
International Journal of Operations Research Vol. 4, No. 3, 138−145 (2007)

Using Hyperstars to Create Facial-Defining Inequalities of General Binary
Integer Programs

Kevin Hooker and Todd Easton∗

School of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas

Received May 2006; Revised September 2006; Accepted November 2006

AbstractTheoretical results relating to the facial structure of the general binary integer-programming polytope conv({x ∈
{0, 1}n : Ax ≤ b}) where A ∈ r n×¡ , and b ∈ ¡r are presented. A conflict hypergraph is constructed and some induced
hyperstars create valid inequalities of .BIPP These inequalities are further shown to produce large dimensional faces. Some
computational results show the benefit of using hyperstar inequalities for the project allocation problem.
KeywordsHypergraphs, Hyperstars, Polyhedral theory, Integer programming, Project allocation problem

∗ Corresponding author’s email: teaston@ksu.edu

1. INTRODUCTION

General binary integer programs (GBIP) take the form
max cTx subject to Ax ≤ b and x ∈ {0, 1}n where A ∈

,r n×¡ and b ∈ ¡r . Let P be the feasible region of a
GBIP, P = {x ∈ {0, 1}n : Ax ≤ b}. Then the general
binary integer program polytope is the convex hull of P,
which is denoted by BIPP = conv{x ∈ {0, 1}n : Ax ≤ b}.

Valid inequalities or cutting planes have been extensively
used to help solve integer programs. An inequality

α β
=

≤∑ 1

n
i ii
x is valid if every x ∈ P satisfies the

inequality. A valid inequality defines a face of dimension q
if and only if there are exactly q + 1 affinely independent
points in P that satisfy α β

=
=∑ 1

n
i ii
x . An inequality is

said to be facet-defining if and only if the dimension of
the valid inequality’s face is one less than the dimension of

.BIPP See Nemhauser and Wolsey (1988) for more
background on polyhedral theory.

Numerous researchers have used conflict graphs
(Atamtürk et al. (2000), Bixby and Lee (1994), Borndörfer
(1997), Chvátal (1973), Pulleyblank and Edmonds (1975))
or conflict hypergraphs (Cornuejols and Sassano (1989),
Easton et al. (2003), Euler, Junger, and Reinelt (1987);
Nemhauser and Trotter (1974), Padberg (1973), Padberg
(1980), Sassano (1989)) to create both valid inequalities and
facet-defining inequalities. The majority of this research
has focused on special integer programming polytopes,
such as the multiple knapsack polytope MKP = conv{x ∈
{0, 1}n : Ax ≤ b, A ∈ ×

+¡r n } or the set covering polytope
SCP = conv{x ∈ {0, 1}n : Ax ≤ b, A ∈ ×{0, 1}r n }.
This paper describes a conflict hypergraph and defines

an induced hyperstar, which creates valid inequalities of
.BIPP Section 2 describes the creation of this conflict

hypergraph. Section 3 introduces the hyperstar inequality
and provides some theoretical results. Computational
results and extensions to the project allocation problem are
contained in Section 4. The paper concludes with Section 5,
which summarizes the results and provides some directions
for future research.

2. CONFLICT HYPERGRAPHS

A graph G = (V, E) consists of a set of vertices V(G) =
{1, ..., n} and a set of edges E(G) = {{u, v} : u, v ∈ V}.
From a BIPP instance, a typical conflict graph can be
generated by defining a vertex for each variable. An edge
{i, j} is in the edge set if and only if there is no x ∈ P such
that xi = 1 and xj = 1. In other words, edges represent
infeasible portions of the space. Atamürk et al. (2000)
further extended the vertex set of a conflict graph to
include vertices that represent variables equal to 0. This
paper creates a conflict graph that consists of a vertex set
that represents variables set to both 1 and 0.

A hypergraph H = (V, E) consists of a set of vertices
V(H) = {1, ..., n} and a set of edges E(H) = {d1, ..., dt},
where di ⊆ V(H) for all i. The definitions of a
subhypergraph and an induced subhypergraph follow
directly from their graph theoretic definitions. A uniform
k-hypergraph is a hypergraph in which every edge has
cardinality k. Throughout the remainder of this paper,
every mention of a hypergraph is referring to a uniform
k-hypergraph, and unless it causes ambiguity, E(H) will be
replaced with E and V(H) with simply V. Berge (1973) is a
good source of background information on both graphs
and hypergraphs.

