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AbstractThe classical 1962 Benders decomposition scheme is a traditional approach for solving mixed-integer problems 
such as the uncapacitated facility location problem. Subsequent research has been focused on finding better cutting-plane 
generation schemes to reduce the solution process time. Pareto-optimal cuts are typically preferred because no other cut can 
dominate them. However, the Pareto-optimal cut generation process typically requires running a separate linear program at 
each iteration to determine the appropriate dual variables. It is proven here that the dual variable selection scheme proposed 
in 1965 by Balinski will generate cuts that are always Pareto-optimal for the uncapacitated facility location problem and can 
be easily generated without running a time-consuming second linear program at each iteration. Direct comparisons between 
Benders cuts and Balinski cuts for 25 classical problems from the literature provided an empirical indication of  the relative 
advantage of  employing Balinski cuts. 
KeywordsInteger programming, Facility location, Decomposition, Cutting planes, Facet generation 
 
 

                                                 
∗ Corresponding author’s email: David.Rogers@UC.edu 

1. INTRODUCTION 

Many strategic business decisions involve distributing 
goods from a set of  production plants or warehouse 
facilities to a customer or group of  customers. Two aspects 
of  the question often need to be determined 
simultaneously: the location of  the plant and warehouse 
facilities, and the allocation of  customers to those facilities. 
The Uncapacitated Facility Location Problem (UFLP) is 
typically used to describe the movement of  one product 
within a one-stage distribution system, such as the 
movement of  goods from a plant to a warehouse, or from 
a warehouse to a customer. Daskin (1995), Francis et al. 
(1998), and Drezner and Hamacher (2002) provide 
comprehensive texts for this area. 

The UFLP is a mixed-integer programming model and 
detailed bibliographies of  early solution approaches may be 
found in Francis and Goldstein (1974), Francis et al. (1983), 
and Cho et al. (1983). Balinski (1965) proposed using 
Benders (1962) decomposition to solve the UFLP 
formulated with disaggregated constraints and presented 
an adjustment procedure to tighten the usual Benders 
constraints by considering the extra costs that might be 
incurred by closing the open plants in the solution at the 
current iteration. This revised cut procedure was 
considered a weak improvement over the standard Benders 
cut, but others (Guignard (1980), Magnanti and Wong 
(1981), Magnanti and Wong (1990), Magnanti et al. (1986)) 
have subsequently referred to them as strong cuts. 

Magnanti and Wong (1981 and 1990) proposed a 
technique for accelerating the Benders master problem in 
which a separate linear programming problem is solved at 
each iteration for choosing from among the alternate 
optima solutions to the original Benders subproblem. The 
dual variables chosen by this second linear program are 
then used to construct a Pareto-optimal cut. The authors 
recognized the type of  cut as proposed by Balinski as 
stronger than the regular Benders cut, yet stated that there 
was no assurance that Balinski cuts were Pareto-optimal. 
Magnanti et al. (1986) gave computational results for a set 
of  network problems, comparing strong (Balinski) cuts and 
Pareto-optimal cuts with the regular Benders cuts. Both 
Balinski cuts and Pareto-optimal cuts dominated the 
regular Benders cut both in terms of  solution time and in 
terms of  the number of  cuts required. The method using 
Pareto-optimal cuts required fewer total cuts, but at the 
expense of  longer computational times for solving the 
separate linear program at each iteration to generate the 
alternate dual variables used to construct the cut. No clear 
preference, however, could be discerned between the 
strong cuts and the Pareto-optimal cuts. 

