
International Journal of Operations Research Vol. 4, No. 1, 42−49 (2007)

Parallel Machine Scheduling with Load Balancing and Sequence
Dependent Setups

Mehmet B. Yildirim1, ∗, Ekrem Duman2, Krishnan Krishna1, and Karthikeyan Senniappan1
1Department of Industrial and Manufacturing Engineering, Wichita State University, Wichita, KS 67260-0035, USA

2Industrial Engineering Department, Dogus University, Istanbul 34722, Turkey

Received August 2006; Revised October 2006; Accepted November 2006

AbstractIn this paper, we study the problem of minimizing total completion time with load balancing and sequence
dependent setups in a non-identical parallel machine environment. A mathematical model has been presented for the
objective of minimizing total completion time with workload balancing constraint. Since this problem is an NP-Hard
problem, some simple heuristics and a genetic algorithm are developed for efficient scheduling of resources. The heuristics
and genetic algorithm are tested on random data.
KeywordsLoad balancing, Sequence dependent setups, Parallel machine scheduling, Scheduling theory, Genetic
algorithms

∗ Corresponding author’s email: Bayram.yildirim@wichita.edu

1. INTRODUCTION

In this paper, we consider a parallel machine
environment with sequence dependent setups where the
objective is minimizing total completion and setup time
while satisfying load balance constraints. In this parallel
machine environment, by distributing the available
workload among the available machines as equally as
possible, bottlenecks can be eliminated, throughput can be
maximized, work in process, finished goods inventory and
operating costs can be lowered (Rajakumar et al., 2004).

The motivation of this paper comes from both service
and manufacturing industries: for example, in an intensive
care unit, nurses should have a balanced workload in order
to provide a quality care and possibly allocate additional
workload. In this case setups might be related to hygienic
requirements for different patients. If a nurse visits her
patients in a particular order, then there can be significant
savings in setups. As an additional example, consider two
workers in a machine shop. The first worker can operate a
drill and the more experienced worker can operate a CNC
machine in addition to the drill. To accommodate new
orders efficiently, the goal of the production manager is to
assign jobs to each worker in such a way that their
workloads are similar. If an incoming order requires
drilling, the order can be assigned to any of the workers.
However, if it is a job which needs to be processed on the
CNC machine, then the second worker has to be assigned.
Furthermore, the order of jobs on the CNC machine and
drill might affect the amount of setup required to complete
the incoming orders.

Another example is a rolled aluminum sheet metal
manufacturing process whereby ingots or slabs of pure

aluminum are melted in a furnace. Then, additive elements
such as magnesium, vanadium, etc., which determine the
alloy of the aluminum, are added to the furnace in specific
amounts. The melted metal in the furnace flows through a
shaper and a rolling mill. The entire process takes place on
casting lines. In this type of process, continuous
production is required to avoid reheating a furnace after it
cools down, which is long and costly. After the casting
operation, to obtain the desired width and thickness, the
metal is fed in coil form through a series of cold rolling
mills, which successively reduce the metal thickness and
recoil it after each rolling pass. Type of additives, and width
and thickness of the rolled aluminum sheets determine the
characteristics of an order (i.e., job). Each casting line is
capable of processing aluminum sheets up to a certain
width. The lines that can process wider sheets can also
process the narrower sheets. Thus, each line have a certain
capability. The objective in casting line scheduling is to
minimize the total sequence dependent setup incurred
between orders and balance the workload between parallel
casting lines to accommodate potential orders.

Scheduling jobs with sequence dependent setups is a
well studied problem. In their survey paper, Allahverdi et al.
(1999) present the state of the art for machine scheduling
problems with setups. Kurz and Askin (2001) note that
single machine problem where the objective is
minimization of the maximum completion time is
NP-complete when there are sequence dependent setups.
Thus, in a parallel machine environment with identical
machines, minimizing the maximum completion time is
NP-Complete as well (Kurz and Askin, 2001).
Furthermore, Chen and Powell (2003) observe that solving
non-identical parallel machines for any objective is more

International Journal of
Operations Research

1813-713X Copyright © 2007 ORSTW

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

43

complex than the identical parallel machines and sequence
dependent setup time will further complicate the problem.

In parallel machine scheduling problems, the machines
are either identical (related) or non-identical (unrelated).
Some of the problems considered in the literature for
identical machines are minimize maximum completion
time (Cmax) objective with setups (Kurz and Askin, 2001);
makespan, total weighted completion time, and total
weighted tardiness objectives with setups (Fowler et al.,
2003); total weighted tardiness objective with setups (Lee
and Pinedo, 1997); workload balancing objective without
setups (Rajakumar et al., 2004). For the non-identical
machine case, weighted completion time objective without
setups (Arnaout et al., 2005); batch-scheduling, no-setups
(Chen, 2005); Cmax objective (Glass et al., 1994 and Rabadi
et al., 2006); flow time and tardiness objectives without
setups (Randhawa and Kuo, 1997); CNC scheduling with
setups (Turkcan et al., 2003); and makespan and flow time
objectives without setups (Yu et al., 2002) are some of the
problems considered in the literature.

