
International Journal of Operations Research Vol. 4, No. 2, 98-104 (2007)

A Specialized Branching and Fathoming Technique for The Longest
Common Subsequence Problem

Todd Easton∗ and Abhilash Singireddy

237 Durland Hall, School of Industrial and Manufacturing Systems Engineering, Kansas State, University, Manhattan,
Kansas, 66506

Received January 2006; Revised October 2006; Accepted December 2006

AbstractGiven a set S = {S1, ..., Sk} of finite strings, the k-longest common subsequence problem (k-LCSP) seeks a
string L of maximum length such that L is a subsequence of each Si for i = 1, ..., k. This paper presents a technique,
specialized branching, that solves k-LCSP. Specialized branching combines the benefits of both dynamic programming and
branch and bound to reduce the search space. For large k, this method is shown to be computationally superior to dynamic
programming.
KeywordsLongest common subsequence, Branch and bound, Dynamic programming

∗ Corresponding author’s email: teaston@ksu.edu

1. INTRODUCTION

Given a finite alphabet set ∑ a string, also known as a
sequence, is an ordered set of symbols drawn from ∑
(repeats are allowed). A subsequence of a string is obtained
by deleting 0 or more (not necessarily consecutive) symbols
from the string. Given finite strings S1, ..., Sk, the k-longest
common subsequence problem (k-LCSP) seeks a string L
of maximum length such that L is a subsequence of each Si
for i = 1, ..., k. The string L is referred to as the longest
common subsequence (LCS) and |L| equals the length of
the longest common subsequence (LLCS). This paper
presents a new algorithm, called specialized branching (SB),
that optimally solves k-LCSP instances.

Finding the longest common subsequence is a
combinatorial optimization problem with numerous
applications. The majority of the applications use the LCS
to compare the similarity between different sets of data.
Some of these applications include: the homology of
macromolecules such as proteins and nucleic acids
(Dayhoff (1969), Smith and Waterman (1981), Sankoff and
Kruskal (1983), Bafna et al. (1995) and Jiang et al. (2002)),
file comparison (Hunt and McIlroy (1975), Hunt and
Szymanski (1977), Aho et al. (1983)), artificial intelligence
(Hayes (1989), Jiang and Li (1995)), data compression
(Wagner (1973), Storer (1988)), syntactic pattern
recognition (Lu and Fu (1978)), text editing (Sankoff and
Kruskal (1983)), categorizing visitors based on their
interactions on a website (Banerjee and Ghosh (2001)),
query optimization in database systems (Sellis (1988)) and
the production of smaller circuits in field programmable
gate arrays (Brisk et al. (2004)).

The status of k-LCSP is NP-complete in general (Maier
(1978)), but solvable in polynomial time for any fixed k by
dynamic programming (Wagner and Fischer (1974)). The

majority of the research involving k-LCSP has been
focused on instances where k = 2 and 3. However, Gallant
et al. (1980), Itoga (1981), Hsu and Du (1984), Irving and
Fraser (1992) and Hakata and Imai (1992) have all
examined instances where k ≥ 4. The methodology,
specialized branching, presented in this paper is a
technique that can computationally solve k-LCSP for large
k.

The remainder of the paper is organized as follows.
Section 2 explains algorithms that solve k-LCSP. Section 3
provides computational results and the paper concludes in
Section 4 with some conclusions and future research.

2. ALGORITHMS THAT SOLVE k-LCSP

This section presents two algorithms that solve k-LCSP.
Dynamic programming (DP) has been extensively studied
and works quickly when k = 2 or 3. A new method,
specialized branching (SB), is presented here, which is a
tree-searching algorithm and works quite well for k ≥ 6. An
integer programming method (Singireddy (2003)) that
solves k-LCSP was attempted, but specialized branching
always dominated the integer programming technique.

2.1 Dynamic programming

Dynamic programming (DP) was the first method used
to solve k-LCSP. Here, we provide a brief description of
this method. The interested reader can find a more
complete description in Larson (1968). Consider strings S1,
S2, ..., Sk drawn from ∑ . For the remainder of the paper,
we will assume that |S1| = |S2| = ... = |Sk| = n. If not, let
n = max{|Si|: i = 1, ..., k}, then to each Si add on n − |Si|
dummy letters. Trivially, such a transformation will not
change the LCS.