Much research for efficiently solving with heuristics or 
to optimality the UFLP continues to appear. Al-Sultan and 
Al-Fawzan (1999) experimented with a tabu search 
algorithm and found it to be quite effective in finding 
solutions efficiently. Shaw (1999) formulated the UFLP as 
a specially-structured tree and developed a general 
algorithm that matched the best algorithm dedicated to the 

International Journal of 
Operations Research 

1813-713X Copyright © 2007 ORSTW 



Watson and Rogers: Pareto-Optimality of  the Balinski Cut for the Uncapacitated Facility Location Problem 
IJOR Vol. 4, No. 3, 155-164 (2007) 
 

156 

UFLP. Goldengorin et al. (2003) employed a 
branch-and-bound modification of  data correcting at each 
branch to find a new instance that will be as close as 
possible to being solvable in polynomial time. Berman and 
Krass (2005) considered an improved formulation and 
found significant improvements in computational time for 
the UFLP with a special structure for the objective 
function. Hidaka and Okano (2003) developed several 
promising heuristics for approximating solutions for a 
large-scale UFLP in the manufacturing industry and 
Hoefer (2003) developed an experimental design to 
compare the performance of  five heuristics. Gourdin et al. 
(2000) considered a variant of  the UFLP where at most 
two clients are allocated to a facility. Similar work has 
surfaced for the capacitated version of  the facility location 
problem where Wentges (1996) introduced a strong 
Benders’ cut, showed it to be Pareto-optimal, and 
incorporated it into the cross decomposition algorithm 
devised by Van Roy (1986). 

In this paper, two theorems are presented and proven to 
indicate that a cut constructed as per the Balinski dual 
variable selection procedure is always a Pareto-optimal cut 
for the UFLP. These non-dominated cuts are found 
without the time expense of  solving a separate linear 
program at each iteration of  the algorithm as is necessary 
for Benders decomposition. The CPU time for solving a 
UFLP is naturally decreased without solving these 
additional linear programs and makes the Benders cut 
procedure quite attractive. Preliminary computational 
experiments indicate that the use of  the proposed 
Pareto-optimal cuts for the UFLP outperform the Benders 
decomposition scheme in most cases. 

The remainder of  this article proceeds with a detailed 
description of  the UFLP formulation, its dual, and the 
Benders decomposition solution procedure for the UFLP 
in Section 2. In Section 3 is a description of  the Balinski 
cut for the UFLP and these cuts are proven to be 
Pareto-optimal cuts in Section 4. In Section 5 are some 
preliminary computational results and a summary including 
future research directions are in Section 6. 
 
2. THE UNCAPACITATED FACILITY 

LOCATION MODEL AND DECOMPOSITION 
APPROACHES 

In a practical application for a UFLP, a list of  candidate 
sites for plant locations is often given and the problem can 
be represented as a typical transportation problem. The 
location aspect of  the problem involves selecting the best 
subset of  sources that should be open, where each 
candidate source has a fixed cost associated with setting up 
a facility at that location. In addition, an infinite capacity is 
assumed to be available at each source, or at least enough 
capacity to handle all the demands that are ultimately 
assigned to that source according to the problem’s solution. 
For a UFLP with m facility locations and n customers, 
 

Let 



1,  if customer is servedby location 
=

0, otherwiseij

j i
x  

   
= 



1,  if location  is opened
0,  otherwisei

i
y  

cij = total cost of  shipping goods from i to j, cij ≥ 0 
fi = the fixed costs of  opening location i, fi ≥ 0 

 
The UFLP may then be represented as the following 
mixed-integer formulation: 
 
Problem UFLP 
 

1 1 1

min  
m n m

ij ij i i
i j i

c x f y
= = =

+∑∑ ∑                       (1) 

 s.t. 
1

1
m

ij
i

x
=

=∑     j = 1, 2, ..., n                  (2) 

 ij ix y≤      i = 1, 2, ..., m; j = 1, 2, ..., n       (3) 
 0ijx ≥       i = 1, 2, ..., m; j = 1, 2, ..., n       (4) 
 {0,1}iy ∈    i = 1, 2, ..., m                 (5) 

 
Even though the xij are not explicitly required to be integer, 
the structure of  the constraint matrix is almost unimodular, 
and the binary requirements on the yi allow binary xij to be 
found in the optimal solution to Problem UFLP. After an 
appropriate separation of  the variables and constraints, a 
series of  smaller subproblems than the original problem 
may be constructed with the Benders decomposition 
technique. The solution process then iterates between a 
master problem and subproblems until convergence to a 
unique optimal solution is obtained. 

