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AbstractThe theory of duality for linear programs is well-developed and has been successful in advancing both the 
theory and practice of linear programming. In principle, much of this broad framework can be extended to mixed-integer 
linear programs, but this has proven difficult, in part because duality theory does not integrate well with current 
computational practice. This paper surveys what is known about duality for integer programs and offers some minor 
extensions, with an eye towards developing a more practical framework. 
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1. INTRODUCTION 

Duality has long been a central tool in the development 
of both optimization theory and methodology. The study 
of duality has led to efficient procedures for computing 
bounds, is central to our ability to perform post facto 
solution analysis, is the basis for procedures such as 
column generation and reduced cost fixing, and has yielded 
optimality conditions that can be used as the basis for 
“warm starting” techniques. Such procedures are useful 
both in cases where the input data are subject to 
fluctuation after the solution procedure has been initiated 
and in applications for which the solution of a series of 
closely-related instances is required. This is the case for a 
variety of integer optimization algorithms, including 
decomposition algorithms, parametric and stochastic 
programming algorithms, multi-objective optimization 
algorithms, and algorithms for analyzing infeasible 
mathematical models. 

The theory of duality for linear programs (LPs) is 
well-developed and has been extremely successful in 
contributing to both theory and practice. By taking 
advantage of our knowledge of LP duality, it has been 
possible to develop not only direct solution algorithms for 
solving LPs but also sophisticated dynamic methods 
appropriate for large-scale instances. In theory, much of 
this broad framework can be extended to mixed-integer 
linear programs (MILPs), but this has proven largely 
impractical because a duality theory well-integrated with 
practice has yet to be developed. Not surprisingly, it is 
difficult to develop a standard dual problem for MILP with 
properties similar to those observed in the LP case. Such 
dual problems are generally either not strong or not 
computationally tractable. Unlike the LP case, dual 
information is not easy to extract from the most commonly 
employed primal solution algorithms. In Section 4.7, we 
discuss the challenges involved in extracting dual 

information in the case of branch and cut, which is the 
most commonly employed solution algorithm for MILPs 
today. 

The study of duality for MILPs can be considered to 
have two main goals: (1) to develop methods for deriving a 
priori lower bounds on the optimal solution value of a 
specific MILP instance and (2) to develop methods for 
determining the effect of modifications to the input data 
on the optimal solution and/or optimal solution value post 
facto. Methods for producing a priori lower bounds are 
useful primarily as a means of solving the original problem, 
usually by embedding the bounding procedure into a 
branch-and-bound algorithm. Such bounding methods 
have received a great deal of attention in the literature and 
are well-studied. Methods for producing dual information 
post facto, on the other hand, are useful for performing 
sensitivity analyses and for warm starting solution 
procedures. Such methods have received relatively little 
attention in the literature. In both cases, the goal is to 
produce “dual information.” Methods of the second type, 
however, can take advantage of information produced as a 
by-product of a primal solution algorithm. 

The primary goal of this study is to survey previous 
work on methods of the second type with an eye towards 
developing a framework for MILP duality that can be 
integrated with modern computational practice. 
Computational methods have evolved significantly since 
most of the work on integer programming duality was 
done and a close reexamination of this early work is 
needed. We have attempted to make the paper as general 
and self-contained as possible by extending known results 
from the pure integer to the mixed-integer case whenever 
possible. We have included proofs for as many results as 
space would allow, concentrating specifically on results 
whose proofs were not easily accessible or for which we 
provide a generalization or alternative approach. The 
proofs for all results not included here can be found in the 
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references cited. This survey draws heavily on the 
foundational work of a small cadré of authors who 
contributed greatly to the study of MILP duality, including 
Gomory, Johnson, Wolsey, Blair, and Jeroslow, and is in 
many respects an updating and expansion of the excellent 
papers of Wolsey (1981) and Williams (1996). 

 
1.1 Definitions and notation 

Before beginning, we briefly introduce some 
terminology and notation. A linear program is the problem of 
minimizing a linear objective function over a polyhedral 
feasible region 

 
{ | }nx Ax b+= ∈ =P ¡                          (1) 

 
defined by rational constraint matrix A ∈ ×¤m n and 
right-hand side vector b ∈ .m¡  A mixed-integer linear program 
is an LP with the additional constraint that a specified 
subset of the variables must take on integer values. For the 
remainder of the paper, we address the canonical MILP 
instance specified by the constraints in (1), with the integer 
variables (those required to take on integer values) indexed 
by the set I = {1, ..., r} ⊆ N = {1, ..., n} if r > 0 (otherwise, 
I = Ø). The remaining variables, indexed by the set C = N\I, 
constitute the continuous variables. The feasible region is then 
given by ( )r n r−= ∩ ×¢ ¡S P  and the MILP instance can 
be stated as that of determining 

 
minIP x

z cx
∈

=
S

                                 (2) 

 
for c ∈ ¡ .n  The rationality of the constraint matrix A is 
required to ensure the consistency of (2) and guarantees 
that any such program is either infeasible, unbounded or 
has a finite optimal value (Meyer (1974)). In the sequel, we 
refer to this canonical instance of MILP as the primal 
problem. 

For a given MILP, we call any x ∈ S a feasible solution 
with solution value cx and any x* such that cx* = zIP an optimal 
solution. Aside from determining the value zIP, the goal of 
solving (2) is to find such an optimal solution. The LP 
obtained from a given MILP by removing the integrality 
requirements on the variables, i.e., setting I = Ø, is referred 
to as the associated LP relaxation. The associated pure integer 
linear program (PILP), on the other hand, is obtained by 
requiring all variables to be integer, i.e., setting r = n. For 
any index set K ⊆ N, AK is the submatrix consisting of the 
corresponding columns of A and similarly, yK is the vector 
consisting of just the corresponding components of a 
vector y.  

In what follows, we frequently refer to certain classes of 
functions, defined below. 

 
Definition 1. Let a function f be defined over domain V. 
Then f is 
l subadditive if f(v1) + f(v2) ≥ f(v1 + v2) ∀ v1, v2, v1 + v2 ∈ V. 
l linear if V is closed under addition and scalar 

multiplication and 
i. f (v1) + f(v2) = f(v1 + v2) ∀ v1, v2 ∈ V, 
ii. f (λv) = λf (v) ∀ v ∈ V , ∀ λ ∈ ¡.  

l convex if V and epi (f ) = {(v, y): v ∈ V, y ≥ f (v)} are 
convex sets, and 

l polyhedral if epi (f ) is a polyhedron. 
 

Definition 2. For a given ,k ∈ ¥  let 
l Λk = {f | f : k¡ → ¡ }, 
l Lk = {f ∈ Λk | f is linear}, 

l Ck = {f ∈ Λk | f is convex}, 

l Fk = {f ∈ Λk | f is subadditive}. 
 

The notation λ    for a scalar λ is used to denote the 
smallest integer greater than or equal to λ. Similarly, we let 

λ λ= − −       .  For a function f ∈ Λk, f    is the 

function defined by ( )f d    = ( )f d    ∀d ∈ ¡ .k  
Finally, the l1 norm of a vector x = (x1, ..., xn) is denoted by 

1 1

n
ii

x x
=

= ∑ . 

 
1.2 Outline of the paper 

The outline of the paper is as follows. In Section 2, we 
introduce several notions of MILP duality that have 
appeared in the literature and discuss the relationships 
between them. In Section 3, we discuss in more detail the 
well-known subadditive dual, which yields a generalization of 
many duality results from linear programming, but does 
not integrate easily with current computational practice. In 
Section 4, we discuss methods for obtaining dual functions 
that provide a lower bound on the objective function value 
of MILP instances in the neighborhood of a given base 
instance and can be seen as solutions to certain dual 
problems we present in Sections 2 and 3. Finally, in Section 
5, we discuss future research in this area and indicate how 
some of the theory presented in this paper may be put into 
practice. 

 
2. GENERAL FRAMEWORK 

A common approach to obtaining an a priori lower 
bound for a single MILP instance is to construct an 
optimization problem of the form 

 
max ( ),D v V

z f v
∈

=                                (3) 

 
with objective function → ¡:f V  and feasible region 

⊆ ¡kV  for k ∈ ¥  such that zD ≤ zIP. Such a problem is 
called a dual problem and is a strong dual problem if zD = zIP. 
For any pair (f, V) that comprises a dual problem and any  
v ∈ V, f(v) is a valid lower bound on zIP and the dual 
problem is that of finding the best such bound. The 
usefulness of such a dual problem may be rather limited, 
since we require only that it provides a valid bound for the 
single MILP instance being analyzed and since the pair f 



Guzelsoy and Ralphs: Duality for Mixed-Integer Linear Programs 
IJOR Vol. 4, No. 3, 118−137 (2007) 
 

120 

and V are not necessarily selected according to any 
criterion for goodness. A number of methods for 
producing such dual problems directly from primal input 
data are already known and include both the dual of the LP 
relaxation and the Lagrangian dual (see Section 4.5), which 
are generally easy to construct and solve. The bounds 
produced by such methods are useful in helping to solve 
the primal problem, but must necessarily be weak on their 
own, since computing the exact optimal solution value zIP 
of the MILP (2) is an NP-hard optimization problem in 
general. 

Conceptually, one avenue for improvement in the 
bound yielded by (3) is to let the dual problem itself vary 
and try to choose the “best” among the possible 
alternatives. This leads to the generalized dual 

 

,
max max ( ),D f V v V

z f v
∈

=                            (4) 

 
where each pair ( ,  )f V  considered in the above 
maximization is required to comprise a dual problem of the 
form (3). This dual may yield an improved bound, but it is 
not clear how to obtain an optimal solution over any 
reasonable class of dual problems and even less clear how 
such a solution might help determine the effect of 
perturbations of the primal problem. 

A second avenue for improvement is to focus not just 
on producing a lower bound valid for a single instance, but 
on constructing a dual function that can produce valid 
bounds across a range of instances within a neighborhood 
of a given base instance. Such dual functions may be 
obtained as a by-product of primal solution algorithms and 
are needed for effective post facto analysis. In what follows, 
we generally refer to any function that takes as input an 
infinite family of MILP instances and returns as output a 
valid lower bound on each instance as a “dual function.” 
Such a function is considered strong with respect to a 
given primal problem if the bound returned for that 
particular instance is zIP. 