International Journal of
Operations Research TECHINAL NOTE

1813-713X Copyright © 2007 ORSTW

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

99

If the first letter of each Si is equal, then by definition,
the LCS must contain this symbol as the first symbol; if
not, then the first letter of the LCS can be the first letter of
any one of the sequences or another letter from .∑
When any of these two cases occurs, dropping the
appropriate symbol(s) from the corresponding string(s)
does not change the LCS. This observation leads directly to
the recursive nature of dynamic programming.

Let
1 ,..., ki iM be the LLCS of the strings

1 1

1 1 1
1 ... ,i iS s s= ...,

= 1 ...
k k

k k k
i iS s s . The recursion formula from the k-LCSP is

1

1 1 2

1 2 1 2 1 2

,...,

1 2
1,..., 1

1, ,..., , 1..., , ..., 1

1 if ...

max{ , , ..., } otherwise

k

k k

k k k

i i

k
i i i i i

i i i i i i i i i

M

M s s s

M M M
− −

− − −

 + = = ==

where the boundary conditions are:

=
1 ,..., 0

ki iM if i1 = 0 or i2 = 0 or ... or ik = 0.

The boundary conditions simply specify that the LLCS
between any set of strings and the empty string is zero.
Since calculating

1 ,..., ki iM requires a constant amount of
effort, DP’s time and space requirements are both O(nk).

When restricted to 2-LCSP, Hirshberg (1975) observed
that calculating M1, 2 is dependent on its previous row and
previous column in matrix M, which resulted in an
algorithm with O(n2) time, but only O(n) space. Irving and
Fraser (1992) and Hakata and Imai (1992) have extended
this concept to arbitrary k and reduced either the run time
or storage requirement from O(nk) to O(nk − 1). Even with
these improvements, dynamic programming is not suitable
to computationally solve k-LCSPs for k ≥ 7.

Besides the exponential (in the number of sequences)
storage and run time, an additional weakness of dynamic
programming algorithms is that it does not use the
inherent structure of the input sequences. That is, an
individual can trivially verify that k sequences are identical;
yet, dynamic programming will require the full O(nk) time
and space to obtain the same conclusion.

2.2 A specialized branching algorithm

The specialized branching algorithm (SB) presented here
is an enumeration algorithm that combines some aspects of
dynamic programming and branch and bound (Land and
Doig, (1960)) to limit its search tree. Unlike standard
branch and bound, which has two child nodes under each
node, when SB branches, | ∑ | child nodes are created.
Each one of these nodes corresponds to one of the letters
in .∑ Each node in SB’s search tree contains a k-tuple
(i1, ..., ik), which describes the location of markers for each
of the sequences. To determine the k-tuple of a child node,
merely scan each sequence, beginning with the letter after
the parent node’s marker, until the first occurrence of the
child node’s letter is found. If at least one sequence doesn’t
have this letter, then the child node is fathomed. Successful

creation of a k-tuple indicates that the branches leading to
the corresponding node represent a candidate common
subsequence for the input sequences. It is important to
observe that the depth of a node in this search tree equals
the length of the current candidate common subsequence
being created. Hence, the longest rooted path in the tree
corresponds to the LLCS.

Figure 1 illustrates this type of branching for a 4-LCSP
instance created from TGAACGTC, GTAACGTT,
TGCACTGA and TTGAGCTA. In Figure 1, the letters
along the arcs represent the branched letter. Each node has
a bolded number that corresponds to the order in which
this node is explored, and a 4-tuple that corresponds to the
markers in each of the 4 sequences. An E indicates that the
end of at least one of the sequences occurred without
finding the letter that should have been branched upon. BF
and DF refer to the two new techniques presented here
that can be used to fathom a node in the branching tree.

Hsu and Du (1984) first proposed this branching
strategy for k-LCSP. Hsu and Du’s method only stops this
branching process if the end of a sequence is reached or if
a k-tuple is identical to the k-tuple of another node in the
tree. In such a case, an edge is added between these two
nodes. For instance in Figure 1, nodes 24 and 20 would
both have edges to node 3. Hsu and Du’s algorithm finds
all maximal common subsequences by finding every path
from the root node to a pendant node and then selects the
longest such path for the LCS.

In implementing SB, a depth-first search strategy is used
to explore the tree. Theoretically, this doesn’t improve the
run time, but in practice larger instances can be solved with
this strategy than with a breadth-first search strategy due to
memory constraints. Unlike Hsu and Du’s algorithm,
which explores child nodes in a fixed alphabetic order,
specialized branching explores child nodes according to the
sorted order (smallest to largest) of the maximum ij with
ties broken arbitrarily where ij is the marker of the jth
sequence. With this “greedy” node selection rule and the
use of depth first search, SB quickly provides a good
solution to k-LCSP, which is stored. If at any point in the
branching tree, a better solution is obtained, the better
solution replaces the existing solution as the current best
solution.

