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Abstract—In this paper, we consider the scheduling of N jobs on a single machine with family setup times in order to

minimize the total tardiness. The set of jobs is divided into I families. Between two jobs of the same family, we do not have

to stop the machine. However, when switching from one family to another, a setup is required. Each family is characterized

by a setup time independent of the sequence. We propose a set of approaches to compute lower bounds for the tardiness

criterion. These approaches are analyzed and tested on a large set of numerical experiments in order to identify the

dominant lower bounds.
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1. INTRODUCTION

Grounded in real industrial problems, this paper focuses
on scheduling a set of jobs on a single machine which must
undergo a setup period when switching processing jobs
from a family to another. The aim is to minimize the total
tardiness, given that the setup periods are independent of
the sequence. This type of problem has been studied in the
literature for different objective functions. Given the aim
of our study, we provide a brief overview of previous
works related to the minimization of total tardiness and/or
to scheduling with setup times.

The particular case problem without setup times was
intensively studied in the literature. The first remarkable
work was presented by Emmons (1969). He proposed
some efficient rules which can identify precedence
relations between jobs in an optimal sequence. This result
was then exploited to construct efficient decomposition
approaches (see for example Potts and Van Wassenhove
(1982), Della Croce et al. (1998), Chang et al. (1995)).
Dynamic programming approaches were also studied by
Lawler (1977) and Potts and Van Wassenhove (1987). Du
and Leung (1990) studied the complexity of the problem
and proposed a proof of its NP-Hardness (in the ordinary
sense). Numerous heuristic approaches were proposed. For
example, Baker (1999) studied a dynamic priority rule for
minimizing tardiness. Koulamas (1997) considered the
polynomially solvable tardiness problems and extends these
results to the case of identical machines. An efficient
branch-and-bound algorithm was also proposed by Szwarc
et al. (1999) with efficient decomposition rules. A clever
Lagrangian relaxation based-lower bound was described by
Potts and Van Wassenhove (1985) for the weighted case.
This lower bound was incorporated in an efficient
branch-and-bound algorithm. Kondakei et al. (1994)
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proposed a fast lower bound. This bound is a special case
of the one proposed by Chu (1992) for the tardiness
problem with unequal release dates. Other extensions of
the problem with release dates or/and weighted jobs were
also studied (see for example Koulamas and Kyparisis
(2001) and Akturk and Ozdemir (2001)). For more details,
the reader can consult the state-of-the-art paper of
Koulamas (1994).

There are few papers that considered the total tardiness
criterion with setup times. The first paper was presented by
Ragatz (1993). He proposed a branch and bound algorithm
for the single machine problem with sequence-dependent
setup times. Rubin and Ragatz (1995) proposed a genetic
algorithm to solve the same problem. A comparison of
four methods to solve the same problem was presented by
Tan et al. (2000). Recently, Souissi et al. (2004) proposed a
more efficient branch and bound algorithm and improved
the results obtained by Ragatz. The problem considered in
these references is more general than the one studied in
this paper. However, they did not take the specificity of the
family setup times into account. This is one of the reasons
that motivate our study.

In our knowledge, there are few works in which the
tardiness criterion with family setup times was studied.
Schaller proposed branch-and-bound procedures to
minimize the total tardiness for the case where the group
technology assumption is used and for the case where such
an assumption is removed (Schaller, 2006). Nakumara et al.
(1978) considered the same problem under the group
technology assumption. Baptiste and Jouglet (2001)
proposed a pseudopolynomial algorithm to solve the serial
batching machine problem. Hariri and Potts (1997) studied
the maximum lateness and proposed a heuristic with a
worst-case petformance ratio of 5/3. They also proposed
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an effective branch-and-bound
problems with up to 50 jobs.
A large set of works was proposed in the literature to

algorithm to solve

minimize other criteria. In the following paragraph, we
provide a short description of some works related to this
subject. For more details, we direct the reader to consult
the excellent state-of-the-art papers by Allahverdi et al.
(1999, 20006), Potts and Kovalyov (2000) and Liace and
Emmons (1977).

A number of works proposed different algorithms to
solve single machine scheduling problems with setup times.
In particular, the weighted flowtime objective was
intensively studied. Ghosh (1994) considered the problem
of minimizing the total completion time on a single
machine and on identical parallel machines. Ahn and Hyun
(1990) proposed an improved dynamic programming
approach for multi-class job scheduling. Gupta (1988)
studied mean flowtime minimization and proposed a
heuristic solution. He showed its effectiveness empirically.
Crauwels et al. (1997) proposed a local search method to
minimize weighted flowtime. Other heuristics were also
examined by Baker (1999) to solve the single machine
problem under the lateness criterion. Efficient branch and
bound algorithms and lower bounds were proposed by
Dunstall et al. (2000) and by Crauwels et al. (1998).
Dominance rules were also incorporated in these
algorithms. Other extensions of these models and results
were also successfully integrated to solve the identical
machines problem (see for example the efficient
approaches proposed by Azizoglu and Webster (2003) or
by Dunstall and Wirth (2005)).

This paper is organized as follows. In Section 2, we
formulate the problem and we propose a mixed linear
model. In Section 3, we consider the problem without
setup times and we present new lower bounds and some
others from the literature. In Section 4, we propose two
classes of lower bounds for the tardiness minimization
with family setup times. The first class is distributive (i.e.,
the setup is split into pieces and distributed to the jobs of
the corresponding family) and in the second class, the
setup is not divided and it is considered independently of
the processing times. Section 5 provides the description of
the numerical experiments and reports the analysis of the
results obtained in this work. Finally, we conclude the
paper by some conclusions and perspectives.

2. MATHEMATICAL FORMULATION

In the problem studied in this paper, we have to
schedule N jobs on a single machine. Each job 7 has a
processing time p; and a due date 4. The set of jobs is
partitioned into F families. Each job 7 belongs to a
corresponding family £{z). When switching from job 7 to job
J, two cases are possible. If the two jobs belong to the same
family (i.e. i) = /), then, no setup is required between
these jobs. In the second case, the families are different and
a setup gy is necessary before the execution of job ;. The
machine can execute only one job at a given time and
preemption is not allowed. For a given sequence, a job 7 is

tardy if its completion time C; is greater than its due date.
We aim to find the sequence for which the total tardiness
of the set of jobs is minimal.

A mixed linear formulation can be associated to the

problem 1|5‘/|ZY; . This formulation can be described in
the following model:

Minimize ». __ T,

1<r<N 7

subject to:

C/ ZCH +Z 1g,swxi,/pi +z 151‘5:\"51',’I/’(i)’ VisssN @

DX, =LVI1<sSN ©)
DX, =LVISiSN 3)
12C-) _ x,d,V1<t<N @
5, 2x, —Z//ﬂ/)zmxw, V1<i<N,V2<r<N ©)
8, =x,,V1<i<N ©6)
G, =0, T>0,C,20,V1<t<N )
5.,€{01}, x,, €{0,1}, VI1</<N, V1</<N ®)

In this model, the objective is to minimize the sum of T,
(the tardiness of the job scheduled in the # position). x; ; is
a binary vatiable equal to 1 if job 7 is scheduled in the #
position and equal to 0 otherwise. &;, is a binary vatiable
equal to 1 if a setup of family f{7) is scheduled in the #
position and equal to 0 otherwise. Variable C; represents
the completion time of the job scheduled in the #
position.

From this formulation, we can derive a lower bound by
relaxing the binary constraints (8). The relaxed problem
can be solved using a linear programming solver (CPLEX
for example). The inconvenience of this technique consists
in a large number of variables and constraints (2N? + 2N
variables and 3N? + 4N constraints). According to
preliminary tests, the computational time required to solve
the relaxed model increases rapidly as the size of the
problems increases. This explains why this lower bound is
not compared to the other lower bounds which are
described in the remainder of this paper.