Because the right-hand side can be thought of as 
describing the level of resources available within the system 
being optimized, it is natural to consider the question of 
how the optimal solution value of a MILP changes as a 
function of the right-hand side. The value function of a MILP 
is a function that returns the optimal solution value for any 
given right-hand side, i.e., it is a function →¡: mz  

∪ ±∞¡ { } defined by 
 

( )
( ) min ,

x d
z d cx

∈
=

S
                               (5) 

 
where S(d) = {x ∈ r

+¢  × n r−
+¡ | Ax = d} for ∈ ¡ .md  

By convention, we define z(d) = ∞ if d ∉ Ω, where      
Ω = {d ∈ m¡ | S(d) ≠ Ø}. As we discuss below, the value 
function plays a central role in classical duality theory, but 
computing it is generally difficult even though it has a 
closed form. We consider properties of the value function 
and its structure in more detail in Section 4.1. 

In the remainder of the paper, we refer to the following 
running example. 

 
Example 1. Consider the following MILP instance with 
right-hand side b: 

 

1 3 4

1 2 3 4

1 2 3 4

1min  2
2

3          s.t.    and
2

                ,  ,  ,  .

IPz x x x

x x x x b

x x x x+ +

= + +

− + − =

∈ ∈¢ ¡

             (6) 

 
In this case, the value function (pictured in Figure 1) can 

be represented explicitly in the form: 
 

     
3 5 3,
2 2 2

3 2 3, 1
2

     , 1 0
( ) 1      2 ,   0

2
3 1, 1
2 2
3 32 , 1
2 2

    

d d

d d

d d
z d

d d

d d

d d



− − − < ≤ −



+ − < ≤ −

 − − < ≤
= 

< ≤

− + < ≤

 − < ≤




M M

M M

                 (7) 

 
By considering what optimal solutions to this simple 

MILP instance look like as the right-hand side is varied, we 
can get an intuitive feel for why the value function has the 
shape that it does in this example. 

Note that the slope near zero is exactly the objective 
function coefficients of the continuous variables, since 
these are the only variables that can have positive value for 
values of d near zero. Furthermore, the gradient of the 
function alternates between these two slope values moving 
away from zero in both directions, as the continuous 
variables alternate in the role of ensuring that the fractional 
part of the left-hand side is consistent with that of d. The 
coefficients of the integer variables, on the other hand, 
determine the breakpoints between the linear pieces.    ■ 

 
Although it is generally difficult to construct the value 

function itself, it is much easier to obtain an approximation 
that bounds the value function from below, i.e., a function 
F: m¡ → ¡  that satisfies F(d) ≤ z(d) for all d ∈ ¡ .m  
Given that we can do this, the question arises exactly how 
to select such a function from among the possible 
alternatives. A sensible method is to choose one that 
provides the best bound for the current right-hand side b. 
This results in the dual 

 
= ≤ ∈ ∈ ϒ¡max{ ( ) : ( ) ( ), , },m m

Dz F b F d z d d F       (8) 
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where ϒ ⊆ Λm m and the infinite family of constraints 
ensures that we only consider dual functions that 
yield a valid bound for any right-hand side. 

Note that if the primal problem has a finite optimal 
value and ϒ ≡ Λ ,m m  (8) always has a solution F* that is a 
strong dual function by setting F*(d) = z(d) when d ∈ Ω, 
and F*(d) = 0 elsewhere. In this case, it also follows that a 
dual function is optimal to (8) if and only if it bounds the 
value function from below and agrees with the value 
function at b. This means that not all optimal solutions to 
(8) provide the same bound for a given vector d. In fact, 
there are optimal solutions to this dual that provide 
arbitrarily poor estimates of the value function for 
right-hand sides d ≠ b, even when d is in a local 
neighborhood of b. It is thus an open question whether (8) 
in fact provides the best criterion for selecting a dual 
function or whether it is possible to compute a dual 
function guaranteed to produce “reasonable” bounds 
within a specified neighborhood of b. 

Consider the value function of the LP relaxation of the 
MILP (2), given by 

= ≤ ∈ ¡( ) max{ : , }.m
LPF d vd vA c v                 (9) 

 
Let F be defined by F(d) = FLP(d) ∀d ∈ Ω and F(d) = 0 

elsewhere. Then F is feasible to (8) if F ∈ ϒm  and the 
primal problem is bounded, since linear programming 
duality tells us that FLP(d) ≤ z(d) for all d ∈ Ω. The 
following example shows the result of computing this dual 
function for the MILP instance from Example 1. 

 
Example 2. Consider the value function of the LP 
relaxation of problem (6), 
 

( ) max  
1               s.t  0 ,  and
2

                    ,

LPF d vd

v

v

=

≤ ≤

∈ ¡

                    (10) 

 

 

Figure 1. Value function of MILP from Example 1. 
 

 
Figure 2. Value function of LP relaxation of problem (6). 
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which can be written explicitly as 
 

0,  0
( ) .1 ,  0

2
LP

d
F d

d d

≤
= 

>

                         (11) 

 
This dual function is shown in Figure 2, along with the 

value function of the original MILP. In this example, FLP 

can be seen to be the best piecewise-linear, convex 
function bounding z from below.                   ■ 

 
By considering that 
 
( ) ( ),  ( ) ,  ( ),  

                                ( ) ,  ,

m m

r n r

F d z d d F d cx x d d

F Ax cx x −
+ +

≤ ∈ ⇔ ≤ ∈ ∈

⇔ ≤ ∈ ×

S¡ ¡
¢ ¡

(12) 

 
we see that the dual problem (8) can be rewritten as 

 
-max  { ( ) : ( ) , , }.r n r m

Dz F b F Ax cx x F+ += ≤ ∈ × ∈ ϒ¢ ¡ (13) 
 
In the next section, we will use this equivalence to derive 

a simpler form of (8) in the case when ϒm  is restricted to 
a particular class of subadditive functions. 
 
3. THE SUBADDITIVE DUAL 

As stated, the dual (8) is rather general and perhaps only 
of theoretical interest. A natural question is whether it is 
possible to restrict the class of functions considered in (8) 
in some reasonable way. Both linear and convex functions 
are natural candidates for consideration. If we take   
ϒm ≡ Lm, then (8) reduces to zD = max{vb|vA ≤ c, v ∈ m¡ }, 
which is the dual of the continuous relaxation of the 
original MILP discussed earlier. Hence, this restriction 
results in a dual that is no longer guaranteed to produce a 
strong dual function (see Figure 2). Jeroslow (1979) 
showed that the optimum zD obtained by setting ϒm ≡ Cm 
also results in the same optimal solution value obtained in 
the linear case. 

In a series of papers, Johnson (1973, 1974, 1979) and 
later Jeroslow (1978) developed the idea of restricting ϒm  
to a certain subset of Fm (subadditive functions). The 
subadditive functions are a superset of the linear functions 
that retain the intuitively pleasing property of “no 
increasing returns to scale” associated with linear functions. 
A strong motivation for considering this class of functions 
is that the value function itself is subadditive over the 
domain Ω and can always be extended to a subadditive 
function on all of m¡  (see Theorem 5). This means that 
this restriction does not reduce the strength of the dual (8). 
To see why the value function is subadditive, let d1, d2 ∈ Ω 
and suppose z(di) = cxi for some xi ∈ S(di), i = 1, 2. Then, 

x1 + x2 ∈ S(d1 + d2) and hence z(d1) + z(d2) = c(x1 + x2) ≥ 
z(d1 + d2). 

If ϒm ≡ Γm ≡ {F ∈ Fm | F(0) = 0}, then we can rewrite 

(8) as the subadditive dual 
 

max  ( )

               ( )   ,

               ( )   , and

               ,

D

j
j

j
j

m

z F b

F a c j I

F a c j C

F

=

≤ ∀ ∈

≤ ∀ ∈

∈ Γ

                (14) 

 
where ja  is the jth column of A and the function F  is 
defined by 

 

0

( )
( ) lim sup   .mF dF d d

δ

δ
δ→ +

= ∀ ∈ ¡                 (15) 

 
Here, F , first used by Gomory and Johnson (1972) in 

the context of cutting plane algorithms, is the upper 
d-directional derivative of F at zero. The next result reveals the 
relation between F and F . 

 
Theorem 1. (Johnson (1974), Jeroslow (1978), Nemhauser 
and Wolsey (1988)) If F ∈ Γm, then ∀d ∈ m¡  with 

( )F d < ∞ and λ ≥ 0, ( ) ( ).F d F dλ λ≤  
 
Proof. Let λ > 0 and µ > 0. Setting q = µ − µ   , we have 
 

( )

,

d q ddF d F F

q ddF F

q dd dF F qF

µ λ λµλ
λ

µ µ µ

λλ
µ

µ µ

λλ λ
µ

µ µ µ

     = = +  
   

   
≤ +      

   
     

= + −     
     

 

 
where the inequality follows from the fact that F ∈ Γm. 
Now, letting δ = 1

µ , we get 
 

( ) ( ) ( )
( ) .

F d F q d F dF d q
q

δλ δλ δλ
λ δ

δ δ δ
 

≤ + − 
 

       (16) 

 
By taking the limit as δ → 0+, we obtain 
 

( ) ( ).F d F dλ λ≤                               (17) 
 
Finally, note that 

 

0

0

( ( ))
( ) lim sup

( )
         lim sup ( ).

F dF d

F d F d

δ

δλ

δ λ
λ

δ
λ δλ

λ
δλ

→ +

→ +

=

= =
               (18) 

■ 
 
Example 3. Consider the d-directional derivative of the 
value function for the MILP (6), shown in Figure 3: 
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Figure 3. Directional derivative of the value function of problem (6). 

 
− ≤

=  >

, 0
( ) .

2 , 0
d d

z d
d d

                            (19) 

 
Note that z is a piecewise linear convex function whose 
directional derivatives near the origin coincide with that of 
z. As we pointed out in Example 1, these directional 
derivatives are determined by the coefficients of the 
continuous variables in (6).                       ■ 
 

The use of F is required in (14) due to the presence of 
the continuous variables and is not needed for pure integer 
programs. Intuitively, the role of F is to ensure that 
solutions to (14) have gradients that do not exceed those of 
the value function near zero, since the subadditivity of F 
alone is not enough to ensure this in the case of MILP. We 
now show formally that (14) is in fact a valid dual problem. 
 
Theorem 2. (Weak Duality by Jeroslow (1978, 1979)) Let 
x be a feasible solution to the MILP (2) and let F be a 
feasible solution to the subadditive dual (14). Then, F(b) ≤ 
cx. 
 
Proof. Let x be a given feasible solution to the MILP (2). 
Note that 
 

∈ ∈

∈ ∈

=

≤ +

≤ +

≤

∑ ∑

∑ ∑

( ) ( )

( ) ( )

( ) ( )

.

j j
j j

j I j C

j j
j j

j I j C

F b F Ax

F a x F a x

F a x F a x

cx

 

 
The first inequality follows from the subadditivity of F. 