Define x = {xij} and y = {yi} as the assignment vector 
and the facility vector, respectively. Given a feasible facility 
vector, y , a corresponding optimal assignment vector, x , 
may be found by solving the primal subproblem, Problem 
PS, or its dual, Problem DS, with corresponding dual 
variable vectors v = {vj} for Eq. (7) and w = {wij} for Eq. 
(8). 
 
Problem PS 
 

1 1

min  
m n

ij ij
i j

c x
= =
∑∑                               (6) 

 s.t. 
1

1
m

ij
i

x
=

=∑     j = 1, 2, ..., n                  (7) 

 ij ix y≤    i = 1, 2, ..., m; j = 1, 2, ..., n         (8) 
 0ijx ≥     i = 1, 2, ..., m; j = 1, 2, ..., n         (9) 

 
Problem DS 
 

1 1 1

max  
n m n

j i ij
j i j

v y w
= = =

−∑ ∑∑                        (10) 

 s.t. j ij ijv w c− ≤     i = 1, 2, ..., m; j = 1, 2, ..., n   (11) 
  0ijw ≥         i = 1, 2, ..., m; j = 1, 2, ..., n    (12) 
 
Define the index sets Io = {i | iy = 1} and Ic = {i | iy = 
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0} as the sets of  open and closed plants in y , respectively. 
The scheme of  Benders (1962) for assigning values to the 
dual variables, which was shown to be an optimal solution 
for the set of  open (closed) plants represented by ,y  is: 
 

min  { | }j ij ov c i I= ∈   ∀j                      (13) 

0
max  {( ), 0}ij

j ij
w

v c


=  −

o

c

i I
i I

∀ ∈
∀ ∈

  ∀j             (14) 

 
The dual variables have the following practical 
interpretation. Given a set of  open plants in ,y  jv  is 
chosen to equal the smallest cost of  getting goods from 
the open plant(s) to j, thus satisfying Eq. (11). Since ijw = 
0 for these open plants, nothing is subtracted from the dual 
objective Eq. (10), even though the corresponding iy = 1. 
If  i is closed, ijw  is chosen to satisfy both Eq. (11) and 
Eq. (13) by selecting the larger of  the two values, but the 
choice has no affect on Eq. (10), since iy = 0 implies 

i ijy w = 0. Thus ijw  is the minimum additional shipping 
cost to be incurred to customer j if  plant i were to become 
closed. 

The optimal solution to Problem DS provides an upper 
bound on the objective function of  Problem UFLP. More 
important, the dual variables chosen according to Eq. (13) 
and Eq. (14) are used to construct a constraint, or cut, in 
the corresponding master problem. Denote the integer 
solution to the master problem at the rth iteration as 

( ),y r  and r
jv  and r

ijw  as the dual variables chosen 
when ( )y r  is substituted for y  in Problem DS. The 
resulting inequality Eq. (15) is a constraint which must hold 
for any y feasible to the master problem, and not just the 

( )y r  used to generate the cut. 
 

1 1 1

n m n
r r
j i ij i

j i j

z v f w y
= = =

 
≥ + − 

 
∑ ∑ ∑                   (15) 

 
The master problem is constructed with the objective of  
minimizing z, subject to the r constraints of  form Eq. (15) 
generated from subproblem solutions and the binary 
requirements on yi. At least one plant is required to be 
open for any yi for the subproblem to have a solution, as 
shown below in Eq. (18). At the rth iteration, the Master 
Problem (MP) is: 
 
Problem MP 
 
min z                                      (16) 

s.t. 
1 1 1

n m n
r r
j i ij i

j i j

z v f w y
= = =

 
≥ + − 

 
∑ ∑ ∑    ∀r          (17) 

 y ∈ Y =
1

{0,1} and 1
m

i i
i

y y y
=

 
∈ ≥ 

 
∑          (18) 

The usual solution procedure is to relax the binary 
requirements in Y, and solve this relaxed master problem. 

