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AbstractIn this paper, we study the problem of  minimizing total completion time with load balancing and sequence 
dependent setups in a non-identical parallel machine environment. A mathematical model has been presented for the 
objective of  minimizing total completion time with workload balancing constraint. Since this problem is an NP-Hard 
problem, some simple heuristics and a genetic algorithm are developed for efficient scheduling of  resources. The heuristics 
and genetic algorithm are tested on random data. 
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1. INTRODUCTION 

In this paper, we consider a parallel machine 
environment with sequence dependent setups where the 
objective is minimizing total completion and setup time 
while satisfying load balance constraints. In this parallel 
machine environment, by distributing the available 
workload among the available machines as equally as 
possible, bottlenecks can be eliminated, throughput can be 
maximized, work in process, finished goods inventory and 
operating costs can be lowered (Rajakumar et al., 2004). 

The motivation of  this paper comes from both service 
and manufacturing industries: for example, in an intensive 
care unit, nurses should have a balanced workload in order 
to provide a quality care and possibly allocate additional 
workload. In this case setups might be related to hygienic 
requirements for different patients. If  a nurse visits her 
patients in a particular order, then there can be significant 
savings in setups. As an additional example, consider two 
workers in a machine shop. The first worker can operate a 
drill and the more experienced worker can operate a CNC 
machine in addition to the drill. To accommodate new 
orders efficiently, the goal of  the production manager is to 
assign jobs to each worker in such a way that their 
workloads are similar. If  an incoming order requires 
drilling, the order can be assigned to any of  the workers. 
However, if  it is a job which needs to be processed on the 
CNC machine, then the second worker has to be assigned. 
Furthermore, the order of  jobs on the CNC machine and 
drill might affect the amount of  setup required to complete 
the incoming orders. 

Another example is a rolled aluminum sheet metal 
manufacturing process whereby ingots or slabs of  pure 

aluminum are melted in a furnace. Then, additive elements 
such as magnesium, vanadium, etc., which determine the 
alloy of  the aluminum, are added to the furnace in specific 
amounts. The melted metal in the furnace flows through a 
shaper and a rolling mill. The entire process takes place on 
casting lines. In this type of  process, continuous 
production is required to avoid reheating a furnace after it 
cools down, which is long and costly. After the casting 
operation, to obtain the desired width and thickness, the 
metal is fed in coil form through a series of  cold rolling 
mills, which successively reduce the metal thickness and 
recoil it after each rolling pass. Type of  additives, and width 
and thickness of  the rolled aluminum sheets determine the 
characteristics of  an order (i.e., job). Each casting line is 
capable of  processing aluminum sheets up to a certain 
width. The lines that can process wider sheets can also 
process the narrower sheets. Thus, each line have a certain 
capability. The objective in casting line scheduling is to 
minimize the total sequence dependent setup incurred 
between orders and balance the workload between parallel 
casting lines to accommodate potential orders. 

Scheduling jobs with sequence dependent setups is a 
well studied problem. In their survey paper, Allahverdi et al. 
(1999) present the state of  the art for machine scheduling 
problems with setups. Kurz and Askin (2001) note that 
single machine problem where the objective is 
minimization of  the maximum completion time is 
NP-complete when there are sequence dependent setups. 
Thus, in a parallel machine environment with identical 
machines, minimizing the maximum completion time is 
NP-Complete as well (Kurz and Askin, 2001). 
Furthermore, Chen and Powell (2003) observe that solving 
non-identical parallel machines for any objective is more 
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complex than the identical parallel machines and sequence 
dependent setup time will further complicate the problem. 

In parallel machine scheduling problems, the machines 
are either identical (related) or non-identical (unrelated). 
Some of  the problems considered in the literature for 
identical machines are minimize maximum completion 
time (Cmax) objective with setups (Kurz and Askin, 2001); 
makespan, total weighted completion time, and total 
weighted tardiness objectives with setups (Fowler et al., 
2003); total weighted tardiness objective with setups (Lee 
and Pinedo, 1997); workload balancing objective without 
setups (Rajakumar et al., 2004). For the non-identical 
machine case, weighted completion time objective without 
setups (Arnaout et al., 2005); batch-scheduling, no-setups 
(Chen, 2005); Cmax objective (Glass et al., 1994 and Rabadi 
et al., 2006); flow time and tardiness objectives without 
setups (Randhawa and Kuo, 1997); CNC scheduling with 
setups (Turkcan et al., 2003); and makespan and flow time 
objectives without setups (Yu et al., 2002) are some of  the 
problems considered in the literature. 

