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AbstractThe Brucker-Garey-Johnson algorithm and Hu’s algorithm are based on the idea of  the critical path method 
and were developed for the model with unit execution time tasks, precedence constraints and parallel identical processors. 
The performance guarantees for these algorithms have been presented in Singh and Zinder (2000a, 2000b). We present 
upper bounds for the Brucker-Garey-Johnson algorithm with communication delays, which can be seen as a generalization 
of  the performance guarantees in Singh and Zinder (2000a, 2000b). As a particular case this also gives performance 
guarantees for Hu’s algorithm with communication delays and therefore, also generalizes the previously known performance 
guarantees for this algorithm. 
KeywordsScheduling theory, Unit execution and communication times, Precedence, Maximum lateness, Worst-case 
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1. INTRODUCTION 

In this paper we consider an extension of  the classical 
unit execution time (UET) maximum lateness problem, the 
problem with a unit communication delay. Unit 
communication delay (UCT) problem is a straightforward 
generalization of  UET problem and has one of  its 
applications in multiprocessor environment. In 
multiprocessor environments there are time delays between 
the execution of  dependent tasks on different processors. 
These time delays are required to send the results of  the 
computation of  a task from one processor to another. 

Using the popular three field notation UCT problem can 
be denoted as max| ,  1,  1|j ijP prec p c L= =  and can be 
described as follows: Suppose that a set N = {1, ..., n} of  n 
tasks is to be processed on m > 1 identical processors 
subject to precedence constraints in the form of  an 
anti-reflexive, anti-symmetric and transitive relation on N. 
If  task i precedes task j, denoted i j→ , then processing 
of  task i must be completed before task j can begin its 
processing. It is convenient to represent a partially ordered 
set of  tasks by an acyclic directed graph where nodes 
correspond to the tasks and the arcs reflect the precedence 
constraints. Each task can be processed on any processor, 
and once a processor begins executing a task then it 
continues until completion (i.e. no preemptions are 
allowed). The processing starts at time t = 0. Each task j ∈ 
N has a due date dj, the desired point in time by which the 
processing should be completed. Each processor can 
process at most one task at a time. All the tasks have the 
same processing time which, without loss of  generality, can 
be taken as the unit of  time. 

Since no preemptions are allowed, to specify a schedule 
s it suffices to designate for each task j ∈ N a processor 
and its completion time ( ).jC s  If task j has a completion 
time ( ),jC s  then its processing commences at time 

( ) 1.jC s −  Due to unit communication delay, if two tasks i 
and j such that →i j  are processed on different 
processor then ( ) ( ) 2.j iC s C s≥ +  Since the processing of 
the tasks commences at t = 0 and each task requires one 
unit of time, without loss of generality, we will consider 
only schedules in which all completion times are positive 
integers. The goal is to find a schedule which minimizes 
the criterion of maximum lateness  
 

max ( ) ( ( ) ).max j j
j N

L s C s d
∈

= −  

 
If all due dates are equal to zero this problem converts 

to the makespan problem with the criterion  
 

max ( ) max ( ).aa N
C s C s

∈
=  

 
The makespan problem, and therefore the maximum 

lateness problem, is NP-hard as shown by Rayward-Smith 
(1987). Moreover, this makespan problem remains 
NP-hard even if the partially ordered set of tasks is 
represented by an in-tree (Lenstra et al. (1996)). Several 
polynomial time algorithms were developed for various 
particular cases by Finta et al. (1996), Lenstra et al. (1996), 
Verriet (2000) and Singh (2005). It was also shown in 
Rayward-Smith (1987) that the worst-case performance of 
an arbitrary list schedule can be characterized as  
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*
max max

2 1( ) 3 ( ) 2 ,LSC s C s
m m

   ≤ − − −   
   

 

 
where sLS is a schedule constructed by an arbitrary list 
algorithm and s∗ is an optimal schedule for the 

max| ,  1,  1|j ijP prec p c C= =  problem. An example is 
presented in Rayward-Smith (1987) to show that this 
performance guarantee is asymptotically achievable. 