Next, 
∈ ∈

≤∑ ∑( ) ( ) ,j j
j jj I j I

F a x F a x  since F is 

subadditive, F(0) = 0 and jx  ∈ +¢ ,  j ∈ I. Similarly, 

∈ ∈ ∈
≤ ≤∑ ∑ ∑( ) ( ) ( ) ,j j j

j j jj C j C j C
F a x F a x F a x  since 

(0)F  = 0 and ≤( ) ( ) ,j j
j jF a x F a x  jx  ∈ ,+¡  j ∈ C 

by Theorem 1. Therefore, the second inequality holds. For 
the last inequality, ( ) ,j

jF a c≤  j ∈ I and ( )jF a ≤ cj, j ∈ C 
by dual feasibility and xj is nonnegative for all j ∈ N by 
primal feasibility.                               ■ 

 
Example 4. For the MILP (6), the subadditive dual 
problem is 
 
max   ( )F b      

3
2

1

1(1)
2

( ) 0

(1) 2

( 1) 1

.

F

F

F

F

F

≤

− ≤

≤

− ≤

∈ Γ

                              (20) 

 
As described above, the last two constraints require that 

the slope of F going away from the origin (the d-directional 
derivative) be less than or equal to that of the value 
function, whereas the first two constraints require that F(1) 
and 3

2( )F −  not exceed z(1) and 3
2( )z − , respectively. 

Note that in this example, the constraint F (−1) ≤ 1 is 
actually equivalent to the constraint F(−1) ≤ 1, but 
replacing F (1) ≤ 2 with F(1) ≤ 2 results in the admission 
of invalid dual functions. 

If we require integrality of all variables in (6), then the 
value function becomes that shown in Figure 4, defined 
only at discrete values of the right-hand side d. In this case, 
F is replaced by F in (20) and the third constraint becomes 
redundant. This can be seen by the fact that x3 cannot take 
on a positive value in any optimal solution to the pure 
integer restriction of (6).                         ■ 

 
Although the value function itself yields an optimal 

solution to the subadditive dual of any given MILP, 
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irrespective of the value of the original right-hand side b, 
the set of all dual functions that are optimal to (14) can be 
affected dramatically by the initial value of b considered. 
This is because F is required to agree with the value 
function only at b and nowhere else. In the following 
example, we consider optimal solutions to (20) for 
different values of b. 

 
Example 5. Consider optimal solutions to (14) for the 
MILP (6) for different values of b. 
 
1. F1(d) = 2

d  is an optimal dual function for b ∈ {0, 1, 
2, ...} (see Figure 2), 

2. F2(d) = 0 is an optimal dual function for b ∈ { ..., −3, 
3
2− , 0} (see Figure 2). 

3. =3( )F d  max { }31
2 4 2 4,  2d d d dd d d− −               − − −     is 

an optimal dual function for b ∈ {[0, 1
4 ] ∪ [1, 5

4 ] ∪ 
[2, 9

4 ] ∪ ...} (see Figure 5). 

4. F4(d) = { 3 2 2 22
2 3 3 3 3max ,d d d d  − − −      

}3 2 2 22
4 3 3 3 3 2

d d d d  − − − +      is an optimal dual 

function for b ∈ { …∪ [ 7
2− ,−3] ∪ [−2, 3

2− ] ∪ [− 1
2 , 

0]} (see Figure 5).                           ■ 
 

As in LP duality, weak duality yields results concerning 
the relationship between primal and dual when no finite 
optimum exists. Before proving the main corollary, we 
need the following important lemma. 

 
Lemma 3. For the MILP (2) and its subadditive dual (14), 
the following statements hold: 
 
1. The primal problem is unbounded if and only if b ∈ Ω 

and z(0) < 0. 

2. The dual problem is infeasible if and only if z(0) < 0. 
 
Proof. First, note that 0∈ Ω and z(0) ≤ 0, since x = 0 is a 
feasible solution to the MILP (2) with right-hand side 0. 
1. If b ∈ Ω and z(0) < 0, then there exist x ∈ S and 

x̂ ∈ S(0) with ˆcx < 0. Then ˆx xλ+ ∈ S for all     
λ ∈ +¡ and it follows that λ can be chosen to make 
z(b) arbitrarily small. Conversely, if b ∈ Ω and z(0) = 0, 
then we must also have that min{cx | Ax = 0, x ∈ n

+¡ } 
= 0. Otherwise, there must exist an ˆ nx +∈¤  for 
which ˆAx = 0 and ˆcx < 0, which can be scaled to 
yield an integer solution to (2) with right-hand side 0, 
contradicting the assumption that z(0) = 0. Since no 
such vector exists, the LP relaxation of (2), and hence 
the MILP itself, must be bounded. 

2. If z(0) = 0, then min{cx|Ax = 0, x ∈ n
+¡ } =     

max {v 0: vA ≤ c, v ∈ m¡ } = 0 (see the proof of part 1 
above) and therefore, (14) is feasible by setting F(d) = 
v*d ∀d ∈ ,m¡  where v* is the optimal dual solution. 
This implies that if the dual is infeasible, then z(0) < 0. 
If z(0) < 0, on the other hand, the dual cannot be 
feasible since any feasible solution F has to satisfy F(0) 
= 0 and this would contradict weak duality.        ■ 

 
Corollary 4. For the MILP (2) and its subadditive dual 
(14), 
 
1. If the primal problem (resp., the dual) is unbounded 

then the dual problem (resp., the primal) is infeasible. 
2. If the primal problem (resp., the dual) is infeasible, 

then the dual problem (resp., the primal) is infeasible 
or unbounded. 

 
 

 
Figure 4. Value function of problem (6) with all variables integer. 
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Figure 5. Observe that F(d) = max{F3(d), F4(d)} is an optimal dual function for (20) for some values of b and only feasible 

otherwise. 
 

Proof. 
 
1. This part follows directly from Theorem 2. 
2. Assume that the primal problem is infeasible. Then 

there are two cases. If z(0) < 0, the dual is infeasible by 
Lemma 3. Otherwise, by LP duality, ∃ v ∈ m¡ with vA 
≤ c. Let F1 ∈ Γm be defined by F1(d) = vd, ∀d ∈ ¡ .m  
Note that 1F = F1. Next, consider the value function 
F2(d) = min{x0: Ax + x0d = d, x ∈ −

+ +×¢ ¡ ,r n r       
x0 ∈ +¢ }. F2 is defined and finite for all d ∈ m¡ since 
x = 0 with x0 = 1 is a feasible solution for any 
right-hand side. Therefore, F2 ∈ Γm. Furthermore, for 
any j ∈ I, 2 ( )jF a  ≤ 0, since je  (the jth unit vector) 
together with x0 = 0 is a feasible solution to the 
corresponding problem. On the other hand, for any  
j ∈ C and δ > 0, F2(δ 

ja ) ≤ 0 due to the fact that     
x = δ 

je  and x0 = 0 is feasible. Thus, 2F ( ja ) ≤ 0,  
∀ j ∈ C. In addition, F2(b) = 1 since there cannot be 
an optimal solution with x0 = 0 as a consequence of  
S = Ø. Then, observe that for any scalar λ ∈ +¡ , F1 + 
λF2 is dual feasible to (14), which means that the dual 
is unbounded as λ can be chosen arbitrarily large. 
If the dual problem is infeasible, then, by Lemma 3, 
z(0) < 0 and the primal problem is unbounded if     
b ∈ Ω and infeasible otherwise.                ■ 
 

Before moving on to prove strong duality, we need the 
following theorem that states that any given MILP can be 
“extended” to one that is feasible for all right-hand sides 
and whose value function agrees with that of the original 
MILP for all right-hand sides d ∈ Ω. 
 
Theorem 5. (Blair and Jeroslow (1977)) For the MILP (2), 
there exists an extension ze(d) = min {cex: Aex = d,       
x ∈ l

+¢ × −
+¡k l }, with ce and Ae obtained by adding new 

coefficients and columns to c and A, such that ze(d) = z(d) 
∀ d ∈ Ω and ze(d) < ∞ ∀ d ∈ ¡ .m  

We will not give the proof here, but note that the idea 
depends on iteratively adding columns orthogonal to the 
span of the columns of A with objective function 
coefficients chosen so that ze(d) = z(d) whenever z(d) < ∞. 
The following result then shows formally that the dual (14) 
is strong. 

 
Theorem 6. (Strong duality by Jeroslow (1978, 1979), 
Wolsey (1981)) If the primal problem (2) (resp., the dual) 
has a finite optimum, then so does the dual problem (14) 
(resp., the primal) and they are equal. 
 
Poof. Note that if the primal or the dual has a finite 
optimum, then Corollary 4 requires the other also to have a 
finite optimum. Now, we prove the claim by verifying that 
the value function z (or an extension to z) is a feasible dual 
function whenever the primal has a finite optimum. 
 
i. Ω ≡ :m¡  In this case, z ∈ Γ ,m  and with a similar 

argument in the second part of the proof of Corollary 
4, z is feasible to the dual problem. 

ii. Ω ⊂ :m¡  By Theorem 5, ∃ ze ∈ Γm  with ze(d) = z(d) 
∀d ∈ Ω and ze(d) <∞ ∀d ∈ .m¡  By construction, ze 
must satisfy the constraints of the dual of the original 
MILP (2), since the dual of the extended MILP from 
Theorem 5 includes the constraints of (14) (Ie ⊇ I and 
Ne ⊇ N). Therefore, ze is feasible to the dual of the 
original MILP and hence, this dual has an optimal 
solution value of ze(b) = z(b).                   ■ 

One can further use the strong duality property of (14) 
to derive a generalization of Farkas’ Lemma. This result is 
stated more formally in the following corollary. 
 
Corollary 7. (Blair and Jeroslow (1982)) For the MILP (2), 
exactly one of the following holds: 
1. S ≠ Ø. 

2. There is an F ∈ Γm  with F( ja ) ≤ 0 ∀j ∈ I, ( )jF a ≤ 
0 ∀j ∈ C and F(b) > 0. 
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Proof. The proof follows directly from applying Corollary 
4 and Theorem 6 to the MILP (2) with c = 0.          ■ 
 

The subadditive dual (14) can also be used to extend 
familiar concepts such as reduced costs and the complementary 
slackness conditions to MILPs. For a given optimal solution 
F* to (14), the reduced costs can be defined as cj − F*( ja ) 

for j ∈ I and cj −
*
( )jF a  for j ∈ C. These reduced costs 

have an interpretation similar to that in the LP case, except 
that we do not have the same concept of “sensitivity 
ranges” within which the computed bounds are exact. 
Complementary slackness conditions can be stated as 
follows. 
 