Due to the nature of  complexity involved in terms of  
formulation and computational time several methods are 
proposed to solve parallel machine problems with 
sequence dependent setups: dynamic programming 
(Gascon, 1998), branch and bound (Dietrich and Escudero, 
1989) and heuristics (Pinedo, 1995). Rolling horizon 
heuristics are proposed by Uzsoy and Ovacik (1995) who 
decompose the scheduling problem into sub-problems and 
then optimally solve these problems by branch and bound 
algorithm. The genetic algorithms which were first 
developed by Holland (1975) have also been applied in 
scheduling parallel machines with setups: for example, Van 
Hop and Nagarur (2004) apply genetic algorithms to group 
similar boards, balance machines, and reduce setups in 
printed circuit board production. Kurz and Askin (2001), 
Fowler et al. (2003), Arnaout et al. (2005) and Rabadi et al. 
(2006) use genetic algorithms to solve parallel machine 
problem with sequence dependent setup times. Tamaki et 
al. (1993) propose a genetic algorithm to solve unrelated 
parallel machine scheduling problems with resource 
constraints. Chen (2006) uses heuristics and simulated 
annealing for unrelated parallel machines with mean 
tardiness objective and secondary resource constraints and 
setups. 

The goal of  workload balancing is to distribute the 
jobs/tasks to resources in such a way that the relative 
imbalance is minimized, i.e., utilization of  resources is 
approximately equal. Rajakumar et al. (2004) test the 
effectiveness of  random, shortest processing time and 
longest processing time dispatching rules on workload 
balancing in a parallel machine setting without any setups. 
They show that the longest processing time rule shows 
better performance for the higher number of  jobs and/or 
machines. Becker et al. (2006) provide a survey of  
balancing on assembly lines. Another application is in 
workload balancing in printed circuit board assembly 
(Hillier and Brandeau, 2001). 

In this paper, our goal is to formulate a mathematical 
model to solve the load balancing problem in parallel 

machine environment with sequence dependent setups and 
minimum sum of  total completion time objective. In our 
setting, the machines (resources) are non-identical and at 
the same time they are related. As in the case of  aluminum 
casting lines, some resources can process all of  the jobs 
while others are less capable. The contributions of  this 
paper can be summarized as follows: 1) We present a 
mathematical model to formulate the unrelated parallel 
scheduling problem with load balancing constraint and 
sequence dependent setups when the resources are 
non-identical and at the same time related; 2) The objective 
function is minimizing the sum of  total completion time 
on all parallel lines. 3) Five heuristics are proposed and 
their performance is compared with a genetic algorithm. 

The organization of  this paper is as follows: In the next 
section, we present the notation utilized in this paper and a 
mixed integer mathematical model which minimizes the 
sum of  the maximum completion time of  jobs on each 
machine while satisfying the load balance constraint. 
Section 3 presents heuristics to solve this problem. Section 
4 describes a genetic algorithm to determine the optimal 
machine assignment and job sequence to minimize sum of  
completion time on machines while satisfying the load 
balancing constraints. The experimental setup is followed 
by computational experimentation. 

 
2. PROBLEM DESCRIPTION 

Let K be the set of  the parallel machines and |K| 
denote the cardinality of  set K, i.e., the number of  
machines. Similarly, J is the set of  jobs. Kj is the set of  
machines on which job j can be processed and Jk is the set 
of  jobs that can be processed on machine k. Let pik be the 
processing time of  job i on machine k. If  job i precedes 
job j on machine k, then there is a sequence dependent 
setup time of  Sijk between jobs i and j. The setups follow 
the triangle inequality. Let α be the maximum allowable 
level of  imbalance on the production line where 0 ≤ α ≤ 1. 
Without loss of  generality, it is assumed that if  k < k′, then 
Jk ⊆ Jk′, i.e., jobs which can be processed on lower indexed 
machines can also be processed in higher indexed machines. 
Although the machines are non-identical, they are related. 
It can be assumed that they have different capabilities. We 
define this case as the semi-related machines case. 

