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AbstractIn this paper, we consider the scheduling of  N jobs on a single machine with family setup times in order to 
minimize the total tardiness. The set of  jobs is divided into F families. Between two jobs of  the same family, we do not have 
to stop the machine. However, when switching from one family to another, a setup is required. Each family is characterized 
by a setup time independent of  the sequence. We propose a set of  approaches to compute lower bounds for the tardiness 
criterion. These approaches are analyzed and tested on a large set of  numerical experiments in order to identify the 
dominant lower bounds. 
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1. INTRODUCTION 

Grounded in real industrial problems, this paper focuses 
on scheduling a set of  jobs on a single machine which must 
undergo a setup period when switching processing jobs 
from a family to another. The aim is to minimize the total 
tardiness, given that the setup periods are independent of  
the sequence. This type of  problem has been studied in the 
literature for different objective functions. Given the aim 
of  our study, we provide a brief  overview of  previous 
works related to the minimization of  total tardiness and/or 
to scheduling with setup times. 

The particular case problem without setup times was 
intensively studied in the literature. The first remarkable 
work was presented by Emmons (1969). He proposed 
some efficient rules which can identify precedence 
relations between jobs in an optimal sequence. This result 
was then exploited to construct efficient decomposition 
approaches (see for example Potts and Van Wassenhove 
(1982), Della Croce et al. (1998), Chang et al. (1995)). 
Dynamic programming approaches were also studied by 
Lawler (1977) and Potts and Van Wassenhove (1987). Du 
and Leung (1990) studied the complexity of  the problem 
and proposed a proof  of  its NP-Hardness (in the ordinary 
sense). Numerous heuristic approaches were proposed. For 
example, Baker (1999) studied a dynamic priority rule for 
minimizing tardiness. Koulamas (1997) considered the 
polynomially solvable tardiness problems and extends these 
results to the case of  identical machines. An efficient 
branch-and-bound algorithm was also proposed by Szwarc 
et al. (1999) with efficient decomposition rules. A clever 
Lagrangian relaxation based-lower bound was described by 
Potts and Van Wassenhove (1985) for the weighted case. 
This lower bound was incorporated in an efficient 
branch-and-bound algorithm. Kondakci et al. (1994) 

proposed a fast lower bound. This bound is a special case 
of  the one proposed by Chu (1992) for the tardiness 
problem with unequal release dates. Other extensions of  
the problem with release dates or/and weighted jobs were 
also studied (see for example Koulamas and Kyparisis 
(2001) and Akturk and Ozdemir (2001)). For more details, 
the reader can consult the state-of-the-art paper of  
Koulamas (1994).  

There are few papers that considered the total tardiness 
criterion with setup times. The first paper was presented by 
Ragatz (1993). He proposed a branch and bound algorithm 
for the single machine problem with sequence-dependent 
setup times. Rubin and Ragatz (1995) proposed a genetic 
algorithm to solve the same problem. A comparison of  
four methods to solve the same problem was presented by 
Tan et al. (2000). Recently, Souissi et al. (2004) proposed a 
more efficient branch and bound algorithm and improved 
the results obtained by Ragatz. The problem considered in 
these references is more general than the one studied in 
this paper. However, they did not take the specificity of  the 
family setup times into account. This is one of  the reasons 
that motivate our study. 

In our knowledge, there are few works in which the 
tardiness criterion with family setup times was studied. 
Schaller proposed branch-and-bound procedures to 
minimize the total tardiness for the case where the group 
technology assumption is used and for the case where such 
an assumption is removed (Schaller, 2006). Nakumara et al. 
(1978) considered the same problem under the group 
technology assumption. Baptiste and Jouglet (2001) 
proposed a pseudopolynomial algorithm to solve the serial 
batching machine problem. Hariri and Potts (1997) studied 
the maximum lateness and proposed a heuristic with a 
worst-case performance ratio of  5/3. They also proposed 
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an effective branch-and-bound algorithm to solve 
problems with up to 50 jobs. 

A large set of  works was proposed in the literature to 
minimize other criteria. In the following paragraph, we 
provide a short description of  some works related to this 
subject. For more details, we direct the reader to consult 
the excellent state-of-the-art papers by Allahverdi et al. 
(1999, 2006), Potts and Kovalyov (2000) and Liaee and 
Emmons (1977). 

A number of  works proposed different algorithms to 
solve single machine scheduling problems with setup times. 
In particular, the weighted flowtime objective was 
intensively studied. Ghosh (1994) considered the problem 
of  minimizing the total completion time on a single 
machine and on identical parallel machines. Ahn and Hyun 
(1990) proposed an improved dynamic programming 
approach for multi-class job scheduling. Gupta (1988) 
studied mean flowtime minimization and proposed a 
heuristic solution. He showed its effectiveness empirically. 
Crauwels et al. (1997) proposed a local search method to 
minimize weighted flowtime. Other heuristics were also 
examined by Baker (1999) to solve the single machine 
problem under the lateness criterion. Efficient branch and 
bound algorithms and lower bounds were proposed by 
Dunstall et al. (2000) and by Crauwels et al. (1998). 
Dominance rules were also incorporated in these 
algorithms. Other extensions of  these models and results 
were also successfully integrated to solve the identical 
machines problem (see for example the efficient 
approaches proposed by Azizoglu and Webster (2003) or 
by Dunstall and Wirth (2005)).  

This paper is organized as follows. In Section 2, we 
formulate the problem and we propose a mixed linear 
model. In Section 3, we consider the problem without 
setup times and we present new lower bounds and some 
others from the literature. In Section 4, we propose two 
classes of  lower bounds for the tardiness minimization 
with family setup times. The first class is distributive (i.e., 
the setup is split into pieces and distributed to the jobs of  
the corresponding family) and in the second class, the 
setup is not divided and it is considered independently of  
the processing times. Section 5 provides the description of  
the numerical experiments and reports the analysis of  the 
results obtained in this work. Finally, we conclude the 
paper by some conclusions and perspectives. 

 
2. MATHEMATICAL FORMULATION 

In the problem studied in this paper, we have to 
schedule N jobs on a single machine. Each job i has a 
processing time pi and a due date di. The set of  jobs is 
partitioned into F families. Each job i belongs to a 
corresponding family f(i). When switching from job i to job 
j, two cases are possible. If  the two jobs belong to the same 
family (i.e. f(i) = f(j)), then, no setup is required between 
these jobs. In the second case, the families are different and 
a setup sf(j) is necessary before the execution of  job j. The 
machine can execute only one job at a given time and 
preemption is not allowed. For a given sequence, a job i is 

tardy if  its completion time Ci is greater than its due date. 
We aim to find the sequence for which the total tardiness 
of  the set of  jobs is minimal.    

A mixed linear formulation can be associated to the 
problem 1 f is T∑ . This formulation can be described in 

the following model: 
 
Minimize 

1 tt N
T

≤ ≤∑  

subject to: 
 

1 , , ( ) 1  1
,  1t t i t i i t f ii N i N

C C x p s t Nδ− ≤ ≤ ≤ ≤
≥ + + ∀ ≤ ≤∑ ∑  (1) 

, 1
1,  1i ti N

x t N
≤ ≤

= ∀ ≤ ≤∑  (2) 

, 1
1,  1i tt N

x i N
≤ ≤

= ∀ ≤ ≤∑  (3) 

, 1
,  1t t i t ii N

T C x d t N
≤ ≤

≥ − ∀ ≤ ≤∑  (4) 

, , , 1 / ( ) ( )
,  1 ,  2i t i t j tj f i f j

x x i N t Nδ −=
≥ − ∀ ≤ ≤ ∀ ≤ ≤∑  (5) 

,1 ,1,  1i ix i Nδ = ∀ ≤ ≤  (6) 

0 0,   0,  0,  1t tC T C t N= ≥ ≥ ∀ ≤ ≤  (7) 

{ } { }, ,0,1 ,  0,1 ,   1 ,   1i t i tx i N t Nδ ∈ ∈ ∀ ≤ ≤ ∀ ≤ ≤  (8) 
 

In this model, the objective is to minimize the sum of  Tt 
(the tardiness of  the job scheduled in the tth position). xi, t is 
a binary variable equal to 1 if  job i is scheduled in the tth 
position and equal to 0 otherwise. δi, t is a binary variable 
equal to 1 if  a setup of  family f(i) is scheduled in the tth 
position and equal to 0 otherwise. Variable Ct represents 
the completion time of  the job scheduled in the tth 
position. 

From this formulation, we can derive a lower bound by 
relaxing the binary constraints (8). The relaxed problem 
can be solved using a linear programming solver (CPLEX 
for example). The inconvenience of  this technique consists 
in a large number of  variables and constraints (2N2 + 2N 
variables and 3N2 + 4N constraints). According to 
preliminary tests, the computational time required to solve 
the relaxed model increases rapidly as the size of  the 
problems increases. This explains why this lower bound is 
not compared to the other lower bounds which are 
described in the remainder of  this paper. 
 
