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AbstractIn this paper, we consider an important class of  NP-hard shop scheduling problems, where one of  the major 
tasks is to minimize the makespan objective over the set of  all sequences. We study the existence of  minimal potentially 
optimal solution in classical shop scheduling problems. The concept of  potentially optimal solution has proven one of  the 
most important and fertile research topics as this solution set contains at least one optimal sequence for arbitrary processing 
times. Here, the potentially optimal solution of  all irreducible sequences is surveyed and a new decomposition approach is 
presented in this class. The contribution of  this paper is a brief  survey of  the existing results together with few new results. 
The research results obtained in past several years are presented along with open problems and possible extensions. Varieties 
of  results and examples we analyzed provide useful structural insights and enough motivations for the developments of  
exact or heuristic algorithms. 
KeywordsShop scheduling problems, Computational complexity, Counting problem, Potential optimality, Irreducibility, 
Sequence decomposition 
 
 

                                                 
∗ Corresponding author’s email: dhamala@yahoo.com 

1. INTRODUCTION 

  We consider the strongly NP-hard shop scheduling 
problem α||Cmax, where α represents a job shop (α = J) 
or the open shop (α = O). We refer to Graham et al. (1979) 
for the classification scheme α|β|γ of  scheduling 
problems, where β describes the machine environment, γ 
gives some job characteristics and additional requirements 
and  is the optimality criterion. In a nonpreemptive 
classical shop problem, each job i, i ∈ I = {1, 2, …, n} has 
to be processed on each machine j, j ∈ J = {1, 2, …, m} 
exactly once without preemption for the positive time. The 
sets of  m ≥ 2 machines and n ≥ 2 jobs are denoted by {M1, 
M2, …, Mm} and {J1, J2, …, Jn}, respectively. Let SIJ = I × J, 
P = [pij ] and C = [cij ] be the sets of  all operations oij , the 
matrix of  processing times pij and the matrix of  
completion times cij with i ∈ I and j ∈ J, respectively. The 
objective function Cmax = maxi∈ICi, where the completion 
time Ci is the time when the last operation of  Ji is finished. 
The order in which a certain machine processes the 
corresponding jobs is called job order and the order in 
which a certain job is processed on the corresponding 
machines is called machine order. In the case of  a job shop 
all machine orders are given in advance, whereas all 
machine orders and all job orders can be chosen arbitrarily 
in the open shop. All jobs have identical machine order in 
the flow shop (α = F). We have to find a feasible (acyclic) 
combination of  all machine orders and all job orders, 
called sequence, which minimizes the maximum 
completion time. A sequence is optimal if  it generates a 
schedule with minimum objective value among all other 
sequences. 

The problem O2||Cmax is solvable in O(n) time, but it is 
NP-hard for m ≥ 3 (Gonzales and Sahni, 1976). Bräsel and 
Kleinau (1996) present an algorithm of  the same 
complexity for O2||Cmax by means of  block-matrices 
model. The problem F3||Cmax is NP-hard (Lenstra et al., 
1977), however this problem with only two machines is 
O(nlogn) time solvable (Johnson (1954)). The problem 
J2||Cmax is NP-hard as the problem J2|pij ∈ {1, 2}|Cmax is 
already in this class (Lenstra and Rinnooy Kan (1979)). The 
study concentrated either on the determination of  
polynomial solvable subproblems or on the development 
of  an algorithm for an approximate solution plays a 
meaningful role. Counting sequences by considering the 
cardinality of  special latin rectangles or the chromatic 
polynomial of  the Hamming graph Kn × Km is hard (see 
Harborth (1999)). A closed formula for this unsolved 
counting problem is unknown up to today and only 
bounds are available in general cases (Bräsel and Dhamala 
(2001a), Bräsel and Kleinau (1992a, 1992b), Dhamala 
(2002b)). Enumerative algorithms demonstrate a huge 
number of  sequences (Bräsel et al. (1999a, 1999b), 
Harborth (1999)). This motivates the structural 
investigations and the potential optimality of  shop 
scheduling problems. 

A set S of  sequences is called potentially optimal 
solution if  it contains an optimal sequence with respect to 
the objective γ for arbitrary processing times. The elements 
of  such a solution set are called potentially optimal. A 
careful analysis of  potential optimality excludes 
unnecessary sequences from further considerations 
independent of  the given processing times. It deals the 
question whether there exists a subset of  the set of  
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sequences with the property that for arbitrary processing 
times at least one optimal sequence belongs to this set. A 
study of  shop problems for arbitrary processing times 
examine properties of  a schedule which are a measure of  
its quality. The set of  all sequences in a given shop 
scheduling is a potentially optimal solution thought not the 
minimal one. For the job shop J|n = 2|Cmax, Akers and 
Friedman (1955) give a criterion in terms of  free machines 
to eliminate initially a great number of  the sequences that 
are not going to be optimal, independent of  the processing 
times. They show for this problem that the examination of  
sequences which do not contain a free machine is sufficient. 
Conway et al. (1967) show that in the flow shop problem it 
is sufficient to examine those sequences in which the job 
orders for the first two and the last two machines, 
respectively, are the same. Ashour (1972) presents different 
decompositions of  sequences and schedules for the job 
shop problem. 

Kleinau (1993), Bräsel and Kleinau (1996) investigate the 
irreducible sequences by introducing a dominance relation 
≺  on the set of  all sequences with a fixed format n × m. 
The irreducible elements are the minimal sequences with 
respect to this partial order independent of  the given 
processing times. Clearly, the solution set of  all these 
locally optimal sequences is a potentially optimal solution 
of  smaller cardinality. Irreducibility analysis is interesting 
when the processing times are erroneous, difficult to find 
out in advance or simply unknown in manufacturing and 
service industries. For example, a car may require repairs 
on its engine, body and electrical circuit in a large 
automotive garage with specialized shop-centers. These 
operations may be processed in any order but it is not 
possible to perform any two of  the same job 
simultaneously. Similar applications of  open shop 
scheduling may arise in testing components of  an 
electronic system, repairing parts of  an airplane in a large 
aircraft garage and satellite communications (Prins (1994), 
Bräsel et al. (1999a)). 

Bräsel and Kleinau (1996) investigate the irreducible 
sequences for the problem O||Cmax on an operation set 
with spanning tree structure. For these operation sets, each 
combination of  machine orders and job orders is feasible. 
They describe in detail the set of  all locally minimal 
elements for the problem O2||Cmax. Bräsel et al. (1999a, 
1999b) and Harborth (1999) extend the concept of  
irreducibility and reducibility for the open shop and job 
shop problems to minimize the maximum completion time. 
They present several sufficient conditions for reducibility 
of  a sequence each of  which can be tested in polynomial 
time. Enumeration algorithms for irreducible sequences 
have been proposed and number of  all sequences and 
irreducible sequences for small formats have been 
computed. One of  the most strong motivations of  
irreducibility analysis comes from the experiences that only 
a very small fraction of  all sequences is irreducible. 