Jobs are available at time zero, and each job has a 
processing time and there is sequence dependent setup 
time between consecutive jobs. No preemption is allowed 
between jobs. Each job is processed on one machine and 
only once. The objective considered is to minimize the sum 
of  the total completion times while balancing the load on 
all the non-identical parallel machines. The total 
completion time on machine k is the sum of  processing 
time and sequence dependent setup time. 

Below, is a mathematical program for Scheduling Parallel 
Machines with Load Balancing and Sequence Dependent 
Setups (SPM-LBSDS). The goal of  SPM-LBSDS is to 
schedule jobs on semi-related parallel machines to 
minimize sum of  completion times on all machines with 
load balancing constraints and sequence dependent setups. 
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The objective function minimizes the total completion 
time, Ctotal, (i.e., sum of  processing time and setup time) 
needed to complete all available jobs on all of  the 
processing lines 
 

totalmin  C                                    (1) 
where 
 

total k
k K

C C
∈

= ∑                                 (2) 

 
and Ck is the total processing and setup time on line k. 
Mathematically, 
 

∈ ∈ ∈
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Eq. (4) and (5) are workload balancing constraints for 

each machine. A perfect balancing is not usually possible. 
Hence, a certain percentage of  tolerance α above and 
below the average workload are permitted. 
 

total
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Constraint 6 ensures that each job is assigned to a 

processing line. 
 

1   
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Constraint 7 guarantees that a job cannot precede 

another job on machine k unless it has been assigned to 
machine k. 
 

     ,  ,  ijk ik i kx y i J k K j J≤ ∈ ∈ ∈                 (7) 
 
Constraint 8/constraint 9 ensure that a job must be 
before/after another job on a production line. 
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Constraint 10 represents sub-tour elimination constraints 
which ensures that a job cannot be the immediate 
predecessor or successor of  two or more different jobs at 
the same time. 
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' '
k k
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Finding the solution for 1|Sij|Cmax is NP-Complete. 

Hence, Pm∥Cmax and Rm|Sijk|Cmax problems are 
NP-complete (Kurz and Askin, 2001) where m is the 
number of  machines. When |K| = 1, SPM-LBSDS 
reduces to 1|Sij|Cmax. As a result, SPM-LBSDS is 
NP-complete as well (Rabadi et al., 2006). 

For this problem, the search space for determining the 
optimal solution is quite large. As a result, we do not 
expect the traditional optimization methods to perform 
well for larger sized problem instances. For example, for a 
problem with 20 jobs and five machines, after three “days” 
of  running GAMS/CPLEX 9.0, the optimal solution was 
still not found on a Pentium IV 1.8Ghz computer with 
1Gb of  RAM. This motivated us for developing heuristics 
and a GA to find good solutions in reasonable amount of  
time (e.g., less than a minute of  CPU time). 
 
3. HEURISTICS TO SOLVE SEMI-RELATED 

PARALLEL MACHINES PROBLEM 

The following is outline of  the procedure for load 
balancing on semi-related machines when there are 
sequence dependent setups: 
 
Step 1. INPUT the problem data 
Step 2. SAVE the assignment order of  the jobs in a LIST 
Step 3. SELECT a job from the top of  the LIST 
Step 4. ASSIGN the job to a machine with respect to an 

ASSIGNMENT RULE 
Step 5. REMOVE the job from the LIST 
Step 6. If  the LIST = φ, then STOP. Check the feasibility. 

Otherwise, go to Step 3. 
 

Using this procedure, based on how the LIST is formed 
(i.e., how the assignment order is determined) and which 
ASSIGNMENT RULE is utilized, several dispatching 
rules/heuristics are proposed. The assignment 
orders/LISTs considered here are as follows: 

 
Random (RN): The order of  jobs is created randomly. 
 
Longest Processing Time (LPT): Jobs are ordered in 
non-increasing processing time. 
 
Longest Processing Time with Most Restricted 
Assignment First (LPT-MRAF): Jobs are first grouped 
with respect to the number of  machines, |Kj|, which they 
can be processed in a non-decreasing order (i.e., jobs that 
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can be processed on one machine, then on two 
machines, ..., and finally on |K| machines). In each group, 
the job order is obtained using the longest processing time. 
 