As far as the max| ,  1,  1|j ijP prec p c L= =  problem is 
concerned, only few results are known and have been 
obtained very recently by Singh (2005, 2001), Verriet 
(2000). Verriet (2000) shows that a straightforward 
extension of the Garey-Johnson algorithm presented in 
Garey and Johnson (1976) for the max2| ,  1|jP prec p L=  
problem also solves the max2| ,  1,  1|j ijP outtree p c L= =  
problem, and its worst-case performance can be 
characterized as  

 
*

max max
2 2( ) 2 ( ) 1 ( 1),maxV

j
j N

L s L s d
m m ∈

   ≤ − + − +   
   

 

 
where sV is a schedule constructed by the algorithm 
presented in Verriet (2000) and s∗ is an optimal schedule 
for the max| ,  1,  1|j ijP outtree p c L= =  problem. In Singh 
(2001) an extension of the Brucker-Garey-Johnson 
algorithm presented in Brucker et al. (1977) is presented, 
with the worst-case performance guarantee as  

 
*

max max
1( ) ( ) 2 ( ),D mL s L s w m

m
− − ≤ − 

 
l  

 
where sD is a schedule constructed by the algorithm 
presented in Singh (2001), s∗ is an optimal schedule for the 

max| ,  1,  1|j ijP prec p c L= =  problem, l  is the length of 
the longest path in the corresponding graph and  

 
1        for  odd

( )

1            otherwise

m m
m

w m

−
= 



 

 
Unlike other known performance guarantees of 

Rayward-Smith (1987), Verriet (2000) for problems with 
communication delay the performance guarantee in Singh 
(2001) is tight for arbitrary large instances of the 

max| ,  1,  1|j ijP prec p c L= =  problem. Singh (2005) 
shows that the worst-case performance of the 
Brucker-Garey-Johnson algorithm presented in Brucker et 
al. (1977) for the max| ,  1,  1|j ijP outforest p c L= =  
problem is  

 
*

max max
1 1( ) 2 ( ) 1 ( ),maxD

j
j N

L s L s d
m m ∈

   ≤ − + −   
   

 

where sD is a schedule constructed by the algorithm 
presented in Singh (2005) and s∗ is an optimal schedule for 
the max| ,  1,  1|j ijP outforest p c L= =  problem. It is also 
shown that the presented algorithm solves the 

max| ,  1,  1|j ijP outforest p c L∞ = =  problem. Here the 
term ∞P  indicates that the number of processors are 
unlimited or sufficiently large. Singh (2005) also presents 
another polynomial time algorithm which solves the 

max2| ,  1,  1|j ijP outforest p c L= =  problem. 

For the max| ,  1|jP prec p L=  problem the worst-case 
performance of the Brucker-Garey-Johnson algorithm 
presented in Brucker et al. (1977) has been analyzed in 
Singh and Zinder (2000a, 2000b), with the following 
performance guarantees  

 
*

max max
1 1( ) 2 ( ) 1 ( 1)maxBGJ

j
j N

L s L s d
m m ∈

   ≤ − + − −   
   

   (1) 

 
and  

 
*

max max( ) ( )

1min 1,        if  

0                                            otherwise

BGJL s L s

n l m n l m
m m

−

 − −  − − ≥   ≤    



l         (2) 

 
In this paper we present performance guarantees which 

as a particular case give the performance guarantees (1) and 
(2). Thus, our results, in some sense, generalize the 
performance guarantees in Singh and Zinder (2000a, 
2000b). 

 
2. THE WORST-CASE PERFORMANCE OF THE 

BRUCKER-GAREY-JOHNSON ALGORITHM 

Both the Brucker-Garey-Johnson algorithm (Brucker et 
al. (1977)) and Hu’s algorithm (Hu (1961)) can be viewed 
as a two phase procedures. The first phase of each 
algorithm assigns to each task a number indicating the 
urgency of the task. The second phase schedules the tasks 
to processors in accord with the task’s urgency. In this 
section we consider the max| ,  1,  1|j ijP prec p c L= =  
problem and analyze the worst-case performance of a 
generalization of the Brucker-Garey-Johnson algorithm 
(Brucker et al. (1977)) presented in Singh (2001). For 
completeness, we present the algorithm below. 

