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AbstractGiven a set S = {S1, ..., Sk} of  finite strings, the k-longest common subsequence problem (k-LCSP) seeks a 
string L of  maximum length such that L is a subsequence of  each Si for i = 1, ..., k. This paper presents a technique, 
specialized branching, that solves k-LCSP. Specialized branching combines the benefits of  both dynamic programming and 
branch and bound to reduce the search space. For large k, this method is shown to be computationally superior to dynamic 
programming. 
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1. INTRODUCTION 

Given a finite alphabet set ∑  a string, also known as a 
sequence, is an ordered set of symbols drawn from ∑  
(repeats are allowed). A subsequence of a string is obtained 
by deleting 0 or more (not necessarily consecutive) symbols 
from the string. Given finite strings S1, ..., Sk, the k-longest 
common subsequence problem (k-LCSP) seeks a string L 
of maximum length such that L is a subsequence of each Si 
for i = 1, ..., k. The string L is referred to as the longest 
common subsequence (LCS) and |L| equals the length of 
the longest common subsequence (LLCS). This paper 
presents a new algorithm, called specialized branching (SB), 
that optimally solves k-LCSP instances. 

Finding the longest common subsequence is a 
combinatorial optimization problem with numerous 
applications. The majority of the applications use the LCS 
to compare the similarity between different sets of data. 
Some of these applications include: the homology of 
macromolecules such as proteins and nucleic acids 
(Dayhoff (1969), Smith and Waterman (1981), Sankoff and 
Kruskal (1983), Bafna et al. (1995) and Jiang et al. (2002)), 
file comparison (Hunt and McIlroy (1975), Hunt and 
Szymanski (1977), Aho et al. (1983)), artificial intelligence 
(Hayes (1989), Jiang and Li (1995)), data compression 
(Wagner (1973), Storer (1988)), syntactic pattern 
recognition (Lu and Fu (1978)), text editing (Sankoff and 
Kruskal (1983)), categorizing visitors based on their 
interactions on a website (Banerjee and Ghosh (2001)), 
query optimization in database systems (Sellis (1988)) and 
the production of smaller circuits in field programmable 
gate arrays (Brisk et al. (2004)). 

The status of k-LCSP is NP-complete in general (Maier 
(1978)), but solvable in polynomial time for any fixed k by 
dynamic programming (Wagner and Fischer (1974)). The 

majority of the research involving k-LCSP has been 
focused on instances where k = 2 and 3. However, Gallant 
et al. (1980), Itoga (1981), Hsu and Du (1984), Irving and 
Fraser (1992) and Hakata and Imai (1992) have all 
examined instances where k ≥ 4. The methodology, 
specialized branching, presented in this paper is a 
technique that can computationally solve k-LCSP for large 
k. 

The remainder of the paper is organized as follows. 
Section 2 explains algorithms that solve k-LCSP. Section 3 
provides computational results and the paper concludes in 
Section 4 with some conclusions and future research. 
 
2. ALGORITHMS THAT SOLVE k-LCSP 

This section presents two algorithms that solve k-LCSP. 
Dynamic programming (DP) has been extensively studied 
and works quickly when k = 2 or 3. A new method, 
specialized branching (SB), is presented here, which is a 
tree-searching algorithm and works quite well for k ≥ 6. An 
integer programming method (Singireddy (2003)) that 
solves k-LCSP was attempted, but specialized branching 
always dominated the integer programming technique. 
 
2.1 Dynamic programming 

Dynamic programming (DP) was the first method used 
to solve k-LCSP. Here, we provide a brief description of 
this method. The interested reader can find a more 
complete description in Larson (1968). Consider strings S1, 
S2, ..., Sk drawn from ∑ . For the remainder of the paper, 
we will assume that |S1| = |S2| = ... = |Sk| = n. If not, let 
n = max{|Si|: i = 1, ..., k}, then to each Si add on n − |Si| 
dummy letters. Trivially, such a transformation will not 
change the LCS. 
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If the first letter of each Si is equal, then by definition, 
the LCS must contain this symbol as the first symbol; if 
not, then the first letter of the LCS can be the first letter of 
any one of the sequences or another letter from .∑  
When any of these two cases occurs, dropping the 
appropriate symbol(s) from the corresponding string(s) 
does not change the LCS. This observation leads directly to 
the recursive nature of dynamic programming. 