In the fourth step, using the assignment rule, jobs 
selected from the list are assigned to machines to be 
processed. The assignment rules considered here are as 
follows: 

 
Setup Avoidance (SA): Whenever jobs and machines are 
available, the SA rule searches for the machine/job 
combination that causes the least setup time. Fowler et al. 
(2003) note that the SA rule is a commonly used rule by 
scheduling practitioners for problems with sequence 
dependent setups when the objective is to minimize the 
makespan. 
 
Cumulative Processing Time (CPT): CPT assigns the 
job to the machine with the least cumulative workload. 
 
Hybrid Cumulative Processing Time and Setup 
Avoidance (CPT-SA): At any iteration, if  the imbalance is 
within α then SA rule is used. Otherwise, CPT is applied. 
In case of  a tie, jobs are assigned to the lower index 
machine. Note that the imbalance for machine k is 
calculated for any heuristic as 
 

α = −1 k
k

C
C

 where total
1C C
K

= . 

 
This definition of  imbalance is different than the one 
proposed by Rajakumar et al. (2004) who used the 
maximum completion time instead of  the average 
completion time in their calculations. 
 

Table 1. Heuristics to minimize load balance in 
semi-related machines 

Heuristic Assignment Order Assignment Rule 
LPT-SA LPT SA 
RN-CPT RN CPT 
LPT-CPT LPT CPT 
LPT-MRAF-CPT LPT-MRAF CPT 
LPT-MRAF-CPT-SA LPT-MRAF CPT-SA 

 
Based on the above assignment “orders” and “rules”, 

the following heuristics are proposed: LPT-SA, RN-CPT, 
LPT-CPT, LPT-MRAF-CPT and LPT-MRAF-CPT-SA. As 
can be seen in Table 1, for each heuristic, the first part is 
the assignment order and the last part is the assignment 
rule. For example, LPT-SA is the heuristic, which orders 
the job in the longest processing time order and then 
assign to the lines using the setup avoidance rule. Similarly, 
in LPT-MRAF-CPT-SA, jobs are sorted with respect to the 
Longest Processing Time with Most Restricted Assignment 
First and then the Hybrid Cumulative Processing Time and 
Setup Avoidance rule is utilized to assign the jobs to 
machines. 
 

4. A GENETIC ALGORITHM TO SOLVE 
SPM-LBSDS ON SEMI-RELATED PARALLEL 
MACHINES 

According to Fowler et al. (2003), Genetic Algorithms 
(GAs) have widely been applied to parallel machine 
problems mainly for two reasons. (i) In each generation, 
the GA is capable of  producing feasible solutions whereas 
in mathematical modeling, the possibility of  getting the 
feasible solution largely depends on complexity and nature 
of  the problem. (ii) The GA maintains a set of  feasible 
solutions. According to Fowler et al. (2003), “The 
knowledge of  a family of  good solutions is far more 
important than obtaining an isolated optimum.” The 
problem considered in this paper is NP-complete as 
explained in section 2. Thus, mixing GA with problem 
oriented heuristics might provide better results than using 
the heuristics by itself. 

In the proposed GA, after the chromosome (the 
assignment order) is generated, CPT is used to assign jobs 
to machines. The fitness values of  the solutions are then 
used to determine the next generation. The process is 
repeated for a fixed number of  generations (iterations). 
The genetic algorithm can be summarized as 
 
l Generate an initial population. 
l Perform crossover and mutation operations to generate 

offsprings. 
l Evaluate the fitness value of  generated offsprings and 

give only those offspring that have better fitness values 
a chance to survive in the next generation. 

l Repeat Steps 2 and 3 until the GA is run for the 
predetermined number of  generations. 

l Select the best chromosome. 
 
Below, we explain components of  the proposed GA in 
details. 
 
