller (1972), Eilon and 
Chowdhury (1977) and Kanet (1981). Our objective is to 
find an optimal scheduling sequence that minimizes 
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where L is the number of classes, n is the total number of 
all jobs, ni is the number of jobs in the ith class, and CTVi is 
the CTV of jobs in the ith class. CTVi is computed as 
follows: 
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where Cij is the completion time of the jth job in the ith class 
and iC  is the mean completion time of the jobs in the ith 
class. 
 

For illustration, we give an example as follows. Suppose 
that there are three classes of jobs required to be scheduled 
on a single machine. These jobs are as follows: 
 
Class I: 20, 5; Class II: 14, 2, 12; Class III: 8, 4, 1, 16 
 

Here and throughout the paper, we denote jobs by their 
processing times. Assume they are scheduled in the 
following way: 12, 1, 4, 20, 14, 8, 5, 16, 2. Then the 
completion times of the jobs in these three classes are 37, 
64; 51, 82, 12; and 59, 17, 13, 80 respectively. Hence, the 
CTVs of the three classes are 364.5, 1230.3, and 1066.3, 
respectively. Thus, the CB-CTV of this scheduling 

sequence is × + × + × =
2 3 4364.5 1230.3 1066.3 965
9 9 9

. 

Using exhaustive enumeration, we can obtain an optimal 
sequence of the above example that minimizes CB-CTV 
and takes reducing the overall CTV as the secondary 
objective. This optimal schedule is 20, 5, 16, 4, 1, 8, 14, 2, 
12. The obtained minimum CB-CTV is 35.07 and the 
respective CTVs of the three classes are 12.5, 57.33, and 
29.67. On the other hand, the overall CTV of this optimal 
sequence is 426.36. If we schedule these jobs without the 
consideration of the classes, we can obtain an optimal 
sequence which has the minimum overall CTV through 
enumeration. This sequence is 20, 16, 8, 5, 2, 1, 4, 12, 14 
and the corresponding overall CTV is 314.36, while the  

 
Table 1. An example of a small problem instance for CB-CTV and overall CTV minimization 

 optimal sequence CTV1 CTV2 CTV3 CB-CTV CTV 
Class-based 20, 5, 16, 4, 1, 8, 14, 2, 12 12.5* 57.33* 29.67* 35.07* 426.36 

Non-class-based 20, 16, 8, 5, 2, 1, 4, 12, 14 420.5 241 78.67 208.74 314.36* 
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CB-CTV of this sequence is 208.74 with the respective 
inner-class CTVs of 420.5, 241, and 78.67. We summarize 
these results into Table 1, where * denotes the optimal 
value. 

From Table 1, we observe that when the overall 
minimum CTV is desired, CB-CTV is not minimized. The 
corresponding CB-CTV (208.74) has a large deviation from 
the possible minimum CB-CTV (35.07). The jobs from the 
same class receive the greatly different treatment, which are 
represented by their large inner-class CTVs (420.5, 241, 
78.67) compared with (12.5, 57.33, 29.67). This implies that 
the jobs of the same class under CB-CTV minimization 
gain stabler services than under the overall CTV 
minimization without the consideration of classes. This 
inner-class CTV reduction leads to user satisfaction in the 
viewpoint of users with regard to service stability. It is the 
difference between the overall CTV and CB-CTV that 
motivates our research on the CB-CTV minimization 
problem. 
 
3. DOMINANT PROPERTIES FOR CTV AND 

CB-CTV PROBLEMS 

The CTV problem has been discovered to have a 
number of dominant properties. The following properties 
are summarized from the literature. 

 
Property 1. For any scheduling sequence R, CTV of R is 
equal to WTV of R′, where R′ is the antithetical schedule 
of R (Theorem H in Merten and Muller (1972)). 
 
Property 2. The scheduling sequence that minimizes WTV 
is antithetical to the scheduling sequence that minimizes 
CTV (Corollary H.1 in Merten and Muller (1972)). 
 
Property 3. CTV remains unchanged when reversing the 
order of the last n − 1 jobs (Theorem K in Merten and 
Muller (1972)). 
 
