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AbstractKoutras (1997) analyzed reliability of  a consecutive-k, r-out-of-n: DFM system consisting of  n components 
linearly arranged which fails if  and only if  at least k consecutive components are failed-open or at least r consecutive 
components are failed-short. In this paper Graphical Evaluation and Review Technique (GERT) has been applied to model 
and analyze the reliability of  the above system. One of  the strengths of  the GERT network is the graphical representation, 
which is intuitive and easy to understand. The components are assumed to be i.i.d. Furthermore, numerical computations 
are conducted using Software Mathematica to determine the actual computation times, which are almost negligible. 
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ACRONYMS 

CDFM(k,r,n): Consecutive-k, r-out-of-n: DFM system 
GERT: Graphical Evaluation and Review Technique 
 
NOTATIONS 

n:      number of  components 
p:      survival probability of  a component 
q1:     probability of  a component in failed-open mode 
q2:     probability of  a component in failed-short mode 

, ( ) :k rR n Reliability of  the system 
 
Further, the three modes of  operation (working, 
failed-open, failed-short) of  a component are supposed to 
be mutually exclusive and exhaustive, i.e. 
 
p + q1 + q2 = 1 
 
1. INTRODUCTION 

The study of  dual failure mode (DFM) or three state 
devices has received continuing research interest since 
mid-1950s (Dhillon and Rayapati (1986), Jenney and 
Sherwin (1986), Malon (1989), Page and Perry (1987, 1988, 
1989), and Satoh et al. (1993)). Several redundant 
structures as well as methods of  calculating system 
reliability have been researched in order to improve their 
reliability. The major areas of  substantial advance are the 
reliability evaluation and optimal design of  various 
redundant DFM structures. These systems have wide 
applicability in nuclear industry where the common 
terminology used is “failure to safety” and “failure to 
danger”; in fluid flow control networks where a defective 
valve could be either “stuck open” or “stuck closed”; in 

electronic/electrical engineering studies, where the modes 
of  failure are usually labeled as “failed-open” and 
“failed-short” (Koutras (1997)). 

Many research results have been reported on reliability 
evaluation of consecutive-k-out-of-n systems; for example, 
see Chiang and Niu (1981), Kuo et al. (1994) and Chao et 
al. (1995). A survey of consecutive-k systems and its 
various generalizations can be found in Chang et al. (2000), 
Kuo and Zuo (2003), and Pham (2003). The consecutive-k, 
r-out-of-n: DFM system is an extension of well known 
consecutive-k-out-of-n: F system subject to dual failure 
mode environment. Koutras (1997) studied the reliability 
of CDFM(k, r, n) in which the system fails if and only if at 
least k consecutive components are failed-open or at least r 
consecutive components are failed-short with independent 
but not necessarily identical components providing 
recurrence relation. Further, upper and lower bounds are 
also derived, for a quick assessment of the order of 
magnitude of the system’s reliability.    

In this paper, CDFM(k, r, n) (Koutras, 1997) has been 
analyzed through GERT. The components are assumed to 
be i.i.d. It can be observed that GERT not only provides 
the visual picture of  the system but also helps to determine 
the generating function for the reliability of  the system in a 
much easier way. GERT is easier to use than minimal cut 
set method. In GERT one has to evaluate a W function, 
the generating function of  the waiting time for the 
occurrence of  the system failure, whereas in minimal cut 
set method one has to enumerate all possible minimal cut 
sets leading to system failure. Numerical computations to 
obtain reliability corresponding to different sets of  values 
of  n, k, r, p, q1 and q2 have been carried out using Software 
Mathematica. Further, expected time to system failure 
when probabilities p, q1 and q2 are not known for different 

International Journal of 
Operations Research 

1813-713X Copyright © 2007 ORSTW 



Agarwal and Mohan: Reliability Analysis of  Consecutive-k, r-Out-Of-n: DFM System using GERT 
IJOR Vol. 4, No. 2, 110−117 (2007) 
 

111 

sets of  values of  the parameters involved are also given. 
CPU times involved are almost negligible. 