Let 
1 ,..., ki iM  be the LLCS of the strings 

1 1

1 1 1
1 ... ,i iS s s= ..., 

= 1 ...
k k

k k k
i iS s s . The recursion formula from the k-LCSP is  
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where the boundary conditions are: 
 

=
1 ,..., 0

ki iM  if i1 = 0 or i2 = 0 or ... or ik = 0. 
 

The boundary conditions simply specify that the LLCS 
between any set of strings and the empty string is zero. 
Since calculating 

1 ,..., ki iM  requires a constant amount of 
effort, DP’s time and space requirements are both O(nk). 

When restricted to 2-LCSP, Hirshberg (1975) observed 
that calculating M1, 2 is dependent on its previous row and 
previous column in matrix M, which resulted in an 
algorithm with O(n2) time, but only O(n) space. Irving and 
Fraser (1992) and Hakata and Imai (1992) have extended 
this concept to arbitrary k and reduced either the run time 
or storage requirement from O(nk) to O(nk − 1). Even with 
these improvements, dynamic programming is not suitable 
to computationally solve k-LCSPs for k ≥ 7. 

Besides the exponential (in the number of sequences) 
storage and run time, an additional weakness of dynamic 
programming algorithms is that it does not use the 
inherent structure of the input sequences. That is, an 
individual can trivially verify that k sequences are identical; 
yet, dynamic programming will require the full O(nk) time 
and space to obtain the same conclusion. 

 
2.2 A specialized branching algorithm 

The specialized branching algorithm (SB) presented here 
is an enumeration algorithm that combines some aspects of 
dynamic programming and branch and bound (Land and 
Doig, (1960)) to limit its search tree. Unlike standard 
branch and bound, which has two child nodes under each 
node, when SB branches, | ∑ | child nodes are created. 
Each one of these nodes corresponds to one of the letters 
in .∑  Each node in SB’s search tree contains a k-tuple 
(i1, ..., ik), which describes the location of markers for each 
of the sequences. To determine the k-tuple of a child node, 
merely scan each sequence, beginning with the letter after 
the parent node’s marker, until the first occurrence of the 
child node’s letter is found. If at least one sequence doesn’t 
have this letter, then the child node is fathomed. Successful 

creation of a k-tuple indicates that the branches leading to 
the corresponding node represent a candidate common 
subsequence for the input sequences. It is important to 
observe that the depth of a node in this search tree equals 
the length of the current candidate common subsequence 
being created. Hence, the longest rooted path in the tree 
corresponds to the LLCS. 

Figure 1 illustrates this type of branching for a 4-LCSP 
instance created from TGAACGTC, GTAACGTT, 
TGCACTGA and TTGAGCTA. In Figure 1, the letters 
along the arcs represent the branched letter. Each node has 
a bolded number that corresponds to the order in which 
this node is explored, and a 4-tuple that corresponds to the 
markers in each of the 4 sequences. An E indicates that the 
end of at least one of the sequences occurred without 
finding the letter that should have been branched upon. BF 
and DF refer to the two new techniques presented here 
that can be used to fathom a node in the branching tree. 

Hsu and Du (1984) first proposed this branching 
strategy for k-LCSP. Hsu and Du’s method only stops this 
branching process if the end of a sequence is reached or if 
a k-tuple is identical to the k-tuple of another node in the 
tree. In such a case, an edge is added between these two 
nodes. For instance in Figure 1, nodes 24 and 20 would 
both have edges to node 3. Hsu and Du’s algorithm finds 
all maximal common subsequences by finding every path 
from the root node to a pendant node and then selects the 
longest such path for the LCS.  

In implementing SB, a depth-first search strategy is used 
to explore the tree. Theoretically, this doesn’t improve the 
run time, but in practice larger instances can be solved with 
this strategy than with a breadth-first search strategy due to 
memory constraints. Unlike Hsu and Du’s algorithm, 
which explores child nodes in a fixed alphabetic order, 
specialized branching explores child nodes according to the 
sorted order (smallest to largest) of the maximum ij with 
ties broken arbitrarily where ij is the marker of the jth 
sequence. With this “greedy” node selection rule and the 
use of depth first search, SB quickly provides a good 
solution to k-LCSP, which is stored. If at any point in the 
branching tree, a better solution is obtained, the better 
solution replaces the existing solution as the current best 
solution. 

