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AbstractDespite the large uses of  inverse DEA models, there is not any single application of  inverse linear 
programming in DEA when the definition of  inverse linear programming is taken under account. Thus the goal of  this 
paper is applying the inverse linear programming into DEA field, and to provide a streamlined approach to DEA and 
Additive model. Having the entire efficient DMUs in DEA models is an important rule. To speed up the computations of  
the Additive DEA model this paper uses the inverse linear programming as an alternative procedure. It proposes an 
alternative inverse notion-based method which is capable to determine all the efficient DMUs of  the model. 
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1. INTRODUCTION 

Data Envelopment Analysis (DEA), as reported in 
Charnes et al. (1978) and extended in Banker et al. (1984), 
is a recognized tool to the assessment of  performance of  
organizations. DEA has gained a wide range of  successful 
applications measuring comparative efficiency of  multiple 
inputs and multiple outputs of  a homogeneous set of  
decision making units (DMUs) (Cooper et al. (2006)). New 
applications with more variables and more complicated 
models are being introduced in Cooper et al. (2006) and 
Emrouznejad et al. (2007). There are several instances in 
the literature of  DEA applications involving large data sets. 
One of  these studies involves a large data set containing 
8000 DMUs (Barr and Durchholz (1997)). As more 
analysts apply the DEA methodology and as new 
applications introduced, data sets become larger and more 
effort is needed to spend on extracting information 
efficiently (Dulá (2006)). Several attempts have recently 
been made to improve the speed of  the DEA calculations. 
Amin and Toloo (2004) proposed an efficient polynomial 
time algorithm to determine an assurance value in DEA 
models. Also Amin and Emrouznejad (2007) proposed an 
efficient form for the maximum non-Archimedean in the 
technology selection model with ordinal outputs. Despite 
the large uses of  inverse DEA models (Wei et al. (2000), 
Pendharkar (2002)), there is not any single application of  
inverse linear programming in DEA when the definition of  
inverse linear programming is taken under account. An 
inverse programming problem consists of  inferring the 
values of  the model parameters such as cost coefficient, 
right hand side vector and the constraint matrix given the 
values of  observable parameters, Ahuja and Orlin (2001).  

The goal of  this study is to integrate the inverse linear 
programming into DEA field, and providing a streamlined 
approach to DEA and Additive model. Under the L1 norm 
of  inverse linear programming, this paper proposes an 
alternative model and an algorithm for determining the 
Additive-based efficient DMUs. A numerical example has 
been used to demonstrate the use of  inverse linear 
programming developed in this study. 

 
2. INVERSE LINEAR PROGRAMMING 

The inverse linear programming problem (ILPP) has 
first been investigated by Zhang and Liu (1996) and Huang 
and Liu (1999). They formulate the ILPP as a new linear 
program and they show how the solution to a new 
problem (which is similar to the original problem and the 
associated dual solutions) can be used to solve the inverse 
problem. We sketch their approach in the following. 

Let S denotes the set of feasible solutions for a linear 
programming problem, say P. Assume that the relevant 
specified cost vector is c and x0 is a given feasible solution. 
The inverse linear programming problem is to perturb the 
cost vector c to d so that x0 be the optimal solution of P 
with respect to d and − pd c  is minimized, where .

p
 

is some selected Lp norm (Ahuja and Orlin (2001)). 
Consider the following linear programming:  
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≥ = …  0 1, ,jx j n                       (1) 
 
Let x0 be a feasible solution of the model. The 

corresponding inverse problem under L1 norm becomes as, 
(Zhang and Liu (1996)), 
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where L = { j: xj0 = 0} and F = { j: xj0 > 0}. 

Next we use ILPP as an alternative approach for 
Additive model. 

 
3. INVERSE ADDITIVE MODEL 

The Additive model for DMUk which using xk = (x1k, ..., 
xmk) as inputs and producing yk = (y1k, ..., ysk) as outputs, 
can be written by the following linear program: 

 
*

1 1

1

1

1

min

. .

1, ,

1, ,

1

0, 1, , , 0, 1, ,
0, 1, ,

m s
in out

k k i r
i r

n
in

ij j i ik
j

n
out

rj j r rk
j

n

j
j

in out
i r

j

z z s s

s t

x s x i m

y s y r s

s i m s r s
j n

λ

λ

λ

λ

= =

=

=

=

= = − −

− − = − = …

− = = …

=

≥ = … ≥ = …
≥ = …

∑ ∑

∑

∑

∑

  (3) 

 
The under evaluation DMU, DMUk, is efficient if  and 

only if  * 0kz = . Assume that x = (λ, sin, sout) ∈ n m s+ +
+ℜ  

denotes the vector of  variables of  model (3). Now 
consider the feasible solution x0 = (ek , 0m , 0s), where ek is 
the n-vector with the kth position equals to one and zero 
elsewhere and 0p is the p-vector with all components equal 
to zero. That is λk = 1 and all the other variables equal to 
zero. The corresponding inverse linear program to x0 
becomes as   
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where Ip(q) = { j: 1, ..., p, j ≠ q}. The definition of  the 
inverse linear programming implies that DMUk is efficient 
if  and only if  ILP(x0) has a zero optimal value.  