Due to the nature of complexity involved in terms of
formulation and computational time several methods are
proposed to solve parallel machine problems with
sequence dependent setups: dynamic programming
(Gascon, 1998), branch and bound (Dietrich and Escudero,
1989) and heuristics (Pinedo, 1995). Rolling horizon
heuristics are proposed by Uzsoy and Ovacik (1995) who
decompose the scheduling problem into sub-problems and
then optimally solve these problems by branch and bound
algorithm. The genetic algorithms which were first
developed by Holland (1975) have also been applied in
scheduling parallel machines with setups: for example, Van
Hop and Nagarur (2004) apply genetic algorithms to group
similar boards, balance machines, and reduce setups in
printed circuit board production. Kurz and Askin (2001),
Fowler et al. (2003), Arnaout et al. (2005) and Rabadi et al.
(2006) use genetic algorithms to solve parallel machine
problem with sequence dependent setup times. Tamaki et
al. (1993) propose a genetic algorithm to solve unrelated
parallel machine scheduling problems with resource
constraints. Chen (2006) uses heuristics and simulated
annealing for unrelated parallel machines with mean
tardiness objective and secondary resource constraints and
setups.

The goal of workload balancing is to distribute the
jobs/tasks to resources in such a way that the relative
imbalance is minimized, i.e., utilization of resources is
approximately equal. Rajakumar et al. (2004) test the
effectiveness of random, shortest processing time and
longest processing time dispatching rules on workload
balancing in a parallel machine setting without any setups.
They show that the longest processing time rule shows
better performance for the higher number of jobs and/or
machines. Becker et al. (2006) provide a survey of
balancing on assembly lines. Another application is in
workload balancing in printed circuit board assembly
(Hillier and Brandeau, 2001).

In this paper, our goal is to formulate a mathematical
model to solve the load balancing problem in parallel

machine environment with sequence dependent setups and
minimum sum of total completion time objective. In our
setting, the machines (resources) are non-identical and at
the same time they are related. As in the case of aluminum
casting lines, some resources can process all of the jobs
while others are less capable. The contributions of this
paper can be summarized as follows: 1) We present a
mathematical model to formulate the unrelated parallel
scheduling problem with load balancing constraint and
sequence dependent setups when the resources are
non-identical and at the same time related; 2) The objective
function is minimizing the sum of total completion time
on all parallel lines. 3) Five heuristics are proposed and
their performance is compared with a genetic algorithm.

The organization of this paper is as follows: In the next
section, we present the notation utilized in this paper and a
mixed integer mathematical model which minimizes the
sum of the maximum completion time of jobs on each
machine while satisfying the load balance constraint.
Section 3 presents heuristics to solve this problem. Section
4 describes a genetic algorithm to determine the optimal
machine assignment and job sequence to minimize sum of
completion time on machines while satisfying the load
balancing constraints. The experimental setup is followed
by computational experimentation.

2. PROBLEM DESCRIPTION

Let K be the set of the parallel machines and |K|
denote the cardinality of set K, i.e., the number of
machines. Similarly, J is the set of jobs. Kj is the set of
machines on which job j can be processed and Jk is the set
of jobs that can be processed on machine k. Let pik be the
processing time of job i on machine k. If job i precedes
job j on machine k, then there is a sequence dependent
setup time of Sijk between jobs i and j. The setups follow
the triangle inequality. Let α be the maximum allowable
level of imbalance on the production line where 0 ≤ α ≤ 1.
Without loss of generality, it is assumed that if k < k′, then
Jk ⊆ Jk′, i.e., jobs which can be processed on lower indexed
machines can also be processed in higher indexed machines.
Although the machines are non-identical, they are related.
It can be assumed that they have different capabilities. We
define this case as the semi-related machines case.

Jobs are available at time zero, and each job has a
processing time and there is sequence dependent setup
time between consecutive jobs. No preemption is allowed
between jobs. Each job is processed on one machine and
only once. The objective considered is to minimize the sum
of the total completion times while balancing the load on
all the non-identical parallel machines. The total
completion time on machine k is the sum of processing
time and sequence dependent setup time.

Below, is a mathematical program for Scheduling Parallel
Machines with Load Balancing and Sequence Dependent
Setups (SPM-LBSDS). The goal of SPM-LBSDS is to
schedule jobs on semi-related parallel machines to
minimize sum of completion times on all machines with
load balancing constraints and sequence dependent setups.