3. LOWER BOUNDS FOR THE TARDINESS
MINIMIZATION WITHOUT SETUP TIMES

In this section, we present a set of lower bounds for the
particular problem without setup times (noted 1| |ZY} )
These lower bounds will be used and/or generalized to the
original problem with family setup times. We first present
some practical properties and we deduce new lower
bounds. Other bounds from the literature are proposed
too.

Property 1. Let Tope be the total tardiness of an optimal
sequence for the problem 1| |ZT, and let o be a

positive number, then the following inequality holds:
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Property 2. If jobs 7 and j verify p, <p, and d,>d,
then, interchanging the two due dates between the two jobs
does not increase the tardiness of the optimal solution.
The proof of this property can easily be established by an
interchange argument. Similar result was proposed by

Jouglet (2002) for 1r,, pre| D T, .

Theorem 1 (Emmons, 1969). We assume that jobs are
indexed in the non-decreasing order of their processing
times. Cl“m' is the completion time of the job scheduled
in the # position in the SPT order, then the sequence is
optimal  if  the holds:
d,<C" +p. —p Vi< N-1.

following condition

Theorem 2 (Emmons, 1969). We assume that jobs are
indexed in the non-decreasing order of their due dates.

CIPP s the completion time of the job scheduled in the

# position in the EDD order, then the sequence is optimal
if the following condition holds: C/”” <d + p, Vi< N.

3.1 Lower bound based on the SPT schedule (Iby)

Based on Property 1 and Theorem 1, we can derive a
new lower bound. For this purpose, we sort jobs in
non-decreasing order of processing times. We schedule
them in this order. If the completion time of job 7 does
not correspond to the condition of Theorem 1 (.e.

d>C"+p = p), then  we  set d to

i

C™ 4 p—p and @, =d, —(C" + p,, — p,) inorder

to impose Emmons condition, otherwise 4/ =4, and
o, =0. The SPT schedule with the new due dates 4, is
optimal according to the theorem. A lower bound (/) is

obtained by computing the total tardiness of this sequence
(with the modified due dates) and subtracting ziai

from the obtained result.

3.2 Lower bound based on the SPT schedule and the
interchange of due dates (Iby)

The principle of this lower bound is the same. We sort
jobs in the non-decreasing order of processing times and
we schedule them in this order. The difference consists in
the fact that if the completion time of job 7 does not
correspond to the condition of Theorem 1, then before

setting d/ to C'"" + p,., —p,, we seek a job j of the

d, > d/ and

i+1

subset {z'+1, i+2, .., N} such that
d] SC;‘VPT+pl.H—pZ. . If such a job exists, then we

interchange the due dates. If job / does not exist, then the
interchange can be done with the smallest due date of the

subset {z'+1, i+2, ., N} and decreasing minimally the

due date to meet Emmons condition. Property 1 is used to
take the due date decrease into account to compute the
lower bound.

Other versions can be derived from this lower bound.
For example, we can shorten the processing times of jobs

in the subset {1, 2, z'—l} before decreasing the due

dates. However, this type of modification has a strong bad
effect on the obtained lower bound according to some
preliminary tests. That is why, it will not be considered in
our current study.

3.3 Lower bound based on a linear constrained
formulation (Ibs)

This lower bound consists in solving a linear program.
The objective function in such a linear program represents
the total tardiness expressed in function of the starting
times of jobs, their processing times and their due dates.
The constraints are obtained on the starting times by
associating some fictitious weights to jobs and computing
the optimal value of the weighted flowtime associated
using the SWPT rule. More explicitly, this lower bound can
be described in Theotem 3.

Definition 1. Let w=(w,,w,,..,wy) be a vector of

positive numbers and p be the vector of processing times,
1e, p=(pPys pasrr Pn). WF(p,w) denotes the minimal

weighted flowtime obtained by applying the SWPT rule
(proposed by Smith) to the corresponding problem

1| |Zw,C, .

Property 3. Let w=(w,w,,..,wy) be a vector of
positive numbers and (7)., the set starting times of

jobs in a feasible schedule. Then, the following inequality
holds: Y w.(t;+ p) 2 WF(p,w).

Theorem 3. Let » be a positive integer and (»*),., be a

set of m vectors of positive numbers. Then, the solution
of the following linear program is a lower bound for the
total tardiness minimization:

Minimize ng:\rmﬂx t,+ p,—d,,0)
subject to:
D W U4 P)ZWE (pf) V1SS 10

Example 1. Let us consider an instance of 3 jobs such that
(prs Pas P5)=(3, 5, 8) and (d,,d,,d;)=(3, 16, 8) . We
take 7 = 3 and we choose »'=(1, 2, 3), »*=(1, 1, 1)
and »’ =(1, 1, 2). By applying Theorem 3, we obtain the

following linear program:

Minimize (¢ +max(z, =11, 0)+4,)

subject to:
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1421, 43,228 (11)
Lty 211 (12)
1ty 428 217 (13)
1y 1y, 1,20 14

The resolution of this linear program gives /b, =3

which represents the optimal total tardiness for this
example.

Remark 1. This principle can yield an efficient lower
bound if the set of weights is judiciously chosen and it can
also be easily extended to other problems. The lower
bound can be computed easily using a linear programming
solver (CPLEX solver for example), however, the number
of constraints (equal to 7) should be minimal in order to
reduce the computational effort.

3.4 Szwarc et al’s lower bound based on the EDD
sequence (Ibyg)

The principle of this lower bound consists in scheduling
jobs according to the earliest due date sequence and in
minimally increasing the due dates so that the condition in
Theorem 2 will be verified (Szwarc et al., 1999). In others

words, if C™” >4, + p,, then, we can set the due date to

CiEDD _ p .

7

3.5 Kondakci et al.’s lower bound (Ibs)

This bound is very fast and easy to implement. Initially,
it was proposed by Chu (1992) for the problem

1|7’,|ZIY; and used in the paper by Kondakci et al

(1994). The jobs are sorted in the non-increasing order of
their processing times. C’"" denotes the completion time
of the job scheduled in the # position in the SPT order
and (d]),,., tepresents the seties obtained by sotting

the due dates in non-decreasing order. The lower bound
can be obtained by computing the following sum:

Ih, = max (C"" =d!, 0) (15)

2 1<i<N ’

Note that this lower bound was improved by Della
Croce et al. (1998) by dividing the set of jobs in two
subsets before assigning due dates.

3.6 Souissi et al.’s lower bound (Ibs)

This lower bound is very fast and easy to implement too.
It can improve the value obtained by the previous lower
bound. The jobs are sorted in the non-decreasing order of
their processing times. 7' denotes the starting time of
the job scheduled in the # position in the SPT order and
(A)),,<n represents the series obtained by sorting the

(A))icien Of jobs (where A, =d,—p, ) in

non-decreasing order. The lower bound can be obtained by

slacks

computing the following sum (Souissi et al., 2004):
Iy =2 max (£ =A, 0) (16)

3.7 Potts and Van Wassenhove’s lower bound based on
a lagrangian relaxation (Ib7)

'This bound is based on a clever relaxation in which the
weighted tardiness problem can be transformed to a
problem of weighted flowtime minimization. To compute
this lower bound, we sort jobs in the non-decreasing order
of their processing times and we schedule them in the SPT
order. It is equal to the solution of the following linear
problem:

Maximize » 2 (C'" -d)

i

subject to:
A/ b2/ ¥ 1SISN-1 (a7
0<A <1V 1<i<N (18)

Potts and Van Wassenhove (1985) proposed a fast
procedure to solve this linear problem. This bound is
generalized to the problem with family setup times in this
paper. The details are provided in the next section.

4. LOWER BOUNDS FOR THE TARDINESS
MINIMIZATION WITH FAMILY SETUP
TIMES

In this section, we present a set of lower bounds for the
tardiness minimization problem with family setup times

(denoted 1|xf|ZTl. ). The lower bounds presented in the

previous section are used and/or generalized to this
problem. Two classes of bounds can be distinguished: The
distributive class and the non-distributive class.