There is no guarantee, however, that the optimal solution 
to this relaxed master problem is integer in the yi. 
Additional procedures, such as branch-and-bound, are 
typically used to produce an optimal solution to the Master 
Problem. The new integer vector obtained, y (r + 1), is 
sent to Problem DS and a new cut is generated and 
appended to the old Problem MP to create the current 
Problem MP at iteration r + 1. The Benders procedure 
iterates until the solution of  the relaxed master problem is 
integer. 

To solve the minimization problem, one may be tempted 
to construct all possible constraints of  form Eq. (15). But 
there are 2m − 1 feasible points in Y, and the number of  
constraints in the Master Problem grows quickly. 
Furthermore, even if  all 2m − 1 constraints are added, 
there is no guarantee that the solution to the 
corresponding relaxed master problem is integer. In 
practice, while not all 2m − 1 constraints are usually 
required to determine the optimal solution, a large number 
are often generated before the optimum z is found. 
Furthermore, much of  the computation time is spent in 
applying heuristics or branch-and-bound techniques at 
each iteration to produce an integer y that can then be 
passed to the subproblem. If  better cutting strategies could 
be employed at each iteration, then perhaps fewer total cuts 
would be needed, and overall computation time would be 
shortened. 
 
3. THE THEORY FOR BALINSKI CUTS 

Consider the m-dimensional facility vector y  that is used 
to construct a cut, where the 1’s and 0’s represent the open 
and closed plants, respectively. Define k = |Io| and m − k 
= |Ic|. The number of  open plants, k, is called the level of  
y . The notation ky  will be used to indicate that k plants 

are open in the y  under consideration. A neighbor of  
ky  is defined to be a vector whose components differ in a 

predictable pattern from the given .ky  The vector 1ky −  
is called a negative neighbor of  ky  if  all closed plants in 

ky  are closed in 1 ,ky −  and exactly one of  the open 
plants in ky  is closed as well, while all other open plants 
in ky  remain open in 1.ky −  The level of  such a 
negative neighbor is k − 1.  Any ky  has exactly k 
negative neighbors. 

For any negative neighbor of  ,ky  if  source q ∈ Io is 
the plant currently closed, then Jq is the set of  customers 
that need a new supplier, i.e., for any i ∈ Io, the index set Ji 
= {j| ijx = 1} is the set of  customers that are being served 
from any open source in y . The increased cost of  serving 
j ∈ Jq will be at least Δqj = max{ min( )pj jp q

c v
≠

− , 0}, since j 

must be served by some other source p. Since any cut that 
is constructed must hold for all possible y, p must be 
allowed to range over all remaining plants so that p ∈ Io ∪ 
Ic\{q}. Hence Δqj is a lower bound on the additional cost 
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of  shipping goods to j if  q becomes closed. 
Using the index sets, Benders constraint Eq. (15) can be 

rewritten as: 
 

0 01 1

( 1)
c

n n

j i i i i ij i
j i I i I i I j

z v f f y f w y
= ∈ ∈ ∈ =

 
≥ + + − + − 

 
∑ ∑ ∑ ∑ ∑   (19) 

 
Balinski (1965) recognized that alternate optima existed for 
Problem DS and proposed an adjustment to the dual 
variable selection rules to effectively tighten Eq. (19) at all 
the negative neighbors of  ky  used to construct the cut. 
Recall that the solution to Problem PS results in a vector 
of  assignments, x , that are optimal for y , where ijx = 
1 for assignments that are used, and ijx = 0 for 
assignments not used. 