 
2. BRIEF REVIEW OF GERT AND 

DEFINITIONS 

For the sake of  completion, a brief  description about 
GERT (Whitehouse (1973), Cheng (1994)) is given below: 

GERT is a procedure, which combines the disciplines of  
flow graph theory, MGF (Moment Generating Function) 
and PERT (Project Evaluation and Review Technique) to 
obtain a solution to stochastic networks having logical 
nodes and directed branches. Each branch has a probability 
that the activity associated with it will be performed. It, 
therefore, besides providing visual picture of  the system 
makes it possible to analyze the given system in a less 
inductive manner. The results can be obtained in a 
straightforward manner based on MGF using Mason’s 
formula, which takes care of  all possible products of  
transmittances of  non-intersecting loops described later. 

A review of  the steps employed in applying GERT is as 
follows: 
(1) Convert a qualitative description of  a system or 

problem to a model in stochastic network form. 
(2) Collect necessary data to describe the transmittances 

of  the network. 
(3) Apply Mason’s rule to determine the equivalent 

function or functions of  the network. 
(4) Convert the equivalent function into the following two 

performance measures of  the network: 
(i)  The probability that a specific node is realized. 
(ii) The moment generating function of  the time 

associated with a node if  it is realized. 
(5) Make inferences concerning the system under study 

from the information obtained in (4). 
 
2.1 Definitions 

Path: A path is a series of  branches, which join two nodes 
and does not pass through any node more than once. The 
value of  a path is the product of  the transmittances along 
the path. 
 
Loop: A loop is a series of  branches, which lead from a 
node, and eventually returns to that node without passing 
through any node more than once. The value of  a loop is 
equal to the product of  the transmittances around the loop. 
A first order loop can be viewed as a loop having 
consecutive path of  arrows leading from a node and 
returning to the same node. 
A self-loop can be viewed as a degenerate first order loop. 
Loop of order n is represented by a set of n disjoint first 
order loops. 
 
Mason’s Rule (Whitehouse (1973)): In an open flow 
graph, write down the product of  transmittances along 
each path from the independent to the dependent variable. 
Multiply its transmittance by the sum of  the nontouching 
loops to that path. Sum these modified path transmittances 

and divide by the sum of  all the loops in the open flow 
graph yielding transmittance T as: 
 

[ ]( *  )path nontouching loops
T

loops
∑ ∑

=
∑

           (1) 

where  
 

1 ( )
( )
( ) ...

nontouching loops
first order nontouching loops

second order nontouching loops
third order nontouching loops

∑
= − ∑
+ ∑
− ∑ +

 

 
1 ( )

( ) ...
loops first order loops

second order loops
∑ = − ∑
+ ∑ −

 

 
For example consider the following open flow graph 

representation (Fig. 1):  
 

 
Figure 1. An open flow graph representation. 

 
Then by Mason’s rule 
 

1 2 5

5 3 4

(1 )
(1 )

a a a
T

a a a
−

=
− −

                             (2) 

  
where 
 

51nontouching loops a∑ = −  

5 3 41 ( ).loops a a a∑ = − +  
 

W function for GERT (Whitehouse (1973), Cheng 
(1994)): In a network G with only GERT nodes, let the 
random variable Yij be the duration of  activity (i, j) and f(yij) 
be the conditional probability of  the duration yij of  activity 
(i, j). Then conditional MGF of  the random variable Yij is 
defined as:  

 
( ) [ ] ( )ij ijsY sy

ij ijM s E e e f y= = ∑                    (3) 
 

If  Yij is constant, say a, with probability 1, then Mij(s) = 
esa. When a = 0, then Mij(s) = 1. 

The conditional probability pij that activity (i, j) will be 
undertaken given that node i is realized is multiplied by the 
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MGF to yield a W function such that  
 
( ) ( ).ij ij ijW s p M s=                              (4) 

 
The W function is used to obtain the information of  a 

relationship, which exists between the nodes. In the GERT 
network, the variable z is used to multiply the W function 
associated with a branch; therefore, the power of  z 
specifies the number of  times branches were traversed 
whose values are multiplied by z. When a branch value is 
multiplied by z, we say the branch is tagged. 