4.1 Distributive lower bounds

The principle of distributive bounds was widely used by
other researchers (Crauwels, 1998; Dunstall and Wirth,
2005; Azizoglu and Webster, 2003) to optimize other
criteria. It is based on the transformation of the original
problem in a modified problem without setup times. The
transformation is established by splitting the setups into
pieces and by adding these pieces to the processing times.
Then a new instance without setup times is obtained. As a
consequence, any lower bound for the problem without
setup times can be applied to this instance with the
modified processing times. The principle remains valid for
any regular objective function (Dunstall et al., 2000).

Based on this principle, we can obtain a relaxation of
any instance of the problem 1|5‘/|ZY; in an instance of
1| |ZY} using  the

the problem following

transformation:
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p,'=ﬁi+ZISJSF/3f,/5/ V 1</ <N (19)
such that:

B, =0iff()#,; ¥ 1<i<N,V 1< j<F (20)
B, <liff()=; ¥ 1<i<N,V 1< /<F @1)
2B, =1 VIS SF (22)

Therefore, we can apply the different lower bounds of
the previous section (/;, to /b, ) to the new instance with

the modified processing times to compute valid lower
bounds for the tardiness minimization with setup times.
These obtained bounds are respectively noted LBi, LBy,
LBs, I.By, L.Bs, I.Bs and L.B7. Note that I.Bs is one of the
lower bounds incorporated in the branch-and-bound
algorithm proposed by Schaller (2000).

4.2 Non-distributive lower bounds

Contrary to the distributive class, in the non-distributive
lower bounds the setup is not divided and it is considered
independently of the processing times. In this subsection,
we present two new schemes to obtain valid lower bounds

for any instance of the problem 1|5/ | ZTI .

4.2.1 Lower bound based on a linear constrained
formulation (LBs)

In this paragraph, we generalize our lower bound /b
proposed in Section 3 and based on a linear constrained
formulation. For this purpose, we will exploit the following
idea that was shown by Mason and Anderson (1991) and
used by Azizoglu and Webster (2003) for flowtime
minimization. The idea consists in the fact that a problem
with setup times can be separated into two independent
problems. The first one is the scheduling of jobs. The
second one is the scheduling of setups.

Let us consider a feasible schedule ¢ for the problem
with setup times. Let A1, b, ..., br be the indexes of the

family setups in the order of their appearance in schedule o.

It is obvious that these setups induce a time lag for each
job belonging to family bz (1<A£<F) at least equal to

Zk s, . Thereafter, the total time lag for all the jobs of

r=1"4

. . &
family /z is at least equal to 7, zr: 5,

b,
r

where #, is the
1 "k

cardinal of family /e In conclusion, the total time lag due

to the setups is at least equal to

7(o) zzlgkgﬂ,}kz;;b/ . Obtaining a lower bound on
the time lag induced by the setups can be reduced to an
instance of the problem 1| |Zw,C, by taking s1, sz, ..., 5
as jobs to schedule and 1, 7, ..., #r as their corresponding
weights. The result can be obtained by applying the SWPT

rule. We note 7 this lower bound on the time lag.
Based on this result, we can now generalize Theorem 3
to the case with family setup times. This result can be

described in Theorem 4.

Theorem 4. Let 7 be a positive integer and (»*),., bea
set of m vectors of positive numbers. Then, the solution
of the following linear program is a lower bound for the
total tardiness minimization with family setup times:

Minimize ZK,SNmaX (t,+p+7,—d, 0)

subject to:

2 2T 23)
1,25, VI<i<N 24)
Dt p)ZWE(p, ) V1< k< m 25)

Remark 1 remains valid to this lower bound and the
major difficulty to implement it is the determination of the
fictitious weights.

4.2.2 Lower bound based on a Lagrangian relaxation
(LBy)

In this paragraph, we extend the excellent lower bound
proposed by Potts and Van Wassenhove for the weighted
tardiness  minimization  without setups. In  this
generalization, we integrate the setup times as dummy jobs.
Indeed, we relax the original problem such that only one
setup can be scheduled for each family. Therefore, the
relaxed problem can be viewed as a problem of total
tardiness minimization with chain precedence constraint.

This type of relaxation was exploited to build efficient
lower bounds for the problem 1|x /’|Z”’,C, by Dunstall

et al. (2000).

In the relaxed problem, noted (7), we remove the set of
setups and we replace it by a set of dummy jobs
{N+1, N+2,.., N+ F} such that {5, s, ..., s} is the
set of respective processing times. Each job (IN + /) must
be scheduled before jobs belonging to family f£ The
objective is to schedule jobs (initial jobs and dummy jobs)
by respecting the precedence constraints to minimize the
total tardiness of initial jobs (i.e. jobs belonging to
{1, 2, .., N}). This problem can be formulated, except

the capacity constraint of the machine, as follows:

(m: Minimize » T,

subject to:

T.20 V1<i<N (26)
T.>C —d V1<i<N @7
C,2Cy 0 +p VYI1<i<N 28)

where C;is the completion time of job 7 (1<7/< N+ F).
In the generalized lower bound, we apply a Lagrangian
relaxation which allows us to transform problem (7) to an

instance of the problem 1| |Zw,C, (polynomially
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solvable by applying the SWPT rule). Such an instance can
be described as follows:

(n): Minimize . wC +L(u)

subject to:
{xj—xf if1</<N
= 2 e nT . (29)
Doy 1 N+ISISN+F
L(m)=2, . A p,=Ad) (30)
Al=2220 V 1<i<N 31
A<l V 1<i<N (32)

The completion times must respect the constraint of the
machine capacity. According to the principle of Lagrangian
relaxation, for any nonnegative multipliers, the optimal
solution of problem (') yields a valid lower bound for the
total tardiness minimization with family setup times. The
inconvenience of this technique is the difficulty to find the
best multipliers maximizing the lower bound. To overcome
this problem, Potts and Van Wassenhove proposed a clever
approach in which they used a multiplier adjustment
method. This method needs a heutistic method to schedule
the jobs. The decision variables of the resulting problem
are then reduced to the Lagrangian multipliers and the
heuristic solution must be optimal for the chosen
multipliers.
bound can be described in the following Theorem.

Based on this result, our generalized lower

Theorem 5. We assume that the (IN + F) jobs are sorted in
non-decreasing order of their processing times. Let C; T

be the completion time of the job scheduled in the #
position according to the SPT order and (W), bE

the series of the multipliers in the same order respecting
the previous constraints (ie. A/ —A>>0, V 1</<N
and A! <1, V 1</ < N). The solution of the following

linear problem is a valid lower bound for the tardiness
minimization with setup times:

Maximize ». __ u/C" +L(u)

subject to:
W/ b2/ prs ¥ 1SiSN+F-1 (33

Remark 2. The principle of this lower bound remains
valid for any heuristic. We have just to sort variables
according to the jobs order given by the heuristic used to
compute the lower bound.

5. NUMERICAL EXPERIMENTS

In this section, we provide the computational results
used to evaluate the performance of the different methods
presented above. The tests were carried out on a Pentium 4
PC in the Windows XP environment using the C language

and CPLEX softwate to solve the linear programs. The
following paragraphs describe our data generation methods,
the results obtained and our analysis of these experiments.

5.1 Data generation

The experiments were carried out on six series. We
tested instances for which the size is variable
(N e{15, 30, 50, 70, 90}). In each series, the instances
were randomly generated according to a uniform
distribution, such that p, €[1, 100]. For each series, we

considered three levels for setup times: small (s, €0, 10]),
medium (s, €[0, 50]) and large (s, €0, 100]). Jobs were

assigned uniformly to the families. The due date were also
randomly generated using a uniform distribution over

D(1-r=T/2) and D(1-r+T/2), where:
* DZZlgszi +Zl£f§l:;/

e T'is the due date range and ris the tardiness factor.

The six series were generated as follows:
o Istgeries: r=0.5and T = 1.0.
e 2ndgeries: r=0.6and T = 0.8.
o 3 geries: »= 0.5 and T = 0.6.
o 4t geries: r=0.5and T = 0.8.
o 5thgeries: = 0.3 and T = 0.6.
e (thseries: 7= 0.8 and T = 0.4.