Balinski (1965) proposed retaining part of  the natural 
Benders scheme and set vj = cqj, where cqj is the lowest 
shipping cost for getting goods to j for all q ∈ Io. If  in 
addition, cqj is also the lowest shipping cost to j in Io ∪ Ic, 
then cpj is the second lowest overall cost, and cpj − cqj ≥ 0. 
The penalty cost for closing q with respect to j will be at 
least Δqj = (cpj − cqj) ≥ 0, since it cannot be known for sure 
that p will be open in any optimal ŷ ∈ Y (where ŷ ≠ ky ), 
and the actual extra cost may even be more. 

Alternatively, if  cqj > cpj for at least one p, then p is chosen 
such that cpj is the overall cheapest source for j, and cpj − cqj 
< 0. Consequently p ∈ Ic (else vj would have been chosen 
equal to cpj instead of  cqj), and the penalty Δqj = 0, since one 
would expect a savings if  p were open. Since it is not 
known if  cpj ≥ cqj or cpj < cqj, the max(⋅) operation for Δqj will 
ensure that the term is nonnegative, and that the smallest 
additional shipping cost for each j ∈ Jq is found. The total 
extra shipping cost from closing q is at least: 
 

\{ }

( ), 0
q q o c

qj pj jp qj J j J p I I q

max min c v
≠∈ ∈ ∈ ∪

  ∆ = − 
  

∑ ∑            (20) 

 
The contribution of  Balinski (1965) was to modify Eq. (19) 
to include the adjustment term of  Eq. (20) to yield the 
following constraint, hereinafter referred to as a Balinski 
cut. 
 

0

0

1

1

( 1)
i c

n

j i
j i I

n

i ij i i ij i
i I j J i I j

z v f

f y f w y

= ∈

∈ ∈ ∈ =

≥ +

   
+ − ∆ − + −   

  

∑ ∑

∑ ∑ ∑ ∑
    (21) 

 
When the Balinski cut constructed with ky  as the 

point used for generating the cut is evaluated at ,ky  the 
value of  z obtained is the same as for the corresponding 
Benders cut, because Eq. (20) is not affected by any change 
in Ic. But when Eq. (21) is evaluated at some 1ky − , for that 
i which is now closed, 1k

iy − = 0, the fixed cost for this 

closed facility is subtracted, and the additional shipping 
costs are added. The value of  z calculated for a negative 
neighbor with a Balinski cut will then be greater than or 
equal to (and never less than) the value of  z calculated by 
the corresponding Benders cut. The Balinski cut has been 
strengthened, and is thus an improvement. 

There is no guarantee that the Balinski cut results in the 
true value of  z for any 1ky − . The p that is the least cost 
source for j1 ∈ Jq may not be the same p found for some 
other j2 ∈ Jq, and the net effect of  that interaction may 
result in an understatement of  the total extra shipping 
costs to be incurred if  q ∈ Io is closed. Furthermore, if  two 
or more plants are closed when moving from ky  to some 
other solution vector, the additional shipping costs 
required may be understated by Eq. (21) because the 
interactions between plant closings are not considered. 
 
4. PARETO-OPTIMALITY OF THE BALINSKI 

CUT 

Magnanti and Wong (1981 and 1990) developed a 
technique for accelerating the Benders master problem, in 
which Problem DS is first solved for a given facility vector 
y  to determine initial values for the dual variables. The 

approach requires that an additional, separate linear 
programming problem be solved in order to choose from 
among the alternate optimal solutions to Problem DS. The 
dual variables resulting from solving this second linear 
program are then used to construct a cut for Problem MP 
that is called a Pareto-optimal cut. Here, the Balinski cut is 
shown to be such a Pareto-optimal cut for Problem UFLP. 
Another advantage of  using the Balinski cut is that the dual 
variables needed can be readily found without solving a 
second linear program at each iteration of  the master 
problem. To develop some necessary background, the 
following definitions from Magnanti and Wong (1990) are 
provided. 
 