Theorem 8. (Jeroslow (1978), Johnson (1979), Bachem 
and Schrader (1980), Wolsey (1981)) For a given right-hand 
side b, let x* and F* be feasible solutions to the primal 
problem (2) and the subadditive dual problem (14). Then, 
x* and F* are optimal if and only if 
 

∈ ∈

− = ∀ ∈

− = ∀ ∈

= +∑ ∑

* *

**

** * * *

( ( )) 0,  ,

( ( )) 0,  ,  and

( ) ( ) ( )

j
j j

j
j j

j j
j j

j I j C

x c F a j I

x c F a j C

F b F a x F a x

              (21) 

 
Proof. If x* and F* are optimal, then, from the properties 
of F* and strong duality, 
 

** * * * * * *( ) ( ) ( ) ( ) .j j
j j

j I j C

F b F Ax F a x F a x cx
∈ ∈

= = + =∑ ∑ (22) 

 
Then, we have 
 

∈ ∈

− + − =∑ ∑
** * *( ( )) ( ( )) 0.j j

j j j j
j I j C

x c F a x c F a  

 
By primal and dual feasibility, *

jx ≥ 0 ∀ j ∈N,        

cj − * ( )jF a ≥ 0 ∀ j ∈ I and cj −
*
( )jF a ≥ 0 ∀ j ∈C. 

Therefore, (21) holds. 
On the other hand, if the conditions (21) are satisfied, 

then (22) holds, which in turn, yields F*(b) = cx*.       ■ 
 
These conditions, if satisfied, yield a certificate of 

optimality for a given primal-dual pair of feasible solutions. 
They can further be used to develop an integer 
programming analog of the well-known primal-dual 
algorithm for linear programming. Llewellyn and Ryan 
(1993) give the details of one such algorithm. 

The subadditive duality framework also allows the use of 
subadditive functions to obtain inequalities valid for the 
convex hull of S. In fact, subadditive functions alone can, 

in theory, yield a complete description of conv(S ). It is 
easy to see that for any d ∈ Ω and F ∈ Γm  with 

*
( )jF a < ∞ ∀j ∈ C, the inequality 

( ) ( ) ( )j j
j j

j I j C

F a x F a x F d
∈ ∈

+ ≥∑ ∑                 (23) 

 
is satisfied for all x ∈ S(d). The proof follows the same 

steps as that of weak duality, with x restricted to be in S(d). 
Furthermore, the following result shows that any valid 
inequality is either equivalent to or dominated by an 
inequality in the form of (23). 
 
Theorem 9. (Johnson (1973), Jeroslow (1978)) For the 
MILP (2) and π ∈ ¡ ,n  π0 ∈ ¡ , we have that πx ≥ π0  
∀x ∈ S if and only if there is an Fπ ∈ Γm  such that 
 

π

π

π

π

π

π

≤ ∀ ∈

≤ ∀ ∈

≥ 0

( )  ,

( )  ,  and

( ) .

j
j

j
j

F a j I

F a j C

F b

                      (24) 

 
Proof. First assume that π ∈ n¡ and π0 ∈ ¡  are given 
such that πx ≥ π0 ∀x ∈ S. Consider the MILP 
 

min{ | }.z x xπ π= ∈ S                          (25) 
 

Clearly, zπ ≥ π0 because otherwise, there exists an   
x ∈ S with π x < π0. Applying Theorem 6 to (25), we find 
that there must be a dual feasible function Fπ satisfying 
(24). 

Conversely, assume that there exists an Fπ ∈ Γm  
satisfying (24) for a given π ∈ n¡ and π0 ∈ ¡ . Then Fπ is 
also feasible to the subadditive dual of (25) and from weak 
duality, πx ≥ Fπ(b) ≥ π0 for all x ∈ S.                ■ 
 
Example 6. The subadditive dual function F3(d) in 
Example 5 is feasible to (20). Since 1

3 2(1) ,F =       
3 1

3 2 2( )F − = − , 3(1) 2,F =  3( 1) 1,F − =  then 
 

− + + ≥1 2
3 4 32 ( )

2 2
x x

x x F b                      (26) 

 
is a valid inequality for (6).                        ■ 
 

As an extension to this theorem, Bachem and Schrader 
(1980) showed that the convex hull of S can be 
represented using only subadditive functions and that 
rationality of A is enough to ensure the existence of such a 
representation, even if the convex hull is unbounded. 

 
Theorem 10. (Jeroslow (1978), Blair (1978), Bachem and 
Schrader (1980)) For any d ∈ Ω, 
 

( ( )) { : ( )

                   ( ) ( ),  , 0}.

j
j

j I

j m
j

j C

conv d x F a x

F a x F d F x
∈

∈

=

+ ≥ ∈ Γ ≥

∑

∑

S

  (27) 
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For a fixed right-hand side, it is clear that only finitely 
many subadditive functions are needed to obtain a 
complete description, since every rational polyhedron has 
finitely many facets. In fact, Wolsey (1979) showed that for 
PILPs, there exists a finite representation that is valid for 
all right-hand sides. 
 
Theorem 11. (Wolsey (1979)) For a PILP in the form (2), 
there exist finitely many subadditive functions Fi, i = 1, ..., 
k, such that 
 

1

( ( )) { : ( ) ( ),  

                    1,  ...,  ,  0}

n
j

i j i
j

conv d x F a x F d

i k x
=

= ≥

= ≥

∑S
            (28) 

 
for any d ∈ Ω. 
 
Proof. Wolsey (1979) showed that when A ∈ m n×¢ , there 
exists finitely many subadditive functions Fi, i = 1, ..., k, 
such that 
 

1

( ( )) { : ,  ( ) ( ),

                    1,  ...,  ,  0} .

n
j

i j i
j

m

conv d x Ax d F a x F d

i k x d
=

= = ≥

= ≥ ∀ ∈

∑
¢

S
     (29) 

 
However, the assumption that A ∈ m n×¢  is without loss 

of generality, since A can be scaled appropriately. After 
scaling, we must have Ω ⊆ m¢ and the result follows.    ■ 

 
Finally, it is possible to show not only that any facet can 

be generated by a subadditive function, but that this is true 
of any minimal inequality. Recall that π ∈ m¡  and π0 ∈ ¡  
define a minimal valid inequality if there is no other valid 
inequality defined by π̂ ∈ m¡  and 0π̂ ∈ ¡  such that 
ˆ jπ ≤ πj for all j ∈ N and 0π̂ ≥ π0. Although the next 

theorem was originally stated for either rational constraint 
matrices (Johnson (1974), Blair (1978)) or bounded feasible 
regions (Jeroslow (1979)), Bachem and Schrader (1980) 
showed that the same result holds without any restriction 
on S. 
 
Theorem 12. (Bachem and Schrader (1980)) If π ∈ m¡  
and π0 ∈ ¡  define a minimal valid inequality for the MILP 
(2), then there is an F ∈ Γm  such that 
 

δ
δδ

π

π +
− −

→

= = − − ∀ ∈

= = ∀ ∈( ) ( )
0

( ) ( ) ( )      ,

( ) lim   and,
j

j j
j

F b F b aj
j

F a F b F b a j I

F a j C
 

π= 0( ) .F b                                   (30) 
 

The converse of Theorem 12 holds for any subadditive 
function that is the value function for the MILP (2) with 
objective function π, where π0 = min{πx | x ∈ S} (as in 
(25)). 

4. CONSTRUCTING DUAL FUNCTIONS 

It is reasonable to conclude that neither the general dual 
problem (8) nor the subadditive dual problem (14) can be 
formulated as manageable mathematical program solvable 
directly using current technology. 

However, there are a number of methods we can use to 
obtain feasible (and in some cases optimal) dual functions 
indirectly. We focus here on dual functions that provide 
bounds for instances of a given MILP after modifying the 
right-hand side, since these are the ones about which we 
know the most. Such dual functions are intuitive because 
they allow us to extend traditional notions of duality from 
the realm of linear programming to that of integer 
programming. However, we emphasize that they are not 
the only dual functions of potential interest in practice. 
Dual functions that accommodate changes to the objective 
function are also of interest in many applications, 
particularly decomposition algorithms. Dual functions that 
allow changes to the constraint matrix are closely related to 
those for studying the right-hand side, but may also yield 
further insight. Dual functions of these latter two types 
have not been well-studied. We discuss future research on 
these dual functions in Section 5. 

Dual functions of the right-hand side can be grouped 
into three categories: (1) those constructed explicitly in 
closed form using a finite procedure, (2) those obtained 
from known families of relaxations, and (3) those obtained 
as a by-product of a primal solution algorithm, such as 
branch and cut. In Sections 4.1 and 4.2 below, we discuss 
two different methods of explicitly constructing the value 
function of a PILP and give an idea of how those might be 
extended to the MILP case. In Sections 4.3 through 4.5, we 
discuss methods for obtaining dual functions from 
relaxations. In Section 4.6, we discuss a method by which 
the subadditive dual of a bounded PILP can be formulated 
as a linear program. Finally, in Section 4.7, we discuss how 
to obtain a dual function as a by-product of the 
branch-and-cut algorithm, the method used most 
commonly in practice for solving MILPs. 

 
4.1 The value function 

The value function itself is the most useful dual function 
we can obtain for studying the effect of perturbations of 
the right-hand side vector, since it provides an exact 
solution value for any right-hand side vector. 
Unfortunately, it is unlikely that there exist effective 
methods for producing the value function for general 
MILPs. For PILPs, Blair and Jeroslow (1982) showed that 
a procedure similar to Gomory’s cutting plane procedure 
can be used to construct the value function in a finite 
number of steps. Unfortunately, the representation so 
produced may have exponential size. From this procedure, 
however, they were able to characterize the class of 
functions to which value functions belong, namely, Gomory 
functions, a subset of a more general class called Chvátal 
functions. 
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Definition 3. Chvátal functions are the smallest set of 
functions C m such that 
1. If h ∈ Lm, then h ∈ C m. 
2. If h1, h2 ∈ C m and α, β ∈ +¤ ,  then αh1 + βh2 ∈ C m. 
3. If h ∈ C m, then h   ∈ C m. 
Gomory functions are the smallest set of functions     
G m ⊆ C m with the additional property that 
4. If h1, h2 ∈ G

 
m, then max{h1, h2} ∈ G

 
m. 

 
The relationship between C m and G

 
m is evident from the 

following theorem. 
 