3. LOWER BOUNDS FOR THE TARDINESS 

MINIMIZATION WITHOUT SETUP TIMES 

In this section, we present a set of  lower bounds for the 
particular problem without setup times (noted 1 iT∑ ). 
These lower bounds will be used and/or generalized to the 
original problem with family setup times. We first present 
some practical properties and we deduce new lower 
bounds. Other bounds from the literature are proposed 
too.  

 
Property 1. Let Topt be the total tardiness of  an optimal 
sequence for the problem 1 iT∑  and let α be a 
positive number, then the following inequality holds: 
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α−1 2 1 2( ,  ,...,  ,  ,  , ...,  ,...,  )opt N i NT p p p d d d d

1 2 1 2( ,  , ...,  ,  ,  , ...,  , ...,  )opt N i NT p p p d d d dα≤ +  (9) 
 
Property 2. If  jobs i and j verify i jp p≤  and i jd d>  
then, interchanging the two due dates between the two jobs 
does not increase the tardiness of  the optimal solution. 
The proof  of  this property can easily be established by an 
interchange argument. Similar result was proposed by 
Jouglet (2002) for ∑1 ,i ir pre T . 
 
Theorem 1 (Emmons, 1969). We assume that jobs are 
indexed in the non-decreasing order of  their processing 
times. SPT

iC  is the completion time of  the job scheduled 
in the ith position in the SPT order, then the sequence is 
optimal if  the following condition holds: 

1   1SPT
i i i id C p p i N+≤ + − ∀ ≤ − . 

 
Theorem 2 (Emmons, 1969). We assume that jobs are 
indexed in the non-decreasing order of  their due dates. 

EDD
iC  is the completion time of  the job scheduled in the 

ith position in the EDD order, then the sequence is optimal 
if  the following condition holds:   EDD

i i iC d p i N≤ + ∀ ≤ . 
 

3.1 Lower bound based on the SPT schedule (lb1) 

Based on Property 1 and Theorem 1, we can derive a 
new lower bound. For this purpose, we sort jobs in 
non-decreasing order of  processing times. We schedule 
them in this order. If  the completion time of  job i does 
not correspond to the condition of  Theorem 1 (i.e. 

1 ),SPT
i i i id C p p+> + −  then we set id ′  to  

1
SPT
i i iC p p++ −  and 1( )SPT

i i i i id C p pα += − + −  in order 
to impose Emmons condition, otherwise i id d′ =  and 

0iα = . The SPT schedule with the new due dates id ′  is 
optimal according to the theorem. A lower bound ( 1lb ) is 
obtained by computing the total tardiness of  this sequence 
(with the modified due dates) and subtracting ii

α∑  

from the obtained result. 
 
3.2 Lower bound based on the SPT schedule and the 

interchange of  due dates (lb2) 

The principle of  this lower bound is the same. We sort 
jobs in the non-decreasing order of  processing times and 
we schedule them in this order. The difference consists in 
the fact that if  the completion time of  job i does not 
correspond to the condition of  Theorem 1, then before 
setting id ′  to 1

SPT
i i iC p p++ − , we seek a job j of  the 

subset { }1,  2,  ...,  i i N+ +  such that i jd d>  and 

1
SPT

j i i id C p p+≤ + − . If  such a job exists, then we 
interchange the due dates. If  job j does not exist, then the 
interchange can be done with the smallest due date of  the 
subset { }1,  2,  ...,  i i N+ +  and decreasing minimally the 

due date to meet Emmons condition. Property 1 is used to 
take the due date decrease into account to compute the 
lower bound.   

Other versions can be derived from this lower bound. 
For example, we can shorten the processing times of  jobs 
in the subset { }1,  2,  ...,  1i −  before decreasing the due 
dates. However, this type of  modification has a strong bad 
effect on the obtained lower bound according to some 
preliminary tests. That is why, it will not be considered in 
our current study. 

 
3.3 Lower bound based on a linear constrained 

formulation (lb3) 

This lower bound consists in solving a linear program. 
The objective function in such a linear program represents 
the total tardiness expressed in function of  the starting 
times of  jobs, their processing times and their due dates. 
The constraints are obtained on the starting times by 
associating some fictitious weights to jobs and computing 
the optimal value of  the weighted flowtime associated 
using the SWPT rule. More explicitly, this lower bound can 
be described in Theorem 3. 

 
Definition 1. Let 1 2( , , ..., )Nw w w w=  be a vector of  
positive numbers and p be the vector of  processing times, 
i.e., 1 2( , , ..., )Np p p p= . ( , )WF p w  denotes the minimal 
weighted flowtime obtained by applying the SWPT rule 
(proposed by Smith) to the corresponding problem 
1 i iw C∑ . 
 
Property 3. Let 1 2( , , ..., )Nw w w w=  be a vector of  
positive numbers and 1( )i i Nt ≤ ≤  the set starting times of  
jobs in a feasible schedule. Then, the following inequality 
holds: 

 1
( ) ( , )i i ii N

w t p WF p w
≤ ≤

+ ≥∑ . 

 
Theorem 3. Let m be a positive integer and ( )k

k mw ≤  be a 
set of  m vectors of  positive numbers. Then, the solution 
of  the following linear program is a lower bound for the 
total tardiness minimization: 
 
Minimize 

1
max ( ,0)i i ii N

t p d
≤ ≤

+ −∑  

subject to: 
 

 1
( )  ( , )   1k k

i i ii N
w t p WF p w k m

≤ ≤
+ ≥ ∀ ≤ ≤∑  (10) 

 
Example 1. Let us consider an instance of  3 jobs such that 

1 2 3( , , ) (3,  5,  8)p p p =  and 1 2 3( , , ) (3,  16,  8)d d d = . We 
take m = 3 and we choose 1 (1,  2,  3)w = , 2 (1,  1,  1)w =  
and 3 (1,  1,  2)w = . By applying Theorem 3, we obtain the 
following linear program: 
 
Minimize 1 2 3( max( 11,  0) )t t t+ − +  
subject to: 
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+ + ≥1 2 32 3 28t t t  (11) 

1 2 3 11t t t+ + ≥  (12) 

1 2 32 17t t t+ + ≥  (13) 

1 2 3,  ,  0t t t ≥  (14) 
 

The resolution of  this linear program gives 3 3lb =  
which represents the optimal total tardiness for this 
example. 

 
Remark 1. This principle can yield an efficient lower 
bound if  the set of  weights is judiciously chosen and it can 
also be easily extended to other problems. The lower 
bound can be computed easily using a linear programming 
solver (CPLEX solver for example), however, the number 
of  constraints (equal to m) should be minimal in order to 
reduce the computational effort. 

 
3.4 Szwarc et al.’s lower bound based on the EDD 

sequence (lb4) 

The principle of  this lower bound consists in scheduling 
jobs according to the earliest due date sequence and in 
minimally increasing the due dates so that the condition in 
Theorem 2 will be verified (Szwarc et al., 1999). In others 
words, if  EDD

i i iC d p> + , then, we can set the due date to 
EDD
i iC p− . 

 
3.5 Kondakci et al.’s lower bound (lb5) 

This bound is very fast and easy to implement. Initially, 
it was proposed by Chu (1992) for the problem 

 
1 i ii

r T∑  and used in the paper by Kondakci et al. 

(1994). The jobs are sorted in the non-increasing order of  
their processing times. SPT

iC  denotes the completion time 
of  the job scheduled in the ith position in the SPT order 
and 1( )i i Nd ≤ ≤′  represents the series obtained by sorting 
the due dates in non-decreasing order. The lower bound 
can be obtained by computing the following sum: 
 

5  1
max ( ,  0)SPT

i ii N
lb C d

≤ ≤
′= −∑  (15) 

 
Note that this lower bound was improved by Della 

Croce et al. (1998) by dividing the set of  jobs in two 
subsets before assigning due dates. 
 
3.6 Souissi et al.’s lower bound (lb6) 

This lower bound is very fast and easy to implement too. 
It can improve the value obtained by the previous lower 
bound. The jobs are sorted in the non-decreasing order of  
their processing times. SPT

it  denotes the starting time of  
the job scheduled in the ith position in the SPT order and 

1( )i i N≤ ≤′∆  represents the series obtained by sorting the 
slacks 1( )i i N≤ ≤∆  of  jobs (where i i id p∆ = − ) in 
non-decreasing order. The lower bound can be obtained by 

computing the following sum (Souissi et al., 2004): 
 

6  1
max ( ,  0)SPT

i ii N
lb t

≤ ≤
′= −∆∑  (16) 

 
3.7 Potts and Van Wassenhove’s lower bound based on 

a lagrangian relaxation (lb7) 

This bound is based on a clever relaxation in which the 
weighted tardiness problem can be transformed to a 
problem of  weighted flowtime minimization. To compute 
this lower bound, we sort jobs in the non-decreasing order 
of  their processing times and we schedule them in the SPT 
order. It is equal to the solution of  the following linear 
problem: 
 
Maximize 

 1
 ( )SPT

i i ii N
C dλ

≤ ≤
−∑  

subject to: 
 

1 1/ /     1 1i i i ip p i Nλ λ + +≥ ∀ ≤ ≤ −  (17) 
0 1    1i i Nλ≤ ≤ ∀ ≤ ≤  (18) 
 

Potts and Van Wassenhove (1985) proposed a fast 
procedure to solve this linear problem. This bound is 
generalized to the problem with family setup times in this 
paper. The details are provided in the next section. 
 