Given a GBIP, define the k-conflict hypergraph to be
Hk = (V, E) where V = {i: i = 1, ..., n} ∪ { i : i = 1, ..., n}.
There is a direct correspondence between variable xi and
vertices i and i . The edge set E is constructed using the

International Journal of
Operations Research

1813-713X Copyright © 2007 ORSTW

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

139

following method: e ∈ E, if |e| = k and every point in
{0, 1}n with xi = 0 for all i ∈ e and xi = 1 for all i ∈ e is

not in P. One added restriction is that i and i will never
be in the same edge as this implies that xi = 0 and xi = 1,
which is an inconsistency and not an infeasibility. Finally,
an edge e is minimal if e\{i} ∉ E(Hk−1) for all i ∈ e and
e\{ i } ∉ E(Hk−1) for all i ∈ e. The following example
demonstrates the construction of this new type of conflict
hypergraph.

Example 2.1: Consider the feasible region of an integer
program defined as:

4x1 − 4x2 + 2x3 + 2x4 − 2x5 + x6 − x7 ≤ 4
4x1 − 4x2 − x3 + 2x4 + x5 − 2x6 + 2x7 ≤ 4
2x1 − 2x2 − x5 − x6 + x7 ≤ 1
2x1 − 2x2 + x3 − x6 + x7 ≤ 2

x ∈ 7{0, 1} .

The vertex set of H4 is V = {1, 2, ..., 7, 1 , 2 , ..., 7 }. H4
contains the edge {1, 2 , 3, 4} because any point with x1 =
1, x2 = 0, x3 = 1 and x4 = 1 will not satisfy the first
constraint. Some of the other edges in H4 include: {1, 2 ,
3, 5 }, {1, 2 , 4, 5 }, {1, 2 , 6 , 7} and {1, 2 , 3, 6 }.

Observe that any single constraint
=

≤∑ ,1

n
i j j ij

a x b in

a GBIP can be transformed into a knapsack constraint,
which takes the form

=
≤∑ ,1

n
i j j ij

a x b where each ai, j ≥ 0

for some fixed i ∈ {1, ..., m}. The tranformation merely
replaces xj by 1 − ′jx whenever the ai, j < 0. Furthermore,
a set C ⊆ {1, 2, ..., n} is a cover of the knapsack constraint
if and only if , .i jj C

a β
∈

>∑ Observe that covers of

these knapsack constraints will be edges in the conflict
hypergraph.

It is important to note that there may exist edges in Hk
that do not correspond to a cover from any single
inequality. For instance, the H2 generated from {x ∈
{0, 1}n : x1 + x2 − x3 ≤ 1, x1 + x2 + x3 − x4 ≤ 1} has the
edge {1, 2}. Clearly, examining any single constraint will
not generate this edge and so not all edges in GBIP
correspond to covers of an individual constraint.
Furthermore, determining the existance of a noncover
edge in a GBIPs is an NP-hard problem.

3. HYPERSTARS

A graph with m vertices is called a star or fan, denoted
by Sm, if there exists a relabeling of the vertex set such that
E = {(1, i) : i = 2, ..., m}. Vertex 1 is called the hub or
center and the other vertices are called blades or spokes.
There are two natural ways to extend the definition of a
fan or star to a hyperfan or hyperstar. An example of a
hyperfan with 2 hub nodes and 4 blade nodes is {1, 2, 3, 4}
and {1, 2, 5, 6}. Observe that each edge contains all of the
hub vertices {1, 2} and each blade vertex {3, 4, 5, 6} is in

exactly one edge. An example of a hyperstar with two hub
nodes and 4 blade nodes is {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3,
6}, {1, 2, 4, 5}, {1, 2, 4, 6} and {1, 2, 5, 6}. Notice that
every edge contains all of the hub vertices and the edge set
contains all possible combinations of blade vertices. This
paper derives valid inequalities from hyperstars.

Formally, a hypergraph with m vertices, Sm,l,k, is a
hyperstar if there exists a set L ⊆ V(Sm,l,k) with |L| = l ≥ 1
such that E(Sm,l,k) = {d ⊆ {1, ..., m}: |d| = k and L ⊆ d}
with k > l ≥ 1. That is Sm,l,k contains every edge of size k
that contains the vertices of the hub, L. Thus, |E(Sm,l,k)| =

−
− −
()!

()!()!
m l

m k k l
.

Induced hyperstars from the conflict hypergraph can
lead to face-defining inequalities. First, the vertices of an
induced hyperstar naturally partition into four mutually
exclusive sets. The hub vertices, L, partition into the sets
SL and LS where SL contains the nonbarred hub vertices
and LS contains the barred hub vertices. Similarly, the
blade vertices, V(Sm,l,k)\L, partition into SB and .BS To
simplify the following proofs, for any x ∈ P let cU be the
number of active vertices in U ⊆ Sm,l,k. That is

i) = ∈ ={ : 1}

BS B ic i S x ,

ii) { : 0}
B

B iSc i S x= ∈ = ,

iii) = ∈ ={ : 1}
LS L ic i S x and

iv) { : 0}
L

L iSc i S x= ∈ = .

