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AbstractTheoretical results relating to the facial structure of  the general binary integer-programming polytope conv({x ∈ 
{0,  1}n : Ax ≤ b}) where A ∈ r n×¡ , and b ∈ ¡r  are presented. A conflict hypergraph is constructed and some induced 
hyperstars create valid inequalities of  .BIPP  These inequalities are further shown to produce large dimensional faces. Some 
computational results show the benefit of  using hyperstar inequalities for the project allocation problem. 
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1. INTRODUCTION 

General binary integer programs (GBIP) take the form 
max cTx subject to Ax ≤ b and x ∈ {0,  1}n  where A ∈ 

,r n×¡  and b ∈ ¡r . Let P be the feasible region of  a 
GBIP, P = {x ∈ {0,  1}n : Ax ≤ b}. Then the general 
binary integer program polytope is the convex hull of  P, 
which is denoted by BIPP = conv{x ∈ {0,  1}n : Ax ≤ b}. 

Valid inequalities or cutting planes have been extensively 
used to help solve integer programs. An inequality 

α β
=

≤∑ 1

n
i ii
x  is valid if  every x ∈ P satisfies the 

inequality. A valid inequality defines a face of  dimension q 
if  and only if  there are exactly q + 1 affinely independent 
points in P that satisfy α β

=
=∑ 1

n
i ii
x . An inequality is 

said to be facet-defining if  and only if  the dimension of  
the valid inequality’s face is one less than the dimension of  

.BIPP  See Nemhauser and Wolsey (1988) for more 
background on polyhedral theory. 

Numerous researchers have used conflict graphs 
(Atamtürk et al. (2000), Bixby and Lee (1994), Borndörfer 
(1997), Chvátal (1973), Pulleyblank and Edmonds (1975)) 
or conflict hypergraphs (Cornuejols and Sassano (1989), 
Easton et al. (2003), Euler, Junger, and Reinelt (1987); 
Nemhauser and Trotter (1974), Padberg (1973), Padberg 
(1980), Sassano (1989)) to create both valid inequalities and 
facet-defining inequalities. The majority of  this research 
has focused on special integer programming polytopes, 
such as the multiple knapsack polytope MKP = conv{x ∈ 
{0,  1}n : Ax ≤ b, A ∈ ×

+¡r n } or the set covering polytope 
SCP = conv{x ∈ {0,  1}n : Ax ≤ b, A ∈ ×{0,  1}r n }. 
This paper describes a conflict hypergraph and defines 

an induced hyperstar, which creates valid inequalities of  
.BIPP  Section 2 describes the creation of  this conflict 

hypergraph. Section 3 introduces the hyperstar inequality 
and provides some theoretical results. Computational 
results and extensions to the project allocation problem are 
contained in Section 4. The paper concludes with Section 5, 
which summarizes the results and provides some directions 
for future research. 

 
2. CONFLICT HYPERGRAPHS 

A graph G = (V, E) consists of  a set of  vertices V(G) = 
{1, ..., n} and a set of  edges E(G) = {{u, v} : u, v ∈ V}. 
From a BIPP  instance, a typical conflict graph can be 
generated by defining a vertex for each variable. An edge  
{i, j} is in the edge set if  and only if  there is no x ∈ P such 
that xi = 1 and xj = 1. In other words, edges represent 
infeasible portions of  the space. Atamürk et al. (2000) 
further extended the vertex set of  a conflict graph to 
include vertices that represent variables equal to 0. This 
paper creates a conflict graph that consists of  a vertex set 
that represents variables set to both 1 and 0. 

A hypergraph H = (V, E) consists of  a set of  vertices 
V(H) = {1, ..., n} and a set of  edges E(H) = {d1, ..., dt}, 
where di ⊆ V(H) for all i. The definitions of  a 
subhypergraph and an induced subhypergraph follow 
directly from their graph theoretic definitions. A uniform 
k-hypergraph is a hypergraph in which every edge has 
cardinality k. Throughout the remainder of  this paper, 
every mention of  a hypergraph is referring to a uniform 
k-hypergraph, and unless it causes ambiguity, E(H) will be 
replaced with E and V(H) with simply V. Berge (1973) is a 
good source of  background information on both graphs 
and hypergraphs. 