4. LOWER BOUNDS FOR THE TARDINESS 

MINIMIZATION WITH FAMILY SETUP 
TIMES 

In this section, we present a set of  lower bounds for the 
tardiness minimization problem with family setup times 
(denoted 1 f is T∑ ). The lower bounds presented in the 

previous section are used and/or generalized to this 
problem. Two classes of  bounds can be distinguished: The 
distributive class and the non-distributive class. 

 
4.1 Distributive lower bounds 

The principle of  distributive bounds was widely used by 
other researchers (Crauwels, 1998; Dunstall and Wirth, 
2005; Azizoglu and Webster, 2003) to optimize other 
criteria. It is based on the transformation of  the original 
problem in a modified problem without setup times. The 
transformation is established by splitting the setups into 
pieces and by adding these pieces to the processing times. 
Then a new instance without setup times is obtained. As a 
consequence, any lower bound for the problem without 
setup times can be applied to this instance with the 
modified processing times. The principle remains valid for 
any regular objective function (Dunstall et al., 2000). 

Based on this principle, we can obtain a relaxation of  
any instance of  the problem 1 f is T∑  in an instance of  

the problem 1 iT∑  using the following 
transformation: 
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,1
    1i i i j jj F

p p s i Nβ
≤ ≤

′ = + ∀ ≤ ≤∑  (19) 

 
such that: 
 

, 0  if ( )     1 ,    1i j f i j i N j Fβ = ≠ ∀ ≤ ≤ ∀ ≤ ≤  (20) 

, 1  if ( )     1 ,    1i j f i j i N j Fβ ≤ = ∀ ≤ ≤ ∀ ≤ ≤  (21) 

, 1
1    1i ji N

j Fβ
≤ ≤

= ∀ ≤ ≤∑  (22) 

 
Therefore, we can apply the different lower bounds of  

the previous section ( 1lb  to 7lb ) to the new instance with 
the modified processing times to compute valid lower 
bounds for the tardiness minimization with setup times. 
These obtained bounds are respectively noted LB1, LB2, 
LB3, LB4, LB5, LB6 and LB7. Note that LB5 is one of  the 
lower bounds incorporated in the branch-and-bound 
algorithm proposed by Schaller (2006). 

 
4.2 Non-distributive lower bounds 

Contrary to the distributive class, in the non-distributive 
lower bounds the setup is not divided and it is considered 
independently of  the processing times. In this subsection, 
we present two new schemes to obtain valid lower bounds 
for any instance of  the problem 1 f is T∑ . 

 
4.2.1 Lower bound based on a linear constrained 

formulation (LB8) 

In this paragraph, we generalize our lower bound lb3 
proposed in Section 3 and based on a linear constrained 
formulation. For this purpose, we will exploit the following 
idea that was shown by Mason and Anderson (1991) and 
used by Azizoglu and Webster (2003) for flowtime 
minimization. The idea consists in the fact that a problem 
with setup times can be separated into two independent 
problems. The first one is the scheduling of  jobs. The 
second one is the scheduling of  setups.  

Let us consider a feasible schedule σ for the problem 
with setup times. Let h1, h2, ..., hF be the indexes of  the 
family setups in the order of  their appearance in schedule σ. 
It is obvious that these setups induce a time lag for each 
job belonging to family hk ( 1 k F≤ ≤ ) at least equal to 

1 r

k
hr

s
=∑ . Thereafter, the total time lag for all the jobs of  

family hk is at least equal to 
1k r

k
h hr

n s
=∑  where 

khn  is the 

cardinal of  family hk. In conclusion, the total time lag due 
to the setups is at least equal to 

1 1
( )

k r

k
h hk F r

n sτ σ
≤ ≤ =

= ∑ ∑ . Obtaining a lower bound on 

the time lag induced by the setups can be reduced to an 
instance of  the problem 1 i iw C∑  by taking s1, s2, ..., sF 
as jobs to schedule and n1, n2, ..., nF as their corresponding 
weights. The result can be obtained by applying the SWPT 
rule. We note *τ  this lower bound on the time lag.   

Based on this result, we can now generalize Theorem 3 
to the case with family setup times. This result can be 

described in Theorem 4. 
 

Theorem 4. Let m be a positive integer and ( )k
k mw ≤  be a 

set of  m vectors of  positive numbers. Then, the solution 
of  the following linear program is a lower bound for the 
total tardiness minimization with family setup times: 
 
Minimize 

 1
max ( ,  0)i i i ii N

t p dτ
≤ ≤

+ + −∑  

subject to: 
 

*
 1 ii N

τ τ
≤ ≤

≥∑  (23) 

( )   1i f is i Nτ ≥ ∀ ≤ ≤  (24) 

1
( ) ( ,  )   1k k

i i ii N
w t p WF p w k m

≤ ≤
+ ≥ ∀ ≤ ≤∑  (25) 

 
Remark 1 remains valid to this lower bound and the 

major difficulty to implement it is the determination of  the 
fictitious weights. 
 
4.2.2 Lower bound based on a Lagrangian relaxation 

(LB9) 

In this paragraph, we extend the excellent lower bound 
proposed by Potts and Van Wassenhove for the weighted 
tardiness minimization without setups. In this 
generalization, we integrate the setup times as dummy jobs. 
Indeed, we relax the original problem such that only one 
setup can be scheduled for each family. Therefore, the 
relaxed problem can be viewed as a problem of  total 
tardiness minimization with chain precedence constraint. 

This type of  relaxation was exploited to build efficient 
lower bounds for the problem 1 f i is w C∑  by Dunstall 

et al. (2000). 
In the relaxed problem, noted (π), we remove the set of  

setups and we replace it by a set of  dummy jobs 
{ 1,  2 , ...,  }N N N F+ + +  such that {s1, s2, ..., sF} is the 
set of  respective processing times. Each job (N + f ) must 
be scheduled before jobs belonging to family f. The 
objective is to schedule jobs (initial jobs and dummy jobs) 
by respecting the precedence constraints to minimize the 
total tardiness of  initial jobs (i.e. jobs belonging to 
{1,  2 ,  ...,  }N ). This problem can be formulated, except 
the capacity constraint of  the machine, as follows: 

 
(π): Minimize 

1 ii N
T

≤ ≤∑  

subject to: 
 

0     1iT i N≥ ∀ ≤ ≤  (26) 
     1i i iT C  d i N≥ − ∀ ≤ ≤  (27) 

( )      1i N f i iC C  p i N+≥ + ∀ ≤ ≤  (28) 
 
where Ci is the completion time of  job i ( 1 i N F≤ ≤ + ). 

In the generalized lower bound, we apply a Lagrangian 
relaxation which allows us to transform problem (π) to an 
instance of  the problem 1 i iw C∑  (polynomially 



Kacem: Lower Bounds for Tardiness Minimization on a Single Machine with Family Setup Times 
IJOR Vol. 4, No. 1, 18−31 (2007) 
 

23 

solvable by applying the SWPT rule). Such an instance can 
be described as follows: 
 
(π′): Minimize 

1
( )i ii N F

C Lµ µ
≤ ≤ +

+∑  

subject to: 
 

1 2

2
( )

   if  1

  if  1
i i

i
jj/f j i N

i N

N i N F

λ λ
µ

λ
= −

 − ≤ ≤=  + ≤ ≤ +∑
 (29) 

2 1
 1

( ) ( )i i i ii N
L p dµ λ λ

≤ ≤
= −∑  (30) 

1 2 0     1i i i Nλ λ− ≥ ∀ ≤ ≤  (31) 
1 1     1i i Nλ ≤ ∀ ≤ ≤  (32) 

 
The completion times must respect the constraint of  the 

machine capacity. According to the principle of  Lagrangian 
relaxation, for any nonnegative multipliers, the optimal 
solution of  problem (π′) yields a valid lower bound for the 
total tardiness minimization with family setup times. The 
inconvenience of  this technique is the difficulty to find the 
best multipliers maximizing the lower bound. To overcome 
this problem, Potts and Van Wassenhove proposed a clever 
approach in which they used a multiplier adjustment 
method. This method needs a heuristic method to schedule 
the jobs. The decision variables of  the resulting problem 
are then reduced to the Lagrangian multipliers and the 
heuristic solution must be optimal for the chosen 
multipliers.  Based on this result, our generalized lower 
bound can be described in the following Theorem. 
 
