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AbstractWe consider the separable quadratic multi-knapsack problem (QMKP) which consists in maximizing a concave 
separable quadratic integer function subject to m linear capacity constraints. The aim of  this paper is to develop an effective 
method to compute an upper bound for (QMKP) from a surrogate relaxation originally proposed in Djerdjour et al. (1988). 
The quality of  three other upper bounds for (QMKP) is evaluated and they are compared theoretically and experimentally 
with the bound we suggest. An effective heuristic method is presented to obtain a good feasible solution for (QMKP). 
Finally, computational experiments are reported. They assess the efficiency of  our upper bound for instances up to 2000 
variables and constraints. 
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1. INTRODUCTION 

This paper presents a method to compute a good upper 
bound for the separable quadratic multi-knapsack problem 
(QMKP), which is derived from the solution method 
developed by Djerdjour et al. (1988). The problem we 
examine is a generalization of  the integer quadratic 
knapsack problem (QKP) which consists in maximizing a 
concave separable quadratic integer function subject to a 
single linear capacity constraint. Although there is a paucity 
of  solution methods to (QKP), significant contributions 
may be found in the literature. Among these, Mathur et al. 
(1983) solve (QKP) to optimality by applying a piecewise 
linearization to the objective function to obtain an 
equivalent 0-1 linear problem. Bretthauer and Shetty 
suggest several effective methods, such like pegging 
algorithms (2002a) and projection methods (1996 and 
2002b) to solve the LP-relaxation of  (QKP) so as to 
compute an upper bound of  the optimal value in a fast 
CPU time. 

The main application of  (QKP) is in finance (Mathur et 
al. (1983), Bretthauer and Shetty (1997)) for the portfolio 
management problem and which can be formulated as a 
mathematical program with a quadratic objective function 
under a knapsack constraint (Markowitz (1952)). The 
quadratic function measures both the expected return and 
the risk and the single knapsack constraint represents the 
budget constraint. The assumption of  a single knapsack 
constraint does not allow the possibility of  investing into 
assets of  different risk levels. This can be formulated by 
means of  several knapsack constraints, each representing a 

budget allocated to assets of  a given risk level. We 
therefore face an integer quadratic multi-knapsack problem 
(QMKP) which is a generalization of  (QKP). This capital 
budgeting model is discussed in Djerdjour et al. (1988) and 
Faaland (1974). Formally the integer (non pure binary) 
quadratic multidimensional knapsack problem (QMKP) can 
be written as: 
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where the coefficients cj, dj, aij, bi are nonnegative. The 
bounds uj of  variables xj are pure integers, with 

≤ ( / 2 ).j j ju c d  Indeed, the separable objective function is 

concave which implies that for all fj, * ( / 2 ),j j jx c d≤  

where *
jx  is the optimal solution of  the program  

0max ( ).
jx j jf x≥  

The integer quadratic multidimensional knapsack 
problem (QMKP) has received less attention in the 
literature than (QKP). To the best of  our knowledge, 
Djerdjour et al. (1988) are the only authors to propose a 
specific solution method to solve (QMKP). As such, their 
method is more effective than more general techniques 
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that have been primarily developed to solve general integer 
quadratic programs (see Cooper (1981) and Körner (1985, 
1990)). 

The method of  Djerdjour et al. first consists in a 
piecewise linearization of  the objective function which 
consequently converts (QMKP) into an equivalent 0-1 
multidimensional knapsack problem, (MKP), for which a 
wide range of  methods exists (see for instance Fréville and 
Plateau (1986) and Chu and Beasley (1998)). These 
methods are presented and analyzed in the recent survey 
of  Fréville and Hanafi (2005). Djerdjour et al. then apply a 
surrogate relaxation to the m constraints of  (MKP) in order 
to compute an upper bound of  the objective function of  
(QMKP). 

In this paper we propose an upper bound that improves 
the surrogate relaxation originally proposed by Djerdjour et 
al. (1988). The bound is improved from both a qualitative 
and a computational standpoint. We also develop a 
heuristic method to get a feasible solution to (QMKP). As 
no numerical evaluation of  the quality of  the bounds for 
(QMKP) is available in the literature, we provide a 
theoretical and experimental comparison of  the different 
bounds described in this paper. We will compare the LP 
relaxation, a linearization, the surrogate relaxation 
(Djerdjour et al. (1988)) as well as the upper and lower 
bounds we propose. The objective of  the computational 
study we conduct in this paper is to determine which 
bound is finally the most appropriate to be used in a 
branch-and-bound procedure to efficiently solve the 
problem. To this purpose we consider instances up to 2000 
variables and 2000 constraints. Simulation results show that 
our method provides an upper bound of  good quality in 
most cases and is always better than the surrogate 
relaxation (Djerdjour et al. (1988)) while requiring a 
significantly less computational time. 