While Hsu and Du’s algorithm only fathoms if there are
no more letters left in at least one of the sequences or if
two nodes have identical k-tuples, specialized branching
introduces two new fathoming methods. One fathoming
method is based upon branch and bound and is called
bounded fathoming. The other method, dominance
fathoming, is derived from the principles of dynamic
programming.

Let L′ represent the current best LCS at some point in
specialized branching. A bounded fathom occurs at a node
p of depth d if (n − max{i1, ..., ik}) + d ≤ |L′|. The length
of the current common subsequence contained at node p is
equal to its depth d, and at most n − max{i1, ..., ik} letters
can be added to this current common subsequence. Hence,
if the sum of these two quantities is no more than |L′|,
then any common subsequence below node p cannot

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

100

improve the current best candidate LCS. Observe that
bounded fathoming is a direct modification of the
bounding in branch and bound. In Figure 1, node 16 can
be bounded fathomed because at most two more letters
can be added to the common subsequence contained at
this node, which does not improve the current best
common subsequence obtained at node 5 ((8 − 6) + 2 ≤ 4
= |L′|) BF(5).

Dominance fathoming is possible when an equally good
or better start to a common subsequence has already been
found. Given two common sequences L′ and L′′ , L′ is
said to dominate L′′ if L′ = L′′ and i′jp ≤ i′′lp where i′jp and
i′′lp represent the location of the last letter of L′ and L′′ in
the pth sequence for all p = 1, ..., k. This principle is easy to
verify and is the heart of DP.

Although dominance fathoming is trivial to verify, care
must be taken in implementing this fathoming technique
because there can be a large number of nodes that could
potentially be checked. The time spent checking for
dominance fathoming could easily outweigh the benefit
gained by fathoming. To simplify the number of
comparisons and minimize storage space, SB tests for the
possibility of dominance fathoming once at the creation of
each node and compares this node’s common subsequence
to the current best common subsequence. That is, if a
created node is at depth d, then the location of the letter in
each sequence at the current node is compared to the

corresponding sequence location of the dth letter in the
current best candidate solution L′. In Figure 1, a
dominance fathom occurs at node 24 from the first letter
of the current best solution, which is located at node 2
DF(2).

As mentioned Hsu and Du’s algorithm maintains a list
of pointers to previously explored nodes so they can match
identical k-tuples. Observe that dominance fathoming is
stronger (fathoms more nodes) than Hsu and Du’s method.
In addition, to determine whether a pointer can be created,
their algorithm compares the current node to all previously
created nodes. This may require a substantial amount of
work and may negate any time reduction realized by
storing fewer nodes. In contrast, specialized branching only
requires a comparison to the current best candidate for the
LCS. Thus, the memory associated with a node can be
freed as soon as all of its descendant leaf nodes have been
explored or fathomed, which improves memory
management.

All computational tests throughout this paper include 5
instances of each problem size and were run on a 1.5 GHz.
Pentium IV PC with 500 Mb of RAM. The run times are
reported in seconds with a limit of 5 hours (18,000
seconds). An N/A in any of the tables indicates that the
problem could not be solved by the designated method
within the 5-hour time limit.

Figure 1. Sample specialized branching tree.

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

101

Although the bounded fathoming and dominance

fathoming are relatively straightforward methods to prune
the branching tree, the computational speed-ups are
substantial. Table 2 is included to show the effects of both
dominance and bounded fathoming. The 4-LCSP instances
generated for Table 2 are randomly created and have | ∑ |
= 4 with a .25 probability of choosing any letter.

The importance of both dominance and bounded
fathoming is obvious from the instances with 4 sequences
each with 75 letters. With both fathoming techniques, all 5
instances were solved in under an hour. With one
fathoming technique, only 40% of the problems were
solved in less than 5 hours. With no fathoming techniques,
none of these 5 test instances were solved in less than 5
hours. Since Hsu and Du’s algorithm is dominated by
dominance fathoming, we expect that Hsu and Du’s
method would have solved at most 40% of the problems in
under 5 hours.