Variables I and N were chosen according to some
groups of couples (IN, F). In each group, we duplicated
randomly 30 instances and computed the mean values of
the lower bounds studied in this paper.

5.2 Results and analysis

The different results are summarized in Tables 1-7 and
Figure 1. For each lower bound, the mean values obtained
for each group are given (see Tables 1-6). The mean value
of computation times obtained for all the tests for each
lower bound is also given in Table 7 and Figure 1. From
these results, we can make the following remarks:

a) Except the series 3, in which the level for setup times
affects the behaviour of the dominant lower bounds, we
can remark throughout the computational experiments that
the performances of the different lower bounds depend
mainly on the due date range and the tardiness factor.

b) Distributive lower bounds: The main advantages of
these procedures are the computational effectiveness and
the simplicity of their implementation (except L.B; which
needs to solve a linear program). We have just to apply
simple and fast algorithms to the modified data (i.e. the
modified processing times after including setup times).
This approach leads

computation time (107* s for some lower bounds). For

generally to an interesting
some generation data, all the lower bounds have relatively
the same performance (series 6, for example). In this case,
the choice of a distributive bound may be suitable since the
computational effort is reduced. As an example, for series
6, the different lower bounds have almost the same
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performance (see Table 6). In this case, the choice of one
of the fast lower bounds (LLB;) represents a good
alternative to build an efficient branch-and-bound
algorithm. However, the difficulty to obtain efficient
distributive lower bounds consists in finding the best way
of the distribution of setup times to the processing times.
In this study, we have chosen to include uniformly a setup
to the jobs of the corresponding family. This distribution
scheme seems to be satisfactory. The paper by Schaller
(2006) confirmed the same conclusion.

¢) Lower bounds LBy and LBy These two lower bounds

have almost the same performance and the same behaviour.

The major advantage of these bounds is they can be

obtained very quickly. We can remark that these bounds are
relatively effective if the values and the dispersion of the
due dates are small. This is the case of series 6 (see Table
6). The dispersion of the due dates has a bad effect on the
performance of the two lower bounds. This is the case of
the other series (see Tables 1-5). This behaviour can be
explained by the fact that LBy and LB, are based on the
SPT sequence and Theorem 1. Indeed, if the values and
the dispersion of due dates are small, the conditions of
Theorem 1 can be satisfied by the SPT sequence and the
modification of these due dates (needed to compute these
lower bounds) has not an important effect.

Table 1. Mean values for the lower bounds obtained for series 1

Group (J\‘T, P) LB1 LBZ LB3 LB4 LB5 LB() LB, LBg LBQ
Small level for setup times
1 N=15, F=2 98.0 95.3 356.5 367.7 173.0 123.7  376.5 356.7 397.3
2 N=15, F=3 42.6 42.0 401.6 3709 150.7 100.0 4229 388.4 450.5
3 N=15, F=4 61.0 60.7 365.0 3579 1777 1238  380.0 339.2 414.0
4 N=30, F=2 0.0 0.0 892.7 7817 1112 455 913.5 895.4 955.5
5 N=30, F=5 0.0 0.0 742.3 72377  111.8  53.0 746.3 693.1 819.9
6 N=30, F=10 0.0 0.0 842.1 7292 109.0 539 842.9 698.3 954.6
7 N=50, F=2 0.0 0.0 1280.3 12644 1337 67.0 12834 12825 13484
8 N=50, F=5 0.0 0.0 16184 1146.7 1411 689 1634.0 1541.4 1739.9
9 N=50, F=10 0.0 0.0 16974 13142 1377 675 17146 14625 1957.9
10 N=70, F=5 0.0 0.0 26443 18485 110.6 544 2681.5 25123 2897.2
1 N=70, F=10 0.0 0.0 44373 23921 1525 564 45029 3962.3  4991.8
12 N=70, F=25 0.0 0.0 2756.0 17751 124.6 471  2807.5 1827.0 3347.5
13 N=90, F=5 0.0 0.0 4542.0 24969 1727 96.2  4605.3 4358.6 4881.9
14 N=90, F=10 0.0 0.0 4566.8 2645.8  90.6 40.3  4669.7 41232  5207.2
15 N=90, F=25 0.0 0.0 4603.7 2323.0 1163 464 4685.2 3545.0 5464.9
Medium level for setup times
1 N=15F=2 108.0 1054 380.0 388.7 189.1 142.6  400.8 386.3 521.1
2 N=15, F=3 48.4 47.7 448.2 406.2 1755 1291  468.1 380.5 643.7
3 N=15, F=4 98.2 97.8 425.1 4054 2233 1763 438.2 302.7 652.4
4 N=30, F=2 0.0 0.0 917.0 801.2 117.5 519 936.8 936.3 1187.6
5 N=30, F=5 0.0 0.0 789.0 776.2 1248  69.8 797.0 535.5 1344.8
6 N=30, F=10 0.0 0.0 964.8 825.6  137.1  90.7 970.8 325.1 1719.7
7 N=50, F=2 0.0 0.0 1308.2 1288.5 138.7 712 13105 13289 @ 1765.0
8 N=50, F=5 0.0 0.0 1696.6 1197.6 158.8 86.7 17185 13129 24314
9 N=50, F=10 0.0 0.0 1827.0 1420.2 1603 90.7 18462 676.3 3561.3
10 N=70, F=5 0.0 0.0 2692.7 18973 1168 60.6 2730.1 1939.7  4099.1
11 N=70, F=10 0.0 0.0 4629.1 25219 1735 744 47262 2260.6 7716.5
12 N=70, F=25 0.0 0.0 3289.5 2087.7 155.6 759 34294  350.2 7433.4
13 N=90, F=5 0.0 0.0 4654.4 25573 184.0 105.1 47232 36289  6505.1
14 N=90, F=10 0.0 0.0 4736.1 2750.6  99.5 48.0  4869.8 2484.5 = 8400.0
15 N=90, F=25 0.0 0.0 5056.9 2560.2 1487 735 5201.2 887.1 = 10652.5
Large level for setup times
1 N=15F=2 1241 121.7 4104 4146 2104 1677 4318 440.3 698.4
2 N=15, F=3 65.8 64.8 508.3 4520 2114 171.0 5281 403.5 902.4
3 N=15, F=4 1483 1473  497.0 461.6 2827 2419 5114 302.2 949.4
4 N=30, F=2 0.0 0.0 947.7 825.7 1254  61.0 967.5 994.3 1500.8
5 N=30, F=5 3.2 3.0 848.2 8429 1425 913 860.4 4439 2050.5
6 N=30, F=10 0.0 0.0 1109.6 9439 176.7 143.0 11284 154.8 2644.6
7 N=50, F=2 0.0 0.0 13427 1317.3 1447 773 13437 13979  2387.2
8 N=50, F=5 0.0 0.0 1789.7 12629 1841 111.1 1821.5 1085.3  3495.6
9 N=50, F=10 0.0 0.0 1983.4 15520 189.6 119.7 2006.0 272.8 5741.7
10 N=70, F=5 0.0 0.0 27474 1956.6 1247 69.2 2787.6 1390.6  5755.4
11 N=70, F=10 0.0 0.0 4827.5 2678.7 199.7 989 49732 10904 @ 11127.0
12 N=70, F=25 0.0 0.0 3899.1 24755 1913 1105 4169.7 97.8 12431.2
13 N=90, F=5 0.0 0.0 4784.6 2630.0 198.8 118.0 4866.7 2995.6 8746.4
14 N=90, F=10 0.0 0.0 49294 2879.0 110.3 56.5 5108.7 13129 12443.5
15 N=90, F=25 0.0 0.0 5526.5 2859.6 183.1 105.0 5771.3 89.0 18127.1
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d) Lower bounds L.B; and LBs: These lower bounds
have relatively the same performance, behaviour and
computational cost. Except series 5, they are robust
according to the dispersion of data and have relatively a
uniform performance (see the different results). To obtain
an efficient performance for these lower bounds, we have
to find a pertinent set of constraints by judiciously
choosing the fictitious weights. In this work, we have
limited the number of constraints to » = N + 3. The
fictitious weights were chosen such that each job can
occupy all the positions in the SWPT schedules associated
to the fictitious weights (which needs N constraints). The
three other constraints allow us to obtain the sequences
SPT, EDD and MDD. Our choice is motivated by the need

to obtain fast procedures and complementary constraints.
Obviously, if we introduce some additional constraints, the
performance may be enhanced, but, the computational
effort will be more important too.