The paper is organized as follows. Section 2 summarizes 
the algorithm proposed in Djerdjour et al. (1988) to 
compute an upper bound of  (QMKP). In Section 3, we 
present two improvements of  this algorithm. The first 
improvement is meant to speed up the computation of  the 
bound and the second one increases the quality of  the 
bound. A feasible solution is proposed in Section 4. The 
computational results are reported in Section 5. In section 
6 we summarize the main results of  this paper and we 
point out some directions for further research. In the 
remainder of  this paper, we adopt the following notations: 
letting (P) be an integer or a 0-1 program, we will denote 
by ( P ) the continuous relaxation problem of  (P). We let 
Z[P] be the optimal value of  the problem (P) and Z[ P ] the 
optimal value of  ( P ). 

 
2. THE ALGORITHM OF DJERDJOUR, 

MATHUR AND SALKIN (1988) 

The method proposed by Djerdjour et al. (1988) is an 
exact method to solve (QMKP). At each node of  the search 
tree, an upper bound is computed by solving a polynomial 
problem derived from (QMKP). First, an equivalent 
formulation of  (QMKP) is obtained by using a direct 

expansion of  the integer variables xj as originally proposed 
by Glover (1975) and by applying a piecewise linear 
interpolation to the initial objective function as discussed 
by Mathur et al. (1983). Consequently, (QMKP) is 
equivalent to the 0-1 piecewise linear program (MKP): 
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In the second step of  the algorithm, a surrogate 

relaxation is applied to the LP-relaxation of  (MKP). The 
surrogate relaxation initially introduced by Glover (1965) 
consists in aggregating the m initial linear constraints into a 
single constraint, namely a surrogate constraint, by 
replacing the set of  constraints Ay ≤ b with a unique 
constraint wAy ≤ wb, where A stands for the matrix of  
constraints of  (MKP). The vector w = (w1, …, wi, …, wm) is 
nonnegative and is called the surrogate multiplier. The 
resultant formulation (KP, w) is the surrogate relaxation 
problem of  (MKP) and is written as: 
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The above problem (KP, w) is a knapsack problem 
whose LP relaxation may efficiently be solved in ′( )O n  
operations, where n′  stands for the number of  variables 
of  (KP, w), using the method proposed by Fayard and 
Plateau (1977). The knapsack problem (KP, w) is one of  
the most common problems examined in the operations 
research literature (see Martello and Toth (1990)). As 
proved by Glover (1965), (KP, w) is a relaxation of  (MKP). 
The proof  relies on the fact that an optimal solution of  
(MKP) is feasible for (KP, w). Assuming that y* is an 
optimal solution of  (MKP), the following inequalities hold: 

*
1 1
( )jn u

ij jk ij k
a y b

= =
≤∑ ∑  for all i = 1, …, m. Multiplying 

each previous inequality with wi ≥ 0 and then summing all 
these inequalities lead to show that y* satisfies constraint (1). 
Consequently y* is feasible (but not necessary optimal) for 
(KP, w). In addition both objective functions of  (MKP) and 
(KP, w) are identical, which completes the proof  that (KP, w) 
is a relaxation of  (MKP). 
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For any value of  w ≥ 0 the optimal value [ , ]Z KP w  of  

( , )KP w  is an upper bound of  the optimal value 

[ ]Z MKP  of  ( ).MKP  Solving the dual surrogate 

problem: 0min [ , ]w Z KP w≥  denoted by (SD), leads to 

finding the best upper bound [ , *]Z KP w . Since the 
objective function of  (SD) is quasi-convex the authors use 
a local descent method that provides a global minimum w*. 
For each value of  w ≥ 0 the authors solve the problem 
( , )KP w  using a quicksort algorithm whose complexity is 

( log( ))O n n′ ′ , where n′ stands for the number of  variables 
of  (KP, w). However, as previously mentioned, a more 
efficient method exists (Fayard and Plateau (1977)). Its 
complexity is ( ).O n′  We adopted this method in the 
experiments instead of  the quicksort algorithm (see 
Section 5). 
 