The process of storing SB’s tree can require O(k| ∑ |r)
where r is the LLCS. Thus, SB’s run time is O(k| ∑ |r),
which is exponential in the LLCS. This time and space
complexity can easily be seen since a full | ∑ | branching
tree of depth r has less than 2| ∑ |r nodes for all | ∑ | ≥ 2
and each node stores the current location of the k markers.
For large r, the branching tree becomes intractable.

3. COMPUTATIONAL RESULTS FOR DYNAMIC

PROGRAMMING AND SPECIALIZED
BRANCHING

Table 3 compares SB to the standard dynamic
programming approach. As above, the k-LCSP instances
are randomly created and have | ∑ | = 4 with a .25
probability of choosing any letter. The maximum and
minimum along with the average values are reported for
both the run time and the LLCS. Since the run times of
each dynamic program with a given problem size are nearly
identical (within 1 second), only the average time is
reported.

It can easily be seen that dynamic programming is more
effective on the 2 and 4 sequence instances, but for more
sequences, SB’s performance is vastly superior. The
computational results follow the theoretical results as the
time requirement for dynamic programming is O(nk), while

SB has a O(k| ∑ |r) run time where r is the LLCS. It is
anticipated that implementing a more advanced version
(Hakata and Imai (1992), Hirschberg (1977), Irving and
Fraser (1992)) of dynamic programming would decrease
DP’s run times in Table 3. Briefly these advancements
reduce either the theoretical run time or storage
requirement from O(nk) to O(nk − 1). Thus, even these
advanced versions of dynamic programming will still be
computationally inferior to SB for any k ≥ 7.

From the results in Table 3, we conclude that the length
of the sequences and not the number of sequences limits
SB, while the opposite is true for DP. In viewing Table 3,
the reader may be surprised to see that the run times for
the problems with 10 strings of length 75 require
approximately 7 times longer than the problems with 50
strings of length 75. The reason is straightforward and
again follows the theoretical run time of SB. As expected,
the 50 string problems have substantially smaller LCSs
than do the 10 string problems. Therefore, the depths of
SB’s search trees are smaller in the 50 string sequences
than the 10 string instances, which accounts for the faster
run time.

Since Table 3’s problems were randomly generated, the
LLCS’s are small. The instances in Table 4 are included to
show the performance of SB if the LLCS is close to n.
Here instances were created that guaranteed a LLCS of at
least 90% or 95% of n. In Table 4, a surprising result is that
SB could quickly solve large k-LCSP instances (100
sequences with 500 letters each) when the LLCS is over
90% of the length of the sequences. When this time is
compared to the theoretical worst case run times of SB
(O(4500)) or DP (O(500100)), SB’s speed is astounding. SB
can solve these problems quickly because a near optimal
solution is quickly obtained and the two fathoming
techniques almost immediately fathom all other nodes.

Up until now all of the computational results have had
| ∑ | = 4, which is neither a small nor a large alphabet.
Table 5 provides the performance of SB on instances for a
variety of alphabet sizes. These instances are again
randomly generated with each letter equally likely to be at
any location in any string. This table helps provide the
reader with the size of instances that SB can quickly solve
and which instances require too much time.

Table 2. Specialized branching with different types of fathoming

No. of
Strings

String
Length

Type of Fathoming
Number of
Instances

Solved

Avg. Time of
Solved

Instances (Sec)

Max − Min
Time

Neither of the fathoming techniques 5 out of 5 131.4 23 − 398
Only dominance fathoming 5 out of 5 14.6 2 − 41
Only bounded fathoming 5 out of 5 8.1 1 − 17

4 50

Both of the fathoming techniques 5 out of 5 1.0 0 − 3
Neither of the fathoming techniques 0 out of 5 N/A N/A

Only dominance fathoming 2 out of 5 5472 3829 − 4905
Only bounded fathoming 2 out of 5 4367 1253 − 9691

4 75

Both of the fathoming techniques 5 out of 5 931 76 −1862

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

102

Table 3. Dynamic programming (DP) vs. specialized branching (SB)
No. of
Strings

String
Length

Avg.
LLCS

Min − Max
LLCS

Avg. Time
(DP)

Avg. Time
(SB)

Min − Max
Time (SB)

25 14 12 − 15 0 0 0 − 0
50 29 27 − 31 0 0 0 − 0
75 45 44 − 47 0 44 2 − 108
100 62 60 − 63 0 407 25 − 906
1000 648 643 − 656 0 N/A N/A