Given a GBIP, define the k-conflict hypergraph to be 
Hk = (V, E) where V = {i: i = 1, ..., n} ∪ { i : i = 1, ..., n}. 
There is a direct correspondence between variable xi and 
vertices i and i . The edge set E is constructed using the 
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following method: e ∈ E, if  |e| = k and every point in 
{0,  1}n  with xi = 0 for all i  ∈ e and xi = 1 for all i ∈ e is 

not in P. One added restriction is that i and i  will never 
be in the same edge as this implies that xi = 0 and xi = 1, 
which is an inconsistency and not an infeasibility. Finally, 
an edge e is minimal if  e\{i} ∉ E(Hk−1) for all i ∈ e and 
e\{ i } ∉ E(Hk−1) for all i  ∈ e. The following example 
demonstrates the construction of  this new type of  conflict 
hypergraph. 

 
Example 2.1: Consider the feasible region of  an integer 
program defined as: 
 

4x1 − 4x2 + 2x3 + 2x4 − 2x5 + x6 − x7 ≤ 4 
4x1 − 4x2 − x3 + 2x4 + x5 − 2x6 + 2x7 ≤ 4 
2x1 − 2x2     − x5 − x6 + x7 ≤ 1 
2x1 − 2x2 + x3     − x6 + x7 ≤ 2 

x ∈ 7{0,  1} .  
 
The vertex set of  H4 is V = {1, 2, ..., 7, 1 , 2 , ..., 7 }. H4 
contains the edge {1, 2 , 3, 4} because any point with x1 = 
1, x2 = 0, x3 = 1 and x4 = 1 will not satisfy the first 
constraint. Some of  the other edges in H4 include: {1, 2 , 
3, 5 }, {1, 2 , 4, 5 }, {1, 2 , 6 , 7} and {1, 2 , 3, 6 }. 

Observe that any single constraint 
=

≤∑ ,1

n
i j j ij

a x b  in 

a GBIP can be transformed into a knapsack constraint, 
which takes the form 

=
≤∑ ,1

n
i j j ij

a x b  where each ai, j ≥ 0 

for some fixed i ∈ {1, ..., m}. The tranformation merely 
replaces xj by 1 − ′jx  whenever the ai, j < 0. Furthermore, 
a set C ⊆ {1, 2, ..., n} is a cover of  the knapsack constraint 
if  and only if  , .i jj C

a β
∈

>∑  Observe that covers of  

these knapsack constraints will be edges in the conflict 
hypergraph. 

It is important to note that there may exist edges in Hk 
that do not correspond to a cover from any single 
inequality. For instance, the H2 generated from {x ∈ 
{0,  1}n : x1 + x2 − x3 ≤ 1, x1 + x2 + x3 − x4 ≤ 1} has the 
edge {1, 2}. Clearly, examining any single constraint will 
not generate this edge and so not all edges in GBIP 
correspond to covers of  an individual constraint. 
Furthermore, determining the existance of  a noncover 
edge in a GBIPs is an NP-hard problem. 
 
3. HYPERSTARS 

A graph with m vertices is called a star or fan, denoted 
by Sm, if  there exists a relabeling of  the vertex set such that 
E = {(1, i) : i = 2, ..., m}. Vertex 1 is called the hub or 
center and the other vertices are called blades or spokes. 
There are two natural ways to extend the definition of  a 
fan or star to a hyperfan or hyperstar. An example of  a 
hyperfan with 2 hub nodes and 4 blade nodes is {1, 2, 3, 4} 
and {1, 2, 5, 6}. Observe that each edge contains all of  the 
hub vertices {1, 2} and each blade vertex {3, 4, 5, 6} is in 

exactly one edge. An example of  a hyperstar with two hub 
nodes and 4 blade nodes is {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 
6}, {1, 2, 4, 5}, {1, 2, 4, 6} and {1, 2, 5, 6}. Notice that 
every edge contains all of  the hub vertices and the edge set 
contains all possible combinations of  blade vertices. This 
paper derives valid inequalities from hyperstars. 

Formally, a hypergraph with m vertices, Sm,l,k, is a 
hyperstar if  there exists a set L ⊆ V(Sm,l,k) with |L| = l ≥ 1 
such that E(Sm,l,k) = {d ⊆ {1, ..., m}: |d| = k and L ⊆ d} 
with k > l ≥ 1. That is Sm,l,k contains every edge of  size k 
that contains the vertices of  the hub, L. Thus, |E(Sm,l,k)| = 

−
− −
( )!

( )!( )!
m l

m k k l
. 