Property 4. For CTV minimization problems, an optimal 
scheduling sequence is of the form of (n, n − 2, ..., n − 1). 
That is, the largest job is arranged at the first position, the 
second longest job is arranged at the last position, and the 
third longest job is arranged at the second position 
(Theorem 1 in Hall and Kubiak (1991)). 
 
Property 5. The optimal sequence for a WTV 
minimization problem is V-shaped (Theorem B in Eilon 
and Chowdhury (1977)). 
 
Property 6. The optimal sequence for a CTV minimization 
problem is V-shaped. (the combination of Property 2 and 
Property 5) 
 

In view of these properties, it will be very desirable if a 
CB-CTV minimization problem can be transformed into 
CTV minimization problems. If so, we can apply these 
properties to solve the CB-CTV minimization problem. 
We will prove this property later. 

We use the following notation to represent job 
scheduling sequences: 
 
pij = the processing time of the jth processed job in the ith 
class; 
Xi = the ith job block that separates the jobs in a certain 
class. 
 

To illustrate our notation, consider only the qth class. A 
possible scheduling sequence may be of the following form  
 
p21, p31, pq1, pq2, p22, p11, p32, pq3, pL1, p23, pq4, pq5, pq6, ..., pLnL, 
pqnq, p36, p2n2, ... 
 
Then we can denote this scheduling sequence by the 
following: 
 
X0, pq1, pq2, X1, pq3, X2, pq4, pq5, pq6, X3, ..., Xs−1, pqnq, Xs  (3) 
 
where s is an appropriate integer. 
 
Lemma 1. CTVq is smaller in the following schedule than 
in Schedule (3): 
 
X0, pq1, pq2, ..., pqnq , X1 , X2 , X3 , ..., Xs−1 , Xs  (4) 
 
Proof. First, we prove a special case: there is only one 
block among the qth class in Schedule (3). That is, CTVq is 
smaller in the schedule 
 
X0, pq1, pq2, ..., pq(m−1), pqm, ..., pqnq, X1 , X2  (5) 
 
than in the schedule 
 
X0, pq1, pq2, ..., pq(m−1), X1, pqm, ..., pqnq, X2 (6) 
 
where 2 ≤ m ≤ nq. 

The following notation is used in the proof of this 
special case: 
 

k : the sum of processing times 
of jobs in the block X1; 

V : CTVq by Schedule (5); 
V′ : CTVq by Schedule (6); 
Ci : completion time of job pqi in 

Schedule (5), i = 1, 2, ..., nq; 
Ci′ : completion time of job pqi in 

Schedule (6), i = 1, 2, ..., nq. 
 

It is easy to show that 
 
Ci′ = Ci, i = 1, 2, ..., m − 1 
Ci′ = Ci + k, i = m, m + 1, ..., nq 

According to (Kanet, 1981), CTV has an alternative 

form: 2

1 1

( )
q qn n

j i
i j i

V C C
= = +

= −∑ ∑ . Hence, 
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 0> (since k > 0 and Cj > Ci) 
 

So, CTVq is smaller in Schedule (5) than in Schedule (6). 
 
Next we prove the lemma. First we move the block Xs−1 

in Schedule (3) to the exact back of pqnq. According to the 
above special case, the new schedule has a smaller CTVq. 
Again, by moving the block Xs−2 to the exact back of pqnq , 
we obtain a schedule in which CTVq is smaller than in the 
last schedule. Keep moving blocks in this fashion until the 
block X1 is moved and Schedule (4) is obtained. Since the 
schedule after each move produces a smaller CTVq than in 
the former schedule, Schedule (4) has a smaller CTVq than 
Schedule (3).  
 
Lemma 2. CTVq keeps a constant, as long as the 
scheduling form satisfies: i) No jobs from other classes are 
scheduled among the qth class, i.e., no blocks exist among 
the qth class; and ii) The inner-class scheduling order of the 
qth class keeps unchanged. 
 