3. IMPROVING THE UPPER BOUND 

We present two improvements of  the method in Section 
2 to compute an upper bound for (QMKP). We chose to 
keep the surrogate relaxation of  (MKP) initially used by the 
authors although a Lagrangean relaxation could have been 
implemented. The rationale for using a surrogate relaxation 
rather than a Lagrangean relaxation stems from theoretical 
results which show the superiority of  the former over the 
latter (Fréville and Hanafi (2005)). 

First, the local search descent method originally used by 
Djerdjour et al. to compute the optimal surrogate 
multiplier is abandoned for a global method which is 
proved to be faster as evidenced by the computational 
results presented in Section 5. The second improvement 
proceeds from an additional stage in which we solve (KP, 
w*) in 0-1 variables rather than in continuous variables. We 
finally establish an order relation between all the upper 
bounds included in the experiment for the sake of  
comparison. 

The first improvement is derived from the following 
proposition. 

 
Proposition 1. If  * 0w ≥  is the dual optimal solution of  
( )MKP  then the optimal value of  ( )MKP  is equal to the 

optimal value of  ( , *),KP w  that is: 
 

[ ] [ , *]Z MKP Z KP w=  
 
and w* is an optimal surrogate multiplier for 

0( ) min [ , ].wSD Z KP w≥=  
 
Proof. The proof  involves two parts. We first show that 

[ ] [ , *].Z MKP Z KP w≥  We then establish that [ ]Z MKP  
[ , *].Z KP w≤  

Let c ′  and A′  be the cost vector and the constraints 
matrix of  ( )MKP , respectively. Let us denote by e and I 

the unit vector (te = (1, ..., 1)) and the identity matrix, 
respectively. The problem ( )MKP  and its dual ( )DMKP  
can be written as: 
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Besides, the problem ( , )KP w  and its dual surrogate (SD) 
can be written as follows: 
 

max ( )
( , )

s. t. 
0

h y c y
wA y wbKP w

y e

′=
 ′ ≤
 ≤ ≤

 

 

0
( ) min ( , )

w
SD Z KP w

≥
 

 
We first prove the following statement: 
 

( , ) feasible for ( ),  ( , ) ( , ) 0.u v DMKP g u v Z KP u∀ ≥ ≥  
 
Let (u, v) be a feasible solution for ( )DMKP  and yu the 

optimal solution for ( , ).KP u  We have g(u, v) = ub + ve ≥ 

uuA y ve′ +  as ub ≥ uuA y′  since yu is a feasible solution 

for ( , ).KP u  In addition, uA c v′ ′≥ −  and yu ≥ 0, as (u, v) 

is feasible for ( ),DMKP  which implies that g(u, v) 
≥ u uc y vy ve′ − + . From the previous inequality we obviously 

have g(u, v) ≥ uc y′  with ( , )uc y Z KP u′ =  as 0 .uy e≤ ≤  
We let (u*, v*) and w* denote the optimal solution for 
( )DMKP  and for (SD) respectively. From the duality in 

linear programming, we know that: ( )Z MKP =  

( ).Z DMKP  Consequently the following inequalities hold: 
 

0

( ) ( ) ( *, *) ( , *)

min ( , ) ( , *)w

Z MKP Z DMKP g u v Z KP u

Z KP w Z KP w≥

= = ≥

≥ =
      (2) 

 
The second part of  the proof  consists in showing that 

( ) ( , *)Z MKP Z KP w≤  which is straightforwardly obtained 

since ( , *)KP w  is a (surrogate) relaxation of  ( )MKP  as 
proved at the end of  Section 2. We therefore have shown 
that ( ) ( , *).Z MKP Z KP w=  
In addition, the expression (2) includes the following result: 
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( ) ( *, *) ( , *) ( , *)Z DMKP g u v Z KP u Z KP w= ≥ ≥  
 
From (2) we know that ( ) ( , *).Z DMKP Z KP w=  It 
follows that u* is an optimal multiplier for the surrogate 
dual problem (SD). 
 