Induced hyperstars from the conflict hypergraph can 
lead to face-defining inequalities. First, the vertices of  an 
induced hyperstar naturally partition into four mutually 
exclusive sets. The hub vertices, L, partition into the sets 
SL and LS  where SL contains the nonbarred hub vertices 
and LS  contains the barred hub vertices. Similarly, the 
blade vertices, V(Sm,l,k)\L, partition into SB and .BS  To 
simplify the following proofs, for any x ∈ P let cU be the 
number of  active vertices in U ⊆ Sm,l,k. That is 

 
i) = ∈ ={ : 1}

BS B ic i S x , 

ii) { : 0}
B

B iSc i S x= ∈ = , 

iii) = ∈ ={ : 1}
LS L ic i S x  and 

iv) { : 0}
L

L iSc i S x= ∈ = . 

 
Now hyperstars can be shown to induce a valid 

inequality. 
 

Lemma 3.1. Given a general integer-programming 
problem with conflict hypergraph Hk with k ≥ 2, if  Sm,l,k is 
a hyperstar in Hk with hub L, then 
 

( 1)

( 1) ( ) 1

L BL B

i i i i
i S i Si S i S

L B

m k x x x x

m k l S k l S

∈ ∈∈ ∈

 
− + − + − 

 

≤ − + ∗ − + − − −

∑ ∑ ∑ ∑
 

 
is a valid inequality of  BIPP . 
 
Proof. First rewrite the inequality as 
 

( 1) (1 ) (1 )

( 1) 1.
L BL B

i i i i
i S i Si S i S

m k x x x x

m k l k l
∈ ∈∈ ∈

 
− + − − + + − 

 
≤ − + + − −

∑ ∑ ∑ ∑  

 
Let fT(x) be the value of  the left hand side of  the above 
inequality at any point x ∈ P and the proof  divides into 
two cases. 
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Case 1. Let .
L LS Sc c l+ =  This implies that 

( ) ( 1)( )

( 1)

( 1) 1.

L BL B

B B

T S SS S

S S

f x m k c c c c

m k l c c

m k l k l

= − + + + +

= − + + +

≤ − + + − −

 

 
The last inequality follows because, by the 
definition of  a hyperstar, any point x ∈ P can have 
at most k − l − 1 blade vertices active when every 
hub vertex is active. 
 

Case 2. Let .
L LS Sc c l+ <  Then 

L LS Sc c+  is bounded by 

l − 1. Also note that there are only m − l nodes 
outside the hub. Thus it follows that 

 
( ) ( 1)( )

( 1)( 1)
( 1) 1.

L BL BT S SS Sf x m k c c c c

m k l m l
m k l k l

= − + + + +

≤ − + − + −
= − + + − −  

 
Observe that H4 from Example 2.1 creates a S7,2,4 since 

{1, 2 , 3, 4}, {1, 2 , 3, 5 }, {1, 2 , 3, 6 }, {1, 2 , 3, 7}, 
{1, 2 , 4, 5 }, {1, 2 , 4, 6 }, {1, 2 , 4, 7}, {1, 2 , 5 , 
6 }, {1, 2 , 5 , 7}, and {1, 2 , 6 , 7} are edges. Therefore, 
the corresponding hyperstar inequality is 

 
4x1 − 4x2 + x3 + x4 − x5 − x6 + x7 ≤ 3. 

 

Furthermore, observe that the point (1, 0, 1
3

, 1
6

, 2
3

, 1
3

, 

0) is a feasible point in the linear relaxation, but is cut off  
by the hyperstar inequality (3.5 > 3). 

In a multiple knapsack problem with |L| = 1, a 
hyperstar inequality is equivalent to Padberg’s (1, k) 
configurations (1980), which are facet-defining under 
certain conditions. In general binary integer programs, 
hyperstars can also generate large dimensional 
face-defining inequalities as the following result shows. 
 
Theorem 3.2. Given a general integer-programming 
problem with conflict hypergraph Hk with k ≥ 2, if  Sm,l,k is 
an induced hyperstar containing m vertices with l vertices in 
the hub such that n ≥ m ≥ k > l + 1 ≥ 2, and if  for each 
vertex v ∈ Sm,l,k\L there exists an edge d ∈ E(Sm,l,k) such 
that v ∈ d and d is a minimal edge, then 
 

( 1)

( 1) ( ) 1

L BL B

i i i i
i S i Si S i S

L B

m k x x x x

m k l S k l S

∈ ∈∈ ∈

 
− + − + − 

 

≤ − + ∗ − + − − −

∑ ∑ ∑ ∑
 

 
defines a face of  dimension at least m − l − 1. 
 