2

10000 6526 6515 − 6541 17 N/A N/A
25 9 7 − 10 0 0 0 − 0
50 21 20 − 23 2 1 0 − 0
75 33 30 − 35 9 931 76 − 1862
100 45 44 − 46 45 N/A N/A

4

1000 N/A N/A N/A N/A N/A
25 8 7 − 8 N/A 0 0 − 0
50 17 16 − 18 N/A 3 1 − 6
75 29 27 − 29 N/A 2936 1141 − 5793

6

100 N/A N/A N/A N/A N/A
25 7 6 − 7 N/A 0 0 − 0
50 15 14 − 16 N/A 2 1 − 4
75 24 23 − 26 N/A 3731 1610 − 6982

10

100 N/A N/A N/A N/A N/A
25 3 3 − 4 N/A 0 0 − 0
50 10 10 − 11 N/A 1 0 − 1
75 17 17 − 18 N/A 505 259 − 939

50

100 N/A N/A N/A N/A N/A
25 3 2 − 3 N/A 0 0 − 0
50 9 8 − 9 N/A 0 0 − 1
75 15 15 − 16 N/A 320 206 − 460

100

100 N/A N/A N/A N/A N/A
25 1 1 − 1 N/A 0 0 − 0
50 6 5 − 6 N/A 1 1 − 1
75 11 11 − 11 N/A 372 310 − 547

1000

100 N/A N/A N/A N/A N/A

Table 4. SB on k-LCSP instances with similar strings
No. of
Strings

String
Length

Minimum % of LCS Avg. LLCS Avg. Running Time (sec)

> 90% 459 80 500
> 95% 479 2
> 90% N/A N/A

10
1000

> 95% 959 62
> 90% 459 325 500
> 95% 479 15
> 90% N/A N/A

50
1000

> 95% 959 263
> 90% 459 1633 500
> 95% 479 37
> 90% N/A N/A

100
1000

> 95% 959 1104

4. CONCLUSIONS AND FUTURE RESEARCH

This paper introduced both dominance and bounded
fathoming and incorporated them into a specialized
branching technique (SB) to optimally solve k-LCSP
problems. Various computational results demonstrated that

SB is the best known technique to optimally solve k-LCSP
for k ≥ 7.

The substantial computational benefit created by using
both dominance and bounded fathoming creates the
following important research questions. Is there a way to
apply dominance fathoming in a generic branch and bound

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

103

routine? That is, by knowing the best solution thus far, can
one fathom a node since it will never lead to a better
solution because the current best solution has a better
“start” than the current node. Such a technique could
greatly improve the speed of commercial integer
programming codes.

Table 5. SB on k-LCSP instances with various size

alphabets

Size of
Alphabet

No. of
Strings

Length
of each
String

Avg.
LLCS

Avg.
Running
Time Sec.

25 13.8 0.05
50 31.2 0.4
75 46 94.8

5

100 N/A N/A
25 9.2 0.01
50 21.6 5.6
75 35.8 1836.4

2

50

100 N/A N/A
50 9.8 1
75 16.4 14.6
100 22.8 2187

5

125 N/A N/A
100 8.4 6.2
125 11.6 798.2
150 16.2 3112

10

50

175 N/A N/A
100 10.4 1.6
125 14.2 28.4
150 17.8 3486

5

175 N/A N/A
150 4.4 1
200 7.2 14
250 10.2 3344

25

50

300 N/A N/A

ACKNOWLEDGEMENTS

This research was partially supported by the Kansas
Technology Enterprise Corporation.

REFERENCES

1. Aho, A.V., Hopcroft, J.E., and Ullman, J. (Eds.) (1983).
Data Structures and Algorithms, Addison Wiley, MA.

2. Bafna, V., Muthukrishnan, S., and Ravi, R. (1995).
Computing similarity between RNA strings. Proceedings
of the 6th Annual Symposium on Combinatorial Pattern
Matching, Espoo, Finland, pp. 1-16.

3. Banerjee, A. and Ghosh, J. (2001). Clickstream
clustering using weighted longest common
subsequences. Proceedings of the Web Mining Workshop at
the 1st SIAM Conference on Data Mining, Chicago, pp.
33-40.

4. Brisk, P., Kaplan, A., and Sarrafzadeh, M. (2004).
Area-efficient instruction set synthesis for
reconfigurable system-on-chip designs. Proceedings of the
2004 Design Automation Conference, San Diego, CA, USA,

pp. 395-400.
5. Dayhoff, M.O. (1969). Computer analysis of protein

evolution. Scientific American, 221(1): 86-95.
6. Dayhoff, M., Schwartz, R., and Orcutt, B. (1978). A

model of evolutionary change in proteins. Atlas of
Protein Sequence and Structure, 5: 345-352.