Let ( )K j ′  be the set of all immediate successors of 
some arbitrary task .j ′  A task i is an immediate successor 
of task j ′ if j i′ →  and there is no task i ′ such that 
j i i′ ′→ → . Let j be an arbitrary task such that 
( )K j ≠ ∅ , and let 1 ( )j K j∈  satisfy ( )1

.min i K jj id d∈=  

For an arbitrary schedule s, denote  
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( )jL s  

1

1 [ ( ) { }]1

( ) 1 ,                                               | ( )| 1

max{ ( ) 1 , ( ) 2 }, | ( )| 1.min
j j

j j j i
i K j j

C s d if K j

C s d C s d if K j
∈ −

+ − ==  + − + − >
 
Since task j1 can be processed only after the completion of 
task j, and at most one task from the set K(j) can be 
scheduled immediately after task j, we have  

 
max ( ) max{ ( ), ( ) }.j j jL s L s C s d≥ −  
 
Therefore, the replacement of the original due dates by 

due dates ′jd  calculated according to the following 
algorithm does not change the value Lmax(s) for all feasible 
schedules s. 

 
Algorithm 1. Due date modification algorithm for the 
model with a unit communication delay 
 

for each task j such that ( )K j = ∅  do j jd d′ =   
while there is a task j which has not been assigned its modified due 
date ′jd  and all of whose immediate successors have been assigned 
their modified due dates do  

Select 1 ( )j K j∈ such that ( )1 min i K jj id d∈′ ′= and set 

 

1

1 [ ( ) { }]1

min{ , 1}, | ( )| 1

min{ , 1, { 2}}, | ( )| 1min
j j

j
j j i

i K j j

d d if K j
d d d d if K j

∈ −

′ − =′ =  ′ ′− − >
 

 
To construct the desired schedule we arrange the tasks 

in a list, L, in nondecreasing order of their modified due 
dates and apply the following algorithm. We will say that a 
task is available for processing in some time slot, if this 
task has no unscheduled predecessors and there is an idle 
processor which can process this task in that time slot. 

 
Algorithm 2. List scheduling with communication delay 
 

Set t = 0 and A = ∅  
while L ≠ ∅  do  

repeat 
Scan the list from left to right and select the first task 
available for processing. Let it be task j. 
if task j can be processed in the time slot t on only one specific 

processor then 
assign j to that processor 

else { }A A j= ∪  
\{ }L L j=  

until | |A  becomes equal to the number of processors which 
remain idle, or the end of the list is reached 
Allocate the tasks from A to the idle processors   
Set t = t + 1 and A = ∅  
 
Let sD be a schedule constructed by the above algorithm. 

From the set of all tasks v such that 

max( ) ( ),D D
v vC s d L s′− =  

 
choose a task p with the smallest completion time. Let M(p) 
be the set of all tasks j ∈ N such that j pd d′ ′≤ . It is easy to 
see that for any task i ∈ M(p), the inequality Ci(sD) ≤ Cp(sD) 
holds, and that any predecessor of a task from M(p) also 
belongs to M(p). If Cp(sD) = 1, then sD is optimal, so let us 
assume that Cp(sD) > 1. For any positive integer t < Cp(sD), 
we say that the time slot t is complete, if exactly m  tasks 
from M(p) are processed on the time interval [t − 1, t], and 
the time slot t is incomplete, if the number of tasks from 
M(p) which are processed on the time interval [t − 1, t] is 
greater than or equal to one but less than m. Because of 
communication delay a time slot t may contain no tasks 
from M(p) at all. In this case we will call this time slot 
empty. Corresponding to this classification of time slots we 
introduce the following notations. Let lc(t), li(t), and l0(t) be 
the number of complete, incomplete, and empty time slots 
before time slot t. Because we consider a model with a unit 
communication delay, in a list schedule for any empty time 
slot t the time slot t − 1 is either complete or incomplete. 
The number of empty time slots ′t  such that t t′ <  and 
the time slot 1t ′ −  is complete will be denoted by l0c(t). 
Correspondingly, the numbers of empty time slots t ′  
such that <t t′  and the time slot 1t ′ −  is incomplete 
will be denoted by l0i(t). Hence, for any t, l0(t) = l0c(t) + l0i(t). 
It is also convenient to introduce the following notation. 
Consider an arbitrary task j and all paths, which terminate 
at the node corresponding to j in the graph representing 
the partially ordered set of tasks. Let ( )jl  be the length 
of the longest of these paths. For every pair of tasks i and j 
such that j ∈ K(i), let  

 

′

′

′∈
 ′ ≠ = +


′ →=  ′ ≠ =





if there is a task ( ) such that 

 and ( ) ( ) 1;

1
or, if there is a task  such that

( , )
 and ( ) ( ).