Proof. We have shown that the hyperstar inequality is valid, 
so it remains to show that the face FT = {x ∈ P : (m − k + 
1)[

∈∑
L

ii S
x  − 

L ii S
x

∈∑ ] + 
∈∑

B
ii S

x  − 
B ii S
x

∈∑  = 

(m − k + 1) ∗ (l − LS ) + k − l − 1 − S } contains m − l 

affinely independent points. These points will be 
constructed algorithmically by analyzing the components 
generated by the minimal edges in E(Sm,l,k). Define a graph 
G = (V, E) with V(G) = V(Sm,l,k)\L. If  ,u ′  v ′  ∈ (d\L) 
where d ∈ E(Sm,l,k) and d is a minimal edge, then { ,u ′  v ′ } 
is an edge in G. Split G into the connected components 
C1, ..., Cq and begin by constructing the points for 
component C1. 

Let {d1, ..., dp} be the set of  minimal edges that were 
used to create the C1 component. Set R = d1 and D = 
{d2, ..., dp}. Since d1 = { 1v ′ , ..., kv ′ } is minimal, for each jv ′  
∈ d1\L, there exists a point in P that is also in FT with 
vertex jv ′  inactive, all the vertices in d1\{ jv ′ } active and 
every vertex in V(Sm,l,k)\d1 inactive. 

Since C1 is connected, if  R equals V(C1), begin 
constructing points from C2. Otherwise there exists an 
edge di ∈ D such that (di ∩ R) ≠ L. If  di\R is only a single 
vertex, ,jv ′  then there must exist a point in P with ,jv ′  
all vertices in L and exactly k − l − 2 other vertices of  di 
active and the other vertices in V(Sm,l,k) inactive. Such a 
point must exist as di is a minimal edge. On the other hand, 
if  |di\R| ≥ 2, then for each jv ′  ∈ di\R, a point in P exists 
with jv ′  inactive, each vertex in di\{ jv ′ } active, and each 
vertex in V(Sm,l,k)\di inactive. An additional |di\R| points 
have been created. Set R = R ∪ di, D = D\di and include 
these new point(s) to the previously generated points. 
Repeat this process until R = V(C1), and then repeat for 
each component Ci. After completing the process, m − l 
points in FT have been constructed. Denote these points as 
R = {r1, ..., rm−l}. 

To show that these points are affinely independent it is 
necessary and sufficient to show that λ

−

=∑ 1

m l
i ii
r = 0 and 

λ
−

=∑ 1

m l
ii
= 0 is uniquely solved by λi = 0 for all i = 1, ..., m 

− l. Let R′  be the matrix of  the system of  equations that 
are being solved ( R λ′  = 0). If  i  ∈ ,BS  then subtract 
the last row of  R′  from the ith row of  R′  and then 
multiply this row by −1. These two operations change 
every 0 in this row to a 1 and every 1 to a 0. Delete the 
final row from R ′  and call this new matrix .R ′′  R′′  has 
the property that if  ith is active in rj, then the ith element of  
the jth column is 1 and 0, if  not. 

R′′  has a block diagonal structure relative to the rows 
corresponding to the blade vertices (i.e. the only nonzero 
elements in R′′  are located between rows (

=∑ 1

j
ii

C ) + 1 

and +

=∑ 1

1

j
ii

C  where j = 0, ..., q − 1. Thus it suffices to 

show that the |C1| points generated by component C1 are 
linearly independent in .R′′  Restricting ourselves to the 
first k columns leads to a cyclical permutation of  k − 1 
consecutive 1’s. Since this cyclical permutation is over k 
rows and columns and the greatest common divisor of  k 
and k − 1 is 1, these k points are linearly independent 
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(Hooker (2004)). The next points maintain this linear 
independence by a similar argument. If  the point involves 
the case of  only increasing the size of  R by 1, then this 
row has exactly one 1 and it appears in the next column 
and is trivially independent. If  |di\R| = s ≥ 2, then the 
next added points contain a consecutive cyclical 
permutation of  s − 1 ones over an s × s matrix in the next s 
rows and s columns. Since these are the only non zeros in 
these rows, adding these points to the previous points 
maintains the linearly independence property and therefore, 
the hyperstar inequality supports a face with dimension at 
least m − l − 1. 
 