Definition 1. Given two sets of  dual variable solutions to a 
subproblem, u1 and u2, the cut z ≥ f(u1) + yg(u1) is said to 
dominate or is considered stronger than the cut z ≥ f(u2) + 
yg(u2) if  f(u1) + yg(u1) ≥ f(u2) + yg(u2) for all y in the polytope 
P, with strict inequality for at least one y ∈ P. A cut is 
Pareto-optimal if  no cut dominates it. In addition, a dual 
variable solution u1 is said to dominate u2 if  the associated 
cut is stronger, and u1 is called Pareto-optimal if  its 
corresponding cut is Pareto-optimal. 
 
Let Yc be the relative interior of  the convex hull of  the 
y-space of  Problem MP. 
 
Definition 2. A point yo contained in Yc is called a core 
point. 
 

A core point is thus a fractional solution to the relaxed 
master problem that meets the following additional 
conditions: each component o o

iy y∈  must be fractional 
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so that 0 < o
iy < 1; the vector oy  must be feasible to the 

relaxed master problem and in the relative interior of  Yc; 

and thus 
1

1
m

o
i

i

y
=

>∑ . Depending upon the choice of  ,oy  

it may be possible to construct many cuts with a given y  
that do not dominate each other. By definition, a facet 
must be a Pareto-optimal cut since a facet cannot be 
dominated. 

Magnanti and Wong (1981 and 1990) proposed using 
Pareto-optimal cuts to solve Problem UFLP. The first step 
was to solve the regular Benders subproblem for a given 
vector y  and generate the natural dual variables as per 
Eq. (13) and Eq. (14). However, because of  the network 
structure of  the assignment subproblem, an optimal 
solution will often have a highly degenerate basis, implying 
that alternate optimal solutions exist for the dual 
subproblem. The second step was to choose a 
Pareto-optimal set of  dual variables from among these 
alternate optima by solving Problem PO for a chosen core 
point yo. 
 
Problem PO 
 

1 1

max  
n m

o
j i ij

j i

v y w
= =

 
− 

 
∑ ∑                         (22) 

 s.t. 
1

m

j i ij j
i

v y w v
=

− =∑     j = 1, ..., n             (23) 

 j ij ijv w c− ≤     i = 1, ..., m; j = 1, ..., n        (24) 
 0jv ≥     j = 1, ..., n                     (25) 
 0ijw ≥     i = 1, ..., m; j = 1, ..., n            (26) 

 
Note that Problem PO is separable by customer j. 
Furthermore, Eq. (23) may be substituted into Eq. (22) and 
Eq. (24) to create the jth Subproblem POj: 
 
Subproblem POj 
 

1

max  ( )
m

o
j h h hj

h

v y y w
=

+ −∑                        (27) 

 s.t. 
1

m

j h hj ij ij
h

v y w w c
=

+ − ≤∑     i = 1, ..., m        (28) 

 0jv ≥     j = 1, ..., n                     (29) 
 0ijw ≥     i = 1, ..., m                     (30) 

 
After solving each of  the n subproblems, POj, a 

Pareto-optimal set of  dual variables, [v, w], is found. 
Magnanti and Wong (1981 and 1990) noted that varying 
the core point yo may generate different Pareto-optimal cuts 
from the same original vector .y  It will now be shown 
that for a given ,y  there exists a core point, oy , for 
which the Balinski cut constructed with y  is equal to the 
Pareto-optimal cut generated from .oy  The method of  
proof  requires that the pattern of  dual variables for a 

particular choice of  y  and oy  be examined. 
For a given y , the corresponding index sets Io and Ic 

are used to rewrite the objective function and constraints in 
Subproblem POj. The jth subproblem now consists of  Eq. 
(31), Eq. (32), and the non-negativity requirements for the 
dual variables. 
 
max  ( ) ( )

o c

o o
j q q qj p p pj

q I p I

v y y w y y w
∈ ∈

+ − + −∑ ∑         (31) 

o c

q qj p pj ij ij j
q I p I

y w y w w c v
∈ ∈

+ − ≤ −∑ ∑     i = 1, ..., m   (32) 