Theorem 5. We assume that the (N + F) jobs are sorted in 
non-decreasing order of  their processing times. Let SPT

iC  
be the completion time of  the job scheduled in the ith 
position according to the SPT order and 1( )i i N Fµ ≤ ≤ +′  be 
the series of  the multipliers in the same order respecting 
the previous constraints (i.e. 1 2 0,    1i i i Nλ λ− ≥ ∀ ≤ ≤  
and 1 1,    1i i Nλ ≤ ∀ ≤ ≤ ). The solution of  the following 
linear problem is a valid lower bound for the tardiness 
minimization with setup times: 
 
Maximize µ µ

≤ ≤ +
′ +∑1

 ( )SPT
i ii N F
C L  

subject to: 
 

1 1/ / ,    1 1i i i ip p i N Fµ µ + +′ ′≥ ∀ ≤ ≤ + −  (33) 
 
Remark 2. The principle of  this lower bound remains 
valid for any heuristic. We have just to sort variables 
according to the jobs order given by the heuristic used to 
compute the lower bound. 
 
5. NUMERICAL EXPERIMENTS 

In this section, we provide the computational results 
used to evaluate the performance of  the different methods 
presented above. The tests were carried out on a Pentium 4 
PC in the Windows XP environment using the C language 

and CPLEX software to solve the linear programs. The 
following paragraphs describe our data generation methods, 
the results obtained and our analysis of  these experiments. 

 
5.1 Data generation 

The experiments were carried out on six series. We 
tested instances for which the size is variable 
( {15,  30,  50,  70,  90}N ∈ ). In each series, the instances 
were randomly generated according to a uniform 
distribution, such that [1, 100]ip ∈ . For each series, we 
considered three levels for setup times: small ( [0, 10]fs ∈ ), 
medium ( [0, 50]fs ∈ ) and large ( [0, 100]fs ∈ ). Jobs were 
assigned uniformly to the families. The due date were also 
randomly generated using a uniform distribution over 

(1 / 2)D r T− −  and (1 / 2)D r T− + , where: 
• 

1 1i fi N f F
D p s

≤ ≤ ≤ ≤
= +∑ ∑  

• T is the due date range and r is the tardiness factor. 
 

The six series were generated as follows: 
• 1st series: r = 0.5 and T = 1.0. 
• 2nd series: r = 0.6 and T = 0.8. 
• 3rd series: r = 0.5 and T = 0.6. 
• 4th series: r = 0.5 and T = 0.8. 
• 5th series: r = 0.3 and T = 0.6. 
• 6th series: r = 0.8 and T = 0.4. 

Variables F and N were chosen according to some 
groups of  couples (N, F). In each group, we duplicated 
randomly 30 instances and computed the mean values of  
the lower bounds studied in this paper. 
 
5.2 Results and analysis 

The different results are summarized in Tables 1-7 and 
Figure 1. For each lower bound, the mean values obtained 
for each group are given (see Tables 1-6). The mean value 
of  computation times obtained for all the tests for each 
lower bound is also given in Table 7 and Figure 1. From 
these results, we can make the following remarks: 

a) Except the series 3, in which the level for setup times 
affects the behaviour of  the dominant lower bounds, we 
can remark throughout the computational experiments that 
the performances of  the different lower bounds depend 
mainly on the due date range and the tardiness factor. 

b) Distributive lower bounds: The main advantages of  
these procedures are the computational effectiveness and 
the simplicity of  their implementation (except LB3 which 
needs to solve a linear program). We have just to apply 
simple and fast algorithms to the modified data (i.e. the 
modified processing times after including setup times). 
This approach leads generally to an interesting 
computation time (10−4 s for some lower bounds). For 
some generation data, all the lower bounds have relatively 
the same performance (series 6, for example). In this case, 
the choice of  a distributive bound may be suitable since the 
computational effort is reduced. As an example, for series 
6, the different lower bounds have almost the same 
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performance (see Table 6). In this case, the choice of  one 
of  the fast lower bounds (LB7) represents a good 
alternative to build an efficient branch-and-bound 
algorithm. However, the difficulty to obtain efficient 
distributive lower bounds consists in finding the best way 
of  the distribution of  setup times to the processing times. 
In this study, we have chosen to include uniformly a setup 
to the jobs of  the corresponding family. This distribution 
scheme seems to be satisfactory. The paper by Schaller 
(2006) confirmed the same conclusion. 

c) Lower bounds LB1 and LB2: These two lower bounds 
have almost the same performance and the same behaviour. 
The major advantage of  these bounds is they can be 

obtained very quickly. We can remark that these bounds are 
relatively effective if  the values and the dispersion of  the 
due dates are small. This is the case of  series 6 (see Table 
6). The dispersion of  the due dates has a bad effect on the 
performance of  the two lower bounds. This is the case of  
the other series (see Tables 1-5). This behaviour can be 
explained by the fact that LB1 and LB2 are based on the 
SPT sequence and Theorem 1. Indeed, if  the values and 
the dispersion of  due dates are small, the conditions of  
Theorem 1 can be satisfied by the SPT sequence and the 
modification of  these due dates (needed to compute these 
lower bounds) has not an important effect. 

 
Table 1. Mean values for the lower bounds obtained for series 1 

Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 
Small level for setup times 

1 N=15, F=2 98.0 95.3 356.5 367.7 173.0 123.7 376.5 356.7 397.3 
2 N=15, F=3 42.6 42.0 401.6 370.9 150.7 100.0 422.9 388.4 450.5 
3 N=15, F=4 61.0 60.7 365.0 357.9 177.7 123.8 380.0 339.2 414.0 
4 N=30, F=2 0.0 0.0 892.7 781.7 111.2 45.5 913.5 895.4 955.5 
5 N=30, F=5 0.0 0.0 742.3 723.7 111.8 53.0 746.3 693.1 819.9 
6 N=30, F=10 0.0 0.0 842.1 729.2 109.0 53.9 842.9 698.3 954.6 
7 N=50, F=2 0.0 0.0 1280.3 1264.4 133.7 67.0 1283.4 1282.5 1348.4 
8 N=50, F=5 0.0 0.0 1618.4 1146.7 141.1 68.9 1634.0 1541.4 1739.9 
9 N=50, F=10 0.0 0.0 1697.4 1314.2 137.7 67.5 1714.6 1462.5 1957.9 
10 N=70, F=5 0.0 0.0 2644.3 1848.5 110.6 54.4 2681.5 2512.3 2897.2 
11 N=70, F=10 0.0 0.0 4437.3 2392.1 152.5 56.4 4502.9 3962.3 4991.8 
12 N=70, F=25 0.0 0.0 2756.0 1775.1 124.6 47.1 2807.5 1827.0 3347.5 
13 N=90, F=5 0.0 0.0 4542.0 2496.9 172.7 96.2 4605.3 4358.6 4881.9 
14 N=90, F=10 0.0 0.0 4566.8 2645.8 90.6 40.3 4669.7 4123.2 5207.2 
15 N=90, F=25 0.0 0.0 4603.7 2323.0 116.3 46.4 4685.2 3545.0 5464.9 

Medium level for setup times 
1 N=15, F=2 108.0 105.4 380.0 388.7 189.1 142.6 400.8 386.3 521.1 
2 N=15, F=3 48.4 47.7 448.2 406.2 175.5 129.1 468.1 380.5 643.7 
3 N=15, F=4 98.2 97.8 425.1 405.4 223.3 176.3 438.2 302.7 652.4 
4 N=30, F=2 0.0 0.0 917.0 801.2 117.5 51.9 936.8 936.3 1187.6 
5 N=30, F=5 0.0 0.0 789.0 776.2 124.8 69.8 797.0 535.5 1344.8 
6 N=30, F=10 0.0 0.0 964.8 825.6 137.1 90.7 970.8 325.1 1719.7 
7 N=50, F=2 0.0 0.0 1308.2 1288.5 138.7 71.2 1310.5 1328.9 1765.0 
8 N=50, F=5 0.0 0.0 1696.6 1197.6 158.8 86.7 1718.5 1312.9 2431.4 
9 N=50, F=10 0.0 0.0 1827.0 1420.2 160.3 90.7 1846.2 676.3 3561.3 
10 N=70, F=5 0.0 0.0 2692.7 1897.3 116.8 60.6 2730.1 1939.7 4099.1 
11 N=70, F=10 0.0 0.0 4629.1 2521.9 173.5 74.4 4726.2 2260.6 7716.5 
12 N=70, F=25 0.0 0.0 3289.5 2087.7 155.6 75.9 3429.4 350.2 7433.4 
13 N=90, F=5 0.0 0.0 4654.4 2557.3 184.0 105.1 4723.2 3628.9 6505.1 
14 N=90, F=10 0.0 0.0 4736.1 2750.6 99.5 48.0 4869.8 2484.5 8400.0 
15 N=90, F=25 0.0 0.0 5056.9 2560.2 148.7 73.5 5201.2 887.1 10652.5 