Representation (Coding): A good representation scheme 
is necessary to describe the problem-specific characteristics 
in detail. The representation method plays a major role in 
the subsequent steps of  GA. Genes can be represented in 
several forms such as binary, real integer number or a 
combination of  characters (Tiwari and Vidyarthi, 2000). 
The sequence-oriented natural number representation 
scheme is used to solve the SPM-LBSDS problem. In this 
scheme, the length of  the chromosome is equal to the total 
number of  jobs to be scheduled on all the machines. For 
example, if  there are six jobs to be scheduled, then the 
chromosome may be represented as [5 1 4 3 2 6], where 
the number in the brackets represents the jobs. Similar to 
LPT-MRAF, jobs are first grouped with respect to the 
number of  machines, |Kj|, where they can be processed, in 
a non-decreasing order (i.e., first group has the jobs that 
can be processed on one machine, then the second group 
has the jobs that can be processed on two machines, and so 
on). In each job group, the job order is obtained using the 
order in the chromosome. 
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Initialization: Fowler et al. (2003) report that assigning 
jobs based on some pre-determined rules may provide 
better solutions and reduce computational time than 
generating random solutions. Hence, an initial set of  
solutions is generated using the RN-CPT, LPT-CPT, 
LPT-MRAF-CPT and LPT-MRAF-CPT-SA heuristics 
presented in Section 3. 
 
Evaluation of  Fitness Function: The fitness function fp 
for a chromosome p to penalize the objective function 
severely can be calculated as a function of  the objective 
function value as 

 
total1

total total( ) exp C
pf C C γ −−=  

 
where γ = 0.5. 
 
Cross-over: Once parents are selected, the cross-over 
operation is applied to generate a new solution. Cross-over 
is the process by which two parent strings unite together to 
form new offspring strings. The cross-over operation will 
occur on a pair of  strings only with a probability of  the 
“cross-over probability” (0.95 in our GA). The type of  
cross-over employed in our GA implementation is single 
point cross-over: Two parent strings are selected randomly 
from the population. A random number between 0 to l − 1 
is generated (l is the length of  the chromosome) to 
determine the cross-over point. When crossover is done, 
the genes before the crossover point in chromosome 1 are 
the first part of  the child chromosome. The second part of  
the child chromosome is generated by checking the genes 
from the second chromosome one by one and adding the 
genes which are not in the child chromosome yet. For 
example if  a crossover operation is applied to 
chromosomes [1 5 2 6 3 4] and [1 6 2 5 3 4]. Assuming the 
cross-over point is after gene 3, the resulting child 
chromosome will be [1 5 2 6 3 4]. 
 
Mutation: Mutation creates a new chromosome by altering 
the locus of  the genes. As in the cross-over operation, 
mutation occurs only if  the random number generated is 
less than or equal to the mutation probability. The 
mutation probability is set to 0.05. Type of  mutation 
operator in this paper is the reciprocal exchange in which 
two positions on a chromosome are randomly selected and 
the genes in those positions are then exchanged to form a 
new chromosome. For example: In a chromosome string [1 
5 2 6 3 4] for a six job problem, two positions are 
randomly selected (e.g., positions 2 and 4). The genes in 
these positions are exchanged to form the new 
chromosome string [1 6 2 5 3 4]. 
 
Selection: The selection model should reflect the nature's 
survival of  the fittest. Normally, in a genetic algorithm, 
chromosomes with a better fitness value will receive more 
chances to survive in the next generations. In this paper, 
the roulette wheel system is used to select the parents for 
crossover and mutation. The process of  selection of  the 

parents for generating the next population is described 
below: 
 
Step 0. Determine the fitness function value for different 

chromosomes in an initial population. 
Step 1. Arrange the chromosomes in descending order of  

the fitness value. 
Step 2. Calculate the probability function Pr(fp) for individual 

chromosome p as a function of  the fitness function 
values as 
 

( ) p
p

pp

f
Pr f

f ′′

=
∑

 

Step 3. Utilize the roulette wheel method to select candidates 
for cross over and mutation using the probability 
values found in Step 2. 

 
Reproduction: We utilize the elitist selection scheme to 
determine the best chromosomes from the current and 
new population to form the next generation. All the 
candidate solutions have to be arranged in the descending 
order with respect to their fitness function value. 

Note that the crossover and mutation operations do not 
necessarily produce a feasible result all of  the time. 
 
5. COMPUTATIONAL EXPERIMENTATION 

This section discusses how to generate different 
scenarios to test the effectiveness of  the proposed 
heuristics in two-machine and five-machine environments. 
The heuristics and GA are programmed using Visual C++ 
6.0, and the statistics are collected using Microsoft Excel. 
Below is a description of  the experimental design, which is 
followed by results and discussions. 