Now hyperstars can be shown to induce a valid

inequality.

Lemma 3.1. Given a general integer-programming
problem with conflict hypergraph Hk with k ≥ 2, if Sm,l,k is
a hyperstar in Hk with hub L, then

(1)

(1) () 1

L BL B

i i i i
i S i Si S i S

L B

m k x x x x

m k l S k l S

∈ ∈∈ ∈

 
− + − + − 

 

≤ − + ∗ − + − − −

∑ ∑ ∑ ∑

is a valid inequality of BIPP .

Proof. First rewrite the inequality as

(1) (1) (1)

(1) 1.
L BL B

i i i i
i S i Si S i S

m k x x x x

m k l k l
∈ ∈∈ ∈

 
− + − − + + − 

 
≤ − + + − −

∑ ∑ ∑ ∑

Let fT(x) be the value of the left hand side of the above
inequality at any point x ∈ P and the proof divides into
two cases.

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

140

Case 1. Let .
L LS Sc c l+ = This implies that

() (1)()

(1)

(1) 1.

L BL B

B B

T S SS S

S S

f x m k c c c c

m k l c c

m k l k l

= − + + + +

= − + + +

≤ − + + − −

The last inequality follows because, by the
definition of a hyperstar, any point x ∈ P can have
at most k − l − 1 blade vertices active when every
hub vertex is active.

Case 2. Let .
L LS Sc c l+ < Then

L LS Sc c+ is bounded by

l − 1. Also note that there are only m − l nodes
outside the hub. Thus it follows that

() (1)()

(1)(1)
(1) 1.

L BL BT S SS Sf x m k c c c c

m k l m l
m k l k l

= − + + + +

≤ − + − + −
= − + + − −

Observe that H4 from Example 2.1 creates a S7,2,4 since

{1, 2 , 3, 4}, {1, 2 , 3, 5 }, {1, 2 , 3, 6 }, {1, 2 , 3, 7},
{1, 2 , 4, 5 }, {1, 2 , 4, 6 }, {1, 2 , 4, 7}, {1, 2 , 5 ,
6 }, {1, 2 , 5 , 7}, and {1, 2 , 6 , 7} are edges. Therefore,
the corresponding hyperstar inequality is

4x1 − 4x2 + x3 + x4 − x5 − x6 + x7 ≤ 3.

Furthermore, observe that the point (1, 0, 1
3

, 1
6

, 2
3

, 1
3

,

0) is a feasible point in the linear relaxation, but is cut off
by the hyperstar inequality (3.5 > 3).

In a multiple knapsack problem with |L| = 1, a
hyperstar inequality is equivalent to Padberg’s (1, k)
configurations (1980), which are facet-defining under
certain conditions. In general binary integer programs,
hyperstars can also generate large dimensional
face-defining inequalities as the following result shows.

Theorem 3.2. Given a general integer-programming
problem with conflict hypergraph Hk with k ≥ 2, if Sm,l,k is
an induced hyperstar containing m vertices with l vertices in
the hub such that n ≥ m ≥ k > l + 1 ≥ 2, and if for each
vertex v ∈ Sm,l,k\L there exists an edge d ∈ E(Sm,l,k) such
that v ∈ d and d is a minimal edge, then

(1)

(1) () 1

L BL B

i i i i
i S i Si S i S

L B

m k x x x x

m k l S k l S

∈ ∈∈ ∈

 
− + − + − 

 

≤ − + ∗ − + − − −

∑ ∑ ∑ ∑

defines a face of dimension at least m − l − 1.

Proof. We have shown that the hyperstar inequality is valid,
so it remains to show that the face FT = {x ∈ P : (m − k +
1)[

∈∑
L

ii S
x −

L ii S
x

∈∑] +
∈∑

B
ii S

x −
B ii S
x

∈∑ =

(m − k + 1) ∗ (l − LS) + k − l − 1 − S } contains m − l

affinely independent points. These points will be
constructed algorithmically by analyzing the components
generated by the minimal edges in E(Sm,l,k). Define a graph
G = (V, E) with V(G) = V(Sm,l,k)\L. If ,u ′ v ′ ∈ (d\L)
where d ∈ E(Sm,l,k) and d is a minimal edge, then { ,u ′ v ′ }
is an edge in G. Split G into the connected components
C1, ..., Cq and begin by constructing the points for
component C1.