The restriction that k > l + 1 is necessary, since if  k = l + 
1, then every blade vertex would be in its own component 
in G and the only point that would be generated by the 
proof  has every hub vertex active and every blade vertex 
inactive. The S7,2,4 from Example 2.1 satisfies Theorem 3.2 
and thus it defines a face of  dimension at least 3. 

Theorem 3.2 also assumes that there is no knowledge 
about how many of  the blade vertices can be active when 
one or more of  the hub vertices is inactive. Thus in the 
current inequality, if  even just one of  the hub vertices is 
inactive in a point, then all of  the non-hub vertices can be 
active without violating the hyperstar inequality. It is 
natural to question whether or not this inequality can be 
improved. First, for each i ′ ∈ L define 
 

ik ′ = min{{ k′′  ∈ {k, ..., m − 1} : the induced 
subhypergraph of  kH ′′  on V(Sm,l,k)\{ i ′ } is a hyperstar 
with hub L\{ i ′ }} ∪ {m}}. 
 
That is, ik ′  is the smallest sized edge such that 

ikH ′  
contains an induced subhypergraph of  V(Sm,l,k\{ i ′ }) that 
is a hyperstar with hub L\{ i ′ }. If  no such hyperstar exists, 
then ik ′  = m. Essentially, ik ′  − l determines the 
maximum number of  non-hub vertices that are active in 
any point in P for which i ′  is the only inactive hub vertex. 

Now for each i ′  ∈ L define pi = max( ik ′ ,
− 

  2
m l  + k − 

1). Using this definition of  pi, a stronger hyperstar 
inequality is produced. 
 
Lemma 3.3. Given a general integer-programming 
problem with conflict hypergraph Hk with k > l ≥ 1, if  Sm,l,k 
is a hyperstar in Hk with hub L, then 
 

( 1) ( 1)

( 1) 1
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

≤ − + + − − −

∑ ∑ ∑ ∑

∑
 

 
is a valid inequality for BIPP . 
 
Proof. Since L = LLS S∪  the inequality can be rewritten 
as 

( 1) ( 1)(1 )

(1 )
LL

BB

i i i i
i S i S

i i
i S i S

p k x p k x

x x
∈ ∈

∈ ∈

− + + − + −

+ + −

∑ ∑

∑ ∑
 

( 1) 1
L L

i
i S S

p k k l
∈ ∪

≤ − + + − −∑ . 

 
Again the result is that anytime a variable is active, it will 
increase the value of  the left hand side. Next let fT(x) be 
the value of  the left hand side of  the above inequality at 
any point x ∈ P and the proof  divides into the following 
three cases: 
 
Case 1. Let .

L LS Sc c l+ =  Following the same logic as 

Lemma 3.1 
 

( ) ( 1)

( 1) 1.
B BLL

LL

T i S Si S S

ii S S

f x p k c c

p k k l
∈ ∪

∈ ∪

= − + + +

≤ − + + − −

∑
∑  

 
Case 2. Let 1.

L LS Sc c l+ = −  Without loss of  generality, 

assume that vertex r ′  ∈ L is inactive in x. Thus it 
follows that 

 
( ) ( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

( 1) 1.

B BLL

LL

LL

LL

T i r S Si S S

i r ri S S

i r ri S S

ii S S

f x p k p k c c

p k p k k l

p k p k p l

p k k l

′∈ ∪

′ ′∈ ∪

′ ′∈ ∪

∈ ∪

= − + − − + + +

≤ − + − − + + −

≤ − + − − + + −

= − + + − −

∑
∑
∑
∑

 
The first inequality follows from the definition of  
kj and the second from the fact that pj ≥ kj. 

 
Case 3. Let 2.

L LS Sc c l+ ≤ −  Clearly then 
L LS Sc c+  will 

be bounded by l − 2, and 
B BS Sc c+  is at most m − 

l. Assume that ,r s′ ′  ∈ L are inactive in x. Thus 
 

( ) ( 1) ( 1)

 ( 1)

( 1) 2
2

( 1)

( 1) 1.