 
4. AN ALTERNATIVE MODEL 

Theorem 1. DMUk is efficient if  and only if  the following 
linear system has a solution. 
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Proof. Assume the DMUk is efficient, then the 
corresponding inverse problem has the zero optimal value 
and therefore there is a solution say, (π 0, γ 0) such that: 
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So the necessary condition holds. Conversely suppose that 
linear system (3) has a solution, say ( , )π γ . Taking 

= = n0α β  makes the vector ( , , , )π γ α β  as a feasible 
solution of  model (4). Since it has the zero optimal value 
therefore it is also the optimal solution of  the model and 
therefore the corresponding Additive model has *

kz = 0. 
This terminates the proof. 
 
Corollary 1. DMUk is efficient if  and only if  the following 
system has a solution. 
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π γ≥ = … + ≥ ∀ ∈  0, 1, , , 0,i j ki m s j I             (6) 
 
Proof. It is easy to see that taking πi − 1 ≥ 0 as the new 
variables (i = 1, ..., m + s) in (3), an equivalent system (6) 
will be obtained.  
 
Corollary 2. DMUk is efficient if  and only if  the following 
system has a solution.  
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Proof. Since π m+s+1 in (6) is a free variable therefore using 
the last equation it can be removed from the other 
equations. 
 

Hereafter we use the following equivalent notation for 
linear system (7). 
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where xj = (x1j, …, xmj), yj = (y1j, ..., ysj) for j = 1, ..., n, π1 = 
(π1, …, πm)t and π2 = (πm+1, ..., πm+s)t is used for simplicity. 
 
Theorem 2. If 
 
Min{1mxj − 1syj: j = 1, …, n } = 1mxk − 1syk 
 
then DMUk is efficient. 
 
Proof. The hypothesis implies  
 
1mxj − 1syj ≥ 1mxk − 1syk 
 
So θj = (1mxj − 1mxk) + (1syk − 1syj) ≥ 0. Clearly 

1 2( , , )π π γ = ( , , )m s0 0 γ  is a feasible solution of  linear 
system (8), where .j jγ θ=  This completes the proof. 
 

Now define ek(j) = (1mxj − 1mxk) + (1syk − 1syj) for each j 
∈ In(k) and consider the following set 
 
Jk = {j ∈ In(k): ek(j) < 0} 
 
If  Jk = φ then according to Theorem 2 DMUk is efficient. 
Otherwise for each j ∈ Jk introduce the artificial variables δj 
to the jth equation in (8) and consider the following linear 
program: 
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Notice that if  * 0kδ > , then system (8) is infeasible and 
consequently DMUk is inefficient. Otherwise * 0kδ =  and 
DMUk will be efficient.  
 
Theorem 3. There is at least one index k for which Jk = φ.  
 
Proof. Let the minimum stated in Theorem 2 occurs at 
index k. So for each j ∈ Jk, ek(j) ≥ 0. 
 
Based on the theoretical results of  this paper and in order 
to apply the alternative model efficiently we design a simple 
algorithm in the following section.  
 
5. THE ALGORITHM 

Figure 1 shows the algorithm of  the alternative 
methodology for the DEA observed data set containing n 
DMUs. We use E and N as the sets of  efficient and 
inefficient DMUs, respectively. 

In the coming section we give some computational 
advantages of  the proposed alternative model (9). 
 
6. COMPUTATIONAL ILLUSTRATION 

We propose model (9) and its corresponding algorithm 
given in Figure 1 as an alternative for the Additive DEA 
model. Besides of  introducing the inverse definition based 
model into the DEA literature it has also some 
computational advantages comparing with the 
conventional Additive model (3). Due to the linear 
programming we know that solving the Additive model (3) 
requires a two phase method. The first phase minimizes 
the sum of  the artificial variables which are considered to 
the m + s constraints and because of  the feasibility of  
Additive model, model (3), the second phase continues 
solving the original model following the basic feasible 
solution (BFS) obtained from the first phase. Meanwhile 
the proposed alternative model (9) exactly is a first phase 
type model. In order to demonstrate the proposed 
methodology, we use the following data consisting of  the 
12 general hospitals with two inputs, Doctors and Nurses, 
and two outputs, Outpatients and Inpatients used in 
Cooper et al. (2006). Table 1 shows the data. 