Let {d1, ..., dp} be the set of minimal edges that were
used to create the C1 component. Set R = d1 and D =
{d2, ..., dp}. Since d1 = { 1v ′ , ..., kv ′ } is minimal, for each jv ′
∈ d1\L, there exists a point in P that is also in FT with
vertex jv ′ inactive, all the vertices in d1\{ jv ′ } active and
every vertex in V(Sm,l,k)\d1 inactive.

Since C1 is connected, if R equals V(C1), begin
constructing points from C2. Otherwise there exists an
edge di ∈ D such that (di ∩ R) ≠ L. If di\R is only a single
vertex, ,jv ′ then there must exist a point in P with ,jv ′
all vertices in L and exactly k − l − 2 other vertices of di
active and the other vertices in V(Sm,l,k) inactive. Such a
point must exist as di is a minimal edge. On the other hand,
if |di\R| ≥ 2, then for each jv ′ ∈ di\R, a point in P exists
with jv ′ inactive, each vertex in di\{ jv ′ } active, and each
vertex in V(Sm,l,k)\di inactive. An additional |di\R| points
have been created. Set R = R ∪ di, D = D\di and include
these new point(s) to the previously generated points.
Repeat this process until R = V(C1), and then repeat for
each component Ci. After completing the process, m − l
points in FT have been constructed. Denote these points as
R = {r1, ..., rm−l}.

To show that these points are affinely independent it is
necessary and sufficient to show that λ

−

=∑ 1

m l
i ii
r = 0 and

λ
−

=∑ 1

m l
ii
= 0 is uniquely solved by λi = 0 for all i = 1, ..., m

− l. Let R′ be the matrix of the system of equations that
are being solved (R λ′ = 0). If i ∈ ,BS then subtract
the last row of R′ from the ith row of R′ and then
multiply this row by −1. These two operations change
every 0 in this row to a 1 and every 1 to a 0. Delete the
final row from R ′ and call this new matrix .R ′′ R′′ has
the property that if ith is active in rj, then the ith element of
the jth column is 1 and 0, if not.

R′′ has a block diagonal structure relative to the rows
corresponding to the blade vertices (i.e. the only nonzero
elements in R′′ are located between rows (

=∑ 1

j
ii

C) + 1

and +

=∑ 1

1

j
ii

C where j = 0, ..., q − 1. Thus it suffices to

show that the |C1| points generated by component C1 are
linearly independent in .R′′ Restricting ourselves to the
first k columns leads to a cyclical permutation of k − 1
consecutive 1’s. Since this cyclical permutation is over k
rows and columns and the greatest common divisor of k
and k − 1 is 1, these k points are linearly independent

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

141

(Hooker (2004)). The next points maintain this linear
independence by a similar argument. If the point involves
the case of only increasing the size of R by 1, then this
row has exactly one 1 and it appears in the next column
and is trivially independent. If |di\R| = s ≥ 2, then the
next added points contain a consecutive cyclical
permutation of s − 1 ones over an s × s matrix in the next s
rows and s columns. Since these are the only non zeros in
these rows, adding these points to the previous points
maintains the linearly independence property and therefore,
the hyperstar inequality supports a face with dimension at
least m − l − 1.

The restriction that k > l + 1 is necessary, since if k = l +
1, then every blade vertex would be in its own component
in G and the only point that would be generated by the
proof has every hub vertex active and every blade vertex
inactive. The S7,2,4 from Example 2.1 satisfies Theorem 3.2
and thus it defines a face of dimension at least 3.

Theorem 3.2 also assumes that there is no knowledge
about how many of the blade vertices can be active when
one or more of the hub vertices is inactive. Thus in the
current inequality, if even just one of the hub vertices is
inactive in a point, then all of the non-hub vertices can be
active without violating the hyperstar inequality. It is
natural to question whether or not this inequality can be
improved. First, for each i ′ ∈ L define

ik ′ = min{{ k′′ ∈ {k, ..., m − 1} : the induced
subhypergraph of kH ′′ on V(Sm,l,k)\{ i ′ } is a hyperstar
with hub L\{ i ′ }} ∪ {m}}.

That is, ik ′ is the smallest sized edge such that

ikH ′
contains an induced subhypergraph of V(Sm,l,k\{ i ′ }) that
is a hyperstar with hub L\{ i ′ }. If no such hyperstar exists,
then ik ′ = m. Essentially, ik ′ − l determines the
maximum number of non-hub vertices that are active in
any point in P for which i ′ is the only inactive hub vertex.

Now for each i ′ ∈ L define pi = max(ik ′ ,
− 

  2
m l + k −

1). Using this definition of pi, a stronger hyperstar
inequality is produced.