 
Since qy = 1 for all q ∈ Io, the coefficients in the second 
term of  Eq. (31) will all be positive. Since py = 0 for all p 
∈ Ic, the coefficients in the third term of  Eq. (31) all 
reduce to .o

py−  But these coefficients are all negative, 
since each fractional component of  a core point is strictly 
greater than zero. To maximize the value of  the objective 
function, an optimal choice for the dual variables is needed. 
If  feasible to constraints Eq. (32), wpj = 0 for all p ∈ Ic 
would be optimal. Also, all the wqj for q ∈ Io should be set 
as large as the constraints will allow. Since py = 0 for all p 
∈ Ic, the second summation of  Eq. (32) is zero. But since 

qy = 1 for all q ∈ Io, Eq. (32) reduces to: 
 

o

qj ij ij j
q I

w w c v
∈

− ≤ −∑     i = 1, ..., m.              (33) 

 
The pattern of  the wij will now be examined by expanding 
Eq. (33). For the first group of  k constraints associated 
with Io, k = |Io|, the −wij term can be combined with its 
corresponding term in the expansion of  the summation to 
produce the following pattern of  constraints: 
 

( )2 3 4 1j j j kjk jw w w w w−+ + + + +…  1 j jc v≤ −    (34) 

( )1 3 4 1j j j kjk jw w w w w−+ + + + +…  2 j jc v≤ −    (35) 

( )1 2 4 1   j j j kjk jw w w w w−+ + + + +…  3 j jc v≤ −    (36) 

( )1 2 3 1     j j j kjk jw w w w w−+ + + + +…  4 j jc v≤ −    (37) 

M           M              M  

( )1 2 3 4 1j j j j k jw w w w w −+ + + + +…      kj jc v≤ −    (38) 

 
In the second group of  m − k constraints associated with Ic, 
m − k = |Ic|, the −wij term has no corresponding term 
from the expansion of  the summation with which to 
combine: 
 

( ) ( )

( )

1 2 3 4 1 1

1

j j j j kjk j k j

jk j

w w w w w w w

c v
− +

+

+ + + + + + −

≤ −

…
     (39) 

( ) ( )

( )

1 2 3 4 1 2

2

j j j j kjk j k j

jk j

w w w w w w w

c v
− +

+

+ + + + + + −

≤ −

…
     (40) 
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( ) ( )

( )

1 2 3 4 1 3

3

j j j j kjk j k j

jk j

w w w w w w w

c v
− +

+

+ + + + + + −

≤ −

…
     (41) 

M  
( )1 2 3 4 1     

     
j j j j kj mjk j

mj j

w w w w w w w

c v
−+ + + + + + −

≤ −

…
     (42) 

 
Assume without loss of  generality that the first open plant 
has the cheapest shipping cost for delivering goods to plant 
j, so that c1j = jv = min{cij|i ∈ Io}. But then the right-hand 
side of  Eq. (34) becomes zero, whereupon the 
non-negativity conditions imply that the dual variables w2j 
through wkj must all be set equal to zero. Constraints Eq. 
(35)–(38) are thus simplified, and can be rewritten as Eq. 
(43) to impose an upper bound condition on w1j: 
 

1 2,  ...,  
0 ( )j pj jp k

w min c v
=

≤ ≤ −                        (43) 

 
For Eq. (43), note that each (cpj − jv ) ≥ 0, since cpj was not 
the cheapest shipping cost to customer j from the open 
plants. Furthermore, once w2j through wkj are set to zero, 
Eq. (39)–(42) may also be simplified, and combined with 
the non-negativity conditions to produce the constraints: 
 

( ) ( )1 1 10 ( )j jk j k jw c v w+ +≤ ≤ − +                    (44) 

( ) ( )1 2 20 ( )j jk j k jw c v w+ +≤ ≤ − +                   (45) 

( ) ( )1 3 30 ( )j jk j k jw c v w+ +≤ ≤ − +                    (46) 