0

D D
j i

D D
i i

j K i

j j C s C s

i j
C i j

i i C s C s

otherwise

 

 
Let for any task j, ( )P j  be the set of all vectors     

(i1, i2, …, ik = j), where each vector represents a path 
terminating on task j, i.e. 1 2 = .ki i i j→ →…  Then we 
define  
 

1

1
( ,..., ) ( ) =11

( ) = ( , )max
k

k

x x
i i j P j x

Com j C i i
−

+
= ∈

∑                 (3) 

 
Note that Com(j) computes the maximum amount of 

communication delay incurred in the schedule sD for task j. 
 

Lemma 1. The time slot Cp(sD) − 1 is either complete or 
the time slot Cp(sD) − 2 contains at least two predecessors 
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of task p. 
 
Proof. Suppose that there exists a task j such that Cj(sD) = 
Cp(sD) − 1 and j → p. Then ′ ′≤ −1j pd d  and Cj(sD) − jd ′ ≥ 
Cj(sD) + 1 − pd ′ =  Cp(sD) − ,pd ′ which contradicts the 
selection of task p. 

If the time slot Cp(sD) − 1 is empty then the time slot 
Cp(sD) − 2 must contain at least two predecessors of task p, 
which proves the lemma. 

Suppose the time slot Cp(sD) − 1 is incomplete. As has 
been shown above, time slot Cp(sD) − 1 does not contains a 
predecessor of task p. Therefore, the time slot Cp(sD) − 2 
contains a predecessor of task p. Suppose the time slot 
Cp(sD) − 2 contains exactly one predecessor of task p, say 
task j. Since the time slot Cp(sD) − 1 is incomplete and task 
p was not scheduled on this time slot, another successor of 
j, say j ′ , was processed during this time slot. As j ′  was 
preferred in place of p, we have j pd d′′ ′≤ . Then, by the 

due date modification algorithm, 2j pd d′ ′≤ −  and Cj(sD) 
− jd ′ ≥ Cj(sD) + 2 − pd ′ =  Cp(sD) − ,pd ′  which again 
contradicts the selection of task p. Hence if the time slot 
Cp(sD) − 1 is incomplete then the time slot Cp(sD) − 2 
contains at least two predecessors of task p.  

  
Lemma 2. For any task j,  
 

0 0( ) ( ) 1 2 ( ( )) ( ( )) ( ( )).D D D
j i j i jj Com j l C s l C s l C s+ ≥ + + −l  

                                           (4) 
 
Proof. We will prove (4) by induction on l0(Cj(sD)) + 
li(Cj(sD)). Since any path which terminates at some node 
includes this node, ≥l( ) 1j . Therefore, if l0(Cj(sD)) + 
li(Cj(sD)) = 0, then (4) holds as Com( j) ≥ 0. Suppose that 
l0(Cj(sD)) + li(Cj(sD)) = 1. The existence of time slot t such 
that t < Cj(sD) and is either incomplete or empty indicates 
that task j has a predecessor, because otherwise according 
to the list algorithm task j can be processed on the time 
interval [t − 1, t]. Therefore, ( ) 2j ≥l . Also, if l0(Cj(sD)) = 1 
then li(Cj(sD)) = 0 and Com( j) ≥ 1,or if li(Cj(sD)) = 1 then 
li(Cj(sD)) = 0 and Com( j) ≥ 0. In either case, it is easy to see 
that (4) holds. 

Suppose that for each task ′j  such that  
 

0 ( ( )) ( ( ))D D
j i jl C s l C s k′ ′+ ≤   

 

0 0

( ) ( )

1 2 ( ( )) ( ( )) ( ( )).D D D
j i j i j

j Com j

l C s l C s l C s′ ′ ′

′ ′+

≥ + + −

l
        (5) 

 
Let j be a task satisfying l0(Cj(sD)) + li(Cj(sD)) = k + 1. 