Theorem 13. (Blair and Jeroslow (1982)) Every Gomory 
function can be written as the maximum of finitely many 
Chvátal functions, that is, if g ∈ G

 
m, then there exist    

hi ∈ C m for i = 1, ..., k such that 
 
= 1max{ ,  ...,  }.kg h h                           (31) 
 
This theorem also makes evident the relationship 

between G m and the property of subadditivity. Note that if 
h1, h2 are subadditive and α, β ∈ +¤ ,  then it is easy to 
show that the functions αh1 + βh2 and 1h   are both 
subadditive. Consequently, one can show that Chvátal 
functions are subadditive by induction on the rank of 
functions (i.e., the number of operations of the type 
specified in Definition 3 needed to derive a given Chvátal 
function from the base class Lm). Since max{h1, h2} is 
subadditive, Gomory functions are also subadditive. As a 
result of subadditivity, both Chvátal and Gomory functions 
can be used for generating valid inequalities. The following 
lemma, needed for the proof of Theorem 15 shows that 
for PILPs, Chvátal functions can be used to obtain a 
description of the convex hull of solutions. 

 
Lemma 14. (Schrijver (1980)) The subadditive functions in 
Theorem 11 can be taken to be Chvátal functions. 
 

The above lemma then allows us to characterize the 
value function of a PILP for which z(0) = 0. 

 
Theorem 15. (Blair and Jeroslow (1982)) For a PILP in the 
form (2), if z(0) = 0, then there is a g ∈ G m such that g(d) = 
z(d) for all d ∈ Ω. 

 
Proof. Consider the parameterized family of PILPs 
min{cx|x ∈ conv(S(d))} ∀ d ∈ Ω, where conv(S(d)) is 
represented by the finite set of Chvátal functions whose 
existence is guaranteed by Lemma 14. Applying LP duality, 
we get g(d) = z(d) = max{

1
( )k

i ii
v F d

=∑ |v ∈ V } where V is 

the finite set of dual basic feasible solutions. Then the 
proof is complete by Theorem 13.                  ■ 
 
Example 7. The value function of problem (6) with all 
variables assumed to be integer can be written as z(d) 

= 3
2 max{ 2

3 ,d   d   } − d ∀ d ∈ Ω, which is a Gomory 
function (see Figure 4).                          ■ 
 

For PILPs, it is also worth mentioning that there always 
exists an optimal solution to the subadditive dual problem 
(14) that is a Chvátal function. 

 
Theorem 16. (Blair and Jeroslow (1982)) For a PILP in the 
form (2), if b ∈ Ω and z(b) > −∞, then there exists h ∈ C m 
that is optimal to the subadditive dual (14). 

 
Proof. Note from the proof of Theorem 6 that either the 
value function itself, or an extension of the value function 
is a feasible solution to the subadditive dual. Denote this 
function as ze. From Theorem 15, we know that there is a  
g ∈ G m with g(d) = ze(d) for all d ∈ Ω and hence, feasible to 
the subadditive dual (14). By Theorem 13, g is the 
maximum of finitely many Chvátal functions, h1, ..., hk. For 
right-hand side b, since ze(b) = max{h1(b), ..., hk(b)}, there 
exists l ∈ {1, ..., k} with z(b) = ze(b) = hl(b). Then hl is an 
optimal solution to the subadditive dual (14) since it is 
subadditive, and hl( ja ) ≤ g( ja ) ≤ cj for all j ∈ I.        ■ 
 

Using a result similar to Corollary 7 above, Blair and 
Jeroslow (1982) introduced the more general concept of a 
consistency tester to detect the infeasibility of the problem for 
any right-hand side. They showed that for a given PILP, 
there is a g ∈ G m such that for every d ∈ ¡ ,m  g(d) ≤ 0 if 
and only if d ∈ Ω. Using the consistency tester concept, we 
can state a converse of Theorem 15. That is, for Gomory 
functions g1, g2, there exist ,  A c  such that g1(d) = 
min{ c x| Ax  = d, x ≥ 0 and integral} for all d with g2(d) ≤ 
0. In this sense, there is one-to-one correspondence 
between PILP instances and Gomory functions. 

For MILPs, neither Theorem 15 nor its converse holds. 
However, Blair and Jeroslow (1984) argue that the value 
function z can still be represented by a Gomory function if 
cj = 0 ∀ j ∈ C or can be written as a minimum of finitely 
many Gomory functions. A deeper result is contained in 
the subsequent work of Blair (1995), who showed that the 
value function of a MILP can be written as a Jeroslow formula, 
consisting of a Gomory function and a correction term. 
Here, rather than the formula itself (see Blair and Jeroslow 
(1984), Blair (1995) for details), we present a simplified 
version to illustrate its structure. 

For a given d ∈ Ω, let the set E consist of the index sets 
of dual feasible bases of the linear program 

 
= ≥min{ : ,  0}.C C C Cc x A x d x                   (32) 

 
By the rationality of A, we can choose M ∈ +¢ such that 

for any E ∈ E, 1 j
EMA a− ∈ m¢  for all j ∈ I. For E ∈ E, let 

vE be the corresponding basic feasible solution to the dual 
of 
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 = ≥ 
 

1 1min : ,  0 ,C C C Cc x A x d x
M M

             (33) 

 
which is a scaled version of (32). Finally, for a right-hand 
side d and E ∈ E, let Ed   = AE

−  
1

EA d . 

 
Theorem 17. (Blair (1995)) For the MILP (2), there is a   
g ∈ G

 
m such that 

 

∈
= + −      ( ) min ( ) ( )EE EE

z d g d v d d
E

               (34) 

 
for any d ∈ Ω. 

 
Proof. Assume that cC and AC are scaled as in (33) and 
consider the PILP instance 

 
JFz (φ) ϕ= +min  ( )cx z y                       (35) 

ϕ+ = s.t  Ax y φ 

+ +∈ ∈¢ ¢,  ,nx y  
 

where ϕ = −∑j ∈C .ja  Then we have the following: 
 

1. For any E ∈ E and d ∈ ¡ ,m  (35) is feasible for φ 
= Ed   . To see this, observe that if EA d   ≥ 0, then 

xE = −  
1

EA d , xN\E = 0, y = 0 is a feasible solution. 

Otherwise, there exists ∆ ∈ +¢  such that xE = 

( −  
1

EA d +∆ −1
EA ∑j∈E ja ) ∈ m

+¢ , since −1
EA Σj∈E 

ja = 1m. Therefore, together with xE, xI = 0, xj = ∆ for 
j ∈ C\E and y = ∆ is a feasible solution. 

2. For any E ∈ E and d ∈ ¡ ,m  zJF ( Ed   ) ≥ z( Ed   ). 

To see this, assume that z(ϕ ) = cx1 and zJF ( Ed   ) = 

cx2 + z(ϕ ) ŷ = c(x2 + 1 ˆx y ). But then, clearly, zJF ( Ed   ) 

≥ z( Ed   ) since (x2 + 1 ˆx y ) ∈ S( Ed   ). 
 
Now, we know from Theorem 15 that there is a g ∈ G

 
m 

with g( Ed   ) = zJF ( Ed   ) for all d ∈ m¡ , E ∈ E. Let    

d ∈ Ω be given and x ∈ S(d). By LP duality, there is an  
E ∈ E with 1

E E C Cc A A x−  ≤ .C Cc x  Noting that Ed   = 

EAx   = I IA x  + ,C C EA x    we have 
 

1

1

( ) ( )

( ) ( )

( )

,

EE E

JF I I C C E EE

I I E E C C E EE

I I E E C C

g d v d d

z A x A x v d d

c x c A A x v d d

c x c A A x

cx

−

−

+ −      
= + + −     
≤ + + −     
= +

≤

 

 
where the first inequality follows from the fact that xI 
= ,Ix  xj = 0 for j ∈ C\E, xE = −1

EA ,C C EA x    and y = 0 

is a feasible solution to (35) with right-hand side AI Ix +  

C C EA x    and the last equality follows from the fact that 
 

1

( ) ( )

( ).
E E C C C CE E

E E C C C C E

v d d v A x A x

c A A x A x−

− = −      
= −   

 

 
On the other hand, for any E ∈ E, 

 
( ) ( ) ( ) ( )

( ) ( ) ( ).
E JF EE E E E

E E

g d v d d z d v d d

z d z d d z d

+ − = + −              
≥ + − ≥      

 

 
by the subadditivity of z.                         ■ 
 
Example 8. Consider the MILP (6). With M = 2, the set of 
index sets of dual feasible bases of min{x3 + 1

2 x4| 1
2 x3 

− 1
2 x4 = d, x3, x4 ≥ 0} is E = {{3}, {4}}. Furthermore, v{3} 

= 2 and v{4} = −1. Since ϕ = 1 1
2 2 0− =  and z(0) = 0, (35) 

reduces to zJF (φ) = { 1
2 x1 + x3 + 1

2 x4|x1 − 3
2 x2 + 1

2 x3 − 1
2 x4 

= φ, xi ∈ +¢ ,  i = 1, ..., 4}. The value function of this 
problem is the same as z in Example 7. Thus, g(d) 
= 3

2 max{ 2
3
d   , d   } − d solves this problem. Then the 

value function (see Figure 1) of (6) is 
 

2 2 3 23min max , 2 ,
2 3 2 2

2 23
                                         max , .

2 3 2

d d d
d

d d
d

                 + +     
      

             −     
       

 

                                            ■ 
 
4.2 Generating functions 

Lasserre (2004a, b) recently introduced a different 
method for constructing the value function of PILPs that 
utilizes generating functions. This methodology does not 
fit well into a traditional duality framework, but 
nevertheless gives some perspective about the role of basic 
feasible solutions of the LP relaxation in determining the 
optimal solution of a PILP. 