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

44

The objective function minimizes the total completion
time, Ctotal, (i.e., sum of processing time and setup time)
needed to complete all available jobs on all of the
processing lines

totalmin C (1)
where

total k
k K

C C
∈

= ∑ (2)

and Ck is the total processing and setup time on line k.
Mathematically,

∈ ∈ ∈

= + ∀ ∈∑ ∑ ∑
k k

k ik ik ijk ijk
i J i J j J

C y p x s k K (3)

where


= 



1 if job is assigned to machine
0 otherwisejk

i k
y

and


= 



1 if job is the immediate predecessor of job
 on machine
0 otherwise

ijk

i j
kx

Eq. (4) and (5) are workload balancing constraints for

each machine. A perfect balancing is not usually possible.
Hence, a certain percentage of tolerance α above and
below the average workload are permitted.

total
1

(1) kC C k K
K

α≤ + ∀ ∈ (4)

total
1

(1) kC C k K
K

α≥ − ∀ ∈ (5)

Constraint 6 ensures that each job is assigned to a

processing line.

1
i

ik
k K

y i J
∈

= ∈∑ (6)

Constraint 7 guarantees that a job cannot precede

another job on machine k unless it has been assigned to
machine k.

 , , ijk ik i kx y i J k K j J≤ ∈ ∈ ∈ (7)

Constraint 8/constraint 9 ensure that a job must be
before/after another job on a production line.

 ,
k

ijk ik k
i J

x y k K j J
∈

≤ ∈ ∈∑ (8)

 ,
k

ijk ik k
j J

x y k K i J
∈

≤ ∈ ∈∑ (9)

Constraint 10 represents sub-tour elimination constraints
which ensures that a job cannot be the immediate
predecessor or successor of two or more different jobs at
the same time.

1
' '
k k

' '
ijk k k k

i J j J

x | J | J J
∈ ∈

≤ − ⊆∑ ∑ (10)

Finding the solution for 1|Sij|Cmax is NP-Complete.

Hence, Pm∥Cmax and Rm|Sijk|Cmax problems are
NP-complete (Kurz and Askin, 2001) where m is the
number of machines. When |K| = 1, SPM-LBSDS
reduces to 1|Sij|Cmax. As a result, SPM-LBSDS is
NP-complete as well (Rabadi et al., 2006).

For this problem, the search space for determining the
optimal solution is quite large. As a result, we do not
expect the traditional optimization methods to perform
well for larger sized problem instances. For example, for a
problem with 20 jobs and five machines, after three “days”
of running GAMS/CPLEX 9.0, the optimal solution was
still not found on a Pentium IV 1.8Ghz computer with
1Gb of RAM. This motivated us for developing heuristics
and a GA to find good solutions in reasonable amount of
time (e.g., less than a minute of CPU time).

3. HEURISTICS TO SOLVE SEMI-RELATED

PARALLEL MACHINES PROBLEM

The following is outline of the procedure for load
balancing on semi-related machines when there are
sequence dependent setups:

Step 1. INPUT the problem data
Step 2. SAVE the assignment order of the jobs in a LIST
Step 3. SELECT a job from the top of the LIST
Step 4. ASSIGN the job to a machine with respect to an

ASSIGNMENT RULE
Step 5. REMOVE the job from the LIST
Step 6. If the LIST = φ, then STOP. Check the feasibility.

Otherwise, go to Step 3.

Using this procedure, based on how the LIST is formed
(i.e., how the assignment order is determined) and which
ASSIGNMENT RULE is utilized, several dispatching
rules/heuristics are proposed. The assignment
orders/LISTs considered here are as follows:

Random (RN): The order of jobs is created randomly.

Longest Processing Time (LPT): Jobs are ordered in
non-increasing processing time.

Longest Processing Time with Most Restricted
Assignment First (LPT-MRAF): Jobs are first grouped
with respect to the number of machines, |Kj|, which they
can be processed in a non-decreasing order (i.e., jobs that

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

45

can be processed on one machine, then on two
machines, ..., and finally on |K| machines). In each group,
the job order is obtained using the longest processing time.

In the fourth step, using the assignment rule, jobs
selected from the list are assigned to machines to be
processed. The assignment rules considered here are as
follows:

Setup Avoidance (SA): Whenever jobs and machines are
available, the SA rule searches for the machine/job
combination that causes the least setup time. Fowler et al.
(2003) note that the SA rule is a commonly used rule by
scheduling practitioners for problems with sequence
dependent setups when the objective is to minimize the
makespan.

Cumulative Processing Time (CPT): CPT assigns the
job to the machine with the least cumulative workload.

Hybrid Cumulative Processing Time and Setup
Avoidance (CPT-SA): At any iteration, if the imbalance is
within α then SA rule is used. Otherwise, CPT is applied.
In case of a tie, jobs are assigned to the lower index
machine. Note that the imbalance for machine k is
calculated for any heuristic as

α = −1 k
k

C
C

 where total
1C C
K

= .