If  we define ( )W s r , as the conditional W function 
associated with a network when the branches tagged with a 
z are taken r times, then the equivalent W generating 
function can be written as: 

 

2

( , )

( 0) ( 1) ( 2) ( ) ...r

W s z

W s W s z W s z W s r z= + + + + +L
 

0

( ) r

r

W s r z
∞

=

= ∑                                (5) 

 
The relationship between the conditional W function 

and the conditional MGF is:     

( ) ( ) ( )W s r r M s rξ=                            (6) 
 
with           
 

(0 ) ( )W r rξ=      (since (0 ) 1M r = ), 
 

where ( )rξ  is the probability that the network is realized 
when the branches tagged with a z are traversed r times, 
and ( )M s r  is the conditional MGF associated with the 
network, given that branches tagged with a z are traversed r 
times. Thus 
 

0

( , ) ( ) ( ) r

r

W s z r M s r zξ
∞

=

= ∑                                   (7) 

 
which implies that 
 

0 0

(0, ) (0 ) ( )r r

r r

W z W r z r zξ
∞ ∞

= =

= =∑ ∑ .                (8) 

 
The function (0, )W z  is the generating function of  the 

waiting time for the network realization.  
 
 
 

  
Figure 2. GERT network representing CDFM(k, r, n). 
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3. MODEL 

The GERT network for CDFM(k, r, n) is given in Fig. 2, 
where each node represents a specific state as described 
below: 
 

S: starting node. 
01: no component in failed-open mode. 
02: no component in failed-short mode. 
1: one component in failed-open or failed-short 

mode. 
2: two consecutive components in failed-open or 

failed-short mode. 
M M 

 
k − 1 (or (r − 1)): k − 1 (or (r − 1)) consecutive 
components in failed-open mode (or in failed-short mode). 
k (or r): k (or r) consecutive components in failed-open 
mode (or in failed-short mode). 
 

For CDFM(k, r, n), GERT network can be explained as 
follows: There are two paths from the starting node S one 

leading to terminal node k in which system fails due to 
open mode and second leading to terminal node r in which 
system fails due to short mode. The first path can be 
summarized as: System on occurrence of  first open mode 
failure (which may be preceded by sub strings consisting of  
t consecutive short-mode failures with probability q2t, t = 1, 
2, …, r − 1 and/or normal component with probability p) 
moves to state 1 via 01 from S. Further, if  the next 
contiguous component also fails due to open mode then 
system moves to state 2 from state 1 with conditional 
probability q1. Otherwise, system either moves to state S 
with conditional probability p (in case next contiguous 
component is normal) or to state 01 with conditional 
probability q2t, t = 1, 2, …, r − 1 (in case there occur t 
contiguous short-mode failures).  In this way same 
procedure is followed until state k is reached, i.e. k 
contiguous open mode failures occur. Similar procedure is 
followed for the second path in which system fails due to 
short mode failure. 
 

 
Theorem 1. For positive integers k, r, n (n ≥ max (k, r)), the ,  (0, ),k r

DFMW z  i.e., generating function of  the waiting time for 
the occurrence of  system failure is given by: 
 

,   1 2 1 2 1 2

1 1 2 2 1 2

( ) (1 ( ) )(1 ) ( ) (1 ( ) )(1 )
(0, )

1 (1 )  ( ) (1 )  ( ) (1 )( ) ( )

k r r k
k r

DFM k r k r

q z q z q z q z q z q zW z
z q z q z q z q z pz q z q z

− − + − −
=

− + − + − − +
                                 (9) 

 
and the generating function , (0, )k rR z  for the reliability , ( )k rR n  of  the system is given by : 
 

1 2
, ,

0 1 1 2 2 1 2

(1 ( ) )(1 ( ) )
(0, ) ( )

1 (1 ) ( ) (1 ) ( ) (1 )( ) ( )

k r
n

k r k r k r k r
n

q z q z
R z R n z

z q z q z q z q z pz q z q z

∞

=

− −
= =

− + − + − − +∑                         (10) 

 
It matches with the generating function G(z) of  Koutras (1997). 