Tautenhahn (2000) presents a necessary and sufficient 
condition for the open shop irreducibility on tree-like 
operation sets. This test can be performed in polynomial 
time. A study of  the potentially (universally) optimal 

solution set and unavoidable sequences with respect to an 
arbitrary sequence set can be found in Tautenhahn and 
Willenius (2000) and Willenius (2000). Their study 
generalizes the concept of  irreducibility by considering a 
dominance relation between a sequence and a set of  
sequences. A sequence A is unavoidable with respect to a 
sequence set if  for all sequences in this set, there exists a 
matrix of  processing times resulting in a better objective 
value on A. They give several necessary and sufficient 
conditions for a sequence to be dominated by a set of  
other sequences. They formulate the dominance relation as 
a mixed integer program and compute minimal potentially 
optimal solutions for certain small sized open shop 
problems. The results on irreducibility for other regular 
objectives are extended by Willenius (2000). A 
decomposition approach is introduced and some sufficient 
conditions for the irreducibility of  sequences are presented 
by Dhamala (2002b), Bräsel and Dhamala (2002b). 

More general way of  dealing with arbitrary processing 
times is the stability analysis of  single sequence. A lot of  
attention have been given to the stability and structural 
analysis of  more general shop scheduling methods with 
uncertainty in the numerical data. These studies 
concentrate mainly on the stability analysis and scheduling 
methods for interval processing times. Stability analysis is 
used for the phase of  an algorithm at which a schedule 
(sequence) of  a scheduling problem has already been 
found and additional calculations are preformed in order to 
investigate how this schedule (sequence) depends on the 
numerical input data. 

Sotskov (1991) considers the problem of  optimal 
scheduling n uninterrupted operations on m machines with 
respect to a regular objective and reduces the problem of  
calculating the stability radius to the solution of  a 
non-linear programming. He gives the necessary and 
sufficient conditions for the stability radius ρs(P) (the 
largest quantity of  independent variations of  the 
processing times of  the operations such that an optimal 
schedule remains optimal) to be positive and to be infinite 
in case when S is the optimal makespan schedule. 
Kravchenko et al. (1995) present the necessary and 
sufficient conditions for minimizing the makespan or 
maximum lateness to have at least one optimal schedule 
with infinite stability radius and show that there does not 
exist such a schedule for other regular criteria. Bräsel et al. 
(1996) calculate the stability radius of  an optimal schedule 
for general shop scheduling with mean flow time objective. 
They derive formulas for calculating the stability radius and 
give necessary and sufficient conditions when the radius is 
zero. By generalizing the dominance relation, Lai et al. 
(1997) present a characterization of  ρs(P) = 0 and ρs(P) = 
∞ and give the exact value of  the relative stability radius for 
the general shop scheduling problem G|aij ≤ pij ≤ bij|Cmax. 
By considering randomly generated job shop instances, 
Sotskov et al. (1997) study the influence of  errors and 
possible changes of  the processing times on the optimality 
of  a schedule. Sotskova (2001) deals with the stability 
analysis and computations of  the stability radius for the 
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objectives γ ∈ {Cmax, ii
C∑ } on the basis of  the 

existence of  more practical problems with uncertain input 
data under strict uncertainty. 
  The theory of  irreducibility generalizes the earlier 
concept of  potential optimality. There are relations 
between the stability and irreducibility analysis. The works 
of  Harborth (1999), Sotskov (1991) and Sotskov et al. 
(1998) illustrates this relation. Clearly irreducibility analysis 
deals the problems with 0 ≤ pij < ∞. Lai and Sotskov (1999) 
and Sotskova (2001) link the stability analysis to the 
potential optimality by characterizing a minimal set of  
optimal schedule describing two-stages. We refer to 
Sotskova (2001) for a survey and the literature therein for 
the know approaches of  the earlier results. Up to today, no 
polynomial time algorithm is known for the decision 
whether a sequence is irreducible (stable) in the general 
case. An existence of  such an algorithm seems unlikely. 
  Section 2 describes some basic notions of  shop graphs 
and their properties. Sections 3 and 4 are devoted to the 
study of  potential optimal solution sets of  different 
cardinalities. Section 5 gives a decomposition of  sequences. 
A number of  new results are contained in Sections 3 and 5. 
All other sections present a survey of  the existing literature. 
Conclusions are contained at the end. 
 
2. BASIC CONCEPTS 

  Instead of  the disjunctive graph model (Sussman, 1972) 
and the polyhedral approach, we use the block-matrices 
model introduced by Bräsel (1990) which is equivalent to 
the disjunctive graph model. In the block-matrices model 
all graph theoretical structures of  shop problems are 
basically described by means of  special latin rectangles, also 
called sequences. In this section, we describe the easy 
block-matrices model in compact form, give definitions 
and state basic properties of  irreducibility, similarity and 
isomorphism to be used here. We use notation well 
understood in the block-matrices model and irreducibility 
theory in shop problems (e.g., Bräsel et al. (1999a, 1999b), 
Dhamala (2002b)). The n × m matrices of  all machine 
orders and job orders are denoted by MO and JO, 
respectively. Clearly, moij = k (joij = k) means that oij is the 
k-th operation of  job i (machine j) in the machine (job) 
order. For any pair (MO, JO), we recall the shop graph 
GMO, JO = (SIJ, EMO,JO) where the arc set reflects the 
union of  all machine orders and all job orders (Dhamala 
(2002b)). A shop graph is known as a sequence graph 
(non-sequence graph) if  it is acyclic (cyclic). Note that the 
sequence graph is an acyclic orientation of  the disjunctive 
graph. The decision problem whether a given connected 
digraph is a sequence graph is efficiently solved by Bräsel 
et al. (2001) and Harborth (1999). Bräsel and Dhamala 
(2001a), and Dhamala (2002a) present an efficient 
algorithm to decide whether a given digraph is a shop 
graph. Both algorithms have time complexity O(max{mn2, 
m2n}). 