Among all non-negative integers t such that t < Cj(sD) and 
the time slot t is either incomplete or empty, select the 
largest one. Let it be .t ′  If the time slot t ′  is empty, 
then the time slot 1t ′ −  contains at least two 

predecessors of task j. Denote one of the predecessors by 
.j ′  We have  

0 0( ( )) ( ( )) ( ( )) ( ( )),D D D D
i j i j i j i jl C s l C s l C s l C s′ ′− = −  

0 0( ( )) 1 ( ( ))D D
j jl C s l C s′ + =  

 
and ( ) ( ) 1,Com j Com j ′≥ +  which together with 

( ) ( ) 1j j ′≥ +l l  and (5) leads to (4). 
If the time slot t ′  is incomplete, then either time slot 

t ′  or 1t ′ −  contains a predecessor of task j. Again 
denote this predecessor by j ′ . If ( )D

jC s t′ ′= , we have 

( ) ( )Com j Com j ′≥  and 0( ( )) ( ( )) 1D D
i j i jl C s l C s′ ′− +  

0( ( )) ( ( ))D D
i j i jl C s l C s≥ −  

Therefore using (5), we get  
 

0 0

0 0

( ) ( ) ( ) ( ) 1

1 2 ( ( )) ( ( )) ( ( )) 1

1 2 ( ( )) ( ( )) ( ( )),

D D D
j i j i j

D D D
j i j i j

j Com j j Com j
l C s l C s l C s

l C s l C s l C s
′ ′ ′

′ ′+ ≥ + +

≥ + + − +

≥ + + −

l l
, 

 
which proves the lemma in this case. 

If ( ) 1D
jC s t′ ′= − , then either another successor of task 

j ′ is processed on the time slot t ′ or at least two 
predecessors of task j are processed on the time slot 1t ′ − , 
as otherwise task j should have been processed on the time 
slot t ′ . In either case, we have ( ) ( ) 1Com j Com j ′≥ +  and 

0 0( ( )) ( ( )) 2 ( ( )) ( ( )).D D D D
i j i j i j i jl C s l C s l C s l C s′ ′− + ≥ −  

Therefore, using (5), we get  
 

0 0

0 0

( ) ( ) ( ) ( ) 2

1 2 ( ( )) ( ( )) ( ( )) 2

1 2 ( ( )) ( ( )) ( ( )),

D D D
j i j i j

D D D
j i j i j

j Com j j Com j
l C s l C s l C s

l C s l C s l C s
′ ′ ′

′ ′+ ≥ + +

≥ + + − +

≥ + + −

l l
 

 
which completes the proof.  

  
Lemma 3. For any task ( )j M p∈  and for any schedule 
s,  
 

0 0

( ) ( )

1 3 ( ( )) ( ( )) ( ( )).
j

D D D
j i j i j

C s Com j

l C s l C s l C s

+

≥ + + −
         (6) 

 
Proof. We will again prove (6) by induction on l0(Cj(sD)) + 
li(Cj(sD)). Since for any task j in any schedule s we have Cj(s) 
≥ 1 and Com( j) ≥ 0, clearly (6) holds if l0(Cj(sD)) + li(Cj(sD)) = 
0. Suppose that l0(Cj(sD)) + li(Cj(sD)) = 1. If l0(Cj(sD)) = 1 and 
li(Cj(sD)) = 0, then the existence of an empty time slot 
indicates that task j has at least two predecessors, and 
therefore, due to a unit communication delay, in any 
schedule s, Cj(s) ≥ 3 and Com( j) ≥ 1. On the other hand, if 
l0(Cj(sD)) = 0 and li(Cj(sD)) = 1, then the existence of an 
incomplete time slot indicates that task j has a predecessor, 
and therefore, in any schedule s, Cj(s) ≥ 2 and Com( j) ≥ 0. 
In either case, it is easy to see that (6) holds. Suppose that 
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for each task j ′  such that  
 

0 ( ( )) ( ( ))D D
j i jl C s l C s k′ ′+ ≤   

0 0

( ) ( )

1 3 ( ( )) ( ( )) ( ( )).
j

D D D
j i j i j

C s Com j

l C s l C s l C s
′

′ ′ ′

′+

≥ + + −
        (7) 

 
Let j be a task satisfying l0(Cj(sD)) + li(Cj(sD)) = k + 1. 