 
Proof. For CDFM(k, r, n) there exist two paths leading to system failure. The first path corresponds to the case in which 
system fails due to open mode and second path corresponds to system failure due to short mode and are given as: 
 

No. Paths Value 
1 S to 01 to 1 to 2 to L to 

(k − 1) to k 
1(1 ( ))( )k

AW z q z+  

2 S to 02 to 1 to 2 to L to 
(r − 1) to r 

2(1 ( ))( )r
BW z q z+  

 
where  
 

2 1
2 2 2( ) ( ) ( )r

AW z q z q z q z −= + + +L  and 
2 1

1 1 1( ) ( ) ( )k
BW z q z q z q z −= + + +L  
 
Each of  the paths consists of  only first order loops, as second and higher orders do not exist. For Path No. 1:   

 
1 1 2 2

1 2 1 2 1 2
1 1 0 0

  (1 ( ) )(1 ( ) ) ( )( ) ( ( ) )( ( ) )
k r k r

i j i j

i j i j

first order loops pz q z q z q z q z q z q z
− − − −

= = = =

= + + +∑ ∑ ∑ ∑ ∑



Agarwal and Mohan: Reliability Analysis of  Consecutive-k, r-Out-Of-n: DFM System using GERT 
IJOR Vol. 4, No. 2, 110−117 (2007) 
 

114 

1 1
1 2 1 2 1 2

1 2

(1 ( ) )(1 ( ) ) ( )( )(1 ( ) )(1 ( ) )
(1 )(1 )

k r k rpz q z q z q z q z q z q z
q z q z

− −− − + − −
=

− −
                                          (11) 

 
Similarly, we obtain Σfirst order loops for Path No. 2, which is same as (11). Since Σnontouching loops do not exist for 

both the paths, therefore, by the use of  Mason’s rule, ,   (0, )k r
DFMW z  function is obtained as: 

 
,   1 2 1 2 1 2

2 1 1
1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1

( ) (1 ( ) )(1 ) ( ) (1 ( ) )(1 )
(0, )

(1 )(1 ) (1 ( ) )(1 ( ) ) (1 ( ) )(1 ( ) )
( ) (1 ( ) )(1 ) ( ) (1 ( ) )(1 )

1 (1 )  ( ) (1

k r r k
k r

DFM k r k r

k r r k

k

q z q z q z q z q z q zW z
q z q z pz q z q z q q z q z q z

q z q z q z q z q z q z
z q z q z

− −

− − + − −
=

− − − − − − − −

− − + − −
=

− + − + 2 2 1 2

.
)  ( ) (1 )( ) ( )r k rq z q z pz q z q z− − +

 

 
 

Hence (9) is proved. 
Thus, the generating function , (0, )k rR z  for the 

reliability , ( )k rR n  of  the system (Feller, 1985) is given by: 
 

,  

,   
1 (0, )

(0, )
1

k r
DFM

k r
W zR z

z
−

=
−

,                     (12) 

 
which on solving yields (10). This completes the proof. 

Further, for q2 = 0, the generating function , (0, )k rR z  
reduces to reliability generating function of  ordinary 
consecutive-k-out-of-n: F system. It can be observed that 
using GERT, the generating function for the reliability of  
the CDFM(k, r, n) can be obtained in a much easier way than 
Koutras (1997).  

 
Example 1. Consider CDFM(3, 3, n) consisting of  n 
components linearly ordered which fails whenever at least 
3 consecutive components are failed open or at least 3 
consecutive components are failed short. The GERT 
network is shown in Fig. 3 and explained below: 

There are two paths from the starting node: first in 
which system fails due to open mode and second in which 
due to short mode. The first path in which system fails due 
to open mode can be summarized as follows: System on 
occurrence of  first open mode failure, which may be 
preceded by normal component having conditional 
probability p and/or by substrings consisting of  t 
contiguous short mode failures having conditional 
probability q2t, where t = 1, 2; moves to state 1 via 01 from 
S. Further, if  the next contiguous component fails due to 
open mode then it moves to state 2 from 1 with 
conditional probability q1. Otherwise it moves back to state 
S with conditional probability p in case of  normal 
component or to state 01 in case of  occurrence of  t 
contiguous short mode failures, t = 1, 2. Again if  the third 
contiguous component is in open mode failure then system 
moves to state 3 from state 2 otherwise similar procedure 
is repeated as above. System fails due to open mode as 
soon as three contiguous open mode failures occur. Similar 
procedure follows for the system to fail corresponding to 
short mode failures. 