 
Theorem 18. (Lasserre (2003)) For a PILP in the form (2) 
with A ∈ ×¢ ,m n  define 

 

( )
( , ) min ,

x d
z d c cx

∈
=

S
                             (36) 

and let the corresponding summation function be 
 

( )

ˆ( , )  .cx m

x d

z d c e d
∈

= ∀ ∈∑
S

¢                      (37) 

 
Then the relationship between z and ẑ is 
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→−∞

→−∞

=

=

1
( , ) ˆlim ( , )  or equivalently,

1 ˆ( , ) lim ln ( , ).

z d c q

q

q

e z d qc

z d c z d qc
q

            (38) 

 
In order to get a closed form representation of ẑ , we 

can solve the two sided ¢- transform ˆ :F  m£ → £  
defined by 

 
ˆ ˆ( , ) ( ,  )

m

d

d

F s c s z d c−

∈

= ∑
¢

                        (39) 

 
with sd = 1

1
ds ... md

ms for d ∈ m¢ . Substituting ẑ  in this 
formula, we get 

 

( )

1

ˆ ( , )

1           ,
1

m

n

n

j
j

d cx

x dd

cx d

d Axx

cx Ax

x

n

c a
j

F s c s e

e s

e s

e s

+

+

−

∈∈

−

=∈

−

∈

−
=

=

=

=

=
−

∑ ∑

∑ ∑

∑

∏

S¢

¢

¢

                     (40) 

 
where the last equality is obtained by applying Barvinok 
(1993)’s short form equation for summation problems over 
a domain of all non-negative integral points. The formula 
(40) is well-defined if 

jas > ,jce  j = 1, ..., n and the 

function ẑ is then obtained by solving the inverse problem 
 

γ

γ γ

π

π

−

=

−

= =

=

=

∫

∫ ∫
1 1

1

1

1 ˆˆ( , ) ( , )
(2 )

1 ˆ          ... ( , ) ,
(2 )

m

m

m m

d
m s

d
m s s

z d c F s c s ds
i

F s c s ds
i

        (41) 

 
where γ is a vector satisfying 

jaγ > jce  j = 1, ..., n and 1m = 
(1, ..., 1) ∈ ¡ .m  

Although it is possible to solve (41) directly by Cauchy 
residue techniques, the complex poles make it difficult. 
One alternative is to apply Brion and Vergne’s (see Brion 
and Vergne (1997), Lasserre (2003) for details) lattice 
points counting formula in a polyhedron to get the reduced 
form, which, for each d ∈ m¡ , is composed of the optimal 
solution value of the LP relaxation and a correction term. 
The correction term is the minimum of the sum of the 
reduced costs of certain nonbasic variables over all basic 
feasible solutions, obtained by the degree sum of certain 
real-valued univariate polynomials. Another approach 
using generating functions is to apply Barvinok (1994)’s 
algorithm for counting lattice points in a polyhedron of 
fixed dimension to a specially constructed polyhedron that 
includes for any right-hand side the corresponding minimal 
test set (see Loera et al. (2004a, b) for details). 

 

4.3 Cutting plane method 

Cutting plane algorithms are a broad class of methods for 
obtaining lower bounds on the optimal solution value of a 
given MILP by iteratively generating inequalities valid for 
the convex hull of S (called cutting planes or cuts). The 
procedure works by constructing progressively tighter 
polyhedral approximations of conv(S ), over which a linear 
program is then solved to obtain a bound. To be more 
precise, in iteration k, the algorithm solves the following 
linear program: 

 

0

min  
  s.t. 
       
        0,

cx
Ax b

x
x

=
∏ ≥ ∏

≥

                              (42) 

 
where Π ∈ k n×¡  and Π0 ∈ k¡ represents the cutting 
planes generated so far. At the time of generation, each of 
the valid inequalities is constructed so as to eliminate a 
portion of the feasible region of the current relaxation that 
contains the current solution to (42), but does not contain 
any feasible solutions to the original MILP. 

As noted earlier, the LP dual of (42), i.e., 
 

0max       
          

        ,  ,m k

vb w
vA w c

v w +

+ ∏
+ ∏ ≤

∈ ∈¡ ¡
                         (43) 

 
is also a dual problem for the original MILP, but does not 
yield a dual function directly because the cutting planes 
generated may only be valid for the convex hull of 
solutions to the original MILP and not for instances with a 
modified right-hand side. However, one can extract such a 
dual function if it is possible to systematically modify each 
cut to ensure validity after replacing the original right-hand 
side b with a new right-hand side d. Assuming that a 
subadditive representation (23) of each cut is known, the ith 
cut can be expressed parametrically as a function of the 
right-hand side d ∈ m¡  in the form 

 
( ( )) ( ( )) ( ( )),j j

ii i j i j i i
j I j C

F a x F a x F dσ σ σ
∈ ∈

+ ≥∑ ∑     (44) 

 
where Fi is the subadditive function representing the cut, 
and the functions σi, iσ : m¡ → + −¡ 1m i  are defined by 
• σ1(d) = 1σ (d) = d, 
• σi(d) = [ d F1(σ1(d)) ... Fi−1(σi−1(d)) ] for i ≥ 2, and 
• iσ (d) = [ d 1F ( 1σ (d)) ... −1iF ( 1iσ − (d)) ] for i ≥ 2. 

Furthermore, if (vk, wk) is a feasible solution to (43) in 
the kth iteration, then the function 

 

1

( ) ( ( ))
k

k k
CP i i i

i

F d v d w F dσ
=

= + ∑                    (45) 
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is a feasible solution to the subadditive dual problem (14). 
As noted earlier, Wolsey (1981) showed how to 

construct a dual function optimal to the subadditive dual 
for a given PILP using the Gomory fractional cutting plane 
algorithm under the assumption that cuts are generated 
using a method guaranteed to yield a sequence of LPs with 
lexicographically increasing solution vectors (this method is 
needed to guarantee termination of the algorithm in a finite 
number of steps with either an optimal solution or a proof 
that original problem is infeasible). In Gomory’s procedure, 
the subadditive function Fi, generated for iteration i, has 
the following form 

 
1

1 1

1 1

1 1 1
1 1

( ) ( )

where ( ,  ...,  ) 0.

m i
i i

i k k m k k
k k

i i i
m i

F d d F dλ λ

λ λ λ

−
− −

+
= =

− − −
+ −

 
= + 

 
= ≥

∑ ∑                (46) 

 
Assuming that b ∈ Ω, z(b) > −∞, and that the algorithm 

terminates after k iterations, the function FG defined by 
 

1

( ) ( )
k

k k
G i i

i

F d v d w F d
=

= + ∑                       (47) 

 
is optimal to the subadditive dual problem (14). Note that 
FG is a Chvátal function and hence, this can be seen as an 
alternative proof for Theorem 16. 

In practice, it is generally not computationally feasible to 
determine a subadditive representation for each cut added 
to the LP relaxation. However, since our goal is simply to 
ensure the validity of each cut after modification of the 
right-hand side, an alternative approach that is feasible for 
some classes of valid inequalities is simply to track the 
dependency of each cut on the original right-hand side in 
some other way. If this information can be functionally 
encoded, as it is with the subadditive representation, the 
right-hand side of each cut can be modified to make it 
valid for new instances and these functions can be used to 
obtain a dual function similar in form to (45). As an 
example of this, Schrage andWolsey (1985) showed how to 
construct a function tracking dependency on the 
right-hand side for cover inequalities by expressing the 
right-hand side of a cut of this type as an explicit function 
of the right-hand side of the original knapsack constraint. 
To illustrate, suppose that π ∈ n¡ and π0 ∈ ¡ is such that  
π ≥ 0 and π0 ≥ 0. We define U ⊆ {1, ..., n} to be a cover if 
∑j∈Uπj > π0. It is then well-known that ∑j∈Uxj ≤ |U| − 1 
for all x ∈ {0, 1}n satisfying πx ≤ π0. The following 
proposition shows how to modify the given inequality so 
that it remains valid if π0 is changed to π ∈ ¡.  

 
Theorem 19. (Schrage and Wolsey (1985)) Let πv = 
max{πj| j ∈ U} for a given knapsack constraint with 
nonnegative parameters and a cover U. Then, 

 

0jj U
j

j U v

x U
π π

π
∈

∈

 −
 ≤ −
  

∑
∑                   (48) 

for all x ∈ {0, 1}n satisfying πx ≤ 0 ,π  where 0π  is the 
modified right-hand side. 

 
In the same paper, it is further discussed that a similar 

construction can also be obtained for lifted cover 
inequalities where some of the coefficients of the left side 
of the cover inequality are increased to strengthen the 
inequality. 

 
4.4 Corrected linear dual functions 

A natural way in which to account for the fact that linear 
functions are not sufficient to yield strong dual functions in 
the case of MILPs is to consider dual functions that consist 
of a linear term (as in the LP case) and a correction term 
accounting for the duality gap. One way to construct such 
a function is to consider the well-known group relaxation. 
Let B be the index set of the columns of a dual feasible 
basis for the LP relaxation of a PILP and denote by N\B 
the index set of the remaining columns. Consider the 
function FB defined as 

 
\ \

\ \

\

( ) min  
             s.t. 

                  , .

B B B N B N B

B B N B N B

m n m
B N B

F d c x c x
A x A x d

x x −
+

= +

+ =

∈ ∈¢ ¢

               (49) 

 
Substituting xB = −1

BA d − −1
\ \B N B N BA A x in the objective 

function, we obtain the group relaxation (Gomory (1969)) 
 

1
\ \

\ \

\

( ) max  
                                    ,

                                    ,

B B B N B N B

B B N B N B

m n m
B N B

F d c A d c x
A x A x d

x x

−

−
+

= −

+ =

∈ ∈¢ ¢

      (50) 

 
where /N Bc  = ( 1

/ /B B N B N Bc A A c− − ). Here, dual feasibility 
of the basis AB is required to ensure that / 0.N Bc ≤  

FB is feasible to the subadditive dual (14). To see this, 
note that FB is subadditive since it is the sum of a linear 
function and the value function of a PILP. Also, we have 
FB( ja ) ≤ 1 j

B Bc A a−  − ( 1 j
B Bc A a− − cj) = cj, j ∈ N\B and 

FB( ja ) = cB
−1 j
BA a  = cj, j ∈ B. Therefore, for the PILP (2), 

FB(b) ≤ z(b). Gomory (1969) further discusses sufficient 
conditions for FB to be strong. Observe that FB(b) = z(b) 
when there exists an optimal solution to (50) with xB ≥ 0. 

Another way to construct an optimal solution to the 
subadditive dual using a linear function with a correction 
term is given by Klabjan (2002). 

 
Theorem 20. (Klabjan (2002)) For a PILP in the form (2), 
and a given vector v ∈ ¡ ,m  define the function Fv as 

 

{ }( ) max ( ) | ,  ,v

v v v

D
v D D DF d vd vA c x A x d x += − − ≤ ∈ ¢  

 
where Dv = {i ∈ I : iva  > ci}. Then, Fv is a feasible 
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solution to the subadditive dual problem (14) and 
furthermore, if b ∈ Ω and z(b) > −∞, there exists a v 
∈ m¡ such that Fv(b) = z(b). 
 
Proof. For a given v, Fv is subadditive using an argument 
similar to that made above for group relaxation problems. 
Now, consider the problem max{ ( ) |

v v vD D DvA c x A x−  ≤ 

,ia  x ∈ vD
+¢ } for a given i. If i ∈ I\Dv, x = 0 is feasible. 