 
5.1 Experimental design 

The experimental setup considers the following factors: 
number of  machines (two-machines (2M) and 
five-machines (5M)); number of  jobs (20, 40, and 60); 
processing time-setup time ratio, ρ, (low (ρ = 0.1), medium 
(ρ = 1) and high (ρ = 10)); and categories of  jobs which 
can be processed on semi-related machines (two levels for 
the 2M case and seven levels for the 5M case). As a result, 
the total number of  scenarios are 18 for the 2M case and 
63 for the 5M case. 
In two machine setting, there are two categories of  jobs. 
The first category can be processed on both machines 
while the second category can only be processed on 
machine two (i.e., the more capable machine). On the other 
hand, in the five machines setting, machines three, four, 
and five are the most capable machines and identical. 
Machine two can process all of  the jobs that machine one 
can process and is less capable than machines three to five. 
As a result, there are three categories of  jobs. The first 
category can be processed on machines one to five; 
similarly, the second and third categories of  jobs can be 
processed on machines two to five and three to five, 
respectively. The proportion of  total processing and setup 
time allocated to each of  the categories is examined on 
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seven levels as shown in Table 2.  
 

Table 2. Experimental setup for types of  job categories 
 Scenarios 
 2M 5M 
Category 1 2 3  1 2 3 4 5 6 7 
1 45 50 55  50 50 50 25 40 25 40 
2 55 50 45  10 25 40 50 50 25 10 
3     40 25 10 25 10 50 50 

 
Experiments were performed on several values of  

imbalance. When α = 0.05 or α = 0.10, the proportion of  
infeasible solutions by the proposed heuristics was 
significantly high. When α > 0.20, the problem behaved 
similarly to unrelated parallel machine scheduling problem 
with completion time objective. As a result, α = 0.15 is 
chosen for experimentation. Note that finding a partition 
of  jobs that satisfy the load balancing constraint is similar 
to the set partitioning problem, which is NP-hard. 

The setup time matrix is asymmetric (i.e., sijk may not be 
equal to sjik). The job data, processing time and setup time 
are generated using a method similar to Fowler et al. 
(2003). 

Finally, selection of  good parameters can play a vital role 
in GA experiments. We performed several experiments to 
determine the sensitivity of  the problem to GA parameters: 
The size of  the population was tested for 5, 10, 15, 20 and 
25. The population size of  10 worked the best. When we 
tested the number of  generations for 500, 1000, 2000 and 
3000, in 2000 generations, a quality solution is obtained in 
reasonable amount of  CPU time (in less than 10 CPU 
seconds). The cross-over and mutation probability are 0.95 
and 0.05, respectively. In the genetic algorithm, one 
hundred initial solutions (five solutions from the proposed 
heuristics and 95 random solutions) are generated. Hence, 
out of  the one hundred initial solutions, the ten best 
solutions based on the fitness value are selected. At any 
iteration, after the new population is generated, the ten 
best solutions from both the new and current set of  
solutions is used to determine the most elite solution. 
While selecting the ten best solutions, repetition of  
solutions is avoided. This helps to maintain the diversity in 
the population, and to prevent the solution from being 
stuck at local optimum. 

 
5.2 Results and discussion 

Table 3. Performance of  heuristics (Ctotal and total setup) in 
the 2M and 5M environments 

 Ctotal total setup 
Heuristic 2M 5M 2M 5M 
RN-CPT 1989.0 1976.7 118.2 110.3 
LPT-CPT 2239.0 2029.5 159.2 145.1 
LPT-MRAF-CPT 2002.4 1985.1 131.7 118.8 
LPT-MRAF-CPT-SA 1969.0 1956.6 108.6 94.8 
GA 1937.9 1918.2 67.2 75.2 

 
Each scenario is run for five different data sets on a 

Pentium IV 1.6 Ghz machine with 512MB of  RAM. 