 
 

 
Figure 3. GERT network representing CDFM(3, 3, n). 
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The two paths leading to system failure state are as 

detailed below: 
 

No. Paths Value 
1 S to 01 to 1 to 2 to 3 3 2

1 2 2( )  (1 ( ) )q z q z q z+ +  
2 S to 02 to 1 to 2 to 3 3 2

2 1 1( )  (1 ( ) )q z q z q z+ +  
 
To apply Mason’s Rule, we locate all the loops 

corresponding to each of  the paths. However, only first 
order loops exist. The loops corresponding to Path No. 1 
are as given below: 

 
No. Paths Value 
1 S to 01 to S 2

2 2(1 ( ) )pz q z q z+ +  
2 S to 01 to 1 to S 2

2 2 1(1 ( ) )pz q z q z q z+ +  
3 S to 01 to 1 to 2 to S 2 2

2 2 1(1 ( ) ) ( )pz q z q z q z+ +  
4 01 to 1 to 01 2

1 2 2 ( ( ) )q z q z q z+  
5 01 to 1 to 2 to 01 2 2

1 2 2( ) ( ( ) )q z q z q z+  
 

Thus, Σfirst order loops corresponding to open mode 
failure path is: 

 

2 2
1 1 2 2

1 2 1 2

  

(1 ( ) )(1 ( ) )
( )( )(1 )(1 ).

first order loops

pz q z q z q z q z
q z q z q z q z

= + + + +
+ + +

∑
            (13) 

 
Similarly, we can obtain first order loops corresponding 

to the Path No. 2 in which system fails due to short mode 
failure. The Σfirst order loops obtained by second path is 
same as (13). 

Now, applying Mason’s Rule (Whitehouse (1973), pp-168, 
pp-257) we obtain the following generating function 

3,  3 (0, )DFMW z  of  the waiting time for the occurrence of  
system failure: 
 
 

 
3 2 3 2

3,3 1 2 2 2 1 1
2 2

1 1 2 2 1 2 1 2
3 2 3 2

1 2 2 2 1 1
3 3

1 2 1 2 1 2

( ) (1 ( ) ) ( ) (1 ( ) )
(0, )

1 (1 ( ) )(1 ( ) ) ( )( )(1 )(1 )

( ) (1 ( ) ) ( ) (1 ( ) )
(1 )(1 ) (1 ( ) )(1 ( ) ) ( )(

DFM
q z q z q z q z q z q zW z

pz q z q z q z q z q z q z q z q z
q z q z q z q z q z q z

q z q z pz q z q z q z q z

+ + + + +
=

− + + + + − + +

+ + + + +
=

− − − − − − 2 2
1 2

3 3 3 3
1 2 1 2 2 2

3 3 3 3
1 1 2 2 1 2

)(1 ( ) )(1 ( ) )

( ) (1 ( ) )(1 ) ( ) (1 ( ) )(1 )
1 (1 ) ( ) (1 ) ( ) (1 )( ) ( )

q z q z

q z q z q z q z q z q z
z q z q z q z q z pz q z q z

− −

− − + − −
=

− + − + − − +

                      (14) 

 
Hence, 
 

3 3
1 2

3,3 3 3 3 3
1 1 2 2 1 2

(1 ( ) )(1 ( ) )
(0, )

1 (1 ) ( ) (1 ) ( ) (1 )( ) ( )
q z q z

R z
z q z q z q z q z pz q z q z

− −
=

− + − + − − +
                                         (15) 

 
Taking n = 30, p = 0.80, q1 = 0.10 and q2 = 0.10 and using Software Mathematica we obtain from (15): 

 
3,3( )  0.950415.R n =  

 
However, in most of the practical applications, probabilities of three modes of operation (working, failed-open, failed-short) 
are not known and the components follow a certain distribution, say, exponential distribution such that 
 
age specific failure rate of a component is constant, say λ,  
failed-open mode rate of a component is constant, say λ1, 
failed-short mode rate of a component is constant, say λ2. 