Proof. Let S1 and S2 be any two schedules that satisfy the 
above two conditions. Denote job completion times of the 
qth class in S1 by {C1, C2 , ..., Cnq}. Then job completion 
times of the qth class in S2 will be {C1 + h, C2 + h, ..., Cnq + 
h}, where h is an appropriate real number. Let C' , CTV′ 
and C , CTV be mean completion times and CTVs of the 
qth class in S1 and S2 respectively. Then 
 

1 1

1 1( )
q qn n

i i
i iq q

C' C h C h C h
n n= =

= + = + = +∑ ∑
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1 1

1 1( ) ( )
1 1

q qn n
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This completes the proof.  

 
Theorem 1. Regardless of the intra-class scheduling order, 
the scheduling form 
 
p11, ..., p1n1 ,  p21, ..., p2n2 , ...,  pL1, ..., pLnL  (7) 
 
has a smaller CB-CTV than any scheduling form that has 
the same inner-class scheduling order as Schedule (7) and 
in which there exists at least one class whose jobs are not 
scheduled consecutively. 
 

Proof. Consider a schedule in which there is at least one 
class whose jobs are not scheduled consecutively. Gather 
the jobs of the same class at the position where that class 
first appears, for scheduling consecutively and without 
changing inner-class scheduling order. Then the scheduling 
form will become Schedule (7) or a similar schedule that 
only changes intra-class scheduling order, compared with 
Schedule (7). Lemma 2 guarantees that the change of 
intra-class order does not change every class’s CTV. Thus, 
Schedule (7) and similar schedules have the same CB-CTV. 
On the other hand, Lemma 1 indicates that, every class’s 
CTV in Schedule (7) or a similar schedule is smaller than in 
the original schedule. Hence, by definition, CB-CTV of 
Schedule (7) or a similar schedule is smaller.  
 
Corollary 1: A CB-CTV minimization problem can be 
transformed into a series of CTV minimization problems. 
That is, the following equation holds: 
 

1 1

( ) ( ( ))
i i

L L
i i

i i i
i i

n n
Min CTV Min CTV

n nλ λ
λ λ

∈Λ ∈Λ
= =

   =      
∑ ∑  (8) 

 
where λ, Λ, and CTVi(λ) (i = 1, ..., L) are respectively a 
schedule of all jobs of L classes, the schedule set 
composed of all possible λ, and the CTV of the ith class 
under the schedule λ, while λi  (i = 1, ..., L), Λi (i = 1, ..., 
L), and CTVi(λi) (i = 1, ..., L) are respectively a schedule of 
all jobs of the ith class, the schedule set composed of all 
possible λi, and the CTV of the ith class under the schedule 
λi. 
 
Proof. Since Schedule (7) or a similar schedule that only 
changes intra-class scheduling order has a smaller CB-CTV, 
as long as every class’s jobs are further scheduled in the 
way such that the class’s CTV is at a minimum, a minimal 
CB-CTV is achieved. 
 

According to Corollary 1, to obtain the optimal 
scheduling sequence with the minimum CB-CTV, we only 
need to schedule jobs by their classes and schedule jobs of 
each class in the way that their innerclass CTVs are the 
minimum. This transformation dramatically simplifies the 
problem since there have been a lot of heuristics that can 
be used for CTV minimization problems, such as those in 
Eilon and Chowdhury (1977), Kanet (1981), Vani and 
Raghavachari (1987), Manna and Prasad (1997, 1999). 
 
4. COMPUTATIONAL RESULTS 

We have bridged CB-CTV minimization problems with 
CTV minimization problems. Nevertheless, it is necessary 
to investigate the relationship between the overall CTV and 
CB-CTV. In this section, we compute scheduling 
sequences for the overall CTV and CB-CTV minimization 
respectively for the same small or large program instances. 
Assume that the processing times of jobs follow a uniform 
distribution, taking values from the integers between 1 and 
20 for small problem instances and the integers between 1 
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to 150 for large problem instances. 
 

4.1 Small problem instances 

For small instances, we consider two instances from n = 
9 jobs, L = 3 classes and two instances from n = 10 jobs, L 
= 5 classes respectively. In Table 2 there are four small 
problem instances and job classes are distinguished by 
semicolons. 
 