LL

B B

LL

LL

LL

T i ri S S

s S S

ii S S

ii S S

ii S S

f x p k p k

p k c c

m lp k m l

p k

p k k l

′∈ ∪

′

∈ ∪

∈ ∪

∈ ∪

≤ − + − − +

− − + + +

− ≤ − + − + −  
≤ − +

≤ − + + − −

∑

∑

∑
∑  

 
These inequalities follow because (pi − k + 1) ≥ 

− 
  2

m l  by definition and k − l − 1 ≥ 0. 

 
This stronger hyperstar inequality can now be shown to 

support a face of  greater dimension than the original 
hyperstar inequality. 
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Theorem 3.4. Let Sm,l,k be an induced hyperstar from the 
conflict hypergraph Hk containing m vertices with l vertices 
in the hub, n ≥ m ≥ k > l + 1 ≥ 2 and pi as defined above. If  
for each vertex v ∈ Sm,l,k there exists an edge d ∈ E(Sm,l,k) 
such that v ∈ d and d is a minimal edge, then 
 

( 1) ( 1)

( 1) 1
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

≤ − + + − − −

∑ ∑ ∑ ∑

∑
 

 
defines a face of  dimension at least m − l − 1 + |{i : ki ≥ 

− 
  2

m l  + k − 1}|. 

 
Proof. Define the face { : ( 1)

L
T i ii S

F x P p k x
∈

= ∈ − +∑  

− ( 1)
L i ii S

p k x
∈

− +∑  + 
BB

i ii S i S
x x

∈ ∈
−∑ ∑  = 

∈
− +∑ ( 1)

L
ii S

p k  + k − l − 1 − BS }. To show that it 

contains m − l + |{i : ki ≥ − 
  2

m l  + k − 1}| affinely 

independent points, the first m − l points will be exactly the 
points used in Theorem 3.2. Then, for each hub vertex  

j L′∈  such that jk ′  ≥ − 
  2

m l  + k − 1, note that 

jp ′  = jk ′ . Thus, there exists a point in P ∩ FT with 
vertex j ′  inactive, each vertex in L\{ j ′ } active, and 
exactly jp ′  − l blade vertices active, which gives |{ i ′ : ik ′  

≥ − 
  2

m l  + k − 1}| additional affinely independent 

points in the face. 
 

A clear deduction from the above result is that if  ip ′  = 

ik ′  for all i ′  ∈ L, then the above hyperstar inequality 
defines a face of  dimension at least m − 1. 

By imposing a maximality condition on a hyperstar, we 
can show that all other variables will sequentially lift into a 
hyperstar inequality with a 0 coefficient. First the concept 
of  a maximal hyperstar must be well-defined. A hyperstar 
is said to be maximal if  there does not exist a hyperstar by 
moving a blade vertex to the hub vertex set or by adding 
any vertex not in the hyperstar to either the hub or blade 
vertex sets. With this definition the following result is 
attainable: 
 
Theorem 3.5. Let Sm,l,k be a maximal hyperstar with hub L 
and n ≥ m ≥ k > l + 1 ≥ 2 in the conflict hypergraph Hk, 
and let xj ∈ V(Hk)\V(Sm,l,k). Then the following two 
statements are true: 
 
1 Either there is no point in P with xj = 0 or there exists 

a point with xj = 0 and 
 

( 1) ( 1)
L BL B

i i i i i i
i S i Si S i S

p k x p k x x x
∈ ∈∈ ∈

− + − − + + −∑ ∑ ∑ ∑  

( 1) 1 .
L

Bi
i S

p k k l S
∈

= − + + − − −∑  

 
2 Either there is no point in P with xj = 1 or there exists 

a point with xj = 1 and 
 

( 1) ( 1)

( 1) 1 .
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

= − + + − − −

∑ ∑ ∑ ∑

∑
 

 
Hence, xj is sequentially lifted with a 0 coefficient into the 
hyperstar inequality, i.e. the lifting does not change a 
maximal hyperstar inequality. 
 
Proof. In either case, xj = 0 or xj = 1, if  there does not 
exist a point in P, the proof  is trivial. To show Case 1, 
suppose the maximal hyperstar meets the above conditions, 
that x ∈ P with xj = 0, and that 
 

( 1) ( 1)

( 1) 1 .
L BL B

L

i i i i i i
i S i Si S i S

Bi
i S

p k x p k x x x

p k k l S

∈ ∈∈ ∈

∈

− + − − + + −

< − + + − − −

∑ ∑ ∑ ∑

∑
 

 
Then there does not exist a point with vertex j  active, all 
the vertices in L active, and k − l − 1 vertices of  V(Sm,l,k)\L 
set active in P. Thus, vertex j  can be added to the 
hyperstar as an additional blade vertex, and the assumption 
that Sm,l,k is maximal is contradicted. The proof  is similar 
for Case 2. 
 