The initial computations of  the algorithm implemented 
in Microsoft Excel. These results are shown in Table 2. 
Table 2 gives the following information: 
 

{ , , , },AJ I J K L=  12 ( ),BJ I B=  12 ( ) { },CJ I C B= −  

12 ( ) { , , },DJ I C B C E= −  12 ( ) { , },EJ I E B C= −  
{ , , , }FJ I J K L= , { , , , , , }GJ A F I J K L= , 
{ , , , , , , }HJ A F G I J K L= , { , }IJ K L= , { , }JJ K L= , 
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KJ φ= , { }LJ K= . 
 

Table 1. Data for 12 hospitals 
DMU Doctors Nurses Outpatients Inpatients 
A 20 151 100 90 
B 19 131 150 50 
C 25 160 160 55 
D 27 168 180 72 
E 22 158 94 66 
F 55 255 230 90 
G 33 235 220 88 
H 31 206 152 80 
I 30 244 190 100 
J 50 268 250 100 
K 53 306 260 147 
L 38 284 250 120 

 
According to Theorem 3 JK = φ which means that DMUK is 
efficient. The above results also show that how many of  
artificial variables are needed for solving model (9) for each 
DMUj. For example consider DMUL. Since 1LJ =  the 
relevant model (9) contains only one artificial variable 
called δL and the objective function minimizes δL. Now we 
solve the main step of  the algorithm which is solving 
model (9). We use WinQSB software. For the comparing 
purposes we also solved the Additive model by the same 
software in a Pentium 4 PC (Dual core, 2.8 MGHz). Table 
3 gives the optimal values of  the Additive and the 
alternative models and their CPU times, respectively. 

 
 

 
Figure 1. The algorithm. 

 
Table 2. Computational results for 12 hospitals 

j eA(j) eB(j) eC(j) eD(j) eE(j) eF(j) eG(j) eH(j) eI(j) eJ(j) eK(j) eL(j) 
A 0 -40 -35 -18 -24 0 -2 -10 10 10 57 30 
B 40 0 5 22 16 40 38 30 50 50 97 70 
C 35 -5 0 17 11 35 33 25 45 45 92 65 
D 18 -22 -17 0 -6 18 16 8 28 28 75 48 
E 24 -16 -11 6 0 24 22 14 34 34 81 54 
F 0 -40 -35 -18 -24 0 -2 -10 10 10 57 30 
G 2 -38 -33 -16 -22 2 0 -8 12 12 59 32 
H 10 -30 -25 -8 -14 10 8 0 20 20 67 40 
I -10 -50 -45 -28 -34 -10 -12 -20 0 0 47 20 
J -10 -50 -45 -28 -34 -10 -12 -20 0 0 47 20 
K -57 -97 -92 -75 -81 -57 -59 -67 -47 -47 0 -27 
L -30 -70 -65 -48 -54 -30 -32 -40 -20 -20 27 0   
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Table 3. The optimal values and CPU times 

j *
jz  CPU time 

(seconds) 
*
jδ  CPU time 

(seconds) 
A 0 0.032 0 0.031 
B 0 0.046 0 0.032 
C -25.25 0.046 286.62 0.031 
D 0 0.033 0 0.032 
E -65.993 0.032 Inefficient 0 
F -41.375 0.047 95.26 0.03 
G 0 0.033 0 0.031 
H -61.04 0.048 105.55 0.031 
I -25.002 0.033 4.067 0.03 
J 0 0.032 0 0.012 
K 0 0.016 0 0.012 
L 0 0.016 Efficient 0 

 
Note that the first two columns show the Additive 

optimal values and their CPU times and the last two 
columns give the proposed algorithm results. As it is 
shown the CPU times of  the new algorithm is dominated 
by the CPU times of  the Additive model. Also we have 
two zero CPU times in the alternative model. For efficient 
DMUL, because JL = φ and for inefficient DMUE, because j 
= A ∈ JE, xE ≥ xA & yA ≥ yE. In fact the corresponding 
linear system (8) for DMUE contains the following 
inconsistent equation 
 
2π1 + 7π2 + 6π3 + 24π4 + γA = eE(A) = −24 

 
7. CONCLUSION REMARKS 

Despite the large uses of  inverse DEA models, there is 
not any single application of  definition based of  the 
inverse linear programming in DEA. Thus the contribution 
of  this work is applying the inverse linear programming 
into DEA field to provide an alternative model to speed up 
the computations of  the Additive model. The 
computational demonstration show that the CPU times of  
the alternative model is less than the existing Additive 
model. 
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