Among all positive integers t such that t < Cj(sD), and the 
time slot t is either incomplete or empty, select the largest 
one. Let it be .t ′  If the time slot t ′  is empty then the 
time slot 1t ′ −  contains at least two predecessors of j, 
and therefore for at least one of the predecessors, ,j ′ due 
to unit communication delay, ( ) ( ) 2j jC s C s′≥ +  and 

( ) ( ) 1Com j Com j ′≥ + . Using these inequalities together 
with  

 
0 0

0 0

( ( )) 1  ( ( )),

( ( )) ( ( ))  ( ( )) ( ( )),

D D
j j

D D D D
i j i j i j i j

l C s l C s

l C s l C s l C s l C s
′

′ ′

+ =

− = −
 

 
and (7), it is easy to see that in this case (6) holds. 

If the time slot t ′  is incomplete, then either the time 
slot t ′  or 1t ′ −  contains a predecessor of task j. Again, 
denote this predecessor as .j ′  If ( ) ,D

jC s t′ ′=  then  
 
0 0

0

0

( ( )) ( ( )),

( ) ( ), ( ) 1 ( ),

( ( )) ( ( )) 1

( ( )) ( ( )),

D D
j j

j j

D D
i j i j

D D
i j i j

l C s l C s
Com j Com j C s C s

l C s l C s

l C s l C s

′

′

′ ′

=

′ ≤ + ≤

− +

= −

 

 
which together with (7) gives (6). If ( ) 1D

jC s t′ ′= − , then 
either another successor of j ′  is processed during the 
incomplete time slot t ′ or j has at least two predecessors 
processed during the time slot 1t ′ − , as otherwise due to 
list scheduling task j should have been processed during 
this incomplete time slot .t ′  In either case,  

 

0 0

0

0

( ( )) ( ( )),

( ) 1 ( ), ( ) 1 ( ),

( ( )) ( ( )) 2

( ( )) ( ( )),

D D
j j

j j

D D
i j i j

D D
i j i j

l C s l C s

Com j Com j C s C s

l C s l C s

l C s l C s

′

′

′ ′

=

′ + ≤ + ≤

− +

≥ −

 

 
which together with (7) gives  

 

0 0

0 0

( ) ( ) ( ) ( ) 2

1 3 ( ( )) ( ( )) ( ( )) 2

1 3 ( ( )) ( ( )) ( ( )),

j j

D D D
j i j i j

D D D
j i j i j

C s Com j C s Com j

l C s l C s l C s

l C s l C s l C s

′

′ ′ ′

′+ ≥ + +

≥ + + − +

≥ + + −

 

 
and therefore completes the proof. 

  

Lemma 4. If the time slot Cp(sD) − 1 is not empty, then for 
any schedule s 
 

∈
+ ≥ +

′+ − −

max 0

0

( )  ( ) 2 3 ( ( ))max

( ( )) ( ( )) .

D
p

k N
D D

i p i p p

L s Com k l C s

l C s l C s d
            (8) 

 
Proof. Let U be the set comprising all tasks from M(p) in 
the time slot Cp(sD) − 1 and task p. By Lemma 1 the time 
slot Cp(sD) − 1 is either complete or the time slot Cp(sD) − 2 
contains at least two predecessors of task p. 

If the time slot Cp(sD) − 1 is complete, then |U| = m + 1 
and therefore for any schedule s there is a task j ∈ U such 
that ( ) ( ) 1.max i j

i U
C s C s

∈
≥ + Using this inequality together 

with Lemma 3 and the obvious equalities l0(Cj(sD)) = 
l0(Cp(sD)) and li(Cj(sD)) = li(Cp(sD)), we get  

 

∈ ∈

∈

′+ ≥ − +

′ ′≥ − + ≥ + + −

′≥ + + − + −

′= + + − −

max

0 0

0 0

( )  ( ) ( ( ) ) ( )max max

( ) ( ) ( ) 1 ( )max

1 3 ( ( )) ( ( )) ( ( )) 1

2 3 ( ( )) ( ( )) ( ( )) .