It may seem that Theorem 3.5 would imply that a 
maximal hyperstar inequality would define a facet of  BIPP . 
However, this not the case as the face of  the hyperstar 
inequality may define the whole feasible space. 

Observe that the property that no blade vertex can be 
moved into the hub was not utilized in the proof  of  this 
theorem. Since Theorem 3.5 only lifts variables in 
V\V(Sm,l,k) this assumption is not needed. However, if  a 
blade vertex could actually be a hub vertex, then its 
coefficient in the hyperstar inequality could be 
strengthened. If  a BIPP  can be simplified to either a 

MKP  or SCP , then the following corollary provides a 
facet-defining condition. This result strengthens Padberg’s 
(1, k) configurations and does require both conditions of  a 
maximal hyperstar. 
 
Theorem 3.6. Let Sm,l,k be a maximal induced hyperstar in 
the conflict hypergraph Hk generated from a multiple 
knapsack or set covering polytope with n ≥ m ≥ k > l + 1 ≥ 

2. If  ki ≥ − 
  2

m l  + k − 1 for all i ∈ L, and if  for each 

vertex v ∈ BS  ∪ BS  there exists an edge d ∈ E(Sm,l,k) 
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such that v ∈ d and d is a minimal edge, then 
 

( 1) ( 1)

( 1) 1 .
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i i i i i i
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p k x p k x x x

p k k l S
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∈
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∑
 

 
is a facet-defining inequality. 
 
4. COMPUTATIONAL RESULTS 

This section describes how hyperstar inequalities can be 
used to improve the solution time for the project allocation 
problem (PA). All computational results reported here 
were performed on a Pentium IV PC with 1 GB of  Ram 
and a 1.8 GHz processor. The study compares the default 
setting of  CPLEX 7.1 with the default setting of  CPLEX 
7.1 when a hyperstar inequality is added as a preprocessing 
cut. 

From a set of  n projects each with an expected benefit ci 
and an expected cost ai for i = 1, ..., n, the project 
allocation problem seeks to find the set of  projects that 
maximizes the expected benefit while not spending more 
than a budget b and choosing at least r projects. The 
restriction on r projects is included for diversification 
purposes, which also helps diminish risk. Clearly, PA is 
NP-hard since the knapsack problem is a special case 
(Karp (1972)). 

The project allocation problem is closely related to the 
knapsack problem and some problems in portfolio 
management (Bertsimas et al. (1999), Pinto and Rustem 
(1998)). One such portfolio management problem is the 
cardinality constrained knapsack problem, which requires 
that no more than r projects be implemented. Some valid 
and facet-defining inequalities along with branching 
techniques for the cardinality constrained knapsack 
problem can be found in Farias De and Nemhauser (2003). 

PA’s structure allows us to quickly find hyperstar 
inequalities. These hyperstar inequalities all had nonbarred 
hub vertices and barred spoke vertices. The basic idea is 
that if  several high cost projects are selected, then several 
low cost projects must also be selected in order to 
guarantee that r total projects can be selected. 

To describe these hyperstar inequalities, we may assume, 
without loss of  generality, that a is sorted in descending 
order (ai ≤ aj for all i > j). Now let L = {1, ..., l} where l is 
some integer. Now select an integer p ≥ 1 such that p + l < 

r and find the maximum integer q such that l + 1 ≤ q ≤ n − r 
+ l + 1 and 

=∑ 1

l
ii

a + + − − −

=∑ 1q r l p
ii q

a +
= − +∑ 1

n
ii n p

a > b. If  

no such q exists, then new values for l or p must be 
obtained. If  such a q exists, we claim that {1, ..., l, 

+ − −q r l p , ..., n } is a hyperstar with hub {1, ..., l} and 

blade vertices { + − −q r l p , ..., n } in Hk where k = m − p 
and m = l + n − q − r + l + p + 1 or equivalently k = 2l + n + 
1 − q − r. 