Lemma 3.3. Given a general integer-programming
problem with conflict hypergraph Hk with k > l ≥ 1, if Sm,l,k
is a hyperstar in Hk with hub L, then

(1) (1)

(1) 1
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

≤ − + + − − −

∑ ∑ ∑ ∑

∑

is a valid inequality for BIPP .

Proof. Since L = LLS S∪ the inequality can be rewritten
as

(1) (1)(1)

(1)
LL

BB

i i i i
i S i S

i i
i S i S

p k x p k x

x x
∈ ∈

∈ ∈

− + + − + −

+ + −

∑ ∑

∑ ∑

(1) 1
L L

i
i S S

p k k l
∈ ∪

≤ − + + − −∑ .

Again the result is that anytime a variable is active, it will
increase the value of the left hand side. Next let fT(x) be
the value of the left hand side of the above inequality at
any point x ∈ P and the proof divides into the following
three cases:

Case 1. Let .

L LS Sc c l+ = Following the same logic as

Lemma 3.1

() (1)

(1) 1.
B BLL

LL

T i S Si S S

ii S S

f x p k c c

p k k l
∈ ∪

∈ ∪

= − + + +

≤ − + + − −

∑
∑

Case 2. Let 1.

L LS Sc c l+ = − Without loss of generality,

assume that vertex r ′ ∈ L is inactive in x. Thus it
follows that

() (1) (1)

(1) (1)

(1) (1)

(1) 1.

B BLL

LL

LL

LL

T i r S Si S S

i r ri S S

i r ri S S

ii S S

f x p k p k c c

p k p k k l

p k p k p l

p k k l

′∈ ∪

′ ′∈ ∪

′ ′∈ ∪

∈ ∪

= − + − − + + +

≤ − + − − + + −

≤ − + − − + + −

= − + + − −

∑
∑
∑
∑

The first inequality follows from the definition of
kj and the second from the fact that pj ≥ kj.

Case 3. Let 2.

L LS Sc c l+ ≤ − Clearly then
L LS Sc c+ will

be bounded by l − 2, and
B BS Sc c+ is at most m −

l. Assume that ,r s′ ′ ∈ L are inactive in x. Thus

() (1) (1)

 (1)

(1) 2
2

(1)

(1) 1.

LL

B B

LL

LL

LL

T i ri S S

s S S

ii S S

ii S S

ii S S

f x p k p k

p k c c

m lp k m l

p k

p k k l

′∈ ∪

′

∈ ∪

∈ ∪

∈ ∪

≤ − + − − +

− − + + +

− ≤ − + − + −  
≤ − +

≤ − + + − −

∑

∑

∑
∑

These inequalities follow because (pi − k + 1) ≥

− 
  2

m l by definition and k − l − 1 ≥ 0.

This stronger hyperstar inequality can now be shown to

support a face of greater dimension than the original
hyperstar inequality.

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

142

Theorem 3.4. Let Sm,l,k be an induced hyperstar from the
conflict hypergraph Hk containing m vertices with l vertices
in the hub, n ≥ m ≥ k > l + 1 ≥ 2 and pi as defined above. If
for each vertex v ∈ Sm,l,k there exists an edge d ∈ E(Sm,l,k)
such that v ∈ d and d is a minimal edge, then

(1) (1)

(1) 1
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

≤ − + + − − −

∑ ∑ ∑ ∑

∑

defines a face of dimension at least m − l − 1 + |{i : ki ≥

− 
  2

m l + k − 1}|.

Proof. Define the face { : (1)

L
T i ii S

F x P p k x
∈

= ∈ − +∑

− (1)
L i ii S

p k x
∈

− +∑ +
BB

i ii S i S
x x

∈ ∈
−∑ ∑ =

∈
− +∑ (1)

L
ii S

p k + k − l − 1 − BS }. To show that it

contains m − l + |{i : ki ≥ − 
  2

m l + k − 1}| affinely

independent points, the first m − l points will be exactly the
points used in Theorem 3.2. Then, for each hub vertex

j L′∈ such that jk ′ ≥ − 
  2

m l + k − 1, note that

jp ′ = jk ′ . Thus, there exists a point in P ∩ FT with
vertex j ′ inactive, each vertex in L\{ j ′ } active, and
exactly jp ′ − l blade vertices active, which gives |{ i ′ : ik ′

≥ − 
  2

m l + k − 1}| additional affinely independent

points in the face.

A clear deduction from the above result is that if ip ′ =

ik ′ for all i ′ ∈ L, then the above hyperstar inequality
defines a face of dimension at least m − 1.