e) Lower bound LBy This lower bound is robust
according to the data dispersion. Its major advantage is the
computational efficiency (1073 s almost). This lower bound
is particularly effective if the values of the due dates are
large. This is the case of all the instances in series 5. High
values of due dates have a good effect on the performance
of this lower bound. However, if the due dates are small, it
is very difficult to meet the conditions of Theorem 2 and
the relaxation needed to compute the lower bound

Table 2. Mean values for the lower bounds obtained for series 2

Group (17\4‘7, P) LB1 LBZ LB3 LB4 LB5 LB(, LB, LBg LB:)
Small level for setup times

1 N=15, F=2 321.3 318.9 910.4 578.7 633.2 509.8 966.6 908.9 993.4

2 N=15,F=3 2221 224.6 875.9 556.2 559.5 420.9 930.2 853.5 967.6

3 N=15, F=4 278.1 278.1 914.5 593.8 632.2 508.0 974.8 873.4 1019.5

4 N=30, F=2 261.9 264.1 3057.0 12924  1562.3 1279.6 3243.6 3054.2 3297.7
5 N=30, F=5 280.3 281.8 2861.1 1273.6  1464.8 1211.5 3027.7 2754.8 3149.9
6 N=30, F=10  196.7 198.1 2892.6  1270.6  1452.6 1204.8 3075.2 2624.7 3246.0
7 N=50, F=2 189.7 190.0 7277.5  2250.0  3489.5 3046.4 7655.3 7268.5 7763.7
8 N=50, F=5 227.8 227.9 7039.0 21349  3416.2 3005.7 7383.5 6869.6 7581.0
9 N=50, F=10 1109 111.2 7711.7  2247.6  3653.9 3205.7 8082.4 7255.1 8463.1

10 N=70, F=5 4.7 4.7 13935.6 3178.6  5895.9 5293.6  14672.7 13701.0 14979.8
11 N=70, F=10 3724 3727 16588.5 33954  7068.6 6414.7  17502.3 15967.1 = 18085.1
12 N=70, F=25 0.0 0.0 14196.4 32663 6141.2 5527.2  15135.0 12399.3 16018.8
13 N=90, F=5 292.5 292.6 235243 4136.7 9873.6 9059.8  24697.8 23226.3 25097.6
14 N=90, F=10 20.9 21.0 23570.4 4205.2  9573.2 8805.1  25066.9 22831.3 25775.4
15 N=90, F=25 0.0 0.0 22686.3 4148.6  9482.3 8716.3  24017.7 20414.4 25343.8

Medium level for setup times

1 N=15, F=2 365.1 362.9 975.1 614.2 686.4 567.5 1034.1 970.8 1189.8

2 N=15, F=3 3124 313.3 983.5 614.0 648.9 518.8 1045.7 862.0 1270.6
3 N=15, F=4 399.1 400.0 1058.1 673.4 760.3 647.7 1128.8 836.1 1392.6
4 N=30, F=2 318.3 320.3 3158.1 13262  1634.7 1351.4 3354.0 3146.7 3688.9
5 N=30, F=5 356.1 357.5 3109.9 13719  1648.4 1399.1 3316.0 2503.9 4051.9
6 N=30, F=10 4445 446.9 3382.6 1451.0  1805.8 1570.2 3628.0 1887.4 4665.9
7 N=50, F=2 222.3 223.0 7461.0  2291.2  3600.5 3149.4 7853.2 7410.7 8527.6
8 N=50, F=5 336.1 336.6 7421.4 22204  3678.0 3265.0 7798.3 6446.8 9029.0
9 N=50, F=10  288.1 289.7 8474.8  2436.1  4195.0 3731.7 8973.1 5964.5 « 11271.6
10 N=70, F=5 29.5 29.4 14429.8 3269.2 62054 5585.0  15220.1 13071.2 17079.2
11 N=70, F=10  595.0 595.5 17681.9 3586.6  7813.6 71451  18776.7 14121.8 22249.9
12 N=70, F=25 6779 680.1 16751.8 3756.1  7839.8 7172.6 183432  6976.7 = 23217.1
13 N=90, F=5 355.5 355.5 241927 42275 10299.1 94719  25463.0 22434.8 27911.5
14 N=90, F=10 98.0 98.0 24759.4  4380.5 10339.6 9546.2  26541.5 20500.0 30811.4
15 N=90, F=25 59.2 59.3 25749.9 4625.7 11440.6 10626.9 27776.5 13136.8 35860.5

Large level for setup times

1 N=15, F=2 421.5 419.0 1058.0 658.7 755.5 642.4 1118.5 1059.9 1441.9

2 N=15, F=3 4271 426.3 1119.7 684.8 766.2 645.6 1194.0 919.2 1638.8

3 N=15, F=4 557.6 553.5 1226.2 771.3 921.5 818.8 1317.3 863.4 1803.7

4 N=30, F=2 393.6 395.1 3283.3 13689 1727.2 1446.7 3491.2 3270.2 4152.0
5 N=30, F=5 457.2 457.7 3420.4 14949  1884.1 1640.1 3671.4 2259.3 5101.4

6 N=30, F=10  849.8 848.2 3962.3 16679 22913 2062.7 4300.0 1318.4 6139.2
7 N=50, F=2 273.8 275.0 7690.1 23428 3740.4 3283.9 8100.7 7605.8 9460.5
8 N=50, F=5 471.9 471.5 78774  2327.8  4015.4 3593.2 8320.9 5968.1 = 10780.5
9 N=50, F=10  628.3 631.5 9380.9  2676.8  4879.6 4407.2  10060.0  4633.3 = 14422.9
10 N=70, F=5 57.7 57.9 15010.5 3382.0 6595.5 5956.9  15903.5 12331.0 19674.1
11 N=70, F=10 1054.7 1056.8 18923.7 38269 8746.2 8069.8  20325.8 12029.1 = 26931.3
12 N=70, F=25 1912.0 19145 19631.0 43599 9878.5 9154.0 221154 2718.1 = 30246.1
13 N=90, F=5 431.3 431.6  24988.7 4339.7 10838.4 10001.3 264163 214989 31368.7
14 N=90, F=10  272.8 2729  26093.5 4598.6 11307.1 10482.8 283432 17779.1 36631.4
15 N=90, F=25 501.7 502.5  29216.3 52184 13875.8 12998.1 32287.4  6523.4 = 46955.9
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becomes important. This is the case of the instances of
series 6. This behaviour can be explained by the fact that
LBy is based on the EDD sequence and Theorem 2.
Indeed, if the values of the due dates are small, the
conditions of Theorem 2 are so difficult to be satisfied by
the EDD sequence and the modification of these due
dates needed to compute the lower bound has an
important bad effect.

f) Lower bounds LBs and L.Bs: The major advantage of
these bounds is the computational efficiency. We can
remark that these bounds are efficient in the case of series
3 (see Table 3). The dispersion of the due dates has a bad
effect on the performance of the two lower bounds. This
is the case of series 1 and 2 (see Tables 1 and 2). This

behaviour can be explained by the fact that these lower
bounds are based on the assignment of the due dates to
the SPT-sequence completion times. Indeed, if the values
and the dispersion of the due dates are small, the
relaxation needed to compute these lower bounds has not
an important effect and their performance may be
satisfactory.