A latin rectangle LR[n, m, q] = [lij ] is a matrix of  size n × 
m with lij ∈ {1, 2, … , q} such that each integer of  the 

symbol set occurs at most once in each row and in each 
column of  LR. If  n = m = q holds, then the matrix is a 
latin square LS[n] (see Dhamala (2002b)). For each 
sequence graph GMO, JO we can describe the sequence (MO, 
JO) by a special latin rectangle A = [aij ], where aij = 
rank(oij ), with sequence property - for each integer aij > 1 there 
exists aij − 1 in row i or in column j. The rank of  a vertex oij 
is the number of  vertices on a longest path from a source 
to this vertex in the sequence graph. Thus, Bräsel (1990) 
establishes a one-to-one correspondence between the sets 
of  all sequences and all sequence graphs for the open shop. 
This transformation of  an individual element can be 
performed in O(nm) time (Bräsel, 1990). In this 
correspondence, an arc from oij to okl exists if  and only if  i 
= k or j = l is satisfied and aij < akl holds. The terms used in 
the sequence graph are used in the corresponding sequence 
as well. 
  For empty β field, a sequence (non-sequence) is feasible 
(infeasible) w.r.t. a given shop. We denote these solution 
sets by Snm(α) and Snm(α), respectively. The main difficulty 
on the complexity of  these shop problems lies to the 
construction of  appropriate sequence because determining 
the associated semiactive schedule C = [cij] for a given 
sequence A and the matrix P = [pij], where cij is the 
completion time of  the operation oij , is a polynomially 
solvable problem. A schedule is semiactive if  each 
operation is started as early as possible with respect to the 
given processing orders. For a regular objective function 
(i.e., monotonously nondecreasing in each job completion 
time), one can restrict the investigation to semiactive 
schedules. Clearly, the quality of  the schedule depends on 
the good structure of  a sequence. Note that an infinite set 
of  schedules can be assigned to each sequence. However, 
we can define an equivalence relation on the set of  all 
schedules decomposing the set into finite number of  
equivalence classes. In order to find a set of  distinct 
representatives, we may use the semiactive schedules under 
unit processing times, i.e., all sequences. 

We denote the objective value of  schedule C = (A, P) 
corresponding to the sequence A, the matrix of  processing 
times P and objective γ by γ (A). The set of  all instances of  
processing times P = [pij] is denoted by Pnm. A sequence A 
∈ Snm(α) is called reducible to B ∈ Snm(α) if  Cmax(B) ≤ 
Cmax(A) for all P ∈ Pnm, we write B ≺ A. We may exclude 
any reducible sequence from the sequence set without 
loosing the potential optimality. In general, an optimal 
solution of  a shop problem is not unique. However, B ∈ 
Snm(α) is optimal for α||Cmax if  B A≺  for all A ∈ 
Snm(α). In the open shop, Cmax(A) = Cmax(A−1) holds for 
the reversed sequence A−1 constructed from A by 
reversing the orientation of  all arcs in the sequence graph 
GA, and B A≺  implies 1B A−≺ , 1B A− ≺  and 

1 1B A− −≺ . A sequence A ∈ Snm(α) is called strongly 
reducible to B ∈ Snm(α), denoted by ,B A≺  if  B A≺  
but not A B≺ . 

Two sequences A, B ∈ Snm(α) are called similar, denoted 
by A ;  B if  B A≺  and .A B≺  A sequence A ∈ 
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Snm(α) is called irreducible if  there exists no other 
non-similar B ∈ Snm(α) to which A can be reduced. The set 
of  all irreducible sequences is denoted by ( )nm

IS α . The 
irreducible elements are the minimal sequences with 
respect to the partial order ≺  and hence are locally 
optimal. This relation drastically reduces the set of  all 
sequences which must be considered. The similarity 
relation ;  is an equivalence relation on Snm(α) 
decomposing the set into disjoint equivalence classes. The 
set of  all pairwise non-similar irreducible sequences 

*
( )nm

IS α  is potentially optimal for O||Cmax. Clearly, 

|
*

( )nm
IS α | ≤ 

1
2

| ( )nm
IS α | for O||Cmax since a sequence is 

similar to its reversed sequence. 
  A path wA with vertex set V(wA) in the sequence A 
(equivalently in the corresponding sequence graph GA) is 
called maximal if  there does not exist another path *

Aw  
with *( ) ( )A AV w V w⊂ . Note that there exists an 
exponential number of  maximal paths in a sequence. 
Denoting the set of  all maximal paths in A by WA, one of  
the paths in WA becomes the longest depending on the 
processing times. 

B A≺  if  and only if  for all wB ∈ WB, there exists wA ∈ 
WA such that V(wB) ⊆ V(wA). If  B ≺ A, then there exists 

Bw  ∈ WB such that ( ) ( )B AV w V w⊂  for some Aw  ∈ 
WA. Note that B ≺ A does not necessarily imply Cmax(B) < 
Cmax(A) for arbitrary pij. The strict inequality remains true 
if  there exists a unique maximal path in A. Consider the 
matrix P = [pij] with pij ∈ Z+ such that 

 if ( ),
=

1  otherwise,
o ij A

ij

k o V w
p

∈



where ko > nm, then Cmax(A) > 

Cmax(B) whenever .A Bf  For further explanation of  this 
concept of  path structure, we consider the following 
matrices. 
 

   
   
   
   
   
   

1 2 4 4 1 3
 = ,   = , 

2 4 3 1 3 2

2 1 3 1 1 10
 = ,   = 

1 3 2 1 1 1

A B

C D
 

 
  We have A Bf  (respectively, B Cf ) since {o11, o21, 
o22} (respectively, {o23, o13, o11}) belong to a common path 
in A (respectively, in B) but not in B (respectively, in C), 
and whenever certain operations belong to a common path 
in the latter sequence these operations also belong to a 
common path in the former. Moreover, Cmax(A) = Cmax(B) 
= 13 but Cmax(C) = 12 for given P = [pij ]. 
  An undirected graph G = (V, E) is called a 
comparability graph if  there exists an acyclic orientation Etr 
of  E such that the corresponding digraph Gtr = (V, Etr) is 
transitive closure. The comparability graph of  a sequence 
graph GA is denoted by tr

AG   , where [G] stands for the 

underlying undirected graph of  a digraph G and Gtr = (V, 
Etr) denotes the transitive closure of  G (Golumbic, 1980). 

  A sufficient condition for irreducibility has been 
presented in terms of  implication classes (Bräsel et al., 
1999a). An arc (oij, okj ) in A is said to directly imply an arc 
(oij, oil) in the same sequence if  and only if  {okj, oil} ∉  

tr
AE   . Similarly, we have (oil, okl) Γ (okj, okl) in sequence A 

if  and only if  {oil, okj} ∉  tr
AE   . If  an edge {oil, okj} ∉  

tr
AE   , then {oil, okj} ∉  tr

BE   whenever B A≺ A. An 

arc (oij, ouv) in a sequence A is said to imply an arc (okl, oxy) in 
the same sequence, denoted by (oij, ouv) Γtr (okl, oxy), if  there 
exists a chain of  arcs e1, e2, . . . , ek in A such that (oij, ouv) Γe1 
Γe2 . . . Γek Γ(okl, oxy) holds. The relation Γtr is an 
equivalence relation partitioning the arc set of  sequence 
graph into disjoint equivalence implication classes in 
O(n2m2) time and space (Golumbic, 1980). We call these 
classes by sequence implication classes. Recall that a graph 
is a comparability graph if  and only if  there is no 
implication class containing both an arc and its reverse. 
  Consider a row permutation πr ∈ Sn, a column 
permutation πc ∈ Sm, a transposition Ψ ∈ Z2, and a 
reversion Ψ ∈ Z2 of  a matrix, respectively, where Z2 is the 
cyclic group of  order two. Two given sequences A and B 
are called structure isomorphic, graph isomorphic or 
permutation isomorphic, denoted by A s≅ B, A g≅ B or 