By imposing a maximality condition on a hyperstar, we
can show that all other variables will sequentially lift into a
hyperstar inequality with a 0 coefficient. First the concept
of a maximal hyperstar must be well-defined. A hyperstar
is said to be maximal if there does not exist a hyperstar by
moving a blade vertex to the hub vertex set or by adding
any vertex not in the hyperstar to either the hub or blade
vertex sets. With this definition the following result is
attainable:

Theorem 3.5. Let Sm,l,k be a maximal hyperstar with hub L
and n ≥ m ≥ k > l + 1 ≥ 2 in the conflict hypergraph Hk,
and let xj ∈ V(Hk)\V(Sm,l,k). Then the following two
statements are true:

1 Either there is no point in P with xj = 0 or there exists

a point with xj = 0 and

(1) (1)
L BL B

i i i i i i
i S i Si S i S

p k x p k x x x
∈ ∈∈ ∈

− + − − + + −∑ ∑ ∑ ∑

(1) 1 .
L

Bi
i S

p k k l S
∈

= − + + − − −∑

2 Either there is no point in P with xj = 1 or there exists

a point with xj = 1 and

(1) (1)

(1) 1 .
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

= − + + − − −

∑ ∑ ∑ ∑

∑

Hence, xj is sequentially lifted with a 0 coefficient into the
hyperstar inequality, i.e. the lifting does not change a
maximal hyperstar inequality.

Proof. In either case, xj = 0 or xj = 1, if there does not
exist a point in P, the proof is trivial. To show Case 1,
suppose the maximal hyperstar meets the above conditions,
that x ∈ P with xj = 0, and that

(1) (1)

(1) 1 .
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

< − + + − − −

∑ ∑ ∑ ∑

∑

Then there does not exist a point with vertex j active, all
the vertices in L active, and k − l − 1 vertices of V(Sm,l,k)\L
set active in P. Thus, vertex j can be added to the
hyperstar as an additional blade vertex, and the assumption
that Sm,l,k is maximal is contradicted. The proof is similar
for Case 2.

It may seem that Theorem 3.5 would imply that a
maximal hyperstar inequality would define a facet of BIPP .
However, this not the case as the face of the hyperstar
inequality may define the whole feasible space.

Observe that the property that no blade vertex can be
moved into the hub was not utilized in the proof of this
theorem. Since Theorem 3.5 only lifts variables in
V\V(Sm,l,k) this assumption is not needed. However, if a
blade vertex could actually be a hub vertex, then its
coefficient in the hyperstar inequality could be
strengthened. If a BIPP can be simplified to either a

MKP or SCP , then the following corollary provides a
facet-defining condition. This result strengthens Padberg’s
(1, k) configurations and does require both conditions of a
maximal hyperstar.

Theorem 3.6. Let Sm,l,k be a maximal induced hyperstar in
the conflict hypergraph Hk generated from a multiple
knapsack or set covering polytope with n ≥ m ≥ k > l + 1 ≥

2. If ki ≥ − 
  2

m l + k − 1 for all i ∈ L, and if for each

vertex v ∈ BS ∪ BS there exists an edge d ∈ E(Sm,l,k)

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

143

such that v ∈ d and d is a minimal edge, then

(1) (1)

(1) 1 .
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

= − + + − − −

∑ ∑ ∑ ∑

∑

is a facet-defining inequality.

4. COMPUTATIONAL RESULTS

This section describes how hyperstar inequalities can be
used to improve the solution time for the project allocation
problem (PA). All computational results reported here
were performed on a Pentium IV PC with 1 GB of Ram
and a 1.8 GHz processor. The study compares the default
setting of CPLEX 7.1 with the default setting of CPLEX
7.1 when a hyperstar inequality is added as a preprocessing
cut.

From a set of n projects each with an expected benefit ci
and an expected cost ai for i = 1, ..., n, the project
allocation problem seeks to find the set of projects that
maximizes the expected benefit while not spending more
than a budget b and choosing at least r projects. The
restriction on r projects is included for diversification
purposes, which also helps diminish risk. Clearly, PA is
NP-hard since the knapsack problem is a special case
(Karp (1972)).

The project allocation problem is closely related to the
knapsack problem and some problems in portfolio
management (Bertsimas et al. (1999), Pinto and Rustem
(1998)). One such portfolio management problem is the
cardinality constrained knapsack problem, which requires
that no more than r projects be implemented. Some valid
and facet-defining inequalities along with branching
techniques for the cardinality constrained knapsack
problem can be found in Farias De and Nemhauser (2003).

PA’s structure allows us to quickly find hyperstar
inequalities. These hyperstar inequalities all had nonbarred
hub vertices and barred spoke vertices. The basic idea is
that if several high cost projects are selected, then several
low cost projects must also be selected in order to
guarantee that r total projects can be selected.