This definition of imbalance is different than the one
proposed by Rajakumar et al. (2004) who used the
maximum completion time instead of the average
completion time in their calculations.

Table 1. Heuristics to minimize load balance in
semi-related machines

Heuristic Assignment Order Assignment Rule
LPT-SA LPT SA
RN-CPT RN CPT
LPT-CPT LPT CPT
LPT-MRAF-CPT LPT-MRAF CPT
LPT-MRAF-CPT-SA LPT-MRAF CPT-SA

Based on the above assignment “orders” and “rules”,

the following heuristics are proposed: LPT-SA, RN-CPT,
LPT-CPT, LPT-MRAF-CPT and LPT-MRAF-CPT-SA. As
can be seen in Table 1, for each heuristic, the first part is
the assignment order and the last part is the assignment
rule. For example, LPT-SA is the heuristic, which orders
the job in the longest processing time order and then
assign to the lines using the setup avoidance rule. Similarly,
in LPT-MRAF-CPT-SA, jobs are sorted with respect to the
Longest Processing Time with Most Restricted Assignment
First and then the Hybrid Cumulative Processing Time and
Setup Avoidance rule is utilized to assign the jobs to
machines.

4. A GENETIC ALGORITHM TO SOLVE
SPM-LBSDS ON SEMI-RELATED PARALLEL
MACHINES

According to Fowler et al. (2003), Genetic Algorithms
(GAs) have widely been applied to parallel machine
problems mainly for two reasons. (i) In each generation,
the GA is capable of producing feasible solutions whereas
in mathematical modeling, the possibility of getting the
feasible solution largely depends on complexity and nature
of the problem. (ii) The GA maintains a set of feasible
solutions. According to Fowler et al. (2003), “The
knowledge of a family of good solutions is far more
important than obtaining an isolated optimum.” The
problem considered in this paper is NP-complete as
explained in section 2. Thus, mixing GA with problem
oriented heuristics might provide better results than using
the heuristics by itself.

In the proposed GA, after the chromosome (the
assignment order) is generated, CPT is used to assign jobs
to machines. The fitness values of the solutions are then
used to determine the next generation. The process is
repeated for a fixed number of generations (iterations).
The genetic algorithm can be summarized as

l Generate an initial population.
l Perform crossover and mutation operations to generate

offsprings.
l Evaluate the fitness value of generated offsprings and

give only those offspring that have better fitness values
a chance to survive in the next generation.

l Repeat Steps 2 and 3 until the GA is run for the
predetermined number of generations.

l Select the best chromosome.

Below, we explain components of the proposed GA in
details.

Representation (Coding): A good representation scheme
is necessary to describe the problem-specific characteristics
in detail. The representation method plays a major role in
the subsequent steps of GA. Genes can be represented in
several forms such as binary, real integer number or a
combination of characters (Tiwari and Vidyarthi, 2000).
The sequence-oriented natural number representation
scheme is used to solve the SPM-LBSDS problem. In this
scheme, the length of the chromosome is equal to the total
number of jobs to be scheduled on all the machines. For
example, if there are six jobs to be scheduled, then the
chromosome may be represented as [5 1 4 3 2 6], where
the number in the brackets represents the jobs. Similar to
LPT-MRAF, jobs are first grouped with respect to the
number of machines, |Kj|, where they can be processed, in
a non-decreasing order (i.e., first group has the jobs that
can be processed on one machine, then the second group
has the jobs that can be processed on two machines, and so
on). In each job group, the job order is obtained using the
order in the chromosome.

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

46

Initialization: Fowler et al. (2003) report that assigning
jobs based on some pre-determined rules may provide
better solutions and reduce computational time than
generating random solutions. Hence, an initial set of
solutions is generated using the RN-CPT, LPT-CPT,
LPT-MRAF-CPT and LPT-MRAF-CPT-SA heuristics
presented in Section 3.

Evaluation of Fitness Function: The fitness function fp
for a chromosome p to penalize the objective function
severely can be calculated as a function of the objective
function value as

total1

total total() exp C
pf C C γ −−=

where γ = 0.5.

Cross-over: Once parents are selected, the cross-over
operation is applied to generate a new solution. Cross-over
is the process by which two parent strings unite together to
form new offspring strings. The cross-over operation will
occur on a pair of strings only with a probability of the
“cross-over probability” (0.95 in our GA). The type of
cross-over employed in our GA implementation is single
point cross-over: Two parent strings are selected randomly
from the population. A random number between 0 to l − 1
is generated (l is the length of the chromosome) to
determine the cross-over point. When crossover is done,
the genes before the crossover point in chromosome 1 are
the first part of the child chromosome. The second part of
the child chromosome is generated by checking the genes
from the second chromosome one by one and adding the
genes which are not in the child chromosome yet. For
example if a crossover operation is applied to
chromosomes [1 5 2 6 3 4] and [1 6 2 5 3 4]. Assuming the
cross-over point is after gene 3, the resulting child
chromosome will be [1 5 2 6 3 4].