Table 2. Four small problem instances 
Instances Job processing times 

1 3, 13; 6, 5, 15; 11, 19, 7, 12 
2 18, 15; 8, 4, 20; 16, 13, 1, 6 
3 6, 10; 2, 20; 12, 9; 11, 7; 5, 16 
4 20, 5; 13, 10; 18, 16; 1, 17; 9, 19 

 
Similar to the example in section 2, the overall CTV and 

CB-CTV of these problem instances cannot be minimized 
at the same time. Because of their small size, we can use 
exhaustive enumeration to obtain optimal sequences with 
CTV minimization. The computation of the minimum 
CB-CTV is based on Corollary 1 and realized by using 
enumeration to obtain the minimum CTV of each class 
and combining them. Since there is a total of 2L optimal 
sequences for CB-CTV minimization, we choose the one 
with the smallest CTV. The computational output is shown 
in Table 3, where * denotes the optimal value, “N/A” 
stands for “not applicable”, CB means that the optimal 
sequences are obtained under CB-CTV minimization, and 
NCB means that the optimal sequences are obtained under 
the overall CTV minimization (i.e., non-class-based CTV 
minimization). 

From Table 3, we can observe that there is a trade-off 
between CB-CTV and the overall CTV. That is, if the 
overall CTV is minimized, inner-class CTVs may be large. 
Namely, CB-CTV is large. Conversely, if CB-CTV is 
minimized, inner-class CTVs will be optimal, while the 
overall CTV deviates from its optimum. In other words, 

the improvement of CB-CTV performance is obtained at 
the cost of sacrificing the overall CTV performance. Let 

i
ImCTV (i = 1, 2, ..., 5), CB-CTVIm, and CTVS denote the 

performance improvement of inner-class CTVs, CB-CTV 
and the performance sacrifice of the overall CTV 
respectively. Then they can be measured by respective 
decrease or increase percents as follows: 
 

100%,  1, 2, ..., 5
i i

i NCB CB
Im i

NCB

CTV CTV
CTV i

CTV
−

= × =  (9) 

- -
- 100%

-
NCB CB

Im
NCB

CB CTV CB CTV
CB CTV

CB CTV
−

= ×  (10) 

100%CB NCB
S

NCB

CTV CTV
CTV

CTV
−

= ×  (11) 

 
where i

CBCTV (i = 1, 2, ..., 5), CB-CTVCB, CTVCB, 
i

NCBCTV (i = 1, 2, ..., 5), CB-CTVNCB, CTVNCB denote 
inner-class CTVs, CB-CTV and the overall CTV of optimal 
sequences under the class-based and the non-class-based 
situations respectively. Through the calculation with regard 
to the above four small problem instances, the values of 
these performance indices are listed in Table 4. 

According to Table 4, the overall CTV performance 
sacrifices when the objective is to minimize CB-CTV. 
However, the CTV performance of an individual class is 
improved dramatically, which is more significant from a 
user’s perspective. For example, in Table 3, the CTV of 
class 4 of instance 4 under CB-CTV minimization is equal 
to 1/400 of that under the overall CTV minimization. 
Since users are independent of each other, they receive a 
better service under CB-CTV minimization than under the 
overall CTV minimization. Also, the rate of the overall 
CTV performance sacrifice is much smaller than that of 
CB-CTV performance improvement. It indicates that the 
objective defined by us is desirable. 

 
Table 3. CB-CTV vs. CTV for four small problem instances. It shows consistently smaller CTV for individual 

class under CB-CTV minimization than under the overall CTV minimization 
No. Optimal sequences CTV1 CTV2 CTV3 CTV4 CTV5 CB-CTV CTV 