Furthermore, for each data set, the genetic algorithm is run 
five times to obtain different solutions. Although, five 
different heuristics (i.e., LPT-SA, RN-CPT, LPT-CPT, 
LPT-MRAF-CPT, and LPT-MRAF-CPT-SA) are tested, 
the SA assignment rule did not produce feasible results for 
96% of  the cases. Note that the SA assignment rule is 
widely used in practice (Fowler et al., 2003) for parallel 
machine scheduling with setups for minimum completion 
time objective. However, it is observed that this rule can 
not be used to solve problems with load balancing in 
parallel machine scheduling. LPT-MRAF-CPT and then 
RN-CPT give feasible solutions in all of  the cases that we 
have experimented. Recall that the LPT-MRAF first 
prioritizes the most restricted jobs and RN-CPT generates 
random orders until a feasible solution is determined. On 
average, RN-CPT determines a feasible assignment in 0.5 
seconds in the 2M case and 1.5 seconds in the 5M case 
compared to 5.1 and 5.4 seconds for GA to determine its 
final solution in the 2M and 5M cases, respectively. Other 
heuristics do not consume any significant CPU time. 
LPT-CPT and LPT-MRAF-CPT-SA produce feasible 
solutions (i.e., satisfying the load balancing constraint) for 
75% and 85% of  the cases. As can be seen in Table 3, the 
GA outperforms the proposed heuristics. The 
performance of  heuristics can be ranked as 
LPT-MRAF-CPT-SA, RN-CPT, LPT-MRAF-CPT and 
LPT-CPT. 

 
Table 4. Performance of  heuristics to solve the 

SPM-LBSDS problem 
 σ  α  best  
Heuristic 2M 5M 2M 5M 2M 5M 
RN-CPT 3.12 2.15 7.70 3.61 59.2 50.7 
LPT-CPT 4.21 4.14 8.26 1.98 0.0 0.0 
LPT-MRAF-CPT 3.22 3.04 3.98 2.17 7.4 7.9 
LPT-MRAF-CPT-SA 2.76 2.20 8.25 4.19 55.5 47.6 

 
Statistics are collected on the number of  times that a 

heuristic performs the best: in the 2M case, RN-CPT gives 
the best solution in 59.2% of  runs while 
LPT-MRAF-CPT-SA gives the best solution in 55.5% of  
the runs as shown in Table 4, the best  columns). In  
Table 4, σ  denotes the average deviation of  a heuristic 
solution from the GA solution. In case of  2M, 
LPT-MRAF-CPT-SA obtains the lowest σ  and 
LPT-MRAF-CPT obtains the lowest imbalance (α ). Even 
though the heuristic LPT-MRAF-CPT-SA gives the best 
average deviation, it fails to give feasible solutions in 15% 
of  the cases. As a result, RN-CPT provides the second best 
average deviation and the maximum number of  best 
solutions. Note that similar observations hold for the 5M 
case as well. Note that Rajakumar et al. (2004) report that 
the LPT-CPT gives best solutions with respect to load 
balancing in identical parallel machine environment 
without setups. However, the LPT-CPT performs poorly in 
case of  semi-related machines with sequence dependent 
setups. 
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On the average, excluding the GA, Table 5 shows that 
the LPT-MRAF-CPT-SA heuristic gives the best average 
objective function value. This might be due to the fact that 
the assignment order is determined by considering the 
restrictions in job processing and sequence dependent 
setups at the same time. The second best performance is 
given by the RN-CPT heuristic. As the number of  jobs 
increases from |J| = 20 to |J| = 40, the objective function 
value approximately doubles. However, this is not the case, 
when |J| is increased from 40 to 60. In this case, Ctotal 
increases by 50%. 

 
Table 5. Performance of  the heuristics with respect to the 

number of  jobs 
 2M 5M 
Heuristic/n 20 40 60 20 40 60 
RN-CPT 982.7 2015.0 2969.3 973.8 1972.0 2984.2 
LPT-CPT 1357.3 2168.8 3191.0 1085.6 1984.7 3018.3 
LPT-MRAF-CPT 992.0 2031.3 2984.0 983.2 1982.5 2989.8 
LPT-MRAF-CPT-SA 965.6 1991.4 2949.9 958.6 1959.9 2951.4 
GA 935.6 1973.1 2904.1 944.3 1938.0 2872.2 
 
Table 6. Effect of  processing time setup time ratio on the 

objective function 
 2M 5M 
Heuristic/ρ 0.1 1.0 10 0.1 1.0 10 
RN-CPT 919.3 2143.0 2904.7 905.5 2117.2 2907.3 
LPT-CPT 1292.3 2226.9 3197.9 1016.7 2138.7 2933.2 
LPT-MRAF-CPT 935.1 2157.7 2914.7 921.2 2124.5 2909.8 
LPT-MRAF-CPT-SA 910.1 2130.7 2866.1 917.3 2070.5 2882.0 
GA 868.5 2092.7 2852.5 876.4 2009.5 2868.7 
 

Similar observations can be seen for the effect of  the 
processing time-setup time ratio shown in Table 6. When 
the effect of  setup time is minimal (i.e., the ρ = 10), the 
GA and heuristics have similar performance. For a smaller 
ρ, the GA outperforms all other heuristics. 
 