Mutation: Mutation creates a new chromosome by altering
the locus of the genes. As in the cross-over operation,
mutation occurs only if the random number generated is
less than or equal to the mutation probability. The
mutation probability is set to 0.05. Type of mutation
operator in this paper is the reciprocal exchange in which
two positions on a chromosome are randomly selected and
the genes in those positions are then exchanged to form a
new chromosome. For example: In a chromosome string [1
5 2 6 3 4] for a six job problem, two positions are
randomly selected (e.g., positions 2 and 4). The genes in
these positions are exchanged to form the new
chromosome string [1 6 2 5 3 4].

Selection: The selection model should reflect the nature's
survival of the fittest. Normally, in a genetic algorithm,
chromosomes with a better fitness value will receive more
chances to survive in the next generations. In this paper,
the roulette wheel system is used to select the parents for
crossover and mutation. The process of selection of the

parents for generating the next population is described
below:

Step 0. Determine the fitness function value for different

chromosomes in an initial population.
Step 1. Arrange the chromosomes in descending order of

the fitness value.
Step 2. Calculate the probability function Pr(fp) for individual

chromosome p as a function of the fitness function
values as

() p
p

pp

f
Pr f

f ′′

=
∑

Step 3. Utilize the roulette wheel method to select candidates
for cross over and mutation using the probability
values found in Step 2.

Reproduction: We utilize the elitist selection scheme to
determine the best chromosomes from the current and
new population to form the next generation. All the
candidate solutions have to be arranged in the descending
order with respect to their fitness function value.

Note that the crossover and mutation operations do not
necessarily produce a feasible result all of the time.

5. COMPUTATIONAL EXPERIMENTATION

This section discusses how to generate different
scenarios to test the effectiveness of the proposed
heuristics in two-machine and five-machine environments.
The heuristics and GA are programmed using Visual C++
6.0, and the statistics are collected using Microsoft Excel.
Below is a description of the experimental design, which is
followed by results and discussions.

5.1 Experimental design

The experimental setup considers the following factors:
number of machines (two-machines (2M) and
five-machines (5M)); number of jobs (20, 40, and 60);
processing time-setup time ratio, ρ, (low (ρ = 0.1), medium
(ρ = 1) and high (ρ = 10)); and categories of jobs which
can be processed on semi-related machines (two levels for
the 2M case and seven levels for the 5M case). As a result,
the total number of scenarios are 18 for the 2M case and
63 for the 5M case.
In two machine setting, there are two categories of jobs.
The first category can be processed on both machines
while the second category can only be processed on
machine two (i.e., the more capable machine). On the other
hand, in the five machines setting, machines three, four,
and five are the most capable machines and identical.
Machine two can process all of the jobs that machine one
can process and is less capable than machines three to five.
As a result, there are three categories of jobs. The first
category can be processed on machines one to five;
similarly, the second and third categories of jobs can be
processed on machines two to five and three to five,
respectively. The proportion of total processing and setup
time allocated to each of the categories is examined on

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

47

seven levels as shown in Table 2.

Table 2. Experimental setup for types of job categories
 Scenarios
 2M 5M
Category 1 2 3 1 2 3 4 5 6 7
1 45 50 55 50 50 50 25 40 25 40
2 55 50 45 10 25 40 50 50 25 10
3 40 25 10 25 10 50 50

Experiments were performed on several values of

imbalance. When α = 0.05 or α = 0.10, the proportion of
infeasible solutions by the proposed heuristics was
significantly high. When α > 0.20, the problem behaved
similarly to unrelated parallel machine scheduling problem
with completion time objective. As a result, α = 0.15 is
chosen for experimentation. Note that finding a partition
of jobs that satisfy the load balancing constraint is similar
to the set partitioning problem, which is NP-hard.

The setup time matrix is asymmetric (i.e., sijk may not be
equal to sjik). The job data, processing time and setup time
are generated using a method similar to Fowler et al.
(2003).

Finally, selection of good parameters can play a vital role
in GA experiments. We performed several experiments to
determine the sensitivity of the problem to GA parameters:
The size of the population was tested for 5, 10, 15, 20 and
25. The population size of 10 worked the best. When we
tested the number of generations for 500, 1000, 2000 and
3000, in 2000 generations, a quality solution is obtained in
reasonable amount of CPU time (in less than 10 CPU
seconds). The cross-over and mutation probability are 0.95
and 0.05, respectively. In the genetic algorithm, one
hundred initial solutions (five solutions from the proposed
heuristics and 95 random solutions) are generated. Hence,
out of the one hundred initial solutions, the ten best
solutions based on the fitness value are selected. At any
iteration, after the new population is generated, the ten
best solutions from both the new and current set of
solutions is used to determine the most elite solution.
While selecting the ten best solutions, repetition of
solutions is avoided. This helps to maintain the diversity in
the population, and to prevent the solution from being
stuck at local optimum.