While Hsu and Du’s algorithm only fathoms if there are 
no more letters left in at least one of the sequences or if 
two nodes have identical k-tuples, specialized branching 
introduces two new fathoming methods. One fathoming 
method is based upon branch and bound and is called 
bounded fathoming. The other method, dominance 
fathoming, is derived from the principles of dynamic 
programming. 

Let L′ represent the current best LCS at some point in 
specialized branching. A bounded fathom occurs at a node 
p of depth d if (n − max{i1, ..., ik}) + d ≤ |L′|. The length 
of the current common subsequence contained at node p is 
equal to its depth d, and at most n − max{i1, ..., ik} letters 
can be added to this current common subsequence. Hence, 
if the sum of these two quantities is no more than |L′|, 
then any common subsequence below node p cannot 
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improve the current best candidate LCS. Observe that 
bounded fathoming is a direct modification of the 
bounding in branch and bound. In Figure 1, node 16 can 
be bounded fathomed because at most two more letters 
can be added to the common subsequence contained at 
this node, which does not improve the current best 
common subsequence obtained at node 5 ((8 − 6) + 2 ≤ 4 
= |L′|) BF(5). 

Dominance fathoming is possible when an equally good 
or better start to a common subsequence has already been 
found. Given two common sequences L′ and L′′ , L′ is 
said to dominate L′′ if L′ = L′′ and i′jp ≤ i′′lp where i′jp and 
i′′lp represent the location of the last letter of L′ and L′′ in 
the pth sequence for all p = 1, ..., k. This principle is easy to 
verify and is the heart of DP. 

Although dominance fathoming is trivial to verify, care 
must be taken in implementing this fathoming technique 
because there can be a large number of nodes that could 
potentially be checked. The time spent checking for 
dominance fathoming could easily outweigh the benefit 
gained by fathoming. To simplify the number of 
comparisons and minimize storage space, SB tests for the 
possibility of dominance fathoming once at the creation of 
each node and compares this node’s common subsequence 
to the current best common subsequence. That is, if a 
created node is at depth d, then the location of the letter in 
each sequence at the current node is compared to the 

corresponding sequence location of the dth letter in the 
current best candidate solution L′. In Figure 1, a 
dominance fathom occurs at node 24 from the first letter 
of the current best solution, which is located at node 2 
DF(2). 

As mentioned Hsu and Du’s algorithm maintains a list 
of pointers to previously explored nodes so they can match 
identical k-tuples. Observe that dominance fathoming is 
stronger (fathoms more nodes) than Hsu and Du’s method. 
In addition, to determine whether a pointer can be created, 
their algorithm compares the current node to all previously 
created nodes. This may require a substantial amount of 
work and may negate any time reduction realized by 
storing fewer nodes. In contrast, specialized branching only 
requires a comparison to the current best candidate for the 
LCS. Thus, the memory associated with a node can be 
freed as soon as all of its descendant leaf nodes have been 
explored or fathomed, which improves memory 
management. 

All computational tests throughout this paper include 5 
instances of each problem size and were run on a 1.5 GHz. 
Pentium IV PC with 500 Mb of RAM. The run times are 
reported in seconds with a limit of 5 hours (18,000 
seconds). An N/A in any of the tables indicates that the 
problem could not be solved by the designated method 
within the 5-hour time limit. 

 
 

 
Figure 1. Sample specialized branching tree. 
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Although the bounded fathoming and dominance 

fathoming are relatively straightforward methods to prune 
the branching tree, the computational speed-ups are 
substantial. Table 2 is included to show the effects of both 
dominance and bounded fathoming. The 4-LCSP instances 
generated for Table 2 are randomly created and have | ∑ | 
= 4 with a .25 probability of choosing any letter. 

The importance of both dominance and bounded 
fathoming is obvious from the instances with 4 sequences 
each with 75 letters. With both fathoming techniques, all 5 
instances were solved in under an hour. With one 
fathoming technique, only 40% of the problems were 
solved in less than 5 hours. With no fathoming techniques, 
none of these 5 test instances were solved in less than 5 
hours. Since Hsu and Du’s algorithm is dominated by 
dominance fathoming, we expect that Hsu and Du’s 
method would have solved at most 40% of the problems in 
under 5 hours. 