 
Then,  

1 2

p λ
λ λ λ

=
+ +

 

1
1

1 2

q
λ

λ λ λ
=

+ +
 

2
2

1 2

q
λ

λ λ λ
=

+ +
. 

 
Thus the corresponding GERT network is given as Fig. 4 where using (4), we have 
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1

1
1

1 2 1 2

( ) 1
sW s

λ
λ λ λ λ λ λ

−
 

= − + + + + 
 

1

2
2

1 2 1 2

( ) 1
sW s

λ
λ λ λ λ λ λ

−
 

= − + + + + 
 

 
1

3
1 2 1 2

( ) 1
sW s λ

λ λ λ λ λ λ

−
 

= − + + + + 
 

 
Now, the following generating function ,  ( )k r

DFMW s  of  the waiting time for the occurrence of  system failure is obtained: 
 

,  1 1 2 2 2 1
1 1

1 2 3 2 1 1 2 1 2

( ( )) (1 ( )) (1 ( ( )) ) ( ( )) (1 ( )) (1 ( ( )) )
( )

(1 ( )) (1 ( )) ( )(1 ( ( )) )(1 ( ( )) ) ( ) ( )(1 ( ( )) )(1 ( ( )) )

k r r k
k r

DFM r k k r

W s W s W s W s W s W s
W s

W s W s W s W s W s W s W s W s W s− −

− − + − −
=

− − − − − − − −
  (16) 

 
such that  , (0) 1k r

DFMW = . 
Thus,  

E(t) = E(time to system failure) = 
,

0

( )k r
DFM

s

dW s
ds

=

    (17) 

 
4. COMPUTATIONAL EXPERIMENTS 

To study computational efficiency, reliability values of  
CDFM(k, r, n) for several sets of  values of  n, k, r, p, q1 and q2 
are computed on Pentium 4 with a 2.93 GHZ CPU and 
248 MB of  RAM under Windows XP operating system 
using Software Mathematica using (10) and are given in 
Table 1. Further, expected time to system failure for several 
sets of  values of  λ, λ1, λ2, k and r, computed using (17) are 

given in Table 2. It may be observed that CPU time 
involved is almost negligible. 

 
Table 1. Reliability values of  i.i.d consecutive-k, r-out-of-n: 

DFM system 
q1 q2 k r n Reliability CPU Time (Sec) 

0.10 0.15 3 3 15 0.951117 ≈ 0 
0.10 0.15 3 3 25 0.915530 ≈ 0 
0.20 0.30 4 5 30 0.922363 ≈ 0 
0.20 0.30 5 4 30 0.846773 ≈ 0 
0.20 0.30 5 5 50 0.912378 ≈ 0 
0.05 0.15 5 7 75 0.999878 ≈ 0 
0.05 0.15 5 7 100 0.999835 ≈ 0 
0.05 0.15 7 7 150 0.999791 ≈ 0 
0.05 0.15 7 7 200 0.999718 0.005 

 

  
Fig 4. GERT network representing CDFM(k,r,n) when probabilities of  three modes of  operation are not known.   
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Table 2. Expected time to consecutive-k, r-out-of-n: DFM 

system failure 
λ λ1 λ2 k r E(t) CPU Time 

(Sec) 

0.60 0.15 0.25 3 3 ≈ 68 ≈ 0 
0.75 0.10 0.15 3 3 ≈265 ≈ 0 
0.80 0.10 0.10 4 5 ≈ 10100 ≈ 0 
0.70 0.10 0.20 5 7 ≈ 51975 ≈ 0.003 
0.80 0.10 0.10 5 5 55555 ≈ 0 
0.70 0.20 0.10 7 7 ≈ 96804 ≈ 0.006 
0.80 0.10 0.10 6 5 101009 ≈ 0.003 
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