@) Lower bounds L.B; and LBy: Except series 5, they
yield generally the best performances when comparing
with the other lower bounds. In addition, they are robust
and the dispersion of the due dates does not roughly affect
their values. The performances of these lower bounds are
comparable (see Tables 1-6). The complexity of the bound
(LBy) is very interesting using the procedure of Potts and

Table 3. Mean values for the lower bounds obtained for series 3

Group (J\‘T, P) LB1 LBZ LB3 LB4 LB5 LB() LB, LBg LBQ
Small level for setup times
1 N=15F=2 25,5 242 3100 391.1 435.0 306.2 319.7 308.5 334.8
2 N=15F=3 115 115 337.1 388.8 397.7 253.6 348.2 320.3 368.7
3 N=15, F=4 0.0 0.0 321.3 383.6 436.2 310.1 330.7 291.1 355.0
4 N=30, F=2 0.0 0.0 698.2 777.8 1155.6 902.7 715.0 697.8 742.6
5 N=30, F=5 0.0 0.0 598.7 733.4 1106.0 869.8 604.6 530.7 663.4
6 N=30, F=10 0.0 0.0 650.5 771.7 1095.1 870.8 660.6 486.9 745.5
7 N=50, F=2 0.0 0.0 10141 1238.1 = 2680.3 2313.7 1018.6 10125 1069.3
8 N=50, F=5 0.0 0.0 11759 12479 @ 2638.5 2267.0 1187.1 10904 1261.6
9 N=50, F=10 0.0 0.0 1267.3 12872 @ 2809.1 24235 12782 9922 1446.6
10 N=70, F=5 0.0 0.0 1957.5 1768.0 @ 4667.0 41752 1974.0 1815.6 2111.7
1 N=70, F=10 0.0 0.0 3121.0 1965.0 @ 5279.0 4733.8 3147.7 2640.7 34454
12 N=70, F=25 0.0 0.0 1940.0 1805.0 @ 4744.6 42239 1970.2 10155 23235
13 N=90, F=5 0.0 0.0 31924 23289 @ 7676.3 7004.1 3219.3 30094 3393.8
14 N=90, F=10 0.0 0.0 32225 23728 @ 7554.9 (6913.6 32784 27054 36159
15 N=90, F=25 0.0 0.0 31241 22683 @ 7520.0 6862.6 31652 2018.8 36709
Medium level for setup times
1 N=15F=2 304 292 3258 410.8 468.1 336.9 335.9 317.4 430.2
2 N=15F=3 15,5 155 369.5 4239 450.3 301.1 380.9 281.2 506.7
3 N=15, F=4 7.2 7.3 361.6 4244 511.5 379.3 370.6 198.6 529.6
4 N=30, F=2 0.0 0.0 716.5 796.8 1202.7 945.2 733.8 715.8 908.8
5 N=30, F=5 0.0 0.0 633.0 780.1 1223.2 982.6 640.8 319.1 1027.2
6 N=30, F=10 0.0 0.0 733.1 874.5 1310.8 1072.0 748.6 96.7 1268.8
7 N=50, F=2 0.0 0.0 1037.4 12593 @ 2754.9 2382.0 1042.0 1028.2 1360.2
8 N=50, F=5 0.0 0.0 12267 12975 2809.3 24334 1243.0 799.5 1740.7
9 N=50, F=10 0.0 0.0 13523 13873 3165.0 2763.8 1368.4  203.3 2503.8
10 N=70, F=5 0.0 0.0 1994.1 18139 @ 4878.6 4375.8 2010.1 1186.8 2881.6
11 N=70, F=10 0.0 0.0 3253.1 20653 @ 5765.5 5202.5 3297.6 904.2 5192.6
12 N=70, F=25 0.0 0.0 22827 2073.8 5845.3 5276.8 2361.7 23.9 5030.7
13 N=90, F=5 0.0 0.0 3267.2 23788 @ 7961.4 7277.1 32958 2205.8 4430.1
14 N=90, F=10 0.0 0.0 3335.1 2468.7 @ 8076.9 74164 34039 1060.5 5605.8
15 N=90, F=25 0.0 0.0 3417.1 2507.2 = 8909.7 8209.7 3500.2 0.3 7023.9
Large level for setup times
1 N=15F=2 37.0 359 3478 436.0 510.4 376.8 358.5 3324 561.1
2 N=15,F=3 20.0 20.0 411.0 469.1 517.6 362.5 423.1 246.6 694.0
3 N=15, F=4 272 27.3 409.1 476.6 605.6 468.1 419.4 136.3 7471
4 N=30, F=2 0.0 0.0 737.5 820.2 1260.7 998.7 755.5 738.0 1142.7
5 N=30, F=5 0.0 0.0 679.9 840.2 1371.3 11255 689.7 190.0 1514.0
6 N=30, F=10 0.0 0.0 835.5 1000.6  1579.3 1320.0 858.9 1.5 1906.8
7 N=50, F=2 0.0 0.0 1064.0 1286.3 @ 2851.2 2471.5 1068.7 10464 1766.5
8 N=50, F=5 0.0 0.0 12952 13587 @ 3028.2 26442 13159 5435 2436.5
9 N=50, F=10 0.0 0.0 14539 1512.6  3604.0 3181.6 1476.4 5.0 3933.7
10 N=70, F=5 0.0 0.0 2036.0 1870.4 = 5145.7 46327 20540 579.4 3949.2
11 N=70, F=10 0.0 0.0 3387.4 21894 63614 57769 34514 220.3 7331.4
12 N=70, F=25 0.0 0.0 2679.2 2408.2 7109.0 6479.6 2830.8 0.0 8162.0
13 N=90, F=5 0.0 0.0 3357.1 24414 8321.8 7625.0 3392.1 1545.7 5871.1
14 N=90, F=10 0.0 0.0 34534 2586.0 8716.6 8036.6 3546.5 293.7 8119.2
15 N=90, F=25 0.0 0.0 3721.3 2816.7 10562.6 9811.3 3861.6 0.0 11788.3
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Van Wassenhove (1985). The non-distributive one uses the
power of the precedence constraints used to improve the
Lagrangian relaxation. The latter lower bound outperforms
generally the other ones. Note also that the use of the
multipliers adjustment method had a positive effect on the
computational cost of LBy. In the latter bound, we used
the SPT heuristic and we computed the multipliers by
maximizing the lower bound value. The principle remains
valid for any other heuristic. By is usually greater than LBy,
but the latter bound is more computationally effective than
LBy (10~ s for LBy against 1072 s almost LBy).

h) According to Figure 1, some of the lower bounds are
very computationally efficient (this is the case of LBy, LBy,
LBs, LBs, Bs and LB7). One of the possible exploitations
of the lower bounds would be their incorporation into a
branch-and-bound procedure. It may be that other lower
bounds, that perform better, would not computationally
effective in a branch and bound algorithm if the variation
in term of performance is not significant. Based on this
analysis, Table 8 presents for each series a set of suitable
and/or potential lower bounds which can be used in a
branch-and-bound procedure.