5.2 Results and discussion

Table 3. Performance of heuristics (Ctotal and total setup) in
the 2M and 5M environments

 Ctotal total setup
Heuristic 2M 5M 2M 5M
RN-CPT 1989.0 1976.7 118.2 110.3
LPT-CPT 2239.0 2029.5 159.2 145.1
LPT-MRAF-CPT 2002.4 1985.1 131.7 118.8
LPT-MRAF-CPT-SA 1969.0 1956.6 108.6 94.8
GA 1937.9 1918.2 67.2 75.2

Each scenario is run for five different data sets on a

Pentium IV 1.6 Ghz machine with 512MB of RAM.

Furthermore, for each data set, the genetic algorithm is run
five times to obtain different solutions. Although, five
different heuristics (i.e., LPT-SA, RN-CPT, LPT-CPT,
LPT-MRAF-CPT, and LPT-MRAF-CPT-SA) are tested,
the SA assignment rule did not produce feasible results for
96% of the cases. Note that the SA assignment rule is
widely used in practice (Fowler et al., 2003) for parallel
machine scheduling with setups for minimum completion
time objective. However, it is observed that this rule can
not be used to solve problems with load balancing in
parallel machine scheduling. LPT-MRAF-CPT and then
RN-CPT give feasible solutions in all of the cases that we
have experimented. Recall that the LPT-MRAF first
prioritizes the most restricted jobs and RN-CPT generates
random orders until a feasible solution is determined. On
average, RN-CPT determines a feasible assignment in 0.5
seconds in the 2M case and 1.5 seconds in the 5M case
compared to 5.1 and 5.4 seconds for GA to determine its
final solution in the 2M and 5M cases, respectively. Other
heuristics do not consume any significant CPU time.
LPT-CPT and LPT-MRAF-CPT-SA produce feasible
solutions (i.e., satisfying the load balancing constraint) for
75% and 85% of the cases. As can be seen in Table 3, the
GA outperforms the proposed heuristics. The
performance of heuristics can be ranked as
LPT-MRAF-CPT-SA, RN-CPT, LPT-MRAF-CPT and
LPT-CPT.

Table 4. Performance of heuristics to solve the

SPM-LBSDS problem
 σ α best
Heuristic 2M 5M 2M 5M 2M 5M
RN-CPT 3.12 2.15 7.70 3.61 59.2 50.7
LPT-CPT 4.21 4.14 8.26 1.98 0.0 0.0
LPT-MRAF-CPT 3.22 3.04 3.98 2.17 7.4 7.9
LPT-MRAF-CPT-SA 2.76 2.20 8.25 4.19 55.5 47.6

Statistics are collected on the number of times that a

heuristic performs the best: in the 2M case, RN-CPT gives
the best solution in 59.2% of runs while
LPT-MRAF-CPT-SA gives the best solution in 55.5% of
the runs as shown in Table 4, the best columns). In
Table 4, σ denotes the average deviation of a heuristic
solution from the GA solution. In case of 2M,
LPT-MRAF-CPT-SA obtains the lowest σ and
LPT-MRAF-CPT obtains the lowest imbalance (α). Even
though the heuristic LPT-MRAF-CPT-SA gives the best
average deviation, it fails to give feasible solutions in 15%
of the cases. As a result, RN-CPT provides the second best
average deviation and the maximum number of best
solutions. Note that similar observations hold for the 5M
case as well. Note that Rajakumar et al. (2004) report that
the LPT-CPT gives best solutions with respect to load
balancing in identical parallel machine environment
without setups. However, the LPT-CPT performs poorly in
case of semi-related machines with sequence dependent
setups.

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

48

On the average, excluding the GA, Table 5 shows that
the LPT-MRAF-CPT-SA heuristic gives the best average
objective function value. This might be due to the fact that
the assignment order is determined by considering the
restrictions in job processing and sequence dependent
setups at the same time. The second best performance is
given by the RN-CPT heuristic. As the number of jobs
increases from |J| = 20 to |J| = 40, the objective function
value approximately doubles. However, this is not the case,
when |J| is increased from 40 to 60. In this case, Ctotal
increases by 50%.