Large level for setup times 
1 N=15, F=2 124.1 121.7 410.4 414.6 210.4 167.7 431.8 440.3 698.4 
2 N=15, F=3 65.8 64.8 508.3 452.0 211.4 171.0 528.1 403.5 902.4 
3 N=15, F=4 148.3 147.3 497.0 461.6 282.7 241.9 511.4 302.2 949.4 
4 N=30, F=2 0.0 0.0 947.7 825.7 125.4 61.0 967.5 994.3 1500.8 
5 N=30, F=5 3.2 3.0 848.2 842.9 142.5 91.3 860.4 443.9 2050.5 
6 N=30, F=10 0.0 0.0 1109.6 943.9 176.7 143.0 1128.4 154.8 2644.6 
7 N=50, F=2 0.0 0.0 1342.7 1317.3 144.7 77.3 1343.7 1397.9 2387.2 
8 N=50, F=5 0.0 0.0 1789.7 1262.9 184.1 111.1 1821.5 1085.3 3495.6 
9 N=50, F=10 0.0 0.0 1983.4 1552.0 189.6 119.7 2006.0 272.8 5741.7 
10 N=70, F=5 0.0 0.0 2747.4 1956.6 124.7 69.2 2787.6 1390.6 5755.4 
11 N=70, F=10 0.0 0.0 4827.5 2678.7 199.7 98.9 4973.2 1090.4 11127.0 
12 N=70, F=25 0.0 0.0 3899.1 2475.5 191.3 110.5 4169.7 97.8 12431.2 
13 N=90, F=5 0.0 0.0 4784.6 2630.0 198.8 118.0 4866.7 2995.6 8746.4 
14 N=90, F=10 0.0 0.0 4929.4 2879.0 110.3 56.5 5108.7 1312.9 12443.5 
15 N=90, F=25 0.0 0.0 5526.5 2859.6 183.1 105.0 5771.3 89.0 18127.1 
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d) Lower bounds LB3 and LB8: These lower bounds 
have relatively the same performance, behaviour and 
computational cost. Except series 5, they are robust 
according to the dispersion of  data and have relatively a 
uniform performance (see the different results). To obtain 
an efficient performance for these lower bounds, we have 
to find a pertinent set of  constraints by judiciously 
choosing the fictitious weights. In this work, we have 
limited the number of  constraints to m = N + 3. The 
fictitious weights were chosen such that each job can 
occupy all the positions in the SWPT schedules associated 
to the fictitious weights (which needs N constraints). The 
three other constraints allow us to obtain the sequences 
SPT, EDD and MDD. Our choice is motivated by the need 

to obtain fast procedures and complementary constraints. 
Obviously, if  we introduce some additional constraints, the 
performance may be enhanced, but, the computational 
effort will be more important too. 

e) Lower bound LB4: This lower bound is robust 
according to the data dispersion. Its major advantage is the 
computational efficiency (10−3 s almost). This lower bound 
is particularly effective if  the values of  the due dates are 
large. This is the case of  all the instances in series 5. High 
values of  due dates have a good effect on the performance 
of  this lower bound. However, if  the due dates are small, it  
is very difficult to meet the conditions of  Theorem 2 and 
the relaxation needed to compute the lower bound  

 
Table 2. Mean values for the lower bounds obtained for series 2 

Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 
Small level for setup times 

1 N=15, F=2 321.3 318.9 910.4 578.7 633.2 509.8 966.6 908.9 993.4 
2 N=15, F=3 222.1 224.6 875.9 556.2 559.5 420.9 930.2 853.5 967.6 
3 N=15, F=4 278.1 278.1 914.5 593.8 632.2 508.0 974.8 873.4 1019.5 
4 N=30, F=2 261.9 264.1 3057.0 1292.4 1562.3 1279.6 3243.6 3054.2 3297.7 
5 N=30, F=5 280.3 281.8 2861.1 1273.6 1464.8 1211.5 3027.7 2754.8 3149.9 
6 N=30, F=10 196.7 198.1 2892.6 1270.6 1452.6 1204.8 3075.2 2624.7 3246.0 
7 N=50, F=2 189.7 190.0 7277.5 2250.0 3489.5 3046.4 7655.3 7268.5 7763.7 
8 N=50, F=5 227.8 227.9 7039.0 2134.9 3416.2 3005.7 7383.5 6869.6 7581.0 
9 N=50, F=10 110.9 111.2 7711.7 2247.6 3653.9 3205.7 8082.4 7255.1 8463.1 
10 N=70, F=5 4.7 4.7 13935.6 3178.6 5895.9 5293.6 14672.7 13701.0 14979.8 
11 N=70, F=10 372.4 372.7 16588.5 3395.4 7068.6 6414.7 17502.3 15967.1 18085.1 
12 N=70, F=25 0.0 0.0 14196.4 3266.3 6141.2 5527.2 15135.0 12399.3 16018.8 
13 N=90, F=5 292.5 292.6 23524.3 4136.7 9873.6 9059.8 24697.8 23226.3 25097.6 
14 N=90, F=10 20.9 21.0 23570.4 4205.2 9573.2 8805.1 25066.9 22831.3 25775.4 
15 N=90, F=25 0.0 0.0 22686.3 4148.6 9482.3 8716.3 24017.7 20414.4 25343.8 

Medium level for setup times 
1 N=15, F=2 365.1 362.9 975.1 614.2 686.4 567.5 1034.1 970.8 1189.8 
2 N=15, F=3 312.4 313.3 983.5 614.0 648.9 518.8 1045.7 862.0 1270.6 
3 N=15, F=4 399.1 400.0 1058.1 673.4 760.3 647.7 1128.8 836.1 1392.6 
4 N=30, F=2 318.3 320.3 3158.1 1326.2 1634.7 1351.4 3354.0 3146.7 3688.9 
5 N=30, F=5 356.1 357.5 3109.9 1371.9 1648.4 1399.1 3316.0 2503.9 4051.9 
6 N=30, F=10 444.5 446.9 3382.6 1451.0 1805.8 1570.2 3628.0 1887.4 4665.9 
7 N=50, F=2 222.3 223.0 7461.0 2291.2 3600.5 3149.4 7853.2 7410.7 8527.6 
8 N=50, F=5 336.1 336.6 7421.4 2220.4 3678.0 3265.0 7798.3 6446.8 9029.0 
9 N=50, F=10 288.1 289.7 8474.8 2436.1 4195.0 3731.7 8973.1 5964.5 11271.6 
10 N=70, F=5 29.5 29.4 14429.8 3269.2 6205.4 5585.0 15220.1 13071.2 17079.2 
11 N=70, F=10 595.0 595.5 17681.9 3586.6 7813.6 7145.1 18776.7 14121.8 22249.9 
12 N=70, F=25 677.9 680.1 16751.8 3756.1 7839.8 7172.6 18343.2 6976.7 23217.1 
13 N=90, F=5 355.5 355.5 24192.7 4227.5 10299.1 9471.9 25463.0 22434.8 27911.5 
14 N=90, F=10 98.0 98.0 24759.4 4380.5 10339.6 9546.2 26541.5 20500.0 30811.4 
15 N=90, F=25 59.2 59.3 25749.9 4625.7 11440.6 10626.9 27776.5 13136.8 35860.5 

Large level for setup times 
1 N=15, F=2 421.5 419.0 1058.0 658.7 755.5 642.4 1118.5 1059.9 1441.9 
2 N=15, F=3 427.1 426.3 1119.7 684.8 766.2 645.6 1194.0 919.2 1638.8 
3 N=15, F=4 557.6 553.5 1226.2 771.3 921.5 818.8 1317.3 863.4 1803.7 
4 N=30, F=2 393.6 395.1 3283.3 1368.9 1727.2 1446.7 3491.2 3270.2 4152.0 
5 N=30, F=5 457.2 457.7 3420.4 1494.9 1884.1 1640.1 3671.4 2259.3 5101.4 
6 N=30, F=10 849.8 848.2 3962.3 1667.9 2291.3 2062.7 4300.0 1318.4 6139.2 
7 N=50, F=2 273.8 275.0 7690.1 2342.8 3740.4 3283.9 8100.7 7605.8 9460.5 
8 N=50, F=5 471.9 471.5 7877.4 2327.8 4015.4 3593.2 8320.9 5968.1 10780.5 
9 N=50, F=10 628.3 631.5 9380.9 2676.8 4879.6 4407.2 10060.0 4633.3 14422.9 
10 N=70, F=5 57.7 57.9 15010.5 3382.0 6595.5 5956.9 15903.5 12331.0 19674.1 
11 N=70, F=10 1054.7 1056.8 18923.7 3826.9 8746.2 8069.8 20325.8 12029.1 26931.3 
12 N=70, F=25 1912.0 1914.5 19631.0 4359.9 9878.5 9154.0 22115.4 2718.1 30246.1 
13 N=90, F=5 431.3 431.6 24988.7 4339.7 10838.4 10001.3 26416.3 21498.9 31368.7 
14 N=90, F=10 272.8 272.9 26093.5 4598.6 11307.1 10482.8 28343.2 17779.1 36631.4 
15 N=90, F=25 501.7 502.5 29216.3 5218.4 13875.8 12998.1 32287.4 6523.4 46955.9 
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becomes important. This is the case of  the instances of  
series 6. This behaviour can be explained by the fact that 
LB4 is based on the EDD sequence and Theorem 2. 
Indeed, if  the values of  the due dates are small, the 
conditions of  Theorem 2 are so difficult to be satisfied by 
the EDD sequence and the modification of  these due 
dates needed to compute the lower bound has an 
important bad effect.  