The process of storing SB’s tree can require O(k| ∑ |r) 
where r is the LLCS. Thus, SB’s run time is O(k| ∑ |r), 
which is exponential in the LLCS. This time and space 
complexity can easily be seen since a full | ∑ | branching 
tree of depth r has less than 2| ∑ |r nodes for all | ∑ | ≥ 2 
and each node stores the current location of the k markers. 
For large r, the branching tree becomes intractable. 

 
3. COMPUTATIONAL RESULTS FOR DYNAMIC 

PROGRAMMING AND SPECIALIZED 
BRANCHING 

Table 3 compares SB to the standard dynamic 
programming approach. As above, the k-LCSP instances 
are randomly created and have | ∑ | = 4 with a .25 
probability of choosing any letter. The maximum and 
minimum along with the average values are reported for 
both the run time and the LLCS. Since the run times of 
each dynamic program with a given problem size are nearly 
identical (within 1 second), only the average time is 
reported. 

It can easily be seen that dynamic programming is more 
effective on the 2 and 4 sequence instances, but for more 
sequences, SB’s performance is vastly superior. The 
computational results follow the theoretical results as the 
time requirement for dynamic programming is O(nk), while 

SB has a O(k| ∑ |r) run time where r is the LLCS. It is 
anticipated that implementing a more advanced version 
(Hakata and Imai (1992), Hirschberg (1977), Irving and 
Fraser (1992)) of dynamic programming would decrease 
DP’s run times in Table 3. Briefly these advancements 
reduce either the theoretical run time or storage 
requirement from O(nk) to O(nk − 1). Thus, even these 
advanced versions of dynamic programming will still be 
computationally inferior to SB for any k ≥ 7. 

From the results in Table 3, we conclude that the length 
of the sequences and not the number of sequences limits 
SB, while the opposite is true for DP. In viewing Table 3, 
the reader may be surprised to see that the run times for 
the problems with 10 strings of length 75 require 
approximately 7 times longer than the problems with 50 
strings of length 75. The reason is straightforward and 
again follows the theoretical run time of SB. As expected, 
the 50 string problems have substantially smaller LCSs 
than do the 10 string problems. Therefore, the depths of 
SB’s search trees are smaller in the 50 string sequences 
than the 10 string instances, which accounts for the faster 
run time. 

Since Table 3’s problems were randomly generated, the 
LLCS’s are small. The instances in Table 4 are included to 
show the performance of SB if the LLCS is close to n. 
Here instances were created that guaranteed a LLCS of at 
least 90% or 95% of n. In Table 4, a surprising result is that 
SB could quickly solve large k-LCSP instances (100 
sequences with 500 letters each) when the LLCS is over 
90% of the length of the sequences. When this time is 
compared to the theoretical worst case run times of SB 
(O(4500)) or DP (O(500100)), SB’s speed is astounding. SB 
can solve these problems quickly because a near optimal 
solution is quickly obtained and the two fathoming 
techniques almost immediately fathom all other nodes. 

Up until now all of the computational results have had 
| ∑ | = 4, which is neither a small nor a large alphabet. 
Table 5 provides the performance of SB on instances for a 
variety of alphabet sizes. These instances are again 
randomly generated with each letter equally likely to be at 
any location in any string. This table helps provide the 
reader with the size of instances that SB can quickly solve 
and which instances require too much time. 

 
Table 2. Specialized branching with different types of fathoming 

No. of 
Strings 

String 
Length 

Type of Fathoming 
Number of 
Instances 

Solved 

Avg. Time of 
Solved 

Instances (Sec) 

Max − Min 
Time 

Neither of the fathoming techniques 5 out of 5 131.4 23 − 398 
Only dominance fathoming 5 out of 5 14.6 2 − 41 
Only bounded fathoming 5 out of 5 8.1 1 − 17 

4 50 

Both of the fathoming techniques 5 out of 5 1.0 0 − 3 
Neither of the fathoming techniques 0 out of 5 N/A N/A 

Only dominance fathoming 2 out of 5 5472 3829 − 4905 
Only bounded fathoming 2 out of 5 4367 1253 − 9691 