Table 5. Performance of the heuristics with respect to the

number of jobs
 2M 5M
Heuristic/n 20 40 60 20 40 60
RN-CPT 982.7 2015.0 2969.3 973.8 1972.0 2984.2
LPT-CPT 1357.3 2168.8 3191.0 1085.6 1984.7 3018.3
LPT-MRAF-CPT 992.0 2031.3 2984.0 983.2 1982.5 2989.8
LPT-MRAF-CPT-SA 965.6 1991.4 2949.9 958.6 1959.9 2951.4
GA 935.6 1973.1 2904.1 944.3 1938.0 2872.2

Table 6. Effect of processing time setup time ratio on the

objective function
 2M 5M
Heuristic/ρ 0.1 1.0 10 0.1 1.0 10
RN-CPT 919.3 2143.0 2904.7 905.5 2117.2 2907.3
LPT-CPT 1292.3 2226.9 3197.9 1016.7 2138.7 2933.2
LPT-MRAF-CPT 935.1 2157.7 2914.7 921.2 2124.5 2909.8
LPT-MRAF-CPT-SA 910.1 2130.7 2866.1 917.3 2070.5 2882.0
GA 868.5 2092.7 2852.5 876.4 2009.5 2868.7

Similar observations can be seen for the effect of the
processing time-setup time ratio shown in Table 6. When
the effect of setup time is minimal (i.e., the ρ = 10), the
GA and heuristics have similar performance. For a smaller
ρ, the GA outperforms all other heuristics.

Table 7. Effect of the number of jobs on the imbalance
 2M 5M
Heuristic/n 20 40 60 20 40 60
RN-CPT 6.90 8.52 7.68 4.43 3.88 2.51
LPT-CPT 6.69 8.95 8.13 1.90 2.04 1.98
LPT-MRAF-CPT 3.94 4.68 3.33 3.04 1.61 1.87
LPT-MRAF-CPT-SA 7.99 7.90 8.79 3.47 4.00 4.02

Although the load balancing objective appears as a
constraint in the SPM-LBSDS model, the performance of
different heuristics is tested when the number of jobs
(Table 7) and processing-setup time ratio (Table 8) is varied.
In both cases, on average LPT-MRAF-CPT provides the
best result. The only exception occurs in the 5M case when
ρ = 1 and ρ = 10. In these cases LPT-CPT provides the
lowest imbalance. However, the fact that when |J|
increases the imbalance decreases as in the parallel machine
scheduling (Rajakumar et al., 2004) can not be observed.

Table 8 presents the effect of the number of jobs and
processing-setup time ratio on the performance of the GA.

When the processing time-setup time ratio, ρ, is small, i.e.,
the processing time is relatively less important than the
setup time (in other words, setup time typically dominates
the processing time), in the 2M case, the GA’s performance
is better compared to the “best” heuristic solution and
improves as |J| increases. On the other hand, in the 2M −
ρ = 10 case in which processing time dominates the setup
time, when |J| increases, the gap between the GA solution
and the best heuristic decreases. For the 5M case, it is
observed that when |J| increases, the GAP between the
GA and the best heuristic solution decreases. Note that
this observation is in line with the fact that Longest
Processing Time dispatching rule performs well to balance
loads on parallel machines when there is no setups.

Table 8. The GA performance as a function of processing

time setup ratio and number of jobs with respect to the
best heuristic solution

 2M 5M
ρ 20 40 60 20 40 60
0.1 3.43 4.35 4.75 1.70 1.29 0.41
1.0 0.97 0.88 1.48 1.17 0.61 0.52
10.0 1.62 0.43 0.12 1.36 0.11 0.19

6. CONCLUSION

In this study, the scheduling of semi-related machines
with sequence dependent setups and load balancing
constraints is solved with the objective of minimizing sum
of completion time on all machines. A mathematical
programming model is proposed. Due to the
computational complexity involved in solving the
mathematical model, heuristics and a genetic algorithm
have been developed to generate solutions within a
reasonable period of time. Heuristics were also used to
generate the initial set of solutions for the genetic
algorithm, which resulted in reducing computational time
as well. In order to test the effectiveness of the developed
methodology, different scenarios have been generated. It is
found out that the genetic algorithm improves the heuristic
solutions significantly when the processing time setup time
ratio is small. Furthermore, the most promising heuristic is
the LPT-MRAF-CPT-SA which switches from CPT to SA
(or vice a versa) based on the current relative imbalance.

A direct extension of this research is having a
multiobjective mathematical model in which both
minimization of total completion time and minimization
of imbalance are two objectives that can considered. A
multi-objective genetic algorithm approach can be
developed to solve this problem as a part of future
research. Another extension can be determining a lower
bound to test the effectiveness of the genetic algorithm.
Furthermore, a new heuristic which will take into account
the processing times and setups at the same time can be
developed. A more detailed experimental design to
determine if there is a clear pattern between the
parameters of the experimental design and the objective
can be done.

Yildirim, Duman, Krishna, and Senniappan: Parallel Machine Scheduling with Load Balancing and Sequence Dependent Setups
IJOR Vol. 4, No. 1, 42−49 (2007)

49

REFERENCES

1. Allahverdi, A., Gupta, J.N.D., and Aldowaisan, T.
(1999). A review of scheduling research involving
setup consideration. International Journal of Management
Science, 27: 219-239.