f) Lower bounds LB5 and LB6: The major advantage of  
these bounds is the computational efficiency. We can 
remark that these bounds are efficient in the case of  series 
3 (see Table 3). The dispersion of  the due dates has a bad 
effect on the performance of  the two lower bounds. This 
is the case of  series 1 and 2 (see Tables 1 and 2). This 

behaviour can be explained by the fact that these lower 
bounds are based on the assignment of  the due dates to 
the SPT-sequence completion times. Indeed, if  the values 
and the dispersion of  the due dates are small, the 
relaxation needed to compute these lower bounds has not 
an important effect and their performance may be 
satisfactory. 

g) Lower bounds LB7 and LB9: Except series 5, they 
yield generally the best performances when comparing 
with the other lower bounds. In addition, they are robust 
and the dispersion of  the due dates does not roughly affect 
their values. The performances of  these lower bounds are 
comparable (see Tables 1-6). The complexity of  the bound 
(LB7) is very interesting using the procedure of  Potts and  

 
Table 3. Mean values for the lower bounds obtained for series 3 

Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 
Small level for setup times 

1 N=15, F=2 25.5 24.2 310.0 391.1 435.0 306.2 319.7 308.5 334.8 
2 N=15, F=3 11.5 11.5 337.1 388.8 397.7 253.6 348.2 320.3 368.7 
3 N=15, F=4 0.0 0.0 321.3 383.6 436.2 310.1 330.7 291.1 355.0 
4 N=30, F=2 0.0 0.0 698.2 777.8 1155.6 902.7 715.0 697.8 742.6 
5 N=30, F=5 0.0 0.0 598.7 733.4 1106.0 869.8 604.6 530.7 663.4 
6 N=30, F=10 0.0 0.0 650.5 771.7 1095.1 870.8 660.6 486.9 745.5 
7 N=50, F=2 0.0 0.0 1014.1 1238.1 2680.3 2313.7 1018.6 1012.5 1069.3 
8 N=50, F=5 0.0 0.0 1175.9 1247.9 2638.5 2267.0 1187.1 1090.4 1261.6 
9 N=50, F=10 0.0 0.0 1267.3 1287.2 2809.1 2423.5 1278.2 992.2 1446.6 
10 N=70, F=5 0.0 0.0 1957.5 1768.0 4667.0 4175.2 1974.0 1815.6 2111.7 
11 N=70, F=10 0.0 0.0 3121.0 1965.0 5279.0 4733.8 3147.7 2640.7 3445.4 
12 N=70, F=25 0.0 0.0 1940.0 1805.0 4744.6 4223.9 1970.2 1015.5 2323.5 
13 N=90, F=5 0.0 0.0 3192.4 2328.9 7676.3 7004.1 3219.3 3009.4 3393.8 
14 N=90, F=10 0.0 0.0 3222.5 2372.8 7554.9 6913.6 3278.4 2705.4 3615.9 
15 N=90, F=25 0.0 0.0 3124.1 2268.3 7520.0 6862.6 3165.2 2018.8 3670.9 

Medium level for setup times 
1 N=15, F=2 30.4 29.2 325.8 410.8 468.1 336.9 335.9 317.4 430.2 
2 N=15, F=3 15.5 15.5 369.5 423.9 450.3 301.1 380.9 281.2 506.7 
3 N=15, F=4 7.2 7.3 361.6 424.4 511.5 379.3 370.6 198.6 529.6 
4 N=30, F=2 0.0 0.0 716.5 796.8 1202.7 945.2 733.8 715.8 908.8 
5 N=30, F=5 0.0 0.0 633.0 780.1 1223.2 982.6 640.8 319.1 1027.2 
6 N=30, F=10 0.0 0.0 733.1 874.5 1310.8 1072.0 748.6 96.7 1268.8 
7 N=50, F=2 0.0 0.0 1037.4 1259.3 2754.9 2382.0 1042.0 1028.2 1360.2 
8 N=50, F=5 0.0 0.0 1226.7 1297.5 2809.3 2433.4 1243.0 799.5 1740.7 
9 N=50, F=10 0.0 0.0 1352.3 1387.3 3165.0 2763.8 1368.4 203.3 2503.8 
10 N=70, F=5 0.0 0.0 1994.1 1813.9 4878.6 4375.8 2010.1 1186.8 2881.6 
11 N=70, F=10 0.0 0.0 3253.1 2065.3 5765.5 5202.5 3297.6 904.2 5192.6 
12 N=70, F=25 0.0 0.0 2282.7 2073.8 5845.3 5276.8 2361.7 23.9 5030.7 
13 N=90, F=5 0.0 0.0 3267.2 2378.8 7961.4 7277.1 3295.8 2205.8 4430.1 
14 N=90, F=10 0.0 0.0 3335.1 2468.7 8076.9 7416.4 3403.9 1060.5 5605.8 
15 N=90, F=25 0.0 0.0 3417.1 2507.2 8909.7 8209.7 3500.2 0.3 7023.9 

Large level for setup times 
1 N=15, F=2 37.0 35.9 347.8 436.0 510.4 376.8 358.5 332.4 561.1 
2 N=15, F=3 20.0 20.0 411.0 469.1 517.6 362.5 423.1 246.6 694.0 
3 N=15, F=4 27.2 27.3 409.1 476.6 605.6 468.1 419.4 136.3 747.1 
4 N=30, F=2 0.0 0.0 737.5 820.2 1260.7 998.7 755.5 738.0 1142.7 
5 N=30, F=5 0.0 0.0 679.9 840.2 1371.3 1125.5 689.7 190.0 1514.0 
6 N=30, F=10 0.0 0.0 835.5 1000.6 1579.3 1320.0 858.9 1.5 1906.8 
7 N=50, F=2 0.0 0.0 1064.0 1286.3 2851.2 2471.5 1068.7 1046.4 1766.5 
8 N=50, F=5 0.0 0.0 1295.2 1358.7 3028.2 2644.2 1315.9 543.5 2436.5 
9 N=50, F=10 0.0 0.0 1453.9 1512.6 3604.0 3181.6 1476.4 5.0 3933.7 
10 N=70, F=5 0.0 0.0 2036.0 1870.4 5145.7 4632.7 2054.0 579.4 3949.2 
11 N=70, F=10 0.0 0.0 3387.4 2189.4 6361.4 5776.9 3451.4 220.3 7331.4 
12 N=70, F=25 0.0 0.0 2679.2 2408.2 7109.0 6479.6 2830.8 0.0 8162.0 
13 N=90, F=5 0.0 0.0 3357.1 2441.4 8321.8 7625.0 3392.1 1545.7 5871.1 
14 N=90, F=10 0.0 0.0 3453.4 2586.0 8716.6 8036.6 3546.5 293.7 8119.2 
15 N=90, F=25 0.0 0.0 3721.3 2816.7 10562.6 9811.3 3861.6 0.0 11788.3 
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Van Wassenhove (1985). The non-distributive one uses the 
power of  the precedence constraints used to improve the 
Lagrangian relaxation. The latter lower bound outperforms 
generally the other ones. Note also that the use of  the 
multipliers adjustment method had a positive effect on the 
computational cost of  LB9. In the latter bound, we used 
the SPT heuristic and we computed the multipliers by 
maximizing the lower bound value. The principle remains 
valid for any other heuristic. LB9 is usually greater than LB7, 
but the latter bound is more computationally effective than 
LB9 (10−4 s for LB7 against 10−2 s almost LB9). 

h) According to Figure 1, some of  the lower bounds are 
very computationally efficient (this is the case of  LB1, LB2, 
LB4, LB5, LB6 and LB7). One of  the possible exploitations 
of  the lower bounds would be their incorporation into a 
branch-and-bound procedure. It may be that other lower 
bounds, that perform better, would not computationally 
effective in a branch and bound algorithm if  the variation 
in term of  performance is not significant. Based on this 
analysis, Table 8 presents for each series a set of  suitable 
and/or potential lower bounds which can be used in a 
branch-and-bound procedure. 