1 CB: 19, 12, 7, 11, 13, 3, 15, 6, 5 
NCB: 19, 15, 11, 7, 3, 5, 6, 12, 13 

4.5* 
648 

30.33* 
289.33 

158.25* 
588.33 

N/A 
N/A 

N/A 
N/A 

81.44* 
501.93 

644.11 
476.78* 

2 CB: 20, 4, 8, 16, 13, 1, 6, 18, 15 
NCB: 20, 16, 15, 6, 4, 1, 8, 13, 18 

112.5* 
1250 

37.33* 
710.33 

70.92* 
372.33 

N/A 
N/A 

N/A 
N/A 

68.96* 
680.04 

761.19 
572.61* 

3 CB: 20, 2, 16, 5, 10, 6, 11, 7, 12, 9 
NCB: 20, 12, 11, 9, 5, 2, 6, 7, 10, 16 

18* 
144.5 

2* 
760.5 

40.5* 
200 

24.5* 
420.5 

12.5* 
840.5 

19.5* 
473.2 

716.1 
533.78* 

4 CB: 19, 9, 20, 5, 17, 1, 13, 10, 18, 16 
NCB: 20, 18, 17, 10, 9, 1, 5, 13, 16, 19 

12.5* 
1800 

50* 
392 

128* 
2520.5 

0.5* 
200 

40.5* 
1458 

46.3* 
1274.1 

1226.01 
1021.34* 

 
Table 4. Performance indices comparison for four small problem instances 

No. 1
ImCTV  2

ImCTV  3
ImCTV  4

ImCTV  5
ImCTV  CB-CTVIm CTVS 

1 99.31% 89.52% 73.1% N/A N/A 83.77% 35.1% 
2 91% 94.74% 80.95% N/A N/A 89.86% 32.93% 
3 87.54% 99.74% 79.75% 94.17% 98.51% 95.88% 34.16% 
4 99.31% 87.24% 94.92% 99.75% 97.22% 96.37% 20.04% 
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Table 5. Performance comparison of CB-CTV and overall CTV for eight large problem instances 
No. 1

ImCTV  2
ImCTV  3

ImCTV  4
ImCTV  5

ImCTV  CB-CTVIm CTVS 
1 (VS) 95.31% 92.39% 73.3% N/A N/A 81.7% 47.35% 
2 (VS) 96.07% 89.1% 75.66% N/A N/A 85.05% 46.03% 
3 (BS) 95.12% 90.64% 77.12% N/A N/A 85.2% 50.41% 
4 (BS) 95.85% 90.64% 74.83% N/A N/A 85.61% 43.54% 
5 (VS) 95.18% 96.67% 96.23% 94.09% 95.97% 95.64% 48.72% 
6 (VS) 96.07% 95.71% 95.61% 95.63% 95.06% 95.69% 51.8% 
7 (BS) 94.8% 96.58% 94.91% 95.38% 96.15% 95.53% 45.7% 
8 (BS) 95.63% 94.72% 97.04% 95.51% 94.24% 95.51% 48.45% 

 
4.2 Large problem instances 

For large instances, we consider 4 instances from L = 3 
classes and n = 100 jobs and 4 instances from L = 5 classes 
and n = 100 jobs. For the first 4 instances, the job number 
of each class is 20, 30, and 50 respectively. For the last 4 
instances, the job number of each class is the same 20. 
Because of their large size, these instances can not be listed. 
For the same reason, it is extremely computationally costly 
if not impossible to use exhaustive enumeration to obtain 
optimal sequences. Hence, two recently developed 
algorithms, Verified Spiral (VS) and Balanced Spiral (BS), 
are used in this paper to approximately solve the problem 
(Ye et al., 2006). These two algorithms show better 
performance than some existing algorithms such as FIFO 
(first-in-first-out), SPT (shortest processing time), and 
EC1.2 (Method 1.2 in Eilon and Chowdhury (1977)). Note 
that these two algorithms are developed for WTV 
minimization problems, but since optimal sequences of 
CTV and WTV minimization problems are antithetical, 
they can be modified and applied to CTV minimization 
problems. We simply describe these two modified 
algorithms as follows. 

Assume a single machine needs to process a job set p1, 
p2, ..., pn, where p1 ≤ p2 ≤ ... ≤ pn. VS method is as follows: 

 
1. According to Schrage’s conjecture, place the job pn 

in the first position, the job pn−1 in the second 
position, and the job pn−2 in the last position. The 
shortest job p1 is placed in the position between pn−1 
and pn−2. 