Proposition 1 also appears in Martello and Toth (2003) but 
no proof  had been brought. From this proposition an 
optimal vector w* can be obtained by solving the dual of  
( )MKP  instead of  using the local descent method 
suggested by Djerdjour et al. The numerical results 
presented in Section 5 assess the computational efficiency 
of  this alternative way for computing w*. To improve the 
upper bound [ , *]Z KP w  we propose an additional stage 
in which we use w* computed as previously described. This 
stage consists in solving (KP, w*) in 0-1 variables rather 
than in continuous variables. In other words we compute 
Z[KP, w*] instead of  [ , *].Z KP w  The surrogate multiplier 
w* we compute is not the optimal surrogate multiplier for 
the integer problem (KP, w*). We could have searched for 
this optimal vector using the method of  Fréville and 
Plateau (1993) but the resultant additional quality would 
not have been offset by the time required. 
 

An outline of  the algorithm to obtain our improved 
upper bound is reported in Figure 1. 
 

1. Transform (QMKP) into an equivalent 
0-1 piecewise linear formulation (MKP). 

2. Solve the dual of  the continuous 
relaxation of  (MKP) to obtain its optimal 
solution w*. 

3. Consider the surrogate relaxation of  
(MKP) using w*, say its surrogate 
problem (KP, w*). 

4. Solve (KP, w*), to get its optimal value 
Z[KP, w*]. 

5. Return Z[KP, w*]. 

Figure 1. Main steps to compute the proposed upper 
bound for (QMKP). 

 
Remark 1. If  the optimal solution of  (KP, w*) is feasible 
for (QMKP) then Z[KP, w*] is the optimal value of  
(QMKP). 
 

It follows from Remark 1 that the value of  the bound 
will actually be the optimal value of  several instances in our 
experiments. 

Classically the optimal value [ ]Z QMKP  of  the 
continuous relaxation of  (QMKP) is used as an upper 
bound for (QMKP). This value [ ]Z QMKP  can easily be 
computed by using a commercial software, since 

[ ]Z QMKP  is a concave problem (the quadratic and 

separable objective function is positive semi-definite and 
the feasible set is convex). The following proposition 
shows that the upper bound of  Djerdjour et al. (1988) and 
our improved upper bound are always better than 

[ ]Z QMKP . 
 
Proposition 2. The optimal value of  the continuous 
relaxation of  (MKP) is never worse than the optimal value 
of  the continuous relaxation of  (QMKP), that is: 
 

[ ] [ ]Z MKP Z QMKP≤  
 
Proof. Let y* be an optimal solution of  ( )MKP  and let 
l(y*) be its objective value. From y* we derive a feasible 
solution x̂  feasible but not necessarily optimal for 
( )QMKP  and such that ˆ( *) ( )l y f x≤ , by setting: 
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Inequalities (4) and (5) imply inequality (3). Thus y* and x̂  
verify:  
 

ˆ[ ] ( *) ( ) [ ]Z MKP l y f x Z QMKP= ≤ ≤  
 
Figure 2 illustrates the relationship between the four upper 
bounds. 
 
4. AN EFFICIENT HEURISTIC TO COMPUTE A 

FEASIBLE SOLUTION 

  In this section we propose an algorithm to compute a 
lower bound for (QMKP).  This bound will be used to 
assess the quality of  our improved upper bound as well as 
the existing upper bounds. 
  The main idea of  the proposed heuristic is the following. 
We first consider the optimal solution y* of  ( ).MKP  

Letting *
1

,ju
j jkk

yα
=

 =  ∑  for each variable jx  of  

(QMKP), where   x  denotes the biggest integer smaller 
than or equal to x, we add to (QMKP) the constraint 
α α≤ ≤ + 1j j jx . Thus, each variable becomes bivalent, 
and since the objective function is separable, it can 
straightforwardly be shown that the resulting problem is a 

0-1 linear multidimensional knapsack problem. Obviously, 
solving this knapsack problem yields a feasible solution for 
(QMKP) which is not necessarily optimal for (QMKP). In 
Section 5, the numerical experiments show that the lower 
bound corresponding to this heuristic solution is better 
than the three lower bounds proposed in Djerdjour et al. 
(1988). Figure 3 illustrates the basic idea of  the heuristic 
method for a 3-variable problem: the continuous optimum 
is included in the largest cube which represents the feasible 
set. Our heuristic consists in exploring a unit cube which 
surrounds the continuous optimum. A good feasible 
solution is one of  the feasible vertices of  the unit cube. 