To describe these hyperstar inequalities, we may assume,
without loss of generality, that a is sorted in descending
order (ai ≤ aj for all i > j). Now let L = {1, ..., l} where l is
some integer. Now select an integer p ≥ 1 such that p + l <

r and find the maximum integer q such that l + 1 ≤ q ≤ n − r
+ l + 1 and

=∑ 1

l
ii

a + + − − −

=∑ 1q r l p
ii q

a +
= − +∑ 1

n
ii n p

a > b. If

no such q exists, then new values for l or p must be
obtained. If such a q exists, we claim that {1, ..., l,

+ − −q r l p , ..., n } is a hyperstar with hub {1, ..., l} and

blade vertices { + − −q r l p , ..., n } in Hk where k = m − p
and m = l + n − q − r + l + p + 1 or equivalently k = 2l + n +
1 − q − r.

To show that the above technique generates a hyperstar
we begin by showing that {1, ..., l, + − −q r l p , ..., −n p }
is an edge in Hk. It suffices to show that x1 = ... = xl = 1
and xq+r−l−p = ... = xn−p = 0 is infeasible. Since a is sorted,
the minimum amount of cost that satisfies the above
restriction and has r variables equal to 1 occurs when x1
= ... = xl = 1, xn−p+1 = ... = xn = 1 and xq = ... = xq+r−l−p−1 =
1. From the preceding paragraph, this exceeds the budget
and is infeasible and so it is an edge. Furthermore, due to
the sorted order of a all of the other necessary edges are
also in Hk and so the induced subhypergraph of these
vertices contain a hyperstar. Consequently, Lemma 3.1
provides a valid inequality of the form

1

(1) (1)(1)
l n

i i
i i q r l p

p x x l p
= = + − −

+ − ≤ − +∑ ∑ .

A total of 180 project allocation problems were created

by randomly assigning ai to an integer between 0 and
200,000 and ci = ai for i = 1, ..., n. The value of b is

1

5

n
ii

a
=

 
 
  

∑ and r is
4
n . These instances follow the spirit

of both Chvátal (1980) and Hunsaker and Tovey (2004)’s
computationally intensive knapsack instances. The
aforementioned process was used to create a hyperstar
inequality. For this study, the value of l was between 1 and
3 and the value of p was between 3 and 8. In addition, the
preprocessing times were exceptionally fast, less than .01
seconds per problem.

The main reason that Chvátal (1980) and Hunsaker and
Tovey (2004)’s knapsack instances are difficult to solve is
that there exists an optimal solution equal to b with
probability approaching 1. Thus, the root relaxation and all

Table 1. Hyperstar inequality computational results

Number
Variables

Number
Projects

Avg
m

Avg

BS
Avg

k
CPLEX Default

Time (Sec)
Hyperstar
Time (Sec)

Percentage of
Improvement

28 7 19.1 17.1 15.1 112 92 17.9
32 8 16.9 14.9 12.9 497 417 16.1
36 9 18.9 16.9 14.8 1189 843 29.1
40 10 29 26 23 2647 1016 62.2
44 11 30.2 28.2 24.2 551 279 49.4
48 12 29.9 27.9 23.9 285 154 46.0

Average 24.0 21.8 19.0 880 467 36.7

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

144

other nodes of the branching trees were infeasible, integer
or had an LP relaxation of b. Thus, the added hyperstar
cuts never decreased the root node relaxation. However,
the effectiveness of the hyperstar cuts can still be
demonstrated by the total time required to solve these
problems.

The computational results are shown in Table 1. Each
row in this table corresponds to 30 random instances of
the specified size. Observe that including hyperstar
inequalities decreased the overall run time by about 1/3. In
addition, the hyperstars are large and involve the majority
of the variables.

Observe that the instances with more variables required
less time to solve, which seems counter-intuitive. However,
there are so many solutions with a value of b, that CPLEX
could quickly find an optimal solution equal to b. Once
CPLEX finds this solution, all branching nodes are
immediately fathomed. In contrast, the instances with 28
variables frequently had optimal solutions not equal to b
and so CPLEX had to explore all LP relaxations with value
equal to b. With only 28 variables, the number of nodes
could still be quickly explored. The middle instances
required the longest time since they fell right in the middle
of the two. That is, a few instances didn’t have an optimal
solution equal to b and these instances still had relatively
large branch-and-cut trees.

5. CONCLUSION AND FUTURE RESEARCH

This paper has presented a new class of valid
inequalities, called hyperstar inequalities for general binary
integer programs. Some conditions where these inequalities
define large dimensional faces are also presented. This
paper also introduces a fast method to create useful
hyperstar inequalities for the project allocation problem.
These hyperstar inequalities decreased the average solution
time by approximately one third.