 
 

Table 4. Mean values for the lower bounds obtained for series 4 
Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 

Small level for setup times 
1 N=15, F=2 64.1 62.2 339.3 399.5 279.3 181.8 355.5 338.0 373.5 
2 N=15, F=3 29.1 29.1 380.4 396.5 252.0 140.2 398.3 365.4 422.5 
3 N=15, F=4 22.6 22.4 353.0 395.1 282.2 184.3 368.3 323.5 397.9 
4 N=30, F=2 0.0 0.0 798.7 800.4 513.6 331.9 826.7 798.3 861.2 
5 N=30, F=5 0.0 0.0 673.4 731.0 491.5 323.5 685.8 613.3 754.0 
6 N=30, F=10 0.0 0.0 747.5 784.4 483.7 323.8 764.2 589.9 857.5 
7 N=50, F=2 0.0 0.0 1147.7 1219.8 1062.4 816.7 1157.1 1146.4 1213.4 
8 N=50, F=5 0.0 0.0 1399.1 1225.7 1063.4 804.5 1418.5 1319.0 1507.3 
9 N=50, F=10 0.0 0.0 1476.1 1272.7 1128.0 849.8 1495.5 1229.1 1711.9 
10 N=70, F=5 0.0 0.0 2318.8 1830.3 1676.0 1364.5 2349.8 2183.8 2530.4 
11 N=70, F=10 0.0 0.0 3798.9 2106.6 1977.2 1614.5 3849.7 3320.8 4243.5 
12 N=70, F=25 0.0 0.0 2344.1 1794.8 1668.3 1342.8 2396.3 1412.1 2848.9 
13 N=90, F=5 0.0 0.0 3885.5 2361.5 2703.1 2252.7 3932.3 3701.8 4153.2 
14 N=90, F=10 0.0 0.0 3888.7 2552.2 2515.9 2101.1 3992.2 3403.8 4428.3 
15 N=90, F=25 0.0 0.0 3861.7 2324.9 2574.5 2148.5 3934.2 2771.4 4580.3 

Medium level for setup times 
1 N=15, F=2 72.2 70.2 358.4 419.7 301.9 201.3 375.7 352.1 485.0 
2 N=15, F=3 33.7 33.4 417.6 430.3 286.5 170.4 436.1 333.5 589.1 
3 N=15, F=4 49.2 49.5 400.5 438.6 338.6 233.9 416.7 247.0 603.7 
4 N=30, F=2 0.0 0.0 817.4 818.7 536.6 349.2 846.1 816.8 1058.1 
5 N=30, F=5 0.0 0.0 712.6 780.3 546.8 371.0 728.7 422.3 1204.7 
6 N=30, F=10 0.0 0.0 847.2 888.6 580.9 406.6 872.0 188.5 1509.2 
7 N=50, F=2 0.0 0.0 1171.6 1241.5 1094.1 842.8 1181.3 1164.6 1583.2 
8 N=50, F=5 0.0 0.0 1461.6 1274.3 1143.5 877.1 1488.5 1056.5 2099.6 
9 N=50, F=10 0.0 0.0 1581.0 1370.5 1286.5 991.0 1607.8 412.9 3044.5 
10 N=70, F=5 0.0 0.0 2361.4 1873.9 1754.0 1436.0 2391.2 1567.4 3520.3 
11 N=70, F=10 0.0 0.0 3955.0 2211.1 2173.5 1789.4 4035.4 1554.8 6480.4 
12 N=70, F=25 0.0 0.0 2769.4 2096.0 2043.2 1680.7 2899.1 130.3 6252.2 
13 N=90, F=5 0.0 0.0 3981.1 2412.4 2814.4 2354.1 4032.4 2927.7 5487.6 
14 N=90, F=10 0.0 0.0 4026.1 2655.7 2702.7 2274.6 4147.5 1731.6 7024.8 
15 N=90, F=25 0.0 0.0 4229.0 2575.5 3074.5 2614.0 4361.2 308.0 8852.6 

Large level for setup times 
1 N=15, F=2 81.7 79.7 383.2 445.4 331.4 226.8 401.7 374.7 640.7 
2 N=15, F=3 39.3 38.8 464.8 474.4 331.5 210.4 484.7 314.2 812.7 
3 N=15, F=4 84.3 84.0 455.5 492.7 407.9 295.3 474.8 201.8 863.9 
4 N=30, F=2 0.0 0.0 843.1 842.2 565.6 372.2 872.8 844.6 1339.2 
5 N=30, F=5 0.0 0.0 763.0 841.6 617.1 434.0 783.0 277.7 1805.8 
6 N=30, F=10 0.0 0.0 965.8 1021.3 705.0 513.3 1003.1 26.7 2290.9 
7 N=50, F=2 0.0 0.0 1201.7 1269.9 1134.4 878.3 1211.8 1187.3 2097.9 
8 N=50, F=5 0.0 0.0 1537.1 1336.3 1244.8 968.6 1570.7 800.8 2985.6 
9 N=50, F=10 0.0 0.0 1705.5 1495.9 1479.9 1165.7 1742.4 61.5 4855.9 
10 N=70, F=5 0.0 0.0 2406.7 1929.8 1851.5 1525.2 2438.1 935.2 4875.9 
11 N=70, F=10 0.0 0.0 4124.7 2342.5 2414.8 2003.7 4238.8 544.4 9265.2 
12 N=70, F=25 0.0 0.0 3257.6 2459.6 2491.0 2076.9 3500.0 0.0 10318.9 
13 N=90, F=5 0.0 0.0 4082.2 2473.7 2950.2 2479.6 4145.3 2248.1 7322.5 
14 N=90, F=10 0.0 0.0 4180.6 2784.4 2925.2 2481.8 4336.8 689.2 10298.8 
15 N=90, F=25 0.0 0.0 4607.5 2885.1 3664.3 3153.5 4825.0 0.0 14979.5 
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Table 5. Mean values for the lower bounds obtained for series 5 
Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 

Small level for setup times 
1 N=15, F=2 0.0 0.0 0.0 70.0 37.1 12.0 0.0 0.0 0.0 
2 N=15, F=3 0.0 0.0 0.0 90.6 42.0 11.8 0.0 0.0 0.3 
3 N=15, F=4 0.0 0.0 0.0 66.1 49.0 19.3 0.0 0.0 0.0 
4 N=30, F=2 0.0 0.0 0.0 90.8 31.5 4.4 0.0 0.0 0.0 
5 N=30, F=5 0.0 0.0 0.0 92.8 30.7 3.2 0.0 0.0 0.0 
6 N=30, F=10 0.0 0.0 0.0 67.9 35.5 5.4 0.0 0.0 0.0 
7 N=50, F=2 0.0 0.0 0.0 89.8 40.7 9.6 0.0 0.0 0.0 
8 N=50, F=5 0.0 0.0 0.0 130.1 39.8 6.0 0.0 0.0 0.0 
9 N=50, F=10 0.0 0.0 0.0 106.4 41.5 8.6 0.0 0.0 0.0 
10 N=70, F=5 0.0 0.0 0.0 68.3 36.3 11.5 0.0 0.0 0.0 
11 N=70, F=10 0.0 0.0 0.0 143.0 40.2 3.4 0.0 0.0 0.0 
12 N=70, F=25 0.0 0.0 0.0 101.0 38.0 5.5 0.0 0.0 0.0 
13 N=90, F=5 0.0 0.0 0.0 117.4 30.5 3.9 0.0 0.0 0.0 
14 N=90, F=10 0.0 0.0 0.0 115.3 34.1 6.0 0.0 0.0 0.0 
15 N=90, F=25 0.0 0.0 0.0 104.5 35.1 4.9 0.0 0.0 0.0 

Medium level for setup times 
1 N=15, F=2 0.0 0.0 0.0 73.0 39.2 13.0 0.0 0.0 0.0 
2 N=15, F=3 0.0 0.0 0.0 97.2 46.6 14.2 0.0 0.0 1.4 
3 N=15, F=4 0.0 0.0 0.0 73.0 56.4 24.8 0.0 0.0 0.0 
4 N=30, F=2 0.0 0.0 0.0 91.8 32.9 5.0 0.0 0.0 0.0 
5 N=30, F=5 0.0 0.0 0.0 96.2 33.2 3.9 0.0 0.0 0.0 
6 N=30, F=10 0.0 0.0 0.0 74.2 40.7 8.0 0.0 0.0 0.0 
7 N=50, F=2 0.0 0.0 0.0 91.2 41.8 10.2 0.0 0.0 0.0 
8 N=50, F=5 0.0 0.0 0.0 133.3 41.5 6.9 0.0 0.0 0.0 
9 N=50, F=10 0.0 0.0 0.0 113.4 45.7 10.5 0.0 0.0 0.0 
10 N=70, F=5 0.0 0.0 0.0 68.6 37.4 12.2 0.0 0.0 0.0 
11 N=70, F=10 0.0 0.0 0.0 147.1 42.9 3.9 0.0 0.0 0.0 
12 N=70, F=25 0.0 0.0 0.0 115.0 43.8 6.8 0.0 0.0 0.0 
13 N=90, F=5 0.0 0.0 0.0 118.4 31.7 4.2 0.0 0.0 0.0 
14 N=90, F=10 0.0 0.0 0.0 116.3 35.4 6.3 0.0 0.0 0.0 
15 N=90, F=25 0.0 0.0 0.0 109.9 38.9 5.6 0.0 0.0 0.0 

