
International Journal of Operations Research Vol. 4, No. 2, 90−97 (2007)

Performance of Critical Path Type Algorithms with Communication
Delay

Gaurav Singh*

CSIRO Mathematical and Information sciences, Private Bag 10, South Clayton, VIC 3169, Australia

Received October 2005; Revised October 2005; Accepted November 2006

AbstractThe Brucker-Garey-Johnson algorithm and Hu’s algorithm are based on the idea of the critical path method
and were developed for the model with unit execution time tasks, precedence constraints and parallel identical processors.
The performance guarantees for these algorithms have been presented in Singh and Zinder (2000a, 2000b). We present
upper bounds for the Brucker-Garey-Johnson algorithm with communication delays, which can be seen as a generalization
of the performance guarantees in Singh and Zinder (2000a, 2000b). As a particular case this also gives performance
guarantees for Hu’s algorithm with communication delays and therefore, also generalizes the previously known performance
guarantees for this algorithm.
KeywordsScheduling theory, Unit execution and communication times, Precedence, Maximum lateness, Worst-case
analysis

∗ Corresponding author’s email: Gaurav.Singh@csiro.au

1. INTRODUCTION

In this paper we consider an extension of the classical
unit execution time (UET) maximum lateness problem, the
problem with a unit communication delay. Unit
communication delay (UCT) problem is a straightforward
generalization of UET problem and has one of its
applications in multiprocessor environment. In
multiprocessor environments there are time delays between
the execution of dependent tasks on different processors.
These time delays are required to send the results of the
computation of a task from one processor to another.

Using the popular three field notation UCT problem can
be denoted as max| , 1, 1|j ijP prec p c L= = and can be
described as follows: Suppose that a set N = {1, ..., n} of n
tasks is to be processed on m > 1 identical processors
subject to precedence constraints in the form of an
anti-reflexive, anti-symmetric and transitive relation on N.
If task i precedes task j, denoted i j→ , then processing
of task i must be completed before task j can begin its
processing. It is convenient to represent a partially ordered
set of tasks by an acyclic directed graph where nodes
correspond to the tasks and the arcs reflect the precedence
constraints. Each task can be processed on any processor,
and once a processor begins executing a task then it
continues until completion (i.e. no preemptions are
allowed). The processing starts at time t = 0. Each task j ∈
N has a due date dj, the desired point in time by which the
processing should be completed. Each processor can
process at most one task at a time. All the tasks have the
same processing time which, without loss of generality, can
be taken as the unit of time.

Since no preemptions are allowed, to specify a schedule
s it suffices to designate for each task j ∈ N a processor
and its completion time ().jC s If task j has a completion
time (),jC s then its processing commences at time

() 1.jC s − Due to unit communication delay, if two tasks i
and j such that →i j are processed on different
processor then () () 2.j iC s C s≥ + Since the processing of
the tasks commences at t = 0 and each task requires one
unit of time, without loss of generality, we will consider
only schedules in which all completion times are positive
integers. The goal is to find a schedule which minimizes
the criterion of maximum lateness

max () (()).max j j
j N

L s C s d
∈

= −

If all due dates are equal to zero this problem converts

to the makespan problem with the criterion

max () max ().aa N
C s C s

∈
=

The makespan problem, and therefore the maximum

lateness problem, is NP-hard as shown by Rayward-Smith
(1987). Moreover, this makespan problem remains
NP-hard even if the partially ordered set of tasks is
represented by an in-tree (Lenstra et al. (1996)). Several
polynomial time algorithms were developed for various
particular cases by Finta et al. (1996), Lenstra et al. (1996),
Verriet (2000) and Singh (2005). It was also shown in
Rayward-Smith (1987) that the worst-case performance of
an arbitrary list schedule can be characterized as

International Journal of
Operations Research

1813-713X Copyright © 2007 ORSTW

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

91

*
max max

2 1() 3 () 2 ,LSC s C s
m m

 ≤ − − −

where sLS is a schedule constructed by an arbitrary list
algorithm and s∗ is an optimal schedule for the

max| , 1, 1|j ijP prec p c C= = problem. An example is
presented in Rayward-Smith (1987) to show that this
performance guarantee is asymptotically achievable.