2. Select the longest job from the unscheduled jobs. 
Place it either exactly before the job p1 or exactly 
after the job p1, depending on which way produces 
a smaller CTV of the job sequence so far. 

3. Repeat Step 2 until all the jobs are scheduled. 
 
BS method is as follows: 
 
1. Place the job pn in the first position, the job pn−1 in 

the second position, and the job pn−2 in the last 
position. Let sequence Lt = {pn−1} and sequence Rt 
= {pn−2}. Denote by SUMLt and SUMRt respectively 
the sums of the processing times of the jobs in Lt 
and Rt. 

2. If SUMLt < SUMRt, append the largest job from the 
unscheduled jobs to sequence Lt, and update 
SUMLt; If SUMLt ≥ SUMRt, prepend the largest job 

from the unscheduled jobs to sequence Rt, and 
update SUMRt. 

3. Repeat Step 2 until all the jobs are scheduled. 
 
The computational output for the eight instances is 

shown in Table 5, where * denote the optimal value and 
“VS” or “BS” means the algorithm used for that 
corresponding instance. 

Table 5 demonstrates that, for large problem instances, 
there is still a trade-off between CB-CTV and the overall 
CTV minimization. In addition, although the overall CTV 
becomes larger when pursuing the minimum CB-CTV, 
each class’s CTV is reduced significantly. The performance 
improvement of each class’s CTV aligns with users’ needs 
and such class-based service stability will lead to user 
satisfaction with regard to service stability and consistency. 
For large instances, the rate of the overall CTV 
performance sacrifice is also much smaller than that of 
CB-CTV performance improvement, which indicates the 
desirability of our objective. The relatively larger overall 
CTV performance sacrifice rates in large instances than in 
small ones are caused by the size of job set and the values 
of processing times. 

 
5. CONCLUSION 

In this paper we consider CB-CTV minimization 
problems on a single machine, a generalized case of CTV 
minimization in which jobs are assumed to come from one 
class. CTV is a non-regular performance measure which 
penalizes both earliness and tardiness. It conforms to the 
Just-In-Time philosophy in manufacturing systems. 
CB-CTV minimization further takes into account the 
variability reduction from the customers’ point of view to 
achieve service stability and consistency. CTV 
minimization problems have been studied extensively with 
many dominant properties in the literature, while little 
study has been done to CB-CTV minimization. We prove 
that a CB-CTV minimization problem can be transformed 
into a series of CTV minimization problems. Hence, we 
bridge 1||CB-CTV and 1||CTV problems, which allows 
us to apply well developed properties and methods of CTV 
problems to CB-CTV problems which are NP-hard. 

Computational tests are conducted for both small and 
large problem instances. In the small-problem scenario, the 
optimal sequence for the overall CTV and CB-CTV 
minimization is obtained by exhaustive enumeration. In the 
large-problem scenario, we apply two recently developed 
algorithms (VS and BS, which have been shown in Ye et al. 
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(2006)) to calculate the overall CTV and CB-CTV. Note 
that for the CB-CTV minimization, since there are at least 
2L optimal sequences that have the minimum CB-CTV, the 
one with the smallest CTV is chosen. Both scenarios show 
that there is a trade-off between CB-CTV and the overall 
CTV. However, the reduction of individual class’s CTV is 
more significant than the sacrifice of the overall CTV. 
From the perspective of customers, it is more desirable to 
achieve CB-CTV minimization for class-based service 
stability and consistency. 

This paper deals with CB-CTV minimization problems 
on a single machine. Future research can be conducted 
under the parallel-machine environment, denoted by 
Pm||CB-CTV. Also, the paper only considers the 
deterministic CB-CTV minimization problems where 
processing times of the jobs are given in advance. However, 
in the real world processing times are often unknown and 
random, which leads to the research of the stochastic 
version of CB-CTV minimization problems. Furthermore, 
it is of interest to investigate some variations of the 
CB-CTV minimization problem in which bi-criteria is 
considered to minimize a combination of regular and 
non-regular performance measures. 
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