,pA B≅  if  there exists a mapping such that (πr, πc, Φ, 
Ψ)A = B, (πr, πc, Φ)A = B or (πr, πc)A = B, respectively. 
Each of  these isomorphism relations yields an equivalence 
relation decomposing the set of  all sequences into disjoint 
isomorphism classes. Given two n × m sequences A and B, 
the isomorphism of  A and B is decidable in O(min{mn2, 
m2n}) time (see Bräsel et al (2001), Bräsel et al. (1999a), 
Dhamala (2002b)). 
  The set of  all isomorphisms of  the same type under the 
same formats form a group G, namely the groups, Sn × Sm, 
Sn × Sm × Z2 and Sn × Sm × Z2 × Z2 for permutation 
isomorphism, graph isomorphism and structure 
isomorphism, respectively, where St is the symmetric group 
on t letters. For n = m, the order of  the group G is equal to 
n!m!, n!m!, and 2n!m! according to permutation isomorphism, 
to graph isomorphism and to structure isomorphism, 
respectively. For n = m, these orders are n!m!, 2n!m!, and 
4n!m!, respectively. For each sequence A the sets {φ  ∈ G : 

φ (A) = A} and {φ (A) : φ ∈ G } are the stabilizer and 
orbit of  the sequence A with the property 
 
|{φ ∈ G : φ (A) = A}| × |{φ (A) : φ  ∈ G }| = |G |. 
   

Clearly, the orbits are the isomorphism classes and the 
elements of  the stabilizer of  sequence A are the 
automorphisms of  A. Therefore, given a system of  distinct 
representatives SDR for each isomorphism classes the total 
number of  sequences is given by the following class 
equation 
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| |
| |= |{ ( ): }| = .

|{ : ( )= }|
nm

A SDR A SDR

S A
A A

φ φ
φ φ∈ ∈

∈
∈∑ ∑ G

G
G

 

 
  Thus, given the number of  distinct automorphisms for a 
sequence A, the cardinality of  its isomorphism class can be 
calculated. Therefore, given a system of  distinct 
representatives for the isomorphism classes, the total 
number of  sequences can be calculated. But the number of  
distinct automorphisms for a sequence A is not known in 
general. 
  The properties of  sequence isomorphisms play 
important roles for the enumeration and classification of  
shop problems. Given two sequences A and B in the same 
isomorphism class, one sequence is os-irreducible if  and 
only if  the other is os-irreducible (Bräsel et al. (1999b) 
Harborth (1999)). 
 
3. ON THE FEASIBLE REGION 

  Obviously, |Snm(O)| + |Snm(O)| = (m!)n(n!)m, and 
|Snm(J)| + |Snm(J)| = (n!)m hold, whereas each combination 
is feasible in the flow shop. The block-matrices model 
intends of  counting sequences by the cardinality of  latin 
rectangles with sequence property but the latter problem is 
also hard (see Dhamala (2002b), Harborth (1999)). 
Another possibility to count sequences is the chromatic 
polynomial of  the Hamming graph Kn × Km which yields an 
answer, however, the calculation is hard (see Harborth 
(1999)). A closed formula for this unsolved counting 
problem is unknown to date and only upper and lower 
bounds are available in general. 
  The exact number of  sequences for the job shop J|n = 
2|γ are given by a method of  mathematical induction by 
Akers and Friedman (1955). A logic is extended to the n × 
m job shop. Following the characterization by the existence 
of  a cycle among operations, three different rules for 
detecting non-sequences are presented (e.g., Ashour 
(1972)). If  OM(k) denotes the set of  all ordered k-tuples 
of  machines standing in the same order, then  

2
=2

| ( )| = 1 +  + | ( )|mm
k

S J m OM K∑ (Akers and Friedman 

(1955)). Bräsel and Kleinau (1992a) and Kleinau (1993) 
give a new approach to this result and extend for O|n = 

2|γ: it holds 2
1

!| ( )| = !( ! + ( ) .
!

nn n
kk

nS O n n
k=∑  An 

estimation of  the lower bound is given by exact 
enumeration for fixed n and m (Bräsel and Kleinau (1992b)). 

They show that 1

0

( ) !
| ( )|

!
nnm
k

m kS O
k

−

=

+
≥ =∏  

1

0

( )!
.

!
m

k

n k
k

−

=

+∏  

  Each subgraph of  Kn × Km induced by the vertex set 
{oi1j1, oi1j2 , …, oik−1jk, oikjk, oikj1} where k ∈ {2, 3, …, min{m, 
n}}, iu ≠  iv and ju ≠  jv for all u, v with u ≠  v, is known 
as a fundamental cycle [C2k] of  length 2k (Bräsel and 
Dhamala (2001a), Dhamala (2002b)). Each [C2k] alternately 
contains edges of  Km and Kn. There exists 22k different 

orientations of  [C2k] but only two of  them are fundamental 
dicycles. Following results hold (Bräsel and Dhamala 
(2001a), Dhamala (2002b)). 
 
Theorem 1. Each non-sequence graph contains at least 
one fundamental dicycle.  
 
Theorem 2. Let MO = LS1 and JO = LS2 be in LS[n]. 
Then, a necessary and sufficient condition that the pair 
(MO, JO) is a sequence is that they are identical. 
 
Lemma 1. Let k ∈ {2, 3, ..., min{m, n}} be fixed. Then, 

the Hamming graph Kn × Km contains 
! !

2 ( )!( )!
n m

k n k m k− −
 

different fundamental cycles [C2k]. 
 

Therefore, the graph Kn × Km contains 
min{ ,  }

2

! !
2 ( )!( )!

n m

k

n m
k n k m k= − −∑ different fundamental cycles.  

 
Theorem 3. The number of  non-sequences which contain 
at least one fixed fundamental dicycle C2k is given by 

+1 +1

2

( )! ( )!
,

2 ( )!( )!

m n

k

n m
k n k m k－ －

 where k = 2, 3, …, min{m, n}. 