As far as the max| , 1, 1|j ijP prec p c L= = problem is
concerned, only few results are known and have been
obtained very recently by Singh (2005, 2001), Verriet
(2000). Verriet (2000) shows that a straightforward
extension of the Garey-Johnson algorithm presented in
Garey and Johnson (1976) for the max2| , 1|jP prec p L=
problem also solves the max2| , 1, 1|j ijP outtree p c L= =
problem, and its worst-case performance can be
characterized as

*

max max
2 2() 2 () 1 (1),maxV

j
j N

L s L s d
m m ∈

 ≤ − + − +

where sV is a schedule constructed by the algorithm
presented in Verriet (2000) and s∗ is an optimal schedule
for the max| , 1, 1|j ijP outtree p c L= = problem. In Singh
(2001) an extension of the Brucker-Garey-Johnson
algorithm presented in Brucker et al. (1977) is presented,
with the worst-case performance guarantee as

*

max max
1() () 2 (),D mL s L s w m

m
− − ≤ −

l

where sD is a schedule constructed by the algorithm
presented in Singh (2001), s∗ is an optimal schedule for the

max| , 1, 1|j ijP prec p c L= = problem, l is the length of
the longest path in the corresponding graph and

1 for odd

()

1 otherwise

m m
m

w m

−
=

Unlike other known performance guarantees of

Rayward-Smith (1987), Verriet (2000) for problems with
communication delay the performance guarantee in Singh
(2001) is tight for arbitrary large instances of the

max| , 1, 1|j ijP prec p c L= = problem. Singh (2005)
shows that the worst-case performance of the
Brucker-Garey-Johnson algorithm presented in Brucker et
al. (1977) for the max| , 1, 1|j ijP outforest p c L= =
problem is

*

max max
1 1() 2 () 1 (),maxD

j
j N

L s L s d
m m ∈

 ≤ − + −

where sD is a schedule constructed by the algorithm
presented in Singh (2005) and s∗ is an optimal schedule for
the max| , 1, 1|j ijP outforest p c L= = problem. It is also
shown that the presented algorithm solves the

max| , 1, 1|j ijP outforest p c L∞ = = problem. Here the
term ∞P indicates that the number of processors are
unlimited or sufficiently large. Singh (2005) also presents
another polynomial time algorithm which solves the

max2| , 1, 1|j ijP outforest p c L= = problem.

For the max| , 1|jP prec p L= problem the worst-case
performance of the Brucker-Garey-Johnson algorithm
presented in Brucker et al. (1977) has been analyzed in
Singh and Zinder (2000a, 2000b), with the following
performance guarantees

*

max max
1 1() 2 () 1 (1)maxBGJ

j
j N

L s L s d
m m ∈

 ≤ − + − −

 (1)

and

*

max max() ()

1min 1, if

0 otherwise

BGJL s L s

n l m n l m
m m

−

 − − − − ≥ ≤

l (2)

In this paper we present performance guarantees which

as a particular case give the performance guarantees (1) and
(2). Thus, our results, in some sense, generalize the
performance guarantees in Singh and Zinder (2000a,
2000b).

2. THE WORST-CASE PERFORMANCE OF THE

BRUCKER-GAREY-JOHNSON ALGORITHM

Both the Brucker-Garey-Johnson algorithm (Brucker et
al. (1977)) and Hu’s algorithm (Hu (1961)) can be viewed
as a two phase procedures. The first phase of each
algorithm assigns to each task a number indicating the
urgency of the task. The second phase schedules the tasks
to processors in accord with the task’s urgency. In this
section we consider the max| , 1, 1|j ijP prec p c L= =
problem and analyze the worst-case performance of a
generalization of the Brucker-Garey-Johnson algorithm
(Brucker et al. (1977)) presented in Singh (2001). For
completeness, we present the algorithm below.

Let ()K j ′ be the set of all immediate successors of
some arbitrary task .j ′ A task i is an immediate successor
of task j ′ if j i′ → and there is no task i ′ such that
j i i′ ′→ → . Let j be an arbitrary task such that
()K j ≠ ∅ , and let 1 ()j K j∈ satisfy ()1

.min i K jj id d∈=

For an arbitrary schedule s, denote

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

92

()jL s

1

1 [() { }]1

() 1 , | ()| 1

max{ () 1 , () 2 }, | ()| 1.min
j j

j j j i
i K j j

C s d if K j

C s d C s d if K j
∈ −

+ − == + − + − >

Since task j1 can be processed only after the completion of
task j, and at most one task from the set K(j) can be
scheduled immediately after task j, we have

max () max{ (), () }.j j jL s L s C s d≥ −

Therefore, the replacement of the original due dates by

due dates ′jd calculated according to the following
algorithm does not change the value Lmax(s) for all feasible
schedules s.