7. Gallant, J., Maier, D. and Storer, J.A. (1980). On
finding minimal length superstrings. Journal of Computer
and System Sciences, 20(1): 50-58.

8. Hakata, K. and Imai, H. (1992). The longest common
subsequence problem for small alphabet size between
many strings. Proceedings of the 3rd International Symposium
on Algorithms and Computation, Nagoya, Japan, 650:
469-478.

9. Hayes, C.C. (1989). A model of planning for plan
efficiency: Taking advantage of operator overlap.
Proceedings of the 11th International Joint Conference of
Artificial Intelligence, Detroit, Michigan, pp. 949-953.

10. Hirschberg, D.S. (1975). A linear space algorithm for
computing maximal common subsequences.
Communications of the Association for Computing Machinery,
18(6): 341-343.

11. Hirschberg, D.S. (1977). Algorithms for the longest
common subsequence problem. Journal of the Association
for Computing Machinery, 24(4): 664-675.

12. Hsu, W.J. and Du, M.W. (1984). Computing a longest
common subsequence for a set of strings. BIT, 24:
45-59.

13. Hunt, J.W. and McIlroy, M.D. (1975). An algorithm
for differential file comparison. Computing Science
Technical Report, 41, AT&T Bell Laboratories, Murray
Hill, New Jersey.

14. Hunt, J.W. and Szymanski, T.G. (1977). A fast
algorithm for computing longest common
subsequences. Communications of the Association for
Computing Machinery, 20(5): 350-353.

15. Irving, R.W. and Fraser, C.B. (1992). Two algorithms
for the longest common subsequence of three (or
more) strings. Lecture Notes In Computer Science, 644:
214-229.

16. Itoga, S.Y. (1981). The string merging problem. BIT,
21: 20-30.

17. Jiang, T. and Li, M. (1995). On the approximation of
shortest common and longest common subsequences.
SIAM Journal on Computing, 24(5): 1122-1139.

18. Jiang, T., Lin, G., Ma, B., and Zhang, K. (2002). A
general edit distance between RNA structures. Journal
of Computational Biology, 9(2): 371-88.

19. Land, A.H. and Doig, A.G. (1960). An automatic
method for solving discrete programming problems.
Econometrica, 28: 497-520.

20. Larson, R. (1968). State Increment Dynamic Programming,
American Elsevier Publishing Company, Inc., New
York, NY.

21. Lu, S.Y. and Fu, K.S. (1978). A sentence-to-sentence
clustering procedure for pattern analysis. IEEE
Transactions on Systems, Man and Cybernetics, 8(5):
381-389.

22. Maier, D. (1978). The complexity of some problems

Easton and Singireddy: A Specialized Branching and Fathoming Technique for The Longest Common Subsequence Problem
IJOR Vol. 4, No. 2, 98−104 (2007)

104

on subsequences and supersequences. Journal of the
Association for Computing Machinery, 25: 322-336.

23. Sankoff, D. and Kruskal, J.B. (Eds.) (1983). Time Warps,
String Edits, and Macromolecules: The Theory and Practice of
Sequence Comparison, Addison-Wesley, Reading, MA.

24. Sellis, T. (1988). Multiple query optimization. ACM
Transactions on Database Systems, 13(1): 23-52.

25. Singireddy, A. (2003). Solving the Longest Common
Subsequence Problem for DNA Applications, Master’s
Thesis, Industrial and Manufacturing Systems
Engineering, Kansas State University, Manhattan, KS.

26. Smith, T.F. and Waterman, M.S. (1981). Identification
of common molecular subsequences. Journal of
Molecular Biology, 147: 195-197.

27. Storer, J. (1988). Data Compression: Methods and Theory,
Computer Science Press, MD.

28. Thompson, J.D., Higgins, D.G., and Gibson, T.J.
(1994). CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Research, 22(22):
4673-4680.

29. Wagner, R.A. (1973). Common phrases and
minimum-space text storage. Communications of the
Association for Computing Machinery, 16(3): 148-152.

30. Wagner, R.A. and Fischer, M.J. (1974). The
string-to-string correction problem. Journal of the
Association for Computing Machinery, 21: 168-173.