Table 4. Mean values for the lower bounds obtained for series 4

Group (J\‘T, P) LB1 LBZ LB3 LB4 LB5 LB() LB, LBg LBQ
Small level for setup times
1 N=15F=2 641 622 3393 399.5 279.3 181.8 355.5 338.0 373.5
2 N=15F=3 291 29.1 3804 396.5 252.0 140.2 398.3 365.4 422.5
3 N=15F=4 22,6 224 353.0 395.1 282.2 184.3 368.3 3235 397.9
4 N=30, F=2 0.0 0.0 798.7 800.4 513.6 331.9 826.7 798.3 861.2
5 N=30, F=5 0.0 0.0 673.4 731.0 491.5 323.5 685.8 613.3 754.0
6 N=30, F=10 0.0 0.0 747.5 784.4 483.7 323.8 764.2 589.9 857.5
7 N=50, F=2 0.0 0.0 1147.7 1219.8 10624 8167 11571 11464 12134
8 N=50, F=5 0.0 0.0 1399.1 12257 1063.4 8045 14185 1319.0 1507.3
9 N=50, F=10 0.0 0.0 1476.1 12727 1128.0 849.8 1495.5 1229.1 1711.9
10 N=70, F=5 0.0 0.0 2318.8 1830.3 1676.0 1364.5 2349.8 2183.8 2530.4
11 N=70, F=10 0.0 0.0 37989 2106.6 1977.2 16145 3849.7 3320.8 4243.5
12 N=70, F=25 0.0 0.0 23441 17948 1668.3 1342.8 2396.3 1412.1  2848.9
13 N=90, F=5 0.0 0.0 3885.5 2361.5 2703.1 2252.7 39323 3701.8 4153.2
14 N=90, F=10 0.0 0.0 3888.7 25522 25159 2101.1 39922 3403.8 4428.3
15 N=90, F=25 0.0 0.0 3861.7 23249 25745 21485 39342 2771.4 4580.3
Medium level for setup times
1 N=15F=2 722 702 3584 419.7 301.9 201.3 375.7 352.1 485.0
2 N=15F=3 337 334 4176 430.3 286.5 170.4 436.1 333.5 589.1
3 N=15,F=4 492 49.5 4005 438.6 338.6 2339 416.7 247.0 603.7
4 N=30, F=2 0.0 0.0 817.4 818.7 536.6 349.2 846.1 816.8 1058.1
5 N=30, F=5 0.0 0.0 712.6 780.3 546.8 371.0 728.7 422.3 1204.7
6 N=30, F=10 0.0 0.0 847.2 888.6 580.9 406.6 872.0 188.5 1509.2
7 N=50, F=2 0.0 0.0 1171.6 12415 10941 8428 1181.3 1164.6 1583.2
8 N=50, F=5 0.0 0.0 1461.6 12743 11435 877.1  1488.5 1056.5  2099.6
9 N=50, F=10 0.0 0.0 1581.0 1370.5 1286.5 991.0 1607.8 4129 3044.5
10 N=70, F=5 0.0 0.0 23614 18739 1754.0 1436.0 2391.2 1567.4  3520.3
11 N=70, F=10 0.0 0.0 3955.0 2211.1 21735 1789.4 40354 1554.8 6480.4
12 N=70, F=25 0.0 0.0 27694 2096.0 2043.2 1680.7 2899.1 130.3 6252.2
13 N=90, F=5 0.0 0.0 3981.1 24124 28144 23541 40324 2927.7 5487.6
14 N=90, F=10 0.0 0.0 4026.1 2655.7 27027 2274.6 4147.5 1731.6  7024.8
15 N=90, F=25 0.0 0.0 4229.0 25755 30745 2614.0 4361.2 308.0 8852.6
Large level for setup times
1 N=15F=2 81.7 79.7 3832 4454 3314 226.8 401.7 374.7 640.7
2 N=15,F=3 393 38.8 4648 474.4 331.5 210.4 484.7 314.2 812.7
3 N=15,F=4 843 84.0 4555 492.7 407.9 295.3 474.8 201.8 863.9
4 N=30, F=2 0.0 0.0 843.1 842.2 565.6 372.2 872.8 844.6 1339.2
5 N=30, F=5 0.0 0.0 763.0 841.6 617.1 434.0 783.0 277.7 1805.8
6 N=30, F=10 0.0 0.0 965.8 1021.3  705.0 513.3  1003.1 26.7 2290.9
7 N=50, F=2 0.0 0.0 1201.7 12699 11344 8783 1211.8 1187.3 2097.9
8 N=50, F=5 0.0 0.0 1537.1 13363 12448 968.6 1570.7 800.8 2985.6
9 N=50, F=10 0.0 0.0 1705.5 14959 14799 1165.7 17424 61.5 4855.9
10 N=70, F=5 0.0 0.0 2406.7 1929.8 1851.5 15252 24381 9352 4875.9
11 N=70, F=10 0.0 0.0 41247 23425 24148 2003.7 4238.8 544.4 9265.2
12 N=70, F=25 0.0 0.0 3257.6 2459.6 2491.0 2076.9 3500.0 0.0 10318.9
13 N=90, F=5 0.0 0.0 40822 24737 2950.2 2479.6 41453 22481 @ 7322.5
14 N=90, F=10 0.0 0.0 4180.6 2784.4 29252 2481.8 4336.8 689.2 = 10298.8
15 N=90, F=25 0.0 0.0 4607.5 2885.1 36643 3153.5 4825.0 0.0 14979.5
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Table 5. Mean values for the lower bounds obtained for series 5

Group (17\4‘7, P) LB1 LBZ LB3 LB4 LB5 LB() LB7 LBg LBQ
Small level for setup times
1 N=15,F=2 0.0 00 00 70.0 371 120 00 00 0.0
2 N=15, F=3 00 00 00 906 420 118 00 00 03
3 N=15F=4 00 00 0.0 66.1 490 193 0.0 00 00
4 N=30,F=2 0.0 00 00 90.8 315 44 00 00 0.0
5 N=30, F=5 00 0.0 00 @ 928 30.7 32 00 0.0 0.0
6 N=30,F=10 00 00 00 679 355 54 00 00 0.0
7 N=50,F=2 00 00 00 898 40.7 96 00 0.0 00
8 N=50, F=5 0.0 0.0 00 ' 130.1 398 6.0 00 0.0 00
9 N=50,F=10 0.0 00 00 @ 106.4 415 8.6 00 0.0 00
10 N=70, F=5 00 00 00 683 363 115 00 00 0.0
11 N=70,F=10 00 0.0 00 143.0 402 34 00 0.0 0.0
12 N=70,F=25 0.0 00 00 101.0 38.0 5.5 00 0.0 00
13 N=90, F=5 00 00 00 1174 305 39 00 0.0 00
14 N=90,F=10 0.0 0.0 00 @ 1153 341 6.0 00 0.0 00
15 N=90,F=25 0.0 0.0 00 104.5 351 49 00 0.0 0.0
Medium level for setup times
1 N=15F=2 00 00 0.0 73.0 392 130 00 00 00
2 N=15,F=3 0.0 00 00 972 466 142 00 0.0 1.4
3 N=15,F=4 0.0 00 00 73.0 564 248 00 00 0.0
4 N=30,F=2 0.0 0.0 0.0 91.8 329 50 00 0.0 0.0
5 N=30, F=5 00 00 00 962 332 39 00 0.0 0.0
6 N=30,F=10 0.0 00 00 @742 40.7 8.0 00 0.0 00
7 N=50,F=2 00 00 0.0 91.2 418 102 0.0 00 00
8 N=50, F=5 0.0 0.0 00 1333 415 6.9 00 0.0 00
9 N=50,F=10 00 0.0 00 1134 457 105 00 0.0 0.0
10 N=70, F=5 00 00 00 686 374 122 00 00 0.0
11 N=70,F=10 0.0 00 00 1471 429 39 00 0.0 00
12 N=70,F=25 0.0 00 00 @ 115.0 438 6.8 00 0.0 00
13 N=90, F=5 0.0 0.0 00 ' 1184 31.7 42 00 0.0 00
14 N=90, F=10 0.0 0.0 00 1163 354 6.3 00 0.0 0.0
15 N=90,F=25 0.0 0.0 00 109.9 389 5.6 00 0.0 0.0
Large level for setup times
1 N=15F=2 00 00 00 768 424 146 00 00 00
2 N=15, F=3 00 00 00 1049 522 169 00 00 27
3 N=15,F=4 0.0 0.0 00 @ 82.0 658 317 00 0.0 1.8
4 N=30,F=2 0.0 0.0 00 @ 928 345 55 00 0.0 0.0
5 N=30, F=5 00 00 00 996 362 49 00 0.0 00
6 N=30,F=10 0.0 00 00 827 465 108 00 00 0.0
7 N=50,F=2 00 00 0.0 929 432 109 00 00 00
8 N=50, F=5 00 00 00 138.5 439 84 00 0.0 0.0
9 N=50,F=10 0.0 0.0 00 1227 501 128 00 0.0 0.0
10 N=70, F=5 00 00 00 699 390 130 00 0.0 0.0
11 N=70,F=10 0.0 00 00 1523 459 44 00 00 0.0
12 N=70,F=25 0.0 00 00 @ 130.6 504 7.7 00 0.0 00
13 N=90, F=5 0.0 0.0 00 1199 330 47 00 0.0 0.0
14 N=90, F=10 0.0 0.0 00 1180 373 6.8 00 0.0 0.0
15 N=90,F=25 0.0 0.0 00 119.0 435 6.6 00 0.0 0.0
0.025 -
0.02
- 0.015
2
&  0.01
0.005
0 .
LBI LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9