     M             M  
1  0 (     )j mj j mjw c v w≤ ≤ − +                      (47) 

 
To maximize Eq. (31), the value of  w1j should be chosen 

as large as possible. It would also be desirable to set all of  
the dual variables w(k+1)j through wmj equal to zero. There 
are two cases to consider: 1) If  any (chj − jv ) ≥ 0 for h = k 
+ 1 through m in constraints Eq. (44) – (47), then there is a 
feasible, nonnegative solution for w1j, and the 
corresponding whj may now be set equal to zero. The 
resulting condition, 0 ≤ w1j ≤ (chj − jv ), must also be 
imposed on w1j and is of  the same form as Eq. (43). 2) If  
any (chj − jv ) < 0, then whj must be set at least equal to |chj 
− jv | so that w1j ≥ 0 as required by non-negativity. 

We now develop two theorems. Theorem 1 is a 
sufficient condition for the whj to result in a Pareto-optimal 
cut. Theorem 2 is a sufficient condition for the existence 
of  a core point yo, such that the Balinski cut constructed 
with y  will be equal to the Pareto-optimal cut generated 
from using yo. 
 
Theorem 1. Given an m-dimensional facility vector y  = 
[1, 1, 1, ..., 1; 0, 0, 0, ..., 0], with level = k and a core point 
yo = [η1, η2, η3, ..., ηk,  βk+1, βk+2, βk+3, ..., βm] that meets 
the following additional condition: 1 – ηq < βp, for all q = 
1, …, k and p = k + 1, …, m. With jv − chj > 0, an optimal 

solution to Subproblem POj includes setting *
hjw = ( jv − chj) 

so that *
1 jw = 0. 

 
Proof. Since oy  is a core point, the following conditions 
must also hold: 
 
a) The feasibility requirement for Problem MP: 

1.
o c

q p
q I p I

m η β
∈ ∈

> + >∑ ∑  

b) 0 < ηq < 1 and 0 < βp < 1, for all q ∈ Io and all p ∈ Ic. 
 
For this choice of  core point, Subproblem POj becomes 
Eq. (48), subject to Eq. (32), Eq. (29), and Eq. (30). 
 

( ) 1
o c

j q qj p pj
q I p I

max v w wη β
∈ ∈

+ − −∑ ∑                (48) 

 
However, for a Pareto-optimal cut, Eq. (32) may be 
replaced by Eq. (43) and Eq. (44)–(47). Assume without 
loss of  generality that c1j = min{cij|i ∈ Io}, and jv  is set 
equal to c1j. Then Eq. (43) is satisfied. If  any (chj − jv ) ≥ 0 
for h = k + 1 through m, there is a feasible, nonnegative 
solution for w1j from Eq. (44)–(47). 

Suppose there exists some (chj − jv ) < 0 for h = k + 1 

through m. Define *
hjw = ( jv  − chj) and suppose that whj is 

set strictly greater than ( jv  − chj) in a feasible solution to 
Subproblem POj. Let s represent the amount of  surplus, so 
that the following constraint may be derived for w1j: 
 

*
10 ( ) ( )j hj j hj hj j hjw c v w c v s w s≤ ≤ − + = − + + =       (49) 

 
Then w1j could be made as large as s. But 1 – η1 < βh by 
definition. Furthermore, since (chj − jv ) < 0, then *

hjw  = 
( jv  − chj) > 0, which further implies: 
 
(1 – η1)w1j ≤ (1 – η1)s < βhs < βhs + βh

*
hjw  = βh whj   (50) 

 
When Eq. (48) is evaluated at the claimed optimal choice 

of  dual variables *
1 jw = 0 and *

hjw = ( jv  − chj), the 
objective value z1 is produced for Subproblem POj. 
 
z1 = jv  + (1 – η1) *

1 jw  – βh
*
hjw  = jv  – βh

*
hjw      (51) 

 
But when Eq. (48) is evaluated at any other feasible