Table 7. Effect of  the number of  jobs on the imbalance 
 2M 5M 
Heuristic/n 20 40 60 20 40 60 
RN-CPT 6.90 8.52 7.68 4.43 3.88 2.51 
LPT-CPT 6.69 8.95 8.13 1.90 2.04 1.98 
LPT-MRAF-CPT 3.94 4.68 3.33 3.04 1.61 1.87 
LPT-MRAF-CPT-SA 7.99 7.90 8.79 3.47 4.00 4.02 
 

Although the load balancing objective appears as a 
constraint in the SPM-LBSDS model, the performance of  
different heuristics is tested when the number of  jobs 
(Table 7) and processing-setup time ratio (Table 8) is varied. 
In both cases, on average LPT-MRAF-CPT provides the 
best result. The only exception occurs in the 5M case when 
ρ = 1 and ρ = 10. In these cases LPT-CPT provides the 
lowest imbalance. However, the fact that when |J| 
increases the imbalance decreases as in the parallel machine 
scheduling (Rajakumar et al., 2004) can not be observed. 

Table 8 presents the effect of  the number of  jobs and 
processing-setup time ratio on the performance of  the GA. 

When the processing time-setup time ratio, ρ, is small, i.e., 
the processing time is relatively less important than the 
setup time (in other words, setup time typically dominates 
the processing time), in the 2M case, the GA’s performance 
is better compared to the “best” heuristic solution and 
improves as |J| increases. On the other hand, in the 2M − 
ρ = 10 case in which processing time dominates the setup 
time, when |J| increases, the gap between the GA solution 
and the best heuristic decreases. For the 5M case, it is 
observed that when |J| increases, the GAP between the 
GA and the best heuristic solution decreases. Note that 
this observation is in line with the fact that Longest 
Processing Time dispatching rule performs well to balance 
loads on parallel machines when there is no setups. 
 
Table 8. The GA performance as a function of  processing 

time setup ratio and number of  jobs with respect to the 
best heuristic solution 

 2M 5M 
ρ 20 40 60 20 40 60 
0.1 3.43 4.35 4.75 1.70 1.29 0.41 
1.0 0.97 0.88 1.48 1.17 0.61 0.52 
10.0 1.62 0.43 0.12 1.36 0.11 0.19 

 
6. CONCLUSION 

In this study, the scheduling of  semi-related machines 
with sequence dependent setups and load balancing 
constraints is solved with the objective of  minimizing sum 
of  completion time on all machines. A mathematical 
programming model is proposed. Due to the 
computational complexity involved in solving the 
mathematical model, heuristics and a genetic algorithm 
have been developed to generate solutions within a 
reasonable period of  time. Heuristics were also used to 
generate the initial set of  solutions for the genetic 
algorithm, which resulted in reducing computational time 
as well. In order to test the effectiveness of  the developed 
methodology, different scenarios have been generated. It is 
found out that the genetic algorithm improves the heuristic 
solutions significantly when the processing time setup time 
ratio is small. Furthermore, the most promising heuristic is 
the LPT-MRAF-CPT-SA which switches from CPT to SA 
(or vice a versa) based on the current relative imbalance. 

A direct extension of  this research is having a 
multiobjective mathematical model in which both 
minimization of  total completion time and minimization 
of  imbalance are two objectives that can considered. A 
multi-objective genetic algorithm approach can be 
developed to solve this problem as a part of  future 
research. Another extension can be determining a lower 
bound to test the effectiveness of  the genetic algorithm. 
Furthermore, a new heuristic which will take into account 
the processing times and setups at the same time can be 
developed. A more detailed experimental design to 
determine if  there is a clear pattern between the 
parameters of  the experimental design and the objective 
can be done. 
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