To show that the above technique generates a hyperstar 
we begin by showing that {1, ..., l, + − −q r l p , ..., −n p } 
is an edge in Hk. It suffices to show that x1 = ... = xl = 1 
and xq+r−l−p = ... = xn−p = 0 is infeasible. Since a is sorted, 
the minimum amount of  cost that satisfies the above 
restriction and has r variables equal to 1 occurs when x1 
= ... = xl = 1, xn−p+1 = ... = xn = 1 and xq = ... = xq+r−l−p−1 = 
1. From the preceding paragraph, this exceeds the budget 
and is infeasible and so it is an edge. Furthermore, due to 
the sorted order of  a all of  the other necessary edges are 
also in Hk and so the induced subhypergraph of  these 
vertices contain a hyperstar. Consequently, Lemma 3.1 
provides a valid inequality of  the form 
 

1

( 1) ( 1)( 1)
l n

i i
i i q r l p

p x x l p
= = + − −

+ − ≤ − +∑ ∑ . 

 
A total of  180 project allocation problems were created 

by randomly assigning ai to an integer between 0 and 
200,000 and ci = ai for i = 1, ..., n. The value of  b is 

1

5

n
ii

a
=

 
 
  

∑  and r is 
4
n . These instances follow the spirit 

of  both Chvátal (1980) and Hunsaker and Tovey (2004)’s 
computationally intensive knapsack instances. The 
aforementioned process was used to create a hyperstar 
inequality. For this study, the value of  l was between 1 and 
3 and the value of  p was between 3 and 8. In addition, the 
preprocessing times were exceptionally fast, less than .01 
seconds per problem. 

The main reason that Chvátal (1980) and Hunsaker and 
Tovey (2004)’s knapsack instances are difficult to solve is 
that there exists an optimal solution equal to b with 
probability approaching 1. Thus, the root relaxation and all

 
Table 1. Hyperstar inequality computational results 

Number 
Variables 

Number 
Projects 

Avg 
m 

Avg 

BS  
Avg 

k 
CPLEX Default 

Time (Sec) 
Hyperstar 
Time (Sec) 

Percentage of  
Improvement 

28 7 19.1 17.1 15.1 112 92 17.9 
32 8 16.9 14.9 12.9 497 417 16.1 
36 9 18.9 16.9 14.8 1189 843 29.1 
40 10 29 26 23 2647 1016 62.2 
44 11 30.2 28.2 24.2 551 279 49.4 
48 12 29.9 27.9 23.9 285 154 46.0 

Average 24.0 21.8 19.0 880 467 36.7        
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other nodes of  the branching trees were infeasible, integer 
or had an LP relaxation of  b. Thus, the added hyperstar 
cuts never decreased the root node relaxation. However, 
the effectiveness of  the hyperstar cuts can still be 
demonstrated by the total time required to solve these 
problems. 

The computational results are shown in Table 1. Each 
row in this table corresponds to 30 random instances of  
the specified size. Observe that including hyperstar 
inequalities decreased the overall run time by about 1/3. In 
addition, the hyperstars are large and involve the majority 
of  the variables. 

Observe that the instances with more variables required 
less time to solve, which seems counter-intuitive. However, 
there are so many solutions with a value of  b, that CPLEX 
could quickly find an optimal solution equal to b. Once 
CPLEX finds this solution, all branching nodes are 
immediately fathomed. In contrast, the instances with 28 
variables frequently had optimal solutions not equal to b 
and so CPLEX had to explore all LP relaxations with value 
equal to b. With only 28 variables, the number of  nodes 
could still be quickly explored. The middle instances 
required the longest time since they fell right in the middle 
of  the two. That is, a few instances didn’t have an optimal 
solution equal to b and these instances still had relatively 
large branch-and-cut trees. 
 
5. CONCLUSION AND FUTURE RESEARCH 

This paper has presented a new class of  valid 
inequalities, called hyperstar inequalities for general binary 
integer programs. Some conditions where these inequalities 
define large dimensional faces are also presented. This 
paper also introduces a fast method to create useful 
hyperstar inequalities for the project allocation problem. 
These hyperstar inequalities decreased the average solution 
time by approximately one third. 

There still remains a substantial amount of  research 
involving hyperstar inequalities and conflict hypergraphs. 
The two most important research questions are how to 
efficiently find hyperstar inequalities for general binary 
integer programs and how useful are hyperstar inequalities. 

On top of  these open research questions, the results of  
this paper could be theoretically strengthened by providing 
conditions when hyperstar inequalities would define 
facet-defining inequalities. In addition, discovering other 
subhypergraphs that induce valid inequalities could also be 
both theoretically and computationally beneficial. 
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