Otherwise the ith unit vector is a feasible solution. Thus, for 
any i ∈ I, Fv( ia ) ≤ ci. Therefore, Fv is a feasible solution to 
the subadditive dual (14) and Fv(b) ≤ z(b). 

Next, suppose that the original PILP is solved with 
Gomory’s procedure (42) after k iterations. Let the set of 
generated Chvátal inequalities be represented by (π ,j

0
jπ ) 

for j ∈ J = {1, ..., k}. Let vk and wk be the corresponding 
components of the optimal dual solution with respect to 
the set of original constraints and the set of valid 

inequalities. With x ∈ {x ∈ kv
D
+¢ |

kv
DA x = b}, 

 

0

( )

                       

                       

                       ( ),

k kv v
kv

kv

k j k
D D i j i

i D j J

k j
j i i

j J i D

k j
j

j J

k

v A c x w x

w x

w

v b z b

π

π

π

∈ ∈

∈ ∈

∈

− ≤

= −

≤ −

= −

∑ ∑

∑ ∑

∑
 

 
where the first inequality follows from the dual feasibility 
of kv  and ,kw  i.e., k iv a  + j k

i jj J
wπ

∈∑ ≤ ci, i ∈ ,kv
D  

and the last inequality follows from the fact that j xπ  ≥ 

π 0 ,j  j ∈ J, are valid inequalities for {
kv

DA x = b, x ∈ kv
D
+¢ } 

and wk ≥ 0. Rearranging, we have 
 

( ) ( ) ( ).kk kv v

k k
D D vz b v b v A c x F b≤ − − ≤              (51) 

 
Combining this result with weak duality, we get z(b) 

= ( ).kv
F b                                      ■ 
 
Klabjan (2002) also introduced an algorithm that finds 

the optimal dual function utilizing a subadditive approach 
from (Burdet and Johnson (1977)) together with a row 
generation approach that requires the enumeration of 
feasible solutions. Unfortunately, even for the set 
partitioning problems that the author reports on, this 
algorithm seems not to be practical. 

 
4.5 Lagrangian relaxation 

Another widely used framework for generating dual 
problems is that of Lagrangian duality (Fisher (1981)). A 
mathematical program obtained by relaxing and 
subsequently penalizing the violation of a subset of the 
original constraints, called the complicating constraints, is a 

Lagrangian relaxation. Generally, this relaxation is 
constructed so that it is much easier to solve than the 
original MILP, in which case a dual problem can be 
constructed as follows. Suppose for a given d ∈ m¡ that the 
inequalities defined by matrix A and right-hand side d are 
partitioned into two subsets defined by matrices A1 and A2 
and right-hand sides 1d  and 2 .d  Furthermore, let 
SLD( 2d ) = {x ∈ r

+¢ × −
+¡n r : A2x = 2d }. Then, for a given 

penalty multiplier v ∈ −¡ ,m l  the corresponding Lagrangian 
relaxation can be formulated as 

 

∈
= + −

2

1 1

( )
( , ) min ( )

LDx S d
L d v cx v d A x                 (52) 

 
Assuming z(0) = 0 and that x*(d) is an optimal solution 

to the original MILP with right-hand side d, we have L(d, v) 
≤ cx* (d) + v(d1 − A1x*(d)) = cx* (d) = z(d) ∀ v ∈ −¡ .m l  Thus, 
the Lagrangian function defined by 

 
= ∈( ) max{ ( , ) : },DL d L d v v V                   (53) 

 
with V ≡ −¡ ,m l  is a feasible dual function in the sense that 
LD(d) ≤ z(d) ∀ d ∈ Ω. 

Note that for a given d ∈ Ω, L(d, v) is a concave, 
piecewise-polyhedral function. Therefore, the set Vd of 
extreme points of epi(L(d, v)) is finite. Setting VΩ = ∪d∈ΩVd, 
we can rewrite LD(d) = max{L(d, v): v ∈ VΩ}. It follows 
that if VΩ is finite, then LD reduces to the maximization of 
finitely many subadditive functions and therefore, is 
subadditive and feasible to the subadditive dual problem 
(14). Furthermore, in the PILP case, LD corresponds to a 
Gomory function, since for a fixed v, (52) can be 
represented by a Gomory function and the maximum of 
finitely many Gomory functions is also a Gomory function. 

LD above is a weak dual function in general, but Blair 
and Jeroslow (1979) showed that it can be made strong for 
PILP problems by introducing a quadratic term. To show 
this, we first need the following proximity relation. 

 
Theorem 21. (Blair and Jeroslow (1977)) For a given PILP 
with z(0) = 0, there is a constant ε > 0 such that 

 
ε− ≤ −1 2 1 2 1( ) ( ) .z d z d d d                      (54) 

 
for all d1, d2 ∈ Ω. 
 

Let the quadratic Lagrangian relaxation be defined as 
 

ρ ρ
+∈ =

 
= − + − + 

 
∑

¢

2

1

( , , ) min ( ) ( ) ,
n

m

i i
x i

L d v c vA x A x d vd  (55) 

 
where v ∈ ¡ ,m  ρ ∈ +¡ and Ai is the ith row of A. 

 
Theorem 22. (Blair and Jeroslow (1979)) For a PILP in 
the form (2), denote the quadratic Lagrangian dual 
function as 
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ρ
ρ

+∈
=

¡
( , ) max ( , , ).DL d v L d v                       (56) 

 
Then for a given v ∈ ¡ ,m  LD(d, v) ≤ z(d) ∀ d ∈ Ω and 

furthermore, if b ∈ Ω and z(b) > −∞, then for any v ∈ ¡ ,m  
LD(b, v) = z(b). 

 
Proof. The first part follows from the fact that for any    
d ∈ Ω and ρ ∈ +¡ ,  

 

2

( ) 1

( )

( , , ) min ( ) ( )

min ( ).

m

i ix d i

x d

L d v c vA x A x d vd

cx z d

ρ ρ
∈

=

∈

 
≤ − + − + 

 
= =

∑S

S

 (57) 

 
For the second part, we show that for right-hand side  

b ∈ Ω with z(b) > −∞ and a given v ∈ ¡ ,m  there exists  
ρ(v) ∈ +¡ such that, L(b, v, ρ(v)) = z(b). Let ρ(v) = 1 + ε + 

1 ,v  with ε defined as in (54), assume that x ∈ n
+¢  is an 

optimal solution to yield L(b, v, ρ(v)) and let b = A x . 
Then, 

 
2

1

2

1

1

11 1 1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) - ( )

( )

( )

m

i i
i

m

i i
i

c vA x v A x b vb

cx v b Ax v b b

z b v b b v b b

z b b b v b b v b b

z b b b

z b

ρ

ρ

ρ

ε ρ

=

=

− + − +

= + − + −

≥ + − + −

≥ − − − + −

= + −

≥

∑

∑
        (58) 

 
by Theorem 21 and the fact that −

1
b b ≤

=
−∑ 2

1
( ) .m

iii
b b  

Therefore, L(b, v, ρ(v)) ≥ z(b) and due first part, LD(b, v) = 
L(b, v, ρ(v)) = z(b).                              ■ 
 

Note that one can verify that (56) attains its maximum at 
a point x* that is also optimal to the PILP. This is because 
in order to get equality in (58), the conditions b = b and cx* 
= z(b) have to be satisfied at the same time. Otherwise, 
LD(b, v) > z(b). In addition, it is clear that ( )vρ  can be 
replaced by any ρ  such that ρ ≥ ( )vρ for a given v in 
(58). In fact, if we let v  be the optimal solution to the 
dual of the LP relaxation of PILP, then choosing ρ > z(b) 
− vb  is adequate, since 

 
2

1

( ) ( ) ( ).
m

i i
i

c vA x b b vb vb z bρ ρ
=

− + − + ≥ + >∑       (59) 

 
Due to dual feasibility, L( , ,b v ρ ) is forced to have its 

infimum at an x* that is also optimal to the PILP, since 
equality in (59) is attained only in that case. 

4.6 Linear representation of the subadditive dual 

For bounded PILPs with A ∈ m n×
+¤ , the subadditive 

dual can be reformulated as an equivalent LP 
 

η
η λ η µ η λ µ

λ µ λ µ

η

η

+ ≥ +
≤ ≤ ≤ ≤ ≤ + ≤

≤ =

=

max  ( )
  s.t.  ( ) ( ) ( ),  
        0 ,  0 ,  0 ,

        ( ) ,  1,  ...,

        (0) 0,

j
j

b

b b b

a c j n

          (60) 

 
after scaling A and b to be integer. This follows from the 
fact that the subadditive dual function in this case can be 
represented by the values it takes over the finite domain  
{λ ∈ m

+¢ |λ ≤ b} (Gomory (1969), Johnson (1979)). The 
variables in the above LP represent the values of the 
subadditive function to be constructed at each point in this 
domain and the constraints ensure that the function η: {α| 
α ≤ b}→ R is actually subadditive. 

Lasserre (2004c, b) further decreases the row dimension 
of this LP using a discrete version of Farkas’ lemma. Let 
¡ [s1, ..., sm] be the ring of real-valued polynomials in the 
variables si, i = 1, ...,m. Then, a polynomial Q ∈ ¡ [s1, ..., sm] 
can be written as 

 
αα α α α

α ζ α ζ

λ λ
∈ ∈

= =∑ ∑ 1
1( ) ... ,m

mQ s s s s  

 
where ζ ⊂ m

+¢ and λα ∈ ¡ ∀α ∈ζ. 
 

Theorem 23. (Lasserre (2003)) The following two 
properties are equivalent: 
1. Ax = b has a solution x ∈ +¢ .n  
2. The real valued polynomial sb − 1 can be written as 

 

=

− = −∑
1

1 ( )( 1)
j

n
b a

j
j

s Q s s                    (61) 

 
for some real-valued polynomials Qj ⊂ ¡ [s1, ..., sm], j = 
1, ..., n, all with nonnegative coefficients. 