2. Arnaout, M.J. and Rabada, G. (2005). Minimizing the
total weighted completion time on unrelated parallel
machines with stochastic times. Proceedings of the 2005
Winter Simulation Conference, pp. 2141-2147.

3. Becker, C., Scholl, A., and Dolgui, A. (2006). A survey
on problems and methods in generalized assembly line
balancing. European Journal of Operational Research, 168:
694-715.

4. Chen J.F. (2005). Unrelated parallel machine scheduling
with secondary resource constraints. International Journal
of Advanced Manufacturing Technology, 16: 285-292.

5. Chen J.F. (2006). Minimization of maximum tardiness
on unrelated parallel machines with process
restrictions and setups. International Journal of Advanced
Manufacturing Technology, 29: 557-563.

6. Chen, Z.L. and Powell, W.B. (2003). Exact algorithms
for scheduling multiple families of jobs on parallel
machines. Naval Research Logistics, 50: 823-840.

7. Dietrich, B.L. and Escudero, L.F. (1989). On solving a
0-1 model for workload allocation on parallel unrelated
machines with setups. Proceedings the 3rd ORSA/TIMS
Conference on Flexible Manufacturing Systems: Operations
Research Models and Applications, pp. 181-186.

8. Fowler, J.W., Horng, S.M., and Cochran, J.K. (2003). A
hybridized genetic algorithm to solve parallel machine
scheduling problems with sequence dependent setups.
International Journal of Industrial Engineering, 10(3):
232-243.

9. Gascon, A. and Leachman, R.C. (1998). A dynamic
programming solution to the dynamic, multi-item,
single-machine scheduling problem. Operations Research,
36(1): 50-56.

10. Glass, C.A., Potts, C.N., and Shade, P. (1994).
Unrelated parallel machine scheduling using local
search. Mathematical and Computer Modelling, 20(2):
41-52.

11. Hillier, M.S. and Brandeau, M.L. (2001). Cost
minimization and workload balancing in printed circuit
board assembly. IIE Transactions, 33(7): 547-557.

12. Holland, J.H. (1975). Adaptation in Natural and Artificial
Systems, The University of Michigan Press, Ann Arbor.

13. Kurz, M.E. and Askin, R.G. (2001). Heuristic
scheduling of parallel machines with sequence-
dependent setup times. International Journal of Production
Research, 39(16): 3747-3769.

14. Lee, Y.H. and Pinedo, M. (1997). Scheduling jobs on
parallel machines with sequence-dependent setup times.
European Journal of Operational Research, 100: 464-474.

15. Pinedo, M. (1995). Scheduling: Theory, Algorithms and
Systems, Springer Series in Operations Research and
Financial Engineering.

16. Rabadi, G., Moraga, J.R., and Al-Salem, A. (2006).
Heuristics for unrelated parallel machine scheduling

problem with setup times. Journal of Intelligent
Manufacturing, 17: 85-97.

17. Rajakumar, S., Arunachalam, V.P., and Selladurai, V.
(2004). Workflow balancing strategies in parallel
machine scheduling. International Journal of Advanced
Manufacturing Technology, 23: 366-374.

18. Randhawa, S.U. and Kuo, C.H. (1997). Evaluating
scheduling heuristics for non-identical parallel
processors. International Journal of Production Research, 35:
969-981.

19. Tamaki H., Hasegawa Y., Kozasa J., and Araki M.
(1993). Application of search methods to scheduling
problem in plastics forming plant: A binary
representation approach. Proceedings of the 32nd IEEE
Conference on Decision and Control, pp. 3845-3850.

20. Tiwari, M.K. and Vidyarthi, N.K. (2000). Solving
machine loading problems in a flexible manufacturing
system using a genetic algorithm based heuristic
approach. International Journal of Production Research,
38(14): 3357-3384.

21. Turkcan, A., Akturk, S.M., and Storer, H.R. (2003).
Non-identical parallel CNC machine Scheduling.
International Journal of Production Research, 41(10):
2143-2168.

22. Uzsoy, R. and Ovacik, I.M. (1995). Rolling horizon
procedures for dynamic parallel machine scheduling
with sequence dependent setup times. International
Journal of Production Research, 33(11): 3173-3192.

23. Van Hop, N. and Nagarur, N.N. (2004). The
scheduling problem of PCBs for multiple
non-identical parallel machines. European Journal of
Operational Research, 158: 577-594.

24. Yu, L., Shih, M.H., Pfund, M., Carlyle, M.W., and
Fowler, W.J. (2002). Scheduling of unrelated parallel
machines: An application to PWB manufacturing. IIE
Transactions, 34: 921-931.