There still remains a substantial amount of research
involving hyperstar inequalities and conflict hypergraphs.
The two most important research questions are how to
efficiently find hyperstar inequalities for general binary
integer programs and how useful are hyperstar inequalities.

On top of these open research questions, the results of
this paper could be theoretically strengthened by providing
conditions when hyperstar inequalities would define
facet-defining inequalities. In addition, discovering other
subhypergraphs that induce valid inequalities could also be
both theoretically and computationally beneficial.

REFERENCES

1. Atamtürk, A., Nemhauser, G.L., and Savelsbergh,
M.W.P. (2000). The mixed vertex packing problem.
Mathematical Programming, 89: 35-53.

2. Atamtürk, A., Nemhauser, G.L., and Savelsbergh,
M.W.P. (2000). Conflict graphs in solving integer
programming problems. European Journal of Operational
Research, 121(1): 40-55.

3. Berge, C. (1973). Graphs and Hypergraphs,

North-Holland Publishing Company, translated by
Minieka, E.

4. Bertsimas, D., Darnell, C., and Soucy, R. (1999).
Portfolio construction through mixed-integer
programming at Grantham, Mayo, Van Otterloo and
company. Interfaces, 29(1): 49-66.

5. Bixby, R.E. and Lee, E.K. (1994). Solving a truck
dispatching scheduling problem using branch and cut.
Operations Research, 46(3): 355-367.

6. Borndörfer, R. (1997). Aspects of Set Packing, Partitioning,
and Covering, Ph.D. Thesis, Technischen Universtät
Berlin, Berlin, Germany.

7. Cornuejols, G. and Sassano, A. (1989). On the 0,1
facets of the set covering problem. Mathematical
Programming, 43: 45-55.

8. Chvátal, V. (1973). Edmonds polytopes and a hierarchy
of combinatorial problems. Discrete Mathematics, 4:
305-337.

9. Chvátal, V. (1980). Hard knapsack problem. Operations
Research, 28(6): 1402-1412.

10. Easton, T., Hooker, K., and Lee, E. (2003). Facets of
the independent set polytope. Mathematical Programming,
98: 177-199.

11. Euler, R., Junger, M., and Reinelt, G. (1987).
Generalizations of cliques, odd cycles and anticycles
and their relation to independence system polyhedra.
Mathematics of Operations Research, 12: 451-462.

12. Farias De, I. and Nemhauser, G. (2003). A polyhedral
study of the cardinality constrained knapsack problem.
Mathematical Programming, Series A, 96: 439-467.

13. Hooker, K. (2004). Hypergraphs and Integer Programs,
Ph.D. Dissertation, Industrial and Manufacturing
Systems Engineering, Kansas State University.

14. Hunsaker, B. and Tovey, C. (2004). Simple lifted cover
inequalities and hard knapsack problems. Technical
Report, Industrial Engineering, University of
Pittsburgh, Pittsburgh, pp. 1-13.

15. Karp, R. (1972). Reducibility among combinatorial
problems. In: R.E. Miller and J.W. Thatcher (Eds.),
Complexity of Computer Computations, Plenum Press, New
York, pp. 85-103.

16. Nemhauser, G. and Trotter, L. (1974). Properties of
vertex packing and independence system polyhedra.
Mathematical Programming, 6: 48-61.

17. Nemhauser, G. and Wolsey, L. (1988). Integer and
Combinatorial Optimization, John Wiley and Sons, New
York.

18. Padberg, M. (1973). On the facial structure of set
packing polyhedra. Mathematical Programming, 5:
199-215.

19. Padberg, M. (1980). (1, k)-configurations and facets for
packing problems. Mathematical Programming, 18: 94-99.

20. Pinto, R. and Rustem, B. (1998). Solving a
mixed-integermultiobjective bond portfolio model
involving logical conditions. Annals of Operations
Research, 81: 497-513.

21. Pulleyblank, W. and Edmonds, J. (1975). Facets of
1-matching polyhedra. In: C. Berge and D.R.
Chaudhuri (Eds.), Hypergraph Seminar, Springer,

Hooker and Easton: Using Hyperstars to Create Facial-Defining Inequalities of General Binary Integer Programs
IJOR Vol. 4, No. 3, 138-145 (2007)

145

Heidelberg, pp. 214-242.
22. Sassano, A. (1989). On the facial structure of the set

covering polytope. Mathematical Programming, 44:
181-202.

23. The CPLEX Solver on ILOG’s Home Page.
http://www.ilog.com/.