i i
k N i U

i p j p
i U

D D D
j i j i j p

D D D
p i p i p p

L s Com k C s d Com j

C s d Com j C s Com j d

l C s l C s l C s d

l C s l C s l C s d

 

 
If the time slot Cp(sD) − 1 is incomplete then by Lemma 

1 the time slot Cp(sD) − 2 contains at least two 
predecessors of task p. Therefore, in any schedule s for at 
least one of such predecessors j, from Lemma 3 together 
with the obvious inequalities l0(Cj(sD)) = l0(Cp(sD)), li(Cj(sD)) 
+ 2 ≥ li(Cp(sD)) , and Com(p) ≥ Com( j) + 1, we have  
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This completes the proof.  

 
Theorem 5. If s* is an optimal schedule for the maximum 
lateness problem then  
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             (9) 

 
Proof. If the time slot Cp(sD) − 1 is empty then l0(Cp(sD)) ≥ 
1, and therefore by Lemma 3  
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which proves the theorem in this case. 

If the time slot Cp(sD) − 1 is not empty, then from 
Lemma 4, and as above we have  
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Therefore proves the theorem in this case as well and 

also completes the proof. 
 
Note that in the case when communication delays are 

zero the max| ,  1,  1|j ijP prec p c L= =  problem converts 

to the max| ,  1|jP prec p L=  problem, and in this case (9) 
gives (1). 

 
Theorem 6. If *s is an optimal schedule for the maximum 
lateness problem, then 
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where n is the number of tasks and l  is the length of the 
longest path in the corresponding graph.  
 
Proof.  It is easy to see that schedule sD is optimal, and 
therefore (10) holds, if Cp(sD) − 1. As shown before, sD is 
also optimal when Cp(sD) > 1 and li(Cp(sD)) + l0(Cp(sD)) = 0. 
Hence, we only need to prove that (10) holds when Cp(sD) 
> 1, and li(Cp(sD)) + l0(Cp(sD)) > 0. Since ( )pl  is the length 
of a longest path in the subgraph corresponding to the set 
M(p), we have *
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Now suppose that *

max ( ) ( ) pL s p d ′= −l  and the time 

slot Cp(sD) − 1 is empty. Then, we have *
( )max ( )j M p jC s∈  

( ).p= l  Hence, by Lemma 3  
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and, subtracting *

max ( ) ( ) ,pL s p d ′= −l  we again obtain 
(11). 

Now suppose that *
max ( ) ( ) pL s p d ′= −l  and the time 

slot Cp(sD) − 1 is not empty. Then by Lemma 4 we have  
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and, subtracting *
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Using Lemma 2, we have,  
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and subtracting the obvious inequality *
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If − ≥ln m  then the above inequality together with 

(12) gives (10). On the other hand, if 1n m− ≤ −l  then 
from (12) we have  
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and therefore proves (10) in this case as well. 
 

It is easy to see that if there is no communication delay 
then the max| ,  1,  1|j ijP prec p c L= =  problem converts 

into the max| ,  1|jP prec p L=  problem, and in this case 
the performance guarantees presented in Theorems 5 and 
6, give the performance guarantees (1) and (2).  

When all due dates are equal to zero the maximum 
lateness problem converts to the makespan problem. In 
this case, the algorithm of the due date modification with 
communication delay, presented above, can be viewed as a 
generalization of the well known Hu’s algorithm (critical 
path) (Hu (1961)) for the model with a unit 
communication delay and with jd ′−  as the priority 
associated with each task j. Hence, (10) gives the following 
performance guarantees for the makespan problem, 
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where sCP is a schedule constructed by the critical path 
method and s* is an optimal schedule for a unit 
communication delay makespan problem. 

 
3. CONCLUSIONS 

We have consider the maximum lateness and makespan 
problem with a unit execution time task system, unit 
communication delay, precedence constraints, parallel 
identical processors and presented performance guarantees 
for the Brucker-Garey-Johnson and Hu’s algorithm. We 
have presented a performance guarantee which establishes 
the relationship between the deviation of the criterion 
value from its optimum and the parameters characterizing 
the problem. The presented performance guarantees in 
some sense generalize the previously known performance 
guarantees for these algorithms. Future research will be 
directed towards arbitrary communication delays and 
arbitrary processing times. 
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