Figure 4 presents the main steps of  the algorithm as 
pseudo-code. 

 
5. COMPUTATIONAL RESULTS 

In this section we report the computational results of  
comparing the performance of  each upper bounds of  
(QMKP) described in this paper to that of  the lower bound 
proposed in Section 4. Since no benchmark for (QMKP) is 
available nowadays, we consider three types of  randomly 
generated instances endowing each a particular structure: 
squared problems (n = m), rectangular problems (m = 0.05n) 
and correlated problems min1

(  and  2)m
j ij ji

c a d c
=

= =∑  

where cmin is the minimum of  all cj values. The rationale for 
using correlated problems stems from the fact that they are 
difficult to solve in practice for 0-1 linear multidimensional 
knapsack problems (MKP) which are a special case of  
(QMKP). 

 
 

Figure 2. Comparison of  the upper bounds. 
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Figure 3. A good feasible solution for (QMKP). 

 
1. Compute an optimal solution y* of  [ ].MKP  
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Problem (HEUR) can be equivalently reformulated as the following 0-1 multidimensional knapsack 
problem: 
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8. Solve (HEUR) to optimality and let *x ′  be its optimal solution. 
// Note that even if  (HEUR) is NP-difficult, the size n of  the considered instances of  (QMKP) is //small enough to 
solve (HEUR) to optimality in a reasonable computation time. 

9. For each  j in {1, ..., n} Do  
 *

j j jx x α′← +%  
 End Do 

x%  is feasible for (QMKP). 
10. Return ( )f x%  

Figure 4. Main steps of  the heuristic algorithms to compute a feasible solution. 

‘‘good’’ feasible 
solution for (QMKP) 

continuous optimum 
derived from ( MKP ) 

3x

1x

2x
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As in Djerdjour et al. (1988) integer coefficients aij, cj and 
dj were uniformly drawn at random in the range {1, …, 
100}. Coefficients bi and uj are integers uniformly 
distributed such that j1

  [50, [m
i iji

b a u
=

∈ ∑  and ju ∈  

1,  / 2 ,j jc d      where   x  is the smallest integer 

greater than or equal to x. For the correlated problems, cj 
and dj are derived from aij whereas they are randomly 
generated according to a uniform law in the range {1, …, 
100} for squared and rectangular problems. 

To assess the quality of  the four upper bounds we used 
our lower bound to compute the relative gap (Gap = 
(upper bound – lower bound)/(lower bound)) since this 
lower bound was near optimal in most of  the instances 
considered by Djerdjour et al. (1988). Our lower bound is 
actually the value of  the best known feasible solution. The 
simulation results show that our feasible solution was 
better than the 3 feasible solutions provided by Djerdjour 
et al. (1988) in 66% of  the instances, equal in 33% of  them 
and worse in 1%. Our lower bound is on average 3% 
higher than the best of  the three feasible solutions which 
are already closed to the optimum (see Djerdjour et al. 
(1988) for more details). Our lower and upper bounds as 
well as the upper bound of  Djerdjour et al. were coded in 
C language. The two other upper bounds ( [ ]Z QMKP  and 

[ ]Z MKP ) were obtained using the commercial software 
ILOG-Cplex9.0. Simulations were run on a bi-xeon 3.4 
Ghz with 4 Go of  main memory. 

 
Table 1 displays the average deviation of  each upper 

bound to the feasible solution over ten replications of  each 
type of  instances. For example, [ ]Z QMKP  is on average 
56.3% higher than our feasible solution over 10 
replications of  correlated problems with 100 variables and 
100 constraints. The last column provides the percentage 

of  instances for which our upper bound corresponds to 
the optimum value (see Remark 1). It appears that our 
bound behaves quite well for the rectangular problems for 
which the overall gap is less than 1.6%. The quality of  the 
upper bound is lower for squared and correlated problems 
with a gap ranging from 7% to 33%. However, our upper 
bound significantly outperforms the continuous relaxation 
of  (QMKP) in all cases. Our upper bound is also better 
than the upper bound [ , *]Z KP w  with a maximum 
improvement of  4.2% for the squared problems (1000, 
1000). The lowest gap is obtained for rectangular problems 
which suggests that our method performs best for this type 
of  instances. We strongly believe this good performance is 
more the result of  an increased quality of  our upper bound 
than that of  an improvement of  the quality of  the lower 
bound. Indeed, as previously mentioned, simulations 
results showed that the lower bound is always near optimal 
for any of  the three types of  instances. Moreover, fewer 
constraints are aggregated in this type of  instances so less 
information is lost. This could explain an improvement of  
the quality of  our upper bound in this context. 