 
Proof. (1) → (2). Let x ∈ S. Writing 

 
−

=∑− = − + − + + −
1

1 1 2
11 1 21 1 ( 1) ... ( 1)

n j njj n
a x a xb a x a x a xs s s s s s  

 
with 

 
− − = − + + + =

 
( 1)1 ( 1) 1 ... ,  1, ..., ,

j jj j
j ja x a xa as s s s j n  

 
we obtain 

 
−

= −∑  = + + + =
 

1

1 ( 1)( ) 1 ... ,  1, ..., .
j k jjk jk

a x a xa
jQ s s s s j n   (62) 
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(2) → (1). Let q ∈ k
+¡  be the vector of nonnegative 

coefficients of all polynomials Qj , j = 1, ..., n, and M 
∈ p k×¡ be such that the set of constraints defining the 
polyhedron Θ = {q|Mq = τ, q ≥ 0} ≠ Ø equalizes the 
respective coefficients of the polynomials sb − 1 and 

=
−∑ 1

( )( 1).
jn a

jj
Q s s  It is easy to show that each Qj, j = 

1, ..., n, may be restricted to contain only monomials {sα: α 
≤ − ,jb a  α ∈ m

+¢ } and therefore 
 

=

= =

= +

= = − + =

∏

∑ ∏
1

1 1

( 1)

 with ( 1),  1, ..., .

m

i
i

mn
j

j j i i
j i

p b

k k k b a j n
 

 
In other words, p is the number of monomials αy with 

α ≤ b and kj is the number of monomials αy  with α − 
ja ≤ b. With this construction, it is not hard to see that M 

is totally unimodular and each extreme point of Θ, if it 
exists, is integral, since τ is also integral. 

Next, recall that jk1 = (1, ..., 1) ∈ jk¡ , j = 1, ..., n, and 
let K ∈ n k×

+¢  be the n-block diagonal matrix, whose each 

diagonal block is a row vector 1 ,jk  that is, 
 

 …
 … =
 … … … …
 

…  

1

2

1 0 0
0 1 0

.

0 0 1 n

k

k

k

K  

 
Now, let Qj, j = 1, ..., n, be the set of polynomials 

satisfying (61). Then, Θ ≠ Ø and there exists an integral 
q ∈ Θ. If we denote by jQ , j = 1, ..., n, the 
corresponding monomials q  represents and take the 
derivative of both sides with respect to is , i = 1, ..., m, at 
(1, ..., 1), we get 

 

= =

= = =∑ ∑
1 1

(1, ...,1) ( ) ,  1, ..., .
n n

j j
i i i jj

j j

b Q a a Kq i m  

 
Observe that setting x = K q  completes the proof.     ■ 
 

The converse of the last part of the proof is also valid, 
i.e., for any x ∈ S, x = Kq for some q ∈ Θ. As a 
consequence, we have the following corollary. 

 
Corollary 24. (Lasserre (2004c)) For a PILP in the form (2) 
with A ∈ ×

+¢ ,m n  let K, M, τ be defined as before. Then, z(b) 
= min{cKq|Mq = τ, q ≥ 0}. Moreover, if q* is an optimal 
solution, then x* = Kq* is an optimal solution to the PILP. 
 

Lasserre further shows that the LP dual of the problem 
in the first part of Corollary 24 can be reduced to a 

subadditive formulation that is also dual to PILP. 
Compared to (60), the number of variables is the same, 
however, this one has O(np) constraints, whereas (60) has 

O(p2) constraints. 
 

4.7 Branch and cut 

The most common technique for solving MILPs in 
practice today is the branch-and-cut algorithm. Developing 
a procedure for obtaining a dual function as a by-product 
of this procedure is of great importance if duality is to be 
made computationally useful. Here we discuss “vanilla” 
branch and cut, in which branching is done only by 
restricting variable bounds and no standard computational 
enhancements, such as preprocessing, are used. Such an 
algorithm works by attempting to solve the subproblem of 
each branch-and-cut tree node utilizing a cutting plane 
method, as described in Section 4.3. If the subadditive 
characterization or a functional encoding of the right-hand 
side dependency is available for each cut, then we can 
obtain a dual function for the corresponding subproblem. 
Below, we show how this dual information can be gathered 
together to yield a feasible dual function for the original 
problem. 

Assume that the MILP (2) has a finite optimum and has 
been solved to optimality with a branch-and-cut algorithm. 
Let T be the set of leaf nodes of the tree and let ν(t) be the 
number of cuts generated so far on the path from the root 
node to node t ∈ T (including the ones generated at t). To 
obtain a bound for this node, we solve the LP relaxation of 
the following problem 

 
( ) min  

            s.t.  ( ),

t

t

z b cx
x b

=
∈ S

                         (63) 

 
where the feasible region St(b) = {x ∈ r¢ × −¡n r |Ax = b, x 
≥ ,tl  −x ≥ − ,tu  Π t x  ≥ 0

tΠ } and ,tu  tl  ∈ n
+¢  

are the branching bounds applied to the integer variables, 
Π t  ∈ ( )t nν ×¡ and 0

tΠ ∈ ν¡ ( ) .t  
For each cut k, k = 1, ..., ν(t), suppose that the 

subadditive representation t
kF is known and let the 

function t
kσ  be defined for (63) as in Section 4.3, 

considering also the branching bounds. For each feasibly 
pruned node t ∈ T, let ( ,  ,  ,  tt t tv v v w ) be the 
corresponding dual feasible solution used to obtain the 
bound that allowed the pruning of node t. Note that such a 
solution is always available if the LP relaxations are solved 
using a dual simplex algorithm. For each infeasibly pruned 
node t ∈ T, let ( ,  ,  ,  tt t tv v v w ) be a corresponding dual 
feasible solution that can be obtained from the parent of 
node t. 

 
Theorem 25. If b ∈ Ω and z(b) > −∞, then the function 
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ν

σ
∈

=

= + − + ∑
( )

1

( ) min{ ( ( ))}
t

tt t t t t t t
BC k k kt T k

F d v d v l v u w F d     (64) 

 
is an optimal solution to the dual (8). 
 
Proof. The proof follows the outline of Wolsey (1981)’s 
proof for validating an optimal dual function for the 
branch-and-bound algorithm. Because of the way branch 
and cut partitions S, we are guaranteed that for any d ∈ Ω 

and x̂ ∈ S(d), there must exist a leaf node t ∈ T such that 

x̂  ∈ St (d). Then, from LP duality, 
 

≥ + − + Π =ˆ ˆ ˆ ˆ ˆ    1, ..., ,tt j t t t
j j j j j j j jjc x v a x v x v x w x j n    (65) 

 
where t

jΠ  is the jth column of Π .t  Adding the above 
inequalities over all columns, we get 

 

ν

σ
=

≥ + − + Π

≥ + − +

≥

∑
( )

1

ˆ ˆ ˆ ˆ ˆ

   ( ( ))

   ( )

tt t t t

t
tt t t t t t t

k k k
k

BC

cx v Ax v x v x w x

v d v l v u w F d

F d

            (66) 

 
Now assume that x* is an optimal solution to MILP with 

right-hand side b. In this case, we know that for some node 
t*, z(b) = cx* = ( )tz b

∗

 and we also have that zt(b) ≥ ( )tz b
∗

 
for all t ∈ T. Therefore, FBC(b) = z(b).               ■ 

 
Unfortunately, (64) is not subadditive due to the the 

constant term resulting from the bounds imposed by 
branching and hence is not feasible for the subadditive dual 
(14). One can, however, obtain a subadditive dual function 
in the case where the original MILP has explicit upper and 
lower bounds on all variables by including these bounds as 
part of the right-hand side. Suppose that 
 

( ) min{ | ,  }r n rz b cx Ax b x −= ≥ ∈ ×¢ ¡            (67) 
 

with A = [  ]A I I ′−  and b = [ b l − u ] where l and u are 
the lower and upper bounds pre-defined on the variables. 
With this construction, at each node t ∈ T, we solve the LP 
relaxation of the following subproblem 

 
=

≥

Π ≥ Π0

( ) min  

             s.t.  

                   

t
t

t

t t

z b cx

Ax b

x

 

−∈ ×¢ ¡                   r n rx                       (68) 
 

with 
t

b = [  tb l − 
tu ]. 

 
Theorem 26. If S( b ) ≠ Ø and ( )z b > −∞, then the 
function 

ν

σ +

∈ =

= + ∈∑ ¡
( )

2

1

( ) max{ ( ( ))},  
t

t t t t m n
BCS k k kt T k

F d v d w F d d     (69) 

 
is feasible to the subadditive dual problem (14) of the 
MILP (67). 

 
Proof. For any t ∈ T, LP duality yields 

 
ν

=

≥ + Π =∑
( )

1

  1, ..., .
t

t j t t
j k j

k

c v a w j n  

 
Therefore, it is clear that cj ≥ FBCS( ja ) if j ∈ I and 

likewise, cj ≥ ( )j
BCSF a  when j ∈ C. In addition, since 

2 1 ,t m n k
kF + + −∈ Γ k = 1, ..., ν(t), FBCS ∈ 2 .m n+Γ          ■ 
 
Note that in this case, the dual function may not be 

strong. As in Theorem 19, it is not strictly necessary to 
have a subadditive representation of each cut in order to 
apply the results of this section. They remain valid as long 
as a functional dependency of each cut on the 
right-hand-side is known (see Section 4.3). 
 

5. CONCLUSION 

In this paper, we presented a survey of existing theory 
and methodology for constructing dual functions. Many of 
the ideas presented here were developed more than three 
decades ago and it would seem that little progress has been 
made towards a practical framework. From the standpoint 
of computational practice, the importance of these 
methodologies is that they may allow us to extend to the 
realm of MILP some of the useful techniques already 
well-developed for linear programming, such as the ability 
to perform post facto sensitivity analyses and the ability to 
warm start solution processes. The development of such 
techniques is the underlying motivation for our work. 
Constructing a strong dual function for a given MILP is at 
least as difficult as solving the primal problem, so there is 
little hope of or use for constructing such functions 
independent of primal solution algorithms. This leaves two 
possible options—constructing dual functions that are not 
necessarily strong, but may still give us some ability to 
analyze the effect of changes in the input data, or 
constructing dual functions as a by-product of existing 
primal solution algorithms, namely branch and cut. 

Currently, the techniques discussed in Section 4.7 
represent the clearest path to bringing a practical notion of 
duality to fruition, since these techniques work in tandem 
with algorithms that are already effective in solving the 
primal problem. Execution of the branch-and-cut 
algorithm produces a tremendous amount of dual 
information, most of which is normally discarded. By 
retaining this information and using it effectively, one may 
be able to develop procedures for both sensitivity analysis 
and warm starting. Ralphs and Guzelsoy (2005) describe an 
implementation of these techniques, using the 
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SYMPHONY MILP solver framework, that supports both 
warm starting and basic sensitivity analysis for branch and 
bound. They also describe recent results using warm 
starting to accelerate the solution process for algorithms 
that involve solution of a sequence of related MILPs 
(Ralphs and Guzelsoy (2006)). These results are still 
preliminary, but demonstrate the potential for further 
development. 
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