Large level for setup times 
1 N=15, F=2 0.0 0.0 0.0 76.8 42.4 14.6 0.0 0.0 0.0 
2 N=15, F=3 0.0 0.0 0.0 104.9 52.2 16.9 0.0 0.0 2.7 
3 N=15, F=4 0.0 0.0 0.0 82.0 65.8 31.7 0.0 0.0 1.8 
4 N=30, F=2 0.0 0.0 0.0 92.8 34.5 5.5 0.0 0.0 0.0 
5 N=30, F=5 0.0 0.0 0.0 99.6 36.2 4.9 0.0 0.0 0.0 
6 N=30, F=10 0.0 0.0 0.0 82.7 46.5 10.8 0.0 0.0 0.0 
7 N=50, F=2 0.0 0.0 0.0 92.9 43.2 10.9 0.0 0.0 0.0 
8 N=50, F=5 0.0 0.0 0.0 138.5 43.9 8.4 0.0 0.0 0.0 
9 N=50, F=10 0.0 0.0 0.0 122.7 50.1 12.8 0.0 0.0 0.0 
10 N=70, F=5 0.0 0.0 0.0 69.9 39.0 13.0 0.0 0.0 0.0 
11 N=70, F=10 0.0 0.0 0.0 152.3 45.9 4.4 0.0 0.0 0.0 
12 N=70, F=25 0.0 0.0 0.0 130.6 50.4 7.7 0.0 0.0 0.0 
13 N=90, F=5 0.0 0.0 0.0 119.9 33.0 4.7 0.0 0.0 0.0 
14 N=90, F=10 0.0 0.0 0.0 118.0 37.3 6.8 0.0 0.0 0.0 
15 N=90, F=25 0.0 0.0 0.0 119.0 43.5 6.6 0.0 0.0 0.0 
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Figure 1. Mean values for the computation times. 
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6. CONCLUSION 

In this paper, we consider the scheduling problem for a 
single machine with family setup times to minimize the 
total tardiness. We proposed a set of  approaches to build 
lower bounds for the tardiness criterion. These lower 
bounds were analyzed and tested on a large set of  
numerical experiments. Two classes were proposed. The 
first class is distributive (i.e., the setup is split into pieces 

and distributed to the jobs of  the corresponding family) 
and in the second class, the setup is not divided and it is 
considered independently of  the processing times. A 
certain number of  efficient lower bounds were identified 
(according to the data distribution). In our future work, we 
hope to build efficient branch and bound algorithms based 
on these results and to improve the effectiveness of  these 
lower bounds by using some new dominance rules. 

 
Table 6. Mean values for the lower bounds obtained for series 6 

Group (N, F) LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 
Small level for setup times 

1 N=15, F=2 2152.9 2148.6 2251.7 703.1 2258.8 2137.7 2460.8 2253.9 2490.6 
2 N=15, F=3 1896.2 1894.1 2052.2 669.9 2049.6 1904.1 2276.3 2039.0 2319.3 
3 N=15, F=4 2127.5 2125.2 2222.5 711.2 2246.4 2118.5 2459.4 2194.1 2510.9 
4 N=30, F=2 7643.8 7637.4 8147.5 1483.6 8031.7 7766.3 9190.8 8157.9 9255.3 
5 N=30, F=5 7478.4 7473.4 7943.5 1478.7 7810.6 7555.4 8974.2 7856.8 9112.3 
6 N=30, F=10 7565.6 7559.9 7979.6 1476.6 7959.7 7703.6 9114.9 7746.1 9320.0 
7 N=50, F=2 19523.9 19518.0 20764.5 2481.6 20513.6 20037.7 23924.1 20772.5 24050.5 
8 N=50, F=5 18448.0 18444.3 20051.0 2450.1 19880.4 19350.6 23327.4 19858.7 23560.9 
9 N=50, F=10 19838.4 19832.6 21211.1 2524.2 20952.0 20448.1 24403.6 20770.8 24841.6 
10 N=70, F=5 35875.3 35869.7 39377.2 3476.2 38266.3 37495.2 45554.9 39120.7 45910.0 
11 N=70, F=10 39385.0 39377.2 42204.2 3577.4 41293.1 40567.6 48849.5 41566.9 49511.2 
12 N=70, F=25 37948.8 37940.5 39869.2 3537.2 39823.6 39150.0 46885.7 38151.3 47866.0 
13 N=90, F=5 58526.8 58523.4 64265.7 4473.5 62770.2 61744.0 74854.5 63934.4 75312.2 
14 N=90, F=10 59540.8 59537.4 64860.9 4504.8 63188.2 62128.4 75761.7 64054.0 76570.8 
15 N=90, F=25 58936.2 58930.2 64059.8 4507.8 62730.7 61714.2 75115.7 61606.9 76726.9 

Medium level for setup times 
1 N=15, F=2 2355.0 2349.2 2429.5 745.4 2436.4 2333.0 2643.5 2472.8 2831.6 
2 N=15, F=3 2225.7 2221.3 2339.2 737.7 2343.6 2220.6 2573.4 2316.1 2840.1 
3 N=15, F=4 2553.3 2544.9 2613.1 798.5 2632.4 2532.2 2852.7 2539.0 3160.6 
4 N=30, F=2 7998.0 7991.1 8451.7 1521.8 8349.1 8094.1 9513.7 8528.6 9899.9 
5 N=30, F=5 8442.4 8433.0 8729.5 1582.2 8680.3 8468.9 9839.3 8434.4 10696.1 
6 N=30, F=10 9436.7 9424.5 9656.1 1679.3 9692.8 9509.1 10833.3 8653.6 11876.2 
7 N=50, F=2 20208.9 20202.4 21316.1 2525.3 21121.8 20660.5 24535.9 21422.3 25315.3 
8 N=50, F=5 19901.5 19895.0 21171.0 2545.0 21152.6 20656.7 24638.7 20484.5 26054.8 
9 N=50, F=10 22901.3 22893.2 23789.5 2726.7 23692.4 23269.8 27172.7 21997.0 29729.9 
10 N=70, F=5 37931.9 37924.7 40914.1 3573.8 40047.9 39311.0 47370.7 39603.7 49523.0 
11 N=70, F=10 43575.4 43566.7 45608.1 3778.0 45077.4 44425.1 52658.2 42754.9 56598.1 
12 N=70, F=25 48252.7 48239.0 49144.8 4053.9 49408.3 48912.7 56547.0 42448.7 59281.0 
13 N=90, F=5 61212.3 61207.8 66152.1 4571.1 65067.5 64054.5 77219.4 64450.1 80019.0 
14 N=90, F=10 64577.4 64569.9 68410.5 4692.6 67634.5 66653.6 80312.3 64300.6 85223.8 
15 N=90, F=25 72454.3 72443.7 74332.5 5017.8 74847.4 74006.1 87361.5 65035.5 94714.9 

Large level for setup times 
1 N=15, F=2 2605.5 2597.9 2660.1 796.5 2666.2 2579.8 2874.9 2798.1 3207.0 
2 N=15, F=3 2632.2 2622.2 2715.7 823.8 2718.4 2617.4 2949.3 2733.1 3386.2 
3 N=15, F=4 3060.9 3051.5 3119.7 905.3 3112.0 3033.0 3338.5 3026.5 3831.3 
4 N=30, F=2 8433.5 8425.8 8832.0 1569.8 8745.7 8510.1 9915.2 9026.7 10548.0 
5 N=30, F=5 9613.7 9600.9 9782.2 1710.0 9774.2 9611.2 10913.4 9453.9 12405.0 
6 N=30, F=10 11625.7 11611.4 11958.8 1931.0 11815.9 11667.3 12939.9 10157.7 14479.6 
7 N=50, F=2 21055.6 21048.3 22014.8 2580.1 21884.3 21449.5 25296.8 22437.0 26542.5 
8 N=50, F=5 21703.2 21695.8 22610.8 2663.9 22773.4 22316.9 26288.7 21764.6 28667.9 
9 N=50, F=10 26576.0 26563.2 27224.9 2979.0 27102.8 26777.2 30593.9 24308.3 34674.6 
10 N=70, F=5 40474.7 40467.0 42802.2 3694.9 42305.5 41618.6 49647.3 40906.2 53365.3 
11 N=70, F=10 48652.3 48639.1 50052.9 4028.5 49812.7 49247.1 57373.4 45599.9 63611.0 
12 N=70, F=25 59979.0 59961.6 62528.3 4695.2 60836.8 60420.6 68189.6 49535.7 70604.0 
13 N=90, F=5 64529.3 64524.7 68539.8 4693.5 67949.7 66969.6 80174.1 65980.5 84790.1 
14 N=90, F=10 70685.9 70675.0 72820.6 4926.7 73211.1 72320.1 85959.5 66579.5 93848.1 
15 N=90, F=25 88300.6 88286.2 90658.5 5653.3 89921.9 89215.6 102412.9 73976.7 112189.1 

 
Table 7. Mean values for the computation times (in seconds) 

LB1 LB2 LB3 LB4 LB5 LB6 LB7 LB8 LB9 
0,00013086 0,00011561 0,02127658 0,00213457 0,00011375 0,00010037 0,00012082 0,02322788 0,01439257 
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Table 8. Suitable and/or potential lower bounds 
Series Non dominated lower bounds 

1 LB7, LB9 
2 LB7, LB9 
3 LB5, LB9 
4 LB4, LB7, LB9 
5 LB4 
6 LB7, LB9 
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