Algorithm 1. Due date modification algorithm for the
model with a unit communication delay

for each task j such that ()K j = ∅ do j jd d′ =
while there is a task j which has not been assigned its modified due
date ′jd and all of whose immediate successors have been assigned
their modified due dates do

Select 1 ()j K j∈ such that ()1 min i K jj id d∈′ ′= and set

1

1 [() { }]1

min{ , 1}, | ()| 1

min{ , 1, { 2}}, | ()| 1min
j j

j
j j i

i K j j

d d if K j
d d d d if K j

∈ −

′ − =′ = ′ ′− − >

To construct the desired schedule we arrange the tasks

in a list, L, in nondecreasing order of their modified due
dates and apply the following algorithm. We will say that a
task is available for processing in some time slot, if this
task has no unscheduled predecessors and there is an idle
processor which can process this task in that time slot.

Algorithm 2. List scheduling with communication delay

Set t = 0 and A = ∅
while L ≠ ∅ do

repeat
Scan the list from left to right and select the first task
available for processing. Let it be task j.
if task j can be processed in the time slot t on only one specific

processor then
assign j to that processor

else { }A A j= ∪
\{ }L L j=

until | |A becomes equal to the number of processors which
remain idle, or the end of the list is reached
Allocate the tasks from A to the idle processors
Set t = t + 1 and A = ∅

Let sD be a schedule constructed by the above algorithm.

From the set of all tasks v such that

max() (),D D
v vC s d L s′− =

choose a task p with the smallest completion time. Let M(p)
be the set of all tasks j ∈ N such that j pd d′ ′≤ . It is easy to
see that for any task i ∈ M(p), the inequality Ci(sD) ≤ Cp(sD)
holds, and that any predecessor of a task from M(p) also
belongs to M(p). If Cp(sD) = 1, then sD is optimal, so let us
assume that Cp(sD) > 1. For any positive integer t < Cp(sD),
we say that the time slot t is complete, if exactly m tasks
from M(p) are processed on the time interval [t − 1, t], and
the time slot t is incomplete, if the number of tasks from
M(p) which are processed on the time interval [t − 1, t] is
greater than or equal to one but less than m. Because of
communication delay a time slot t may contain no tasks
from M(p) at all. In this case we will call this time slot
empty. Corresponding to this classification of time slots we
introduce the following notations. Let lc(t), li(t), and l0(t) be
the number of complete, incomplete, and empty time slots
before time slot t. Because we consider a model with a unit
communication delay, in a list schedule for any empty time
slot t the time slot t − 1 is either complete or incomplete.
The number of empty time slots ′t such that t t′ < and
the time slot 1t ′ − is complete will be denoted by l0c(t).
Correspondingly, the numbers of empty time slots t ′
such that <t t′ and the time slot 1t ′ − is incomplete
will be denoted by l0i(t). Hence, for any t, l0(t) = l0c(t) + l0i(t).
It is also convenient to introduce the following notation.
Consider an arbitrary task j and all paths, which terminate
at the node corresponding to j in the graph representing
the partially ordered set of tasks. Let ()jl be the length
of the longest of these paths. For every pair of tasks i and j
such that j ∈ K(i), let

′

′

′∈
 ′ ≠ = +

′ →= ′ ≠ =

if there is a task () such that

 and () () 1;

1
or, if there is a task such that

(,)
 and () ().

0

D D
j i

D D
i i

j K i

j j C s C s

i j
C i j

i i C s C s

otherwise

Let for any task j, ()P j be the set of all vectors

(i1, i2, …, ik = j), where each vector represents a path
terminating on task j, i.e. 1 2 = .ki i i j→ →… Then we
define

1

1
(,...,) () =11

() = (,)max
k

k

x x
i i j P j x

Com j C i i
−

+
= ∈

∑ (3)

Note that Com(j) computes the maximum amount of

communication delay incurred in the schedule sD for task j.

Lemma 1. The time slot Cp(sD) − 1 is either complete or
the time slot Cp(sD) − 2 contains at least two predecessors

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

93

of task p.

Proof. Suppose that there exists a task j such that Cj(sD) =
Cp(sD) − 1 and j → p. Then ′ ′≤ −1j pd d and Cj(sD) − jd ′ ≥
Cj(sD) + 1 − pd ′ = Cp(sD) − ,pd ′ which contradicts the
selection of task p.

If the time slot Cp(sD) − 1 is empty then the time slot
Cp(sD) − 2 must contain at least two predecessors of task p,
which proves the lemma.

Suppose the time slot Cp(sD) − 1 is incomplete. As has
been shown above, time slot Cp(sD) − 1 does not contains a
predecessor of task p. Therefore, the time slot Cp(sD) − 2
contains a predecessor of task p. Suppose the time slot
Cp(sD) − 2 contains exactly one predecessor of task p, say
task j. Since the time slot Cp(sD) − 1 is incomplete and task
p was not scheduled on this time slot, another successor of
j, say j ′ , was processed during this time slot. As j ′ was
preferred in place of p, we have j pd d′′ ′≤ . Then, by the

due date modification algorithm, 2j pd d′ ′≤ − and Cj(sD)
− jd ′ ≥ Cj(sD) + 2 − pd ′ = Cp(sD) − ,pd ′ which again
contradicts the selection of task p. Hence if the time slot
Cp(sD) − 1 is incomplete then the time slot Cp(sD) − 2
contains at least two predecessors of task p.

Lemma 2. For any task j,

0 0() () 1 2 (()) (()) (()).D D D
j i j i jj Com j l C s l C s l C s+ ≥ + + −l

 (4)

Proof. We will prove (4) by induction on l0(Cj(sD)) +
li(Cj(sD)). Since any path which terminates at some node
includes this node, ≥l() 1j . Therefore, if l0(Cj(sD)) +
li(Cj(sD)) = 0, then (4) holds as Com(j) ≥ 0. Suppose that
l0(Cj(sD)) + li(Cj(sD)) = 1. The existence of time slot t such
that t < Cj(sD) and is either incomplete or empty indicates
that task j has a predecessor, because otherwise according
to the list algorithm task j can be processed on the time
interval [t − 1, t]. Therefore, () 2j ≥l . Also, if l0(Cj(sD)) = 1
then li(Cj(sD)) = 0 and Com(j) ≥ 1,or if li(Cj(sD)) = 1 then
li(Cj(sD)) = 0 and Com(j) ≥ 0. In either case, it is easy to see
that (4) holds.

Suppose that for each task ′j such that

0 (()) (())D D
j i jl C s l C s k′ ′+ ≤

0 0

() ()

1 2 (()) (()) (()).D D D
j i j i j

j Com j

l C s l C s l C s′ ′ ′

′ ′+

≥ + + −

l
 (5)

Let j be a task satisfying l0(Cj(sD)) + li(Cj(sD)) = k + 1.

Among all non-negative integers t such that t < Cj(sD) and
the time slot t is either incomplete or empty, select the
largest one. Let it be .t ′ If the time slot t ′ is empty,
then the time slot 1t ′ − contains at least two

predecessors of task j. Denote one of the predecessors by
.j ′ We have

0 0(()) (()) (()) (()),D D D D
i j i j i j i jl C s l C s l C s l C s′ ′− = −

0 0(()) 1 (())D D
j jl C s l C s′ + =

and () () 1,Com j Com j ′≥ + which together with

() () 1j j ′≥ +l l and (5) leads to (4).
If the time slot t ′ is incomplete, then either time slot

t ′ or 1t ′ − contains a predecessor of task j. Again
denote this predecessor by j ′ . If ()D

jC s t′ ′= , we have

() ()Com j Com j ′≥ and 0(()) (()) 1D D
i j i jl C s l C s′ ′− +

0(()) (())D D
i j i jl C s l C s≥ −

Therefore using (5), we get

0 0

0 0

() () () () 1

1 2 (()) (()) (()) 1

1 2 (()) (()) (()),

D D D
j i j i j

D D D
j i j i j

j Com j j Com j
l C s l C s l C s

l C s l C s l C s
′ ′ ′

′ ′+ ≥ + +

≥ + + − +

≥ + + −

l l
,

which proves the lemma in this case.

If () 1D
jC s t′ ′= − , then either another successor of task

j ′ is processed on the time slot t ′ or at least two
predecessors of task j are processed on the time slot 1t ′ − ,
as otherwise task j should have been processed on the time
slot t ′ . In either case, we have () () 1Com j Com j ′≥ + and

0 0(()) (()) 2 (()) (()).D D D D
i j i j i j i jl C s l C s l C s l C s′ ′− + ≥ −

Therefore, using (5), we get

0 0

0 0

() () () () 2

1 2 (()) (()) (()) 2

1 2 (()) (()) (()),

D D D
j i j i j

D D D
j i j i j

j Com j j Com j
l C s l C s l C s

l C s l C s l C s
′ ′ ′

′ ′+ ≥ + +

≥ + + − +

≥ + + −

l l

which completes the proof.

Lemma 3. For any task ()j M p∈ and for any schedule
s,

0 0

() ()

1 3 (()) (()) (()).
j

D D D
j i j i j

C s Com j

l C s l C s l C s

+

≥ + + −
 (6)

Proof. We will again prove (6) by induction on l0(Cj(sD)) +
li(Cj(sD)). Since for any task j in any schedule s we have Cj(s)
≥ 1 and Com(j) ≥ 0, clearly (6) holds if l0(Cj(sD)) + li(Cj(sD)) =
0. Suppose that l0(Cj(sD)) + li(Cj(sD)) = 1. If l0(Cj(sD)) = 1 and
li(Cj(sD)) = 0, then the existence of an empty time slot
indicates that task j has at least two predecessors, and
therefore, due to a unit communication delay, in any
schedule s, Cj(s) ≥ 3 and Com(j) ≥ 1. On the other hand, if
l0(Cj(sD)) = 0 and li(Cj(sD)) = 1, then the existence of an
incomplete time slot indicates that task j has a predecessor,
and therefore, in any schedule s, Cj(s) ≥ 2 and Com(j) ≥ 0.
In either case, it is easy to see that (6) holds. Suppose that

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

94

for each task j ′ such that

0 (()) (())D D
j i jl C s l C s k′ ′+ ≤

0 0

() ()

1 3 (()) (()) (()).
j

D D D
j i j i j

C s Com j

l C s l C s l C s
′

′ ′ ′

′+

≥ + + −
 (7)

Let j be a task satisfying l0(Cj(sD)) + li(Cj(sD)) = k + 1.

Among all positive integers t such that t < Cj(sD), and the
time slot t is either incomplete or empty, select the largest
one. Let it be .t ′ If the time slot t ′ is empty then the
time slot 1t ′ − contains at least two predecessors of j,
and therefore for at least one of the predecessors, ,j ′ due
to unit communication delay, () () 2j jC s C s′≥ + and

() () 1Com j Com j ′≥ + . Using these inequalities together
with

0 0

0 0

(()) 1 (()),

(()) (()) (()) (()),

D D
j j

D D D D
i j i j i j i j

l C s l C s

l C s l C s l C s l C s
′

′ ′

+ =

− = −

and (7), it is easy to see that in this case (6) holds.

If the time slot t ′ is incomplete, then either the time
slot t ′ or 1t ′ − contains a predecessor of task j. Again,
denote this predecessor as .j ′ If () ,D

jC s t′ ′= then

0 0

0

0

(()) (()),

() (), () 1 (),

(()) (()) 1

(()) (()),

D D
j j

j j

D D
i j i j

D D
i j i j

l C s l C s
Com j Com j C s C s

l C s l C s

l C s l C s

′

′

′ ′

=

′ ≤ + ≤

− +

= −

which together with (7) gives (6). If () 1D

jC s t′ ′= − , then
either another successor of j ′ is processed during the
incomplete time slot t ′ or j has at least two predecessors
processed during the time slot 1t ′ − , as otherwise due to
list scheduling task j should have been processed during
this incomplete time slot .t ′ In either case,

0 0

0

0

(()) (()),

() 1 (), () 1 (),

(()) (()) 2

(()) (()),

D D
j j

j j

D D
i j i j

D D
i j i j

l C s l C s

Com j Com j C s C s

l C s l C s

l C s l C s

′

′

′ ′

=

′ + ≤ + ≤

− +

≥ −

which together with (7) gives

0 0

0 0

() () () () 2

1 3 (()) (()) (()) 2

1 3 (()) (()) (()),

j j

D D D
j i j i j

D D D
j i j i j

C s Com j C s Com j

l C s l C s l C s

l C s l C s l C s

′

′ ′ ′

′+ ≥ + +

≥ + + − +

≥ + + −

and therefore completes the proof.

Lemma 4. If the time slot Cp(sD) − 1 is not empty, then for
any schedule s

∈
+ ≥ +

′+ − −

max 0

0

() () 2 3 (())max

(()) (()) .

D
p

k N
D D

i p i p p

L s Com k l C s

l C s l C s d
 (8)

Proof. Let U be the set comprising all tasks from M(p) in
the time slot Cp(sD) − 1 and task p. By Lemma 1 the time
slot Cp(sD) − 1 is either complete or the time slot Cp(sD) − 2
contains at least two predecessors of task p.

If the time slot Cp(sD) − 1 is complete, then |U| = m + 1
and therefore for any schedule s there is a task j ∈ U such
that () () 1.max i j

i U
C s C s

∈
≥ + Using this inequality together

with Lemma 3 and the obvious equalities l0(Cj(sD)) =
l0(Cp(sD)) and li(Cj(sD)) = li(Cp(sD)), we get

∈ ∈

∈

′+ ≥ − +

′ ′≥ − + ≥ + + −

′≥ + + − + −

′= + + − −

max

0 0

0 0

() () (()) ()max max

() () () 1 ()max

1 3 (()) (()) (()) 1

2 3 (()) (()) (()) .

i i
k N i U

i p j p
i U

D D D
j i j i j p

D D D
p i p i p p

L s Com k C s d Com j

C s d Com j C s Com j d

l C s l C s l C s d

l C s l C s l C s d

If the time slot Cp(sD) − 1 is incomplete then by Lemma

1 the time slot Cp(sD) − 2 contains at least two
predecessors of task p. Therefore, in any schedule s for at
least one of such predecessors j, from Lemma 3 together
with the obvious inequalities l0(Cj(sD)) = l0(Cp(sD)), li(Cj(sD))
+ 2 ≥ li(Cp(sD)) , and Com(p) ≥ Com(j) + 1, we have

∈
′+ ≥ + −

′≥ + + + −

′≥ + + − + −

′≥ + + − −

max

0 0

0 0

() () () ()max

() 2 () 1

1 3 (()) (()) (()) 3

2 3 (()) (()) (()) .

p p
k N

j p

D D D
j i j i j p

D D D
p i p i p p

L s Com k C s Com p d

C s Com j d

l C s l C s l C s d

l C s l C s l C s d

This completes the proof.

Theorem 5. If s* is an optimal schedule for the maximum
lateness problem then

∈ ∈

 ≤ −

 + − + −

*
max max

1() 2 ()

11 () 1 .max max

D

j
j N k N

L s L s
m

d Com k
m

 (9)

Proof. If the time slot Cp(sD) − 1 is empty then l0(Cp(sD)) ≥
1, and therefore by Lemma 3

max

0

()

()

1 (()) (()) (())

D

D
p p

D D D
c p p i p p

L s

C s d

l C s l C s l C s d

′= −

′= + + + −

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

95

′= + + + + −

+ +
= + +

− ′+ + + − −

′≤ −

− + + + +

0 0

0
0

0

0 0

1 (()) (()) (()) (())

(()) (()) 1
(()) (())

1 11 ((()) (()))

| ()|

1 (1 2 (()) (()) (

D D D D
c p c p i p i p p

D D
i p i pD D

c p c p

D D
i p i p p

p

D D
c p i p i

l C s l C s l C s l C s d

l C s l C s
l C s l C s

m
m l C s l C s d

m m
M p d

m
m l C s l C s l C

m
≤

− + + + −

=

− + + + −

− −

− ′ ′≤ + + − + −

 ≤ −

*
max

0 0

*
max

0 0

0

* *
max

()))

()
1 (1 2 (()) (()) (()))

()
1 (1 3 (()) (()) (()))

1
(())

1() (() () 1)

12

D
p

D D D
p i p i p

D D D
p i p i p

D
p

p p p

s

L s
m l C s l C s l C s

m
L s
m l C s l C s l C s

m
m l C s

m
mL s C s Com p d d

m

m ∈ ∈

 + − + −
*

max
1() 1 () 1 ,max maxj

j N k N
L s d Com k

m

which proves the theorem in this case.

If the time slot Cp(sD) − 1 is not empty, then from
Lemma 4, and as above we have

()

∈

≤

− + + + −

≤

− + + + −

− − +

− ′≤ + + + −

≤ −

max

*
max

0 0

*
max

0 0

0

* *
max max

()

()
1 (1 2 (()) (()) (()))

()
1 (2 3 (()) (()) (()))

1 1 (())

1() (() () 1)max

2

D

D D D
p i p i p

D D D
p i p i p

D
p

p
k N

L s

L s
m l C s l C s l C s

m
L s
m l C s l C s l C s

m
m l C s

m
mL s L s d Com k

m

∈ ∈

 + − + −
*

max
1 1() 1 () 1 .max max j

j N k N
L s d Com k

m m

Therefore proves the theorem in this case as well and

also completes the proof.

Note that in the case when communication delays are

zero the max| , 1, 1|j ijP prec p c L= = problem converts

to the max| , 1|jP prec p L= problem, and in this case (9)
gives (1).

Theorem 6. If *s is an optimal schedule for the maximum
lateness problem, then

*
max max() ()

1 1 1min 1, (), fmax

1 (), otherwisemax

D

k N

k N

L s L s

n m m Com k i n m
m m m

m Com k
m

∈

∈

− ≤

− + − − − + − ≥

−

l l l

(10)

where n is the number of tasks and l is the length of the
longest path in the corresponding graph.

Proof. It is easy to see that schedule sD is optimal, and
therefore (10) holds, if Cp(sD) − 1. As shown before, sD is
also optimal when Cp(sD) > 1 and li(Cp(sD)) + l0(Cp(sD)) = 0.
Hence, we only need to prove that (10) holds when Cp(sD)
> 1, and li(Cp(sD)) + l0(Cp(sD)) > 0. Since ()pl is the length
of a longest path in the subgraph corresponding to the set
M(p), we have *

max () () pL s p d ′≥ −l . Suppose that
*

max () () 1 pL s p d ′≥ + −l . By Lemma 2 we get

max

0

0 0

0
0

0

()

()

1 (()) (()) (())

1 (()) (()) (()) (())

(()) (()) 1
(()) (())

1
(1 (()) (()))

D

D
p p

D D D
c p p i p p

D D D D
c p c p i p i p p

D D
i p i pD D

c p c p

D D
i p i p p

L s

C s d

l C s l C s l C s d

l C s l C s l C s l C s d

l C s l C s
l C s l C s

m
m l C s l C s d

m

′= −

′= + + + −

′= + + + + −

+ +
= + +

− ′+ + + −

()

()

0 0

max

| ()|

1 1 2 (()) (()) (())

| ()| 1 () ()

| ()| () 1() ()max

| ()| () 1 1*() 1 ().max

D D D
c p i p i p p

p

p
k N

k N

M p
m

m l C s l C s l C s d
m

M p m p Com p d
m m

M p p mp d Com k
m m

M p p mL s Com k
m m

∈

∈

≤

− ′+ + + + −

− ′≤ + + −

− − ′= + − +

− + − ≤ + − +

l

l l

l

Hence,

∈

−

− + − ≤ − +

l

*
max max() ()
| | () 1 11 ().max

D

k N

L s L s
M p m Com k

m m
 (11)

Now suppose that *

max () () pL s p d ′= −l and the time

slot Cp(sD) − 1 is empty. Then, we have *
()max ()j M p jC s∈

().p= l Hence, by Lemma 3

0() 1 3 (()) (()) (()) (),D D D
p i p oi pp l C s l C s l C s Com p≥ + + − −l

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

96

We have

′ ′= − = + + + −

′= + + + + −

+ +
= + +

− ′+ + + −

max

0

0 0

0
0

0

()

() 1 (()) (()) (())

1 (()) (()) (()) (())

(()) (()) 1
(()) (())

1 (1 (()) (()))

D

D D D D
p p c p p i p p

D D D D
c p c p i p i p p

D D
i p i pD D

c p c p

D D
i p i p p

L s

C s d l C s l C s l C s d

l C s l C s l C s l C s d

l C s l C s
l C s l C s

m
m l C s l C s d

m

∈

− ≤ + + +

′+ −

− ′≤ + + − −

− + − ′≤ − + − +

l

l l

0 0

0

| ()| 1 (1 2 (()) (())

(()))

| ()| 1 (() () (()))

| ()| () 1 11 () ().max

D D
c p i p

D
i p p

D
p p

p
k N

M p m l C s l C s
m m

l C s d

M p m p Com p l C s d
m m

M p p mp d Com k
m m

and, subtracting *

max () () ,pL s p d ′= −l we again obtain
(11).

Now suppose that *
max () () pL s p d ′= −l and the time

slot Cp(sD) − 1 is not empty. Then by Lemma 4 we have

∈ ∈
′+ = + +

≥ + + −

l *
max

0 0

() () () ()max max

2 3 (()) (()) (()).

p
k N k N

D D D
p i p i p

p Com k L s Com k d

l C s l C s l C s

Therefore,

′= −

′= + + + −

′= + + + + −

+ +
= + +

− ′+ + + −

max

0

0 0

0
0

0

()

()

1 (()) (()) (())

1 (()) (()) (()) (())

(()) (()) 1
(()) (())

1 (1 (()) (()))

D

D
p p

D D D
c p p i p p

D D D D
c p c p i p i p p

D D
i p i pD D

c p c p

D D
i p i p p

L s

C s d

l C s l C s l C s d

l C s l C s l C s l C s d

l C s l C s
l C s l C s

m
m l C s l C s d

m

∈

′≤ −

− + + + +

≤

− ′+ + − − − −

− + − ′≤ − + − +

l

l l

0 0

0

| ()|

1 (1 2 (()) (()) (()))

| ()|

1 1(() () (()) 1)

| ()| () 1 11 () ().max

p

D D D
c p i p i p

D
p p

p
k N

M p d
m

m l C s l C s l C s
m

M p
m

m p Com p l C s d
m m

M p p mp d Com k
m m

and, subtracting *

max () () pL s p d ′= −l , we again obtain(11).
Since n − |M(p)| (),p≥ −l l (11) gives

∈

−

− + − ≤ − +

l

*
max max() ()

1 11 ().max

D

k N

L s L s
n m Com k

m m
 (12)

Using Lemma 2, we have,

max

0

0 0

0
0

0

()

()

1 (()) (()) (())

1 (()) (()) (()) (())

(()) (()) 1
(()) (())

1 11 ((()) (()))