Table 2 displays the CPU time in seconds required to 
compute the four upper bounds. The most time 
consuming bound is the continuous relaxation with a 
maximum of  about 8 minutes to solve one of  the largest 
correlated problems. The fastest bound is [ ]Z MKP  with 
almost instantaneous results for rectangular problems and 
an average of  3.4 seconds for the largest squared problems. 
The time to compute our upper bound deviates at most of  
0.2 seconds from the time to obtain [ ]Z MKP . Our method 
can therefore be considered as fast as the previous one. 
The advantage of  computing w* by solving the dual of  
( )MKP  rather than using a descent local method as 
suggested by Djerdjour et al. (1988) strikingly appears: 
CPU times are sometimes divided by 100. 

 
Table 1. Comparison of  the quality of  the upper bounds 

Instances [ ]Z QMKP  
(Cplex 9.0) 

[ ] [ , *]Z MKP Z KP w=  
(Cplex 9.0) or Djerdjour 

et al. (1988) 

[ , *]Z KP w  
Our approach 

# var # const Gap (%) Gap (%) Gap (%) % Opt 

Rectangular     
100 5 2.6 0.5 0.3 30 
500 25 2.8 0.4 0.3 10 
1000 50 3.8 0.6 0.5 10 
1500 75 5.5 1.6 1.5 0 
2000 100 5.3 1.0 0.9 0 

Correlated     
100 100 56.3 14.8 11.2 0 
500 500 81.5 20.9 17.3 0 
1000 1000 80.2 19.0 14.9 0 
1500 1500 111.3 31.9 23.1 0 
2000 2000 128.8 37.6 33.4 0 

Squared     
100 100 16.9 9.5 8.2 10 
500 500 12.9 7.9 7.5 0 
1000 1000 32.2 23.0 21.7 0 
1500 1500 37.8 24.6 23.9 0 
2000 2000 53.0 36.9 36.2 0 
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Table 2. Comparison of  the CPU times required for each upper bound 

# var # const 
[ ]Z QMKP  

(Cplex 9.0) 
[ ]Z MKP  

(Cplex 9.0) 
[ , *]Z KP w  

(Djerdjour et al.) 
[ , *]Z KP w  

Our approach 
Rectangular     

100 5 0.0 0.0 0.3 0.0 
500 25 7.5 0.1 10.1 0.1 
1000 50 55.3 0.3 41.7 0.4 
1500 75 193.1 0.8 100.3 0.8 
2000 100 437.9 1.6 183.3 1.8 

Correlated     
100 100 0.0 0.0 0.0 0.0 
500 500 0.0 0.0 0.5 0.0 
1000 1000 0.2 0.0 1.5 0.1 
1500 1500 0.8 0.1 3.7 0.2 
2000 2000 2.2 0.2 7.6 0.4 

Squared     
100 100 0.0 0.0 0.3 0.0 
500 500 7.3 0.1 9.0 0.2 
1000 1000 58.2 0.5 37.9 0.5 
1500 1500 184.5 1.5 86.6 1.6 
2000 2000 421.3 3.4 157.8 3.6 

 
6. CONCLUSION 

  In this paper we have designed a method to compute a 
good upper bound for (QMKP) and we have compared this 
bound to three other bounds over a large number of  
instances. The numerical results clearly show that our 
method provides the best upper bound in a very 
competitive computational time compared to the 
linearization which is the quickest method. The proposed 
upper bound could therefore be utilized in an exact 
solution method. The computational study also evidenced 
the good quality of  our feasible solution which could 
consequently be used as an initial solution in a 
Branch-and-Bound method. It is worth mentioning that 
the continuous relaxation of  (QMKP), although widely 
used in practice, is not an efficient method from either a 
qualitatively or a computational standpoint. 

A possible way to get a further improvement of  the 
upper bound would be to use a composite relaxation 
including both a Lagrangean and a surrogate relaxation of  
the initial problem as suggested by Fréville and Hanafi 
(2005), who present several methods to solve the 0-1 
multidimensional knapsack problem. 
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