Figure 1. Mean values for the computation times.
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6. CONCLUSION

In this paper, we consider the scheduling problem for a
single machine with family setup times to minimize the
total tardiness. We proposed a set of approaches to build
lower bounds for the tardiness criterion. These lower
bounds were analyzed and tested on a large set of
numerical experiments. Two classes were proposed. The

first class is distributive (i.e., the setup is split into pieces

and distributed to the jobs of the corresponding family)
and in the second class, the setup is not divided and it is
considered independently of the processing times. A
certain number of efficient lower bounds were identified
(according to the data distribution). In our future work, we
hope to build efficient branch and bound algorithms based
on these results and to improve the effectiveness of these
lower bounds by using some new dominance rules.

Table 6. Mean values for the lower bounds obtained for series 6

Group (N, B LB, LB; LB; LBy LBs LB LB, LBg LBy
Small level for setup times
1 N=15, F=2 2152.9 2148.6 2251.7 703.1 2258.8 2137.7 2460.8 2253.9 2490.6
2 N=15, F=3 1896.2 1894.1 2052.2  669.9 2049.6 1904.1 2276.3 2039.0 2319.3
3 N=15, F=4 2127.5 2125.2 2222.5 711.2 2246.4 2118.5 2459.4 21941 2510.9
4 N=30, F=2 7643.8 7637.4 8147.5 1483.6 8031.7 7766.3 9190.8 8157.9 9255.3
5 N=30, F=5 7478.4 7473.4 7943.5 1478.7  7810.6 7555.4 8974.2 7856.8 9112.3
6 N=30, F=10  7565.6 7559.9 7979.6  1476.6  7959.7 7703.6 9114.9 7746.1 9320.0
7 N=50, F=2  19523.9 19518.0 20764.5 2481.6 20513.6 20037.7 23924.1 20772.5 @ 24050.5
8 N=50, F=5 18448.0 184443 20051.0 2450.1 19880.4 19350.6  23327.4 19858.7 = 23560.9
9 N=50, F=10 19838.4 19832.6 21211.1 25242 20952.0 20448.1 24403.6  20770.8 = 24841.6
10 N=70, F=5 35875.3 35869.7 39377.2 34762 38266.3 37495.2 455549 39120.7 @ 45910.0
11 N=70, F=10 39385.0 39377.2 42204.2 3577.4 41293.1 40567.6 48849.5 41566.9 @ 49511.2
12 N=70, F=25 37948.8 137940.5 39869.2 35372 39823.6 39150.0 46885.7 381513 47866.0
13 N=90, F=5  58526.8 585234 64265.7 4473.5 62770.2 61744.0 748545 639344 75312.2
14 N=90, F=10 59540.8 59537.4 (64860.9 4504.8 63188.2 62128.4  75761.7 64054.0 = 76570.8
15 N=90, F=25 58936.2 58930.2 64059.8 4507.8 62730.7 617142 751157 61606.9 @ 76726.9
Medium level for setup times
1 N=15F=2  2355.0 23492 2429.5 7454 24364  2333.0 2643.5 2472.8 2831.6
2 N=15, F=3 2225.7 2221.3 2339.2 737.7 2343.6 2220.6 2573.4 2316.1 2840.1
3 N=15, F=4 2553.3 2544.9 2613.1 798.5 2632.4 2532.2 2852.7 2539.0 3160.6
4 N=30, F=2 7998.0 7991.1 8451.7  1521.8 8349.1 8094.1 9513.7 8528.6 9899.9
5 N=30, F=5 8442.4 8433.0 8729.5 1582.2  8680.3 8468.9 9839.3 8434.4 10696.1
6 N=30, F=10 9436.7  9424.5 9656.1 16793  9692.8  9509.1 10833.3 8653.6 = 11876.2
7 N=50, F=2 202089 20202.4 21316.1 25253 21121.8 20660.5 245359 214223 = 25315.3
8 N=50, F=5 19901.5 19895.0 21171.0 2545.0 21152.6 20656.7 24638.7 20484.5 = 26054.8
9 N=50, F=10 22901.3 22893.2 23789.5 2726.7 23692.4 23269.8 27172.7 21997.0 @ 29729.9
10 N=70, F=5 379319 379247 40914.1 3573.8 40047.9 39311.0 47370.7 39603.7 @ 49523.0
1 N=70, F=10 43575.4 43566.7 45608.1 3778.0 45077.4 444251  52658.2 427549  56598.1
12 N=70, F=25 4825277 48239.0 49144.8 4053.9 494083 489127 56547.0 42448.7 @ 59281.0
13 N=90, F=5 612123 61207.8 66152.1 4571.1 65067.5 64054.5 77219.4 64450.1 = 80019.0
14 N=90, F=10 64577.4 64569.9 068410.5 4692.6 (67634.5 066653.6 80312.3 64300.6 = 85223.8
15 N=90, F=25 724543 72443.7 743325 5017.8 74847.4 74006.1 87361.5 65035.5 @ 94714.9
Large level for setup times
1 N=15, F=2 2605.5 2597.9 2660.1 796.5 2666.2 2579.8 2874.9 2798.1 3207.0
2 N=15, F=3 2632.2 2622.2 2715.7 823.8 2718.4 2617.4 2949.3 2733.1 3386.2
3 N=15, F=4 3060.9 3051.5 3119.7 905.3 3112.0 3033.0 3338.5 3026.5 3831.3
4 N=30, F=2 8433.5 8425.8 8832.0  1569.8 8745.7 8510.1 9915.2 9026.7 10548.0
5 N=30, F=5 96137  9600.9 97822 17100 97742  9611.2 10913.4 94539 = 12405.0
6 N=30, F=10 11625.7 11611.4 11958.8 1931.0 118159 11667.3 12939.9 10157.7 = 14479.6
7 N=50, F=2  21055.6 210483 22014.8 2580.1 21884.3 21449.5 25296.8 22437.0 @ 26542.5
8 N=50, F=5 217032 21695.8 22610.8 26639 22773.4 223169 26288.7 21764.6 28667.9
9 N=50, F=10 26576.0 26563.2 272249 2979.0 27102.8 26777.2 30593.9 24308.3 34674.6
10 N=70, F=5 404747 40467.0 42802.2 36949 42305.5 41618.6 49647.3 40906.2 = 53365.3
1 N=70, F=10 486523 48639.1 50052.9 4028.5 498127 492471 573734 45599.9  63611.0
12 N=70, F=25 59979.0 59961.6 625283 46952 60836.8 60420.6  68189.6 495357 = 70604.0
13 N=90, F=5  64529.3 64524.7 68539.8 4693.5 (67949.7 66969.6  80174.1 65980.5 = 84790.1
14 N=90, F=10 70685.9 70675.0 72820.6 4926.7 73211.1 72320.1 85959.5  66579.5 @ 93848.1
15 N=90, F=25 88300.6 88286.2 90658.5 5653.3 899219 89215.6 102412.9 73976.7 112189.1
Table 7. Mean values for the computation times (in seconds)
LB, LB; LB;s LB, LBs LBg LB, LBg LBy
0,00013086  0,00011561  0,02127658  0,00213457 0,00011375  0,00010037  0,00012082  0,02322788  0,01439257
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Table 8. Suitable and/or potential lower bounds
Series  Non dominated lower bounds

1 LB, LBy

2 LB, LBy

3 LBs, I.By

4 LBy, L.B7, LBy

5 LBy

6 LB, LBy
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