D

D
p p

D D D
c p p i p p

D D D D
c p c p i p i p p

D D
i p i pD D

c p c p

D D
i p i p

L s

C s d

l C s l C s l C s d

l C s l C s l C s l C s d

l C s l C s
l C s l C s

m
m l C s l C s

m m

′= −

′= + + + −

′= + + + + −

+ +
= + +

− + + + − −

pd ′

0 0

| ()|

1 (1 2 (()) (()) (()))

| ()| 1 (() ())

p

D D D
c p i p i p

p

M p d
m

m l C s l C s l C s
m

M p m p Com p d
m m

′≤ −

− + + + +

− ′≤ + + −

l

and subtracting the obvious inequality *

max ()L s
| ()|

p
M p d

m
′≥ − , we obtain

∈

−
− ≤ +l*

max max
1() () (()).max D

k N

mL s L s Com k
m

If − ≥ln m then the above inequality together with

(12) gives (10). On the other hand, if 1n m− ≤ −l then
from (12) we have

∈

− − ≤

*
max max

1() () ()maxD

k N

mL s L s Com k
m

and therefore proves (10) in this case as well.

It is easy to see that if there is no communication delay
then the max| , 1, 1|j ijP prec p c L= = problem converts

into the max| , 1|jP prec p L= problem, and in this case
the performance guarantees presented in Theorems 5 and
6, give the performance guarantees (1) and (2).

When all due dates are equal to zero the maximum
lateness problem converts to the makespan problem. In
this case, the algorithm of the due date modification with
communication delay, presented above, can be viewed as a
generalization of the well known Hu’s algorithm (critical
path) (Hu (1961)) for the model with a unit
communication delay and with jd ′− as the priority
associated with each task j. Hence, (10) gives the following
performance guarantees for the makespan problem,

Singh: Performance of Critical Path Type Algorithms with Communication Delay
IJOR Vol. 4, No. 2, 90−97(2007)

97

∈

∈

−

− + − −
−≤ + − ≥

−

l l

l

*
max max() ()

1 1min 1,

1 (), ifmax

1 (), otherwismax

CP

k N

k N

C s C s

n m
m m

m Com k n m
m

m Com k e
m

 (13)

where sCP is a schedule constructed by the critical path
method and s* is an optimal schedule for a unit
communication delay makespan problem.

3. CONCLUSIONS

We have consider the maximum lateness and makespan
problem with a unit execution time task system, unit
communication delay, precedence constraints, parallel
identical processors and presented performance guarantees
for the Brucker-Garey-Johnson and Hu’s algorithm. We
have presented a performance guarantee which establishes
the relationship between the deviation of the criterion
value from its optimum and the parameters characterizing
the problem. The presented performance guarantees in
some sense generalize the previously known performance
guarantees for these algorithms. Future research will be
directed towards arbitrary communication delays and
arbitrary processing times.

REFERENCES

1. Brucker, P., Garey, M.R., and Johnson, D.S. (1977).
Scheduling equal-length tasks under tree-like
precedence constraints to minimise maximum lateness.
Mathematics of Operations Research, 2: 275-284.

2. Finta, L., Liu, Z., Milis, I., and Bampis, E. (1996).
Scheduling UET-UCT series-parallel graphs on two
processors. Theoretical Computer Science, 162(2): 323-340.

3. Garey, M.R. and Johnson, D.S. (1976). Scheduling tasks
with nonuniform deadlines on two processors. Journal
of the Association for Computing Machinery, 23(3): 461-467.

4. Hu, T.C. (1961). Parallel sequencing and assembly line
problems. Operations Research, 9: 841-848.

5. Lenstra, J.K., Veldhorst, M., and Veltman, B. (1996).
The complexity of scheduling trees with
communication delays. Journal of Algorithms, 20(1):
157-173.

6. Rayward-Smith, V.J. (1987). UET scheduling with unit
interprocessor communication delays. Discrete Applied
Mathematics, 18: 55-71.

7. Singh, G. and Zinder, Y. (2000a). Worst-case
performance of two critical path type algorithms.
Asia-Pacific Journal of Operational Research, 17: 101-122.

8. Singh, G. and Zinder, Y. (2000b). Worst-case
performance of critical path type algorithms.
International Transactions in Operational Research, 7:
383-399.

9. Singh, G. (2001). Performance of critical path type
algorithms for scheduling on parallel processors,

Operations Research Letters, 29(1): 17-30.
10. Singh, G. (2005). Scheduling UET-UCT outforests to

minimize maximum lateness. European Journal of
Operational Research, 165(2): 468-478.

11. Verriet, J. (2000). Scheduling tree-like task systems with
non-uniform deadlines subject to unit-length
communication delays. Discrete Applied Mathematics, 101:
269-289.