 
Proof. Consider the set of  all (MO, JO), where GMO, JO has 
at least the fixed fundamental dicycle C2k, where k = 2, 
3, …, min{m, n}. By definition, exactly one arc in each 
machine order of  all jobs i, i = 1, …, k, and one arc in each 
job order on all machines j, j = 1, …, k, is fixed by the arcs 
of  the cycle. All other arcs of  MO and JO can be chosen 

arbitrarily. Therefore, we get - ( !)!( ) ( !)
2 2

m
k n k

k

mm m = and 

( !)!( ) ( !)
2 2

m
k m k

k

nn n − =  possibilities for MO and JO, 

respectively. Thus, there are overall 2

( !) ( !)
2

n m

k

m n
 

possibilities for (MO, JO). By Lemma 1 we give the number 
of  pairs (MO, JO) which contain at least one fixed 
fundamental dicycle C2k of  length 2k: 
 

1 1

2 2

( !) ( !) ( !) ( !)2 ! !
2 ( - )!( - )! 2 2 ( - )!( - )!

n m m n

k k

m n n mn m
k n k m k k n k m k

+ +

⋅ =  

 
  By means of  the fundamental dicycles, a general formula 
for the number of  all sequences can be developed 
(Dhamala (2002b)). An interesting question would be: how 
can be a set of  pairs (MO, JO) constructed with exactly 
given number of  prescribed dicycles?  
  Some efforts have been made to compute all sequences. 
By implementing an enumeration algorithm, Bräsel and 
Kleinau (1992b) calculate the exact number of  sequences 
for n = 2 ∧ (2 ≤ m ≤ 8) and for n = 3 ∧ (3 ≤ m ≤ 4). Further 
calculations have been made by Bräsel et al. (1999a) for n = 
3 ∧ (5 ≤ m ≤ 7) and for n = 4 ∧ (4 ≤ m ≤ 5). 
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4. SETS OF IRREDUCIBLE SEQUENCES 

  Gonzalez and Sahni (1976) solve the problem O2||Cmax 
in O(n) time by constructing a certain schedule with 

max max{max , max }.j ij i iji j
C p p= ∑ ∑  Bräsel and 

Kleinau (1996) describe in detail the set of  all irreducible 
sequences and present new algorithm of  the same 
complexity to this problem by means of  block-matrices 
model. This approach obtains the optimal sequence in the 
set of  irreducible sequences. In the case of  n = 2, for every 

2 ( )m
IA S O∈  there exists a k ∈ {2, 3, …, m} such that A 

can be obtained by a permutation of  the columns of  the 
following open shop irreducible sequence 
 

1 ... 1 1 ...
2 ... 1 2 ... 1k

k k k m
B

m k m m k
− + 

=  − + − + 
 

 
  The main idea of  their proof  is to show that any 
sequence in this class is irreducible and any sequence not 
belonging to this class reduces to a sequence belonging to 
this class. Clearly, the total number of  os-irreducible 
sequences for O|n = 2|Cmax is m!(m − 1). As the total 
number of  sequences for O|n = 2|Cmax is 

1

!!( !   ( ) ),
!

m m
kk

mm m
k=

+ ∑  the asymptotic relation 

→∞
=

2

2

| ( )|
lim 0

| ( )|

m
I

mm

S O
S O

 holds. 

  Further studies deal the problem O||Cmax (see Harborth 
(1999)). Using the definitions of  these terms, the decision 
problem whether a given sequence is reducible, similar or 
strongly reducible to another given sequence takes 
exponential time. However, it is solved in O(n2m2) time by 
Bräsel et al. (1999b). They use the algorithms on the 
transitive closures for graphs which needs O(n2m2) time to 
determine the transitive closure of  a sequence graph and to 
check if  tr

BG    is a subgraph of  tr
AG   . 

 
Theorem 4 Let A, B ∈ Snm(O). Then A is similar, 
reducible or strongly reducible to B for O||Cmax if  and 
only if  tr

BG    = tr
AG   , tr

BG    ⊆ tr
AG    or tr

BG    ⊂ 
tr
AG   , respectively. 

 
  Let Ed be the set of  all diagonal arcs in the transitive 
closure tr

AG  = (SIJ, tr
AE ), and let EA = tr

AE \Ed be the 
set difference. Then the graph GA = (SIJ, EA) is such that 
[GA] ≅ Kn × Km for any n × m sequence A. Bräsel et al. 
(1999b) prove that a sequence A is open shop irreducible 
if  and only if  there exists no comparability graph GC = (SIJ, 
EC) such that [GA] ⊆ GC ⊂ tr

AG   . Assuming that a given 

graph G contains no comparability graph GC with [GA] ⊆ 
GC ⊂ G, they present an algorithm of  complexity O(n2m2) 
to test whether there is a sequence A with G = tr

AG   . 

  Bräsel et al. (1999a) and Harborth (1999) present several 

sufficient conditions for sequence reducibility which can be 
tested without computing the transitive closures of  the 
associated sequence graphs. For example, an n × m 
sequence [aij], where min{n, m} ≥ 3, having an operation oij 
with aij ≥ nm − 2 is strongly open shop reducible. Likewise, 
any sequence with oij such that oij has at least one successor 
but none of  its successors in row i or column j has a direct 
predecessor outside row i and column j, respectively, is 
strongly reducible to some sequence for O || Cmax. They 
prove 
 
Theorem 5. Let A be a sequence such that each job i ∈ {1, 
2, …, n} is first processed on the same machine j ∈ {1, 
2, …, m}. Then there exists a sequence B ∈ Snm(O) such 
that B ≺  A for O||Cmax. 
 
  If  we wish to test whether a given sequence can be 
strongly reduced to another sequence by deleting an 
operation and reinserting it as a sink or a source, we have 
to ensure that no new path is created in the latter and at 
least one path is destroyed in the former sequence. This 
test can be performed in O(n2m2) time and in O(n2m2) space, 
given an n × m sequence (Bräsel et al., 1999a). 
  Bräsel et al. (1999a) prove that a sequence with only one 
sequence implication class is irreducible with respect to the 
open shop. As an application of  this result, Willenius (2000) 
shows Theorem 6. Thus if  n = m, each rank minimal 
sequence is os-irreducible. But in general, there exist rank 
minimal sequences which are reducible in the open shop 
(see Section 2 for an example). 
 
Theorem 6. Any complete latin square is open shop 
irreducible for the makespan objective. 
 
  On the other hand, to check the reducibility of  a 
sequence by the reversion of  a certain set of  arcs in it 
having more than a single implication class, one has to 
consider one implication class totally. In this reducibility 
test, for each subset of  the set of  sequence implication 
classes in given sequence, we have to construct a possibly 
reduced sequence from it by reversing the orientations of  
all arcs belonging to these sequence implication classes. 
This test depends on the number of  sequence implication 
classes which may cause exponential cost. In the worst case, 
if  all operations belong to a single path, one has to check 
all 

2 2

(2 )nm mnO +  subsets of  sequence implication classes 
(Bräsel et al. (1999a)). The lower ranks do not necessarily 
imply a less number of  implication classes (Bräsel et al. 
(1999a)).  
  Experiments show that the set of  all latin squares does 
not guarantee the existence of  an optimal solution for O 
|| Cmax (Tautenhahn and Willenius (2000)). There exist 
irreducible sequences that are not rank minimal (Bräsel et 
al. (1999a)). It still seems interesting to investigate how 
higher is the density of  optimal sequences in the set of  
rank minimal sequences. 
  Bräsel et al. (1999b) propose an enumeration algorithm 
which computes all os-irreducible sequences constructing 
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inclusion minimal comparability graphs by successively 
inserting diagonal arcs into [GA]. Each sequence in such a 
set to minimize Cmax is similar to exactly one sequence in 
this class. This algorithm constructs graphs G such that G 
= tr

AG    for some sequence A. Number of  diagonal arcs 

play crucial role in this algorithm. For min{n, m} ≥ 2, a 
lower bound on the number of  diagonal arcs of  an n × m 

sequence on the complete operation set is 2
1 ( 2)( )
4

mn n −  

(Bräsel et al. (1999b)). Such enumeration strategy can also 
be used to enumerate js-irreducible sequences considering 
partially directed comparability graphs. 
  The complexity of  a job shop problem depends on the 
given machine order matrix. Bräsel et al. (1999b) study the 
relation between the hardness of  a job shop problem in 
terms of  the number of  js-irreducible sequences. For 
example, an MO is of  latin rectangle type if  no two jobs 
have the same machine at the same position in their 
machine orders and it is of  near latin rectangle type if  it is 
obtained from a latin rectangle by interchanging two 
machines in the machine order of  the same job. The 
numerical computations show that these classes of  
machine order matrices contain comparably a small 
number of  sequences but, on the contrary, contain a large 
number of  irreducible sequences because of  which these 
classes are thought as easier in comparison to the other 
ones. 
  Bräsel and Kleinau (1992b) present an insertion method 
for the enumeration of  all sequences. Bräsel et al. (1999a) 
employ a modified version of  this method and present an 
enumeration algorithm for the set of  all os-irreducible 
sequences for a given format. In their algorithm, a set of  
non-isomorphic sequences is computed and thereafter 
tested for irreducibility. One sequence per isomorphic class 
is sufficient for this purpose as open shop irreducibility 
with respect to the makespan is invariant within each 
isomorphic class. For this they make the use of  
lexicographic minimality and the concepts of  
isomorphisms and automorphisms. They give the number 
of  all sequences, irreducible sequences and isomorphism 
classes. Their computational results show that the ratio 
between the number of  irreducible sequences and all 
sequences decreases with growing n and m. As there exist 
nonisomorphic irreducible sequences (Bräsel et al. (1999a)), 
a potentially optimal solution must have the cardinality 
smaller than the cardinality of  all irreducible sequences. 
  Tautenhahn and Willenius (2000) examine a dominance 
relation between sets of  sequences. They present several 
necessary and sufficient conditions for a sequence to be 
dominated by a set of  other sequences. They formulate the 
dominance relation as a mixed integer programming 
problem. Furthermore, they give sets of  unavoidable 
sequences for small formats. Among seven classes of  all 3 
× 3 open shop irreducible sequences only three of  them 
are unavoidable in the sense that these together with their 
reverses are the unique optimal solutions for certain 
matrices of  processing times. This set is the minimal one 
ensuring of  at least one optimal solution for the open shop 

problem. A sequence of  biggest rank five among all O3|n 
= 3|Cmax irreducible sequences belongs to the class of  
unavoidable sequences. For the problem O3|n = 2|Cmax, 
the minimal cardinality of  a potentially optimal solution is 
3. There are two disjoint potentially optimal solutions of  
this cardinality. 
  Willenius (2002) generalizes the concept of  irreducibility 
with respect to some other regular objective functions and 
arbitrary numerical input data. A sequence A ∈ Snm(α) is 
called general-reducible to B ∈ Snm(α), written as  

gB A≺  , if  Ci(B) ≤ Ci(A) for all jobs i and all possible 
instances of  numerical data. If  Ci(B) ≤ Ci(A) for all jobs 
and all numerical data, then γ(B) ≤ γ(A) holds for all 
regular γ. A sequence A ∈ Snm(α) is called r-reducible to B 
∈ Snm(α), denoted by ,rB A≺  if  Cmax(B) ≤ Cmax(A) for 
all instances of  processing times P and release dates r = [ri]. 
The definitions of  strong reducibility, similarity and 
irreducibility have been extended similarly. Along with a 
number of  results in terms of  comparability graphs and 
precedence relations between operations, Willenius (2002) 
presents interesting relations between the general- and 
r-reducibility. For instance, for any A, B ∈ Snm(α), it holds 

rB A≺  if  and only if  1 1 .gB A− −≺  
 
5. A DECOMPOSITION OF SEQUENCES 

  A generalized decomposition on irreducibility is studied 
by Dhamala (2002b). This gives us a possibility to generate 
sequences of  higher sizes with prescribed characterization 
on irreducibility of  lower sizes. For this, we consider an 
underlying 2 × 2 open shop by the assignment of  an 
operation to each part. In 2 × 2 open shop, we have 2 
irreducible (1 unavoidable) and 12 reducible sequences. We 
partition an n × m sequence A called the A(i, j) 
decomposition  with  i  rows  and  j  columns  as  A ( i ,  j ) 

= . Here, A(i, j) decomposition is a block 

decomposition where at least one part in {Si, j, Si, m−j, Sn−i, j, 
Sn−i, m−j} is a block of  size no less than 2 × 2. In the cases 
when any one of  the sequences Sk,l in A(i, j) represents an 
1 × 1 matrix, we represent it by A(1, 1) and we call an 
operation decomposition. In the A(1, 1) decomposition 
one of  the blocks Sk,l contains only one but arbitrary ouv, 
without loss of  generality, assume that the block S1,1 = (o11). 
Furthermore, we consider the following three class 

representatives: 1 2 1 2 1 2
, , and 

2 1 2 3 4 3
     
     
     

 which are 

the lexicographically minimal in their structure isomorphic 
classes of  the 2 × 2 open shop and build the 
corresponding ( , )A i j  decompositions. These 
decompositions are denoted by type1, type2 and type3, 
respectively. The following sequences, respectively, 

−

− − −

 
 
 

, ,

, ,

i j i m j

n j j n j m j

S S
S S
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  and  

represent A(1, 1) decompositions corresponding to the 2 × 
2 sequences of  type1, type2 and type3. An n × n 
os-irreducible sequence A is said to satisfy the 
irr-decomposition property if  it contains exactly n sinks 
and there exists no similar sequence S ≠  A−1 to it. We 
conjecture that the following result holds even if  the 
second condition of  this property is violated. For a proof, 
we recall that open shop irreducibility with respect to the 
makespan is invariant within each isomorphic class.  
 
Theorem 7. Consider the A(1, 1) decomposition of  type1 
in an n × n sequence A where SA = Sn − 1,n − 1 is irreducible 
for O||Cmax. Then, A is irreducible for O||Cmax if  SA 

satisfies the irr-decomposition property. 
 
Proof. It is sufficient to consider S1,1, S1,n − 1 and Sn − 1,n − 1 
since there are no edges between operations of  any two 
diagonal blocks. Because SA is already os-irreducible, the 
sequence A cannot be reduced to any other sequence B of  
type1 for which − − − −≠1,  1 1,  1

A B
n n n nS S . Therefore, we consider 

the cases − − − −;1,  1 1,  1
A B
n n n nS S . If  the sequence SB contains 

less than n − 1 sinks, there must be a row u and a column v 
such that no common sink is contained in them. Then 
there exists a sink vertex okl in both sequences A and B 
such that {ouv, okl} ∈ tr

BG   \ tr
AG    where ouv is a sink in 

A.  
  For any other sequence B different than A with 

− − − −;1,  1 1,  1
A B
n n n nS S , there exists an edge {o1v, o1l} such that 

{o1v, o1l} ∈ tr
BG   \ tr

AG   . If  − −≠1,  1 1,  1
A B

n nS S  but we have 

1,  1 1,  1
A B
n n n nS S− − − −= , there exists at least one reversion in 

these permutations that produces at least one path in B 
that was not in A. To show this, let o1v and o1l be two 
operations with different orientations in − −1,  1 1,  1 and A B

n nS S , 

say (o1v, o1l) ∈ tr
AG  and (o1l, o1v) ∈ tr

BG . As there are n − 1 
sinks in − − − −1,  1 1,  1 (and in  )A B

n n n nS S , there exists a unique 
operation oul which is the sink in row u and column l 
restricted to the corresponding lower right corner block so 
that {oul, o1v} ∈ \ .tr tr

B AG G        If  − − − −≠1,  1 1,  1
B A
n n n nS S , then 

an existence of  {oul, o1v} ∈ tr
BG   \ tr

AG    follows by the 

fact that each sink in − −1,  1  A
n nS  is a source in 1,  1 .

B
n nS − −  

  Thus, there exists no sequence B ∈ Snm of  type1 to 
which A can be reduced. Neither A reduced to any other 
sequence B not of  type1 as there is no edge between the 
blocks S1,1 and Sn − 1,n − 1 in A but there must be at least one 
edge between these corresponding blocks in B. 
 
  As a consequence of  Theorems 6 and 7, any A(1, 1) 
decomposition of  type1 in an (n + 1) × (n + 1) sequence A, 

where Sn,n is a latin square sequence of  order n, is 
os-irreducible for Cmax. Observe that ai1 and a1j in this 
sequence are the permutations of  {n + 1, …, 2n} for all i, j 
∈ {2, 3, …, n + 1}. Therefore, there exists an 
os-irreducible sequence of  format (n + 1) × (n + 1) with 
maximal rank 2n for O || Cmax . 
  Remark that the irr-decomposition property is not a 
necessary condition for the irreducibility of  a sequence for 
O || Cmax. For the following sequences 
 

 and  

 
the former is os-irreducible whereas the latter is a reducible 
one; the latter reduces to the former one. Here, the 
partition on the lower right corner contains only two sinks 
shown by bold faced entries. In fact in S3,3, operation o42 is 
the sink in column 2 but o44 is the sink in row 4 and the 
irr-decomposition property fails.  
 
Corollary 1. Any A(i, i) decomposition of  type1, where all 
of  its 4 partitions are latin squares of  order at least 2 is an 
os-reducible sequence for Cmax.  
   

Corollary 1 follows from Theorem 6. Any A(1, 1) 
decompositions of  type2 and type3 in an n × m sequence A 
is a strongly os-reducible sequence for Cmax. However, a 
natural interest arises: do there exist irreducible sequences 
of  type2 and type3 in these block-decompositions? In 
general, if  we consider an A(i, j) decomposition for i ≥ 2 
and j ≥ 2 with type1, then an example illustrates that there 
exists a reducible sequence even if  all 4 partitions contain 
the same irreducible sequence. But, it is also possible to 
construct an os-irreducible sequence by considering the 
same irreducible sequence as its all 4 partitions. In the 
following, both considered sequences A and B are 
os-irreducible for the makespan: 

 
2 6 7 8
1 5 6 7
3 4 5 1
4 7 1 2

A

 
 
 =
 
 
 

 and 

1 6 7 8
2 5 6 7
3 4 5 1
4 7 1 2

B

 
 
 =
 
 
 

 

 

But  and  are, respectively, 

os-irreducible and reducible for Cmax. 
 
6. CONCLUDING REMARKS 

  The problem is interesting and important from both 
theoretical and practical point of  view. We studied the 
structural properties of  potentially optimal solutions that 
are important for shop problems with uncertain processing 
times. The set of  all irreducible sequences is such a 

1 4 5 6
7 1 2 5
5 2 4 3
6 3 1 4

 
 
 
 
 
 

B B
B B

 
 
 

A A
A A

 
 
 

1 4 5 6
6 1 2 5
5 2 4 3
7 3 1 4

 
 
 
 
 
 

 
 
 
 
 
 

1 2 3 4
10 3 5 7
9 6 7 5
8 7 4 6

1 2 4 3
3 4 6 7
4 6 7 5
2 7 5 6

 
 
 
 
 
 

 
 
 
 
 
 

1 4 5 6
5 1 2 3

,
6 2 3 1
4 3 1 2
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solution. The similarity class representatives of  irreducible 
sequences yield a solution of  still smaller cardinality. The 
cardinality of  minimal solutions is 3 for O3|n = 2|Cmax. 
There exists unique minimal solution for O3|n = 3|Cmax. 
But, the existence of  unique minimal solution is unlikely in 
general. 
  The status of  the set of  irreducible sequences with 
respect to the maximum completion time have been 
studied. No polynomial time algorithm is known for the 
decision whether a sequence is irreducible though a 
number of  tests have been proposed. Investigations about 
irreducible sequences are believed to provide a powerful 
tool to improve exact and heuristic algorithms. Only a very 
small fraction of  all sequences is irreducible. Algorithms 
on the very small percentage of  irreducible sequences 
among all sequences can have better performances than 
conventional ones which will affect the computational 
complexity.  
  We are interested in developing new constructive and 
iterative neighborhood structures in this smaller set of  
irreducible sequences. We presented a decomposition 
approach on the class of  irreducible sequences. This 
decomposition approach hints a construction of  
irreducible super sequences based on given irreducible 
sequences of  smaller size (Theorem 7). 
  In this paper, we proposed an alternate approach of  
counting sequences by counting infeasible solutions from 
the whole set. This is an interesting unsolved counting 
problem. Our approach provides an exact formula for the 
number of  non-sequences which contain at least one fixed 
fundamental dicycle (Theorem 3). The bounds on the 
number of  sequences will be improved if  exact formulas 
for the number of  non-sequences which contain given 
numbers of  fixed fundamental dicycles are proved. This 
interesting problem still remains open. 
 
ACKNOWLEDGEMENTS 

  The author would like to thank the anonymous referees 
for their hints to improve the quality of  the paper. 
 
REFERENCES 

1. Akers, S.B. and Friedman, J. (1955). A non-numerical 
approach to production scheduling problems. Operations 
Research, 3: 429-442. 

2. Ashour, S. (1972). Sequencing Theory, Springer-Verlag, 
Berlin, NY. 

3. Bräsel, H. and Dhamala, T.N. (2002). On some structures 
of  decomposition approaches in shop problems. 
Proceedings of  the 15-th Workshop on Discrete Optimization, 
Wittenberg, Germany. 

4. Bräsel, H. and Dhamala, T.N. (2001a). On algebraic 
properties in shop scheduling problems. Preprint, 
University of  Magdeburg, Germany. 

5. Bräsel, H., Harborth, M., and Willenius, P. (2001). 
Isomorphism for digraphs and sequences of  shop 
scheduling problems. Journal of  Ccombinatorial Mathematics 
and Combinatorial Computin, 37: 115-128. 

6. Bräsel, H., Harborth, M., Tautenhahn, T., and Willenius, P. 

(1999a). On the set of  solutions of  the open shop 
problem. Annals of  Operations Research, 92: 241-263. 

7. Bräsel, H., Harborth, M., Tautenhahn, T., and Willenius, P. 
(1999b). On the hardness of  the classical job shop 
problem. Annals of  Operations Research, 92: 265-279. 

8. Bräsel, H., Sotskov, Yu.N. and Werner, F. (1996). Stability 
of  a schedule minimizing mean flow time. Mathematical 
and Computer Modelling, 24: 39-53. 

9. Bräsel, H. and Kleinau, M. (1996). New steps in the 
amazing world of  sequences and schedules. Mathematical 
Methods of  Operations Research, 43: 195-214. 

10. Bräsel, H. and Kleinau, M. (1992a). On number problems 
for the open shop problems. System Modeling and 
Optimization, Proceedings of  the 15th IFIP Conference, Zurich, 
Switzerland, pp. 145-155. 

11. Bräsel, H. and Kleinau, M. (1992b). On the number of  
feasible solutions of  the open shop problem-an 
application of  special latin rectangles. Optimization, 23: 
251-260. 

12. Bräsel, H. (1990). Latin Rectangle in Scheduling Theory, 
Dissertation B, University of  Magdeburg, German. 

13. Conway, R.W., Maxwell, W.L., and Miller, L.W. (1967). 
Theory of  Scheduling, Addison-Wesley, London. 

14. Dhamala, T.N. (2002a). Recognition and isomorphism 
algorithms of  shop graphs. The Nepali Mathematical Sciences 
Report, 20: 17-31. 

15. Dhamala, T.N. (2002b). Shop Scheduling Solution-Spaces with 
Algebraic Characterizations, PhD Thesis, University of  
Magdeburg, Shaker Verlag, Germany. 

16. Golumbic, M.C. (1980). Algorithmic Graph Theory and 
Perfect Graphs, Academic, NY. 

17. Gonzalez, T. and Sahni, S. (1976). Open shop scheduling 
to minimize finish times. Journal of  the Association of  
Computing Machinery, 23: 665-679. 

18. Graham, R.E., Lawler, E.L., Lenstra, J.K., and Rinnooy 
Kan, A.H.G. (1979). Optimization and approximation in 
deterministic sequencing and scheduling-A survey. Annals 
of  Discrete Mathematics, 5: 287-326. 

19. Harborth, M. (1999). Structural Investigation of  Shop 
Scheduling Problems: Number Problems, Potential Optimality and 
New Enumeration Algorithms, PhD Thesis, University of  
Magdeburg, German. 

20. Johnson, S.M. (1954). Optimal two- and three-stage 
production schedules with setup times included. Naval 
Research Logistic Quarterly, 1: 61-68. 

21. Kravchenko, S.A., Sotskov, Yu.N. and Werner, F.(1995). 
Optimal schedules with infinitely large stability radius. 
Optimization, 33: 271-280. 

22. Kleinau, M. (1993). On the Structure of  Shop Scheduling 
Problems: Number Problems, Reducibility and Complexity. PhD 
Thesis, University of  Magdeburg, German. 

23. Lai, T.-C. and Sotskov, Y.N. (1999). Sequencing with 
uncertain numerical data for makespan minimization. 
Journal of  the Operations Research Society, 50: 230-243. 

24. Lai, T.-C., Sotskov, YN., Sotskova, N.Yu., and Werner, F. 
(1997). Optimal makespan scheduling with given bounds 
of  processing times. Mathematical and Computer Modelling, 
26: 67-86. 

25. Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979). 



Dhamala: On the Potentially Optimal Solutions of  Classical Shop Scheduling Problems 
IJOR Vol. 4, No. 2, 80−89 (2007) 
 

89 

Computational complexity of  discrete optimization 
problems. Annals of  Discrete Mathematics, 4: 121-140. 

26. Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P. 
(1977). Complexity of  machine scheduling problems. 
Annals of  Discrete Mathematics, 1: 343-362. 

27. Prins, C. (1994). An overview of  scheduling problems 
arising in satellite communications. Journal of  the 
Operational Research Society, 40: 611-623. 

28. Sotskov, Yu.N., Tanaev, V.S., and Werner, F. (1998). 
Stability Radius of  an Optimal Schedule: A Survey and 
Recent Developments. In: Gang, Yu.(Ed), Industrial 
Applications of  Combinatorial Optimization, Kluwer 
Academic Publishers, Boston, pp 72-108 

29. Sotskov, Y., Sotskova, NY., and Werner, F. (1997). 
Stability of  an optimal schedule in a job shop. Omega, 
International Journal of  Management Science, 25: 397-414. 

30. Sotskov, Y.N. (1991). Stability of  an optimal schedule. 
European Journal of  Operations Research, 55: 91-102. 

31. Sotskova, N. (2001). Optimal Scheduling with Uncertainty in 
the Numerical Data on the Basis of  a Stability Analysis, PhD 
Thesis, University of  Magdeburg, Germany. 

32. Sussman, B. (1972). Scheduling problems with interval 
disjunctions. Zeitschrift fur Operations Research, 16: 165-178. 

33. Tautenhahn, T. and Willenius, P. (2000). How many 
sequences solve an open shop problem? Preprint, 
University of  Magdeburg, Germany. 

34. Tautenhahn, T. (2002). Irreducible sequences on tree-like 
operation sets. Preprint, University of  Magdeburg, 
Germany. 

35. Willenius, P. (2002). Irreducibility Theory in Scheduling Theory, 
PhD Thesis, University of  Magdeburg, Shaker Verlag, 
German. 