4 75 

Both of the fathoming techniques 5 out of 5 931 76 −1862 
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Table 3. Dynamic programming (DP) vs. specialized branching (SB) 
No. of 
Strings 

String 
Length 

Avg. 
LLCS 

Min − Max 
LLCS 

Avg. Time 
(DP) 

Avg. Time 
(SB) 

Min − Max 
Time (SB) 

25 14 12 − 15 0 0 0 − 0 
50 29 27 − 31 0 0 0 − 0 
75 45 44 − 47 0 44 2 − 108 
100 62 60 − 63 0 407 25 − 906 
1000 648 643 − 656 0 N/A N/A 

2 

10000 6526 6515 − 6541 17 N/A N/A 
25 9 7 − 10 0 0 0 − 0 
50 21 20 − 23 2 1 0 − 0 
75 33 30 − 35 9 931 76 − 1862 
100 45 44 − 46 45 N/A N/A 

4 

1000 N/A N/A N/A N/A N/A 
25 8 7 − 8 N/A 0 0 − 0 
50 17 16 − 18 N/A 3 1 − 6 
75 29 27 − 29 N/A 2936 1141 − 5793 

6 

100 N/A N/A N/A N/A N/A 
25 7 6 − 7 N/A 0 0 − 0 
50 15 14 − 16 N/A 2 1 − 4 
75 24 23 − 26 N/A 3731 1610 − 6982 

10 

100 N/A N/A N/A N/A N/A 
25 3 3 − 4 N/A 0 0 − 0 
50 10 10 − 11 N/A 1 0 − 1 
75 17 17 − 18 N/A 505 259 − 939 

50 

100 N/A N/A N/A N/A N/A 
25 3 2 − 3 N/A 0 0 − 0 
50 9 8 − 9 N/A 0 0 − 1 
75 15 15 − 16 N/A 320 206 − 460 

100 

100 N/A N/A N/A N/A N/A 
25 1 1 − 1 N/A 0 0 − 0 
50 6 5 − 6 N/A 1 1 − 1 
75 11 11 − 11 N/A 372 310 − 547 

1000 

100 N/A N/A N/A N/A N/A 
 

Table 4. SB on k-LCSP instances with similar strings 
No. of 
Strings 

String 
Length 

Minimum % of LCS Avg. LLCS Avg. Running Time (sec) 

> 90% 459 80 500 
> 95% 479 2 
> 90% N/A N/A 

10 
1000 

> 95% 959 62 
> 90% 459 325 500 
> 95% 479 15 
> 90% N/A N/A 

50 
1000 

> 95% 959 263 
> 90% 459 1633 500 
> 95% 479 37 
> 90% N/A N/A 

100 
1000 

> 95% 959 1104 
 

 
4. CONCLUSIONS AND FUTURE RESEARCH 

This paper introduced both dominance and bounded 
fathoming and incorporated them into a specialized 
branching technique (SB) to optimally solve k-LCSP 
problems. Various computational results demonstrated that 

SB is the best known technique to optimally solve k-LCSP 
for k ≥ 7. 

The substantial computational benefit created by using 
both dominance and bounded fathoming creates the 
following important research questions. Is there a way to 
apply dominance fathoming in a generic branch and bound 
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routine? That is, by knowing the best solution thus far, can 
one fathom a node since it will never lead to a better 
solution because the current best solution has a better 
“start” than the current node. Such a technique could 
greatly improve the speed of commercial integer 
programming codes. 

 
Table 5. SB on k-LCSP instances with various size 

alphabets 

Size of 
Alphabet 

No. of 
Strings 

Length 
of each 
String 

Avg. 
LLCS 

Avg. 
Running 
Time Sec. 

25 13.8 0.05 
50 31.2 0.4 
75 46 94.8 

5 

100 N/A N/A 
25 9.2 0.01 
50 21.6 5.6 
75 35.8 1836.4 

2 

50 

100 N/A N/A 
50 9.8 1 
75 16.4 14.6 
100 22.8 2187 

5 

125 N/A N/A 
100 8.4 6.2 
125 11.6 798.2 
150 16.2 3112 

10 

50 

175 N/A N/A 
100 10.4 1.6 
125 14.2 28.4 
150 17.8 3486 

5 

175 N/A N/A 
150 4.4 1 
200 7.2 14 
250 10.2 3344 

25 

50 

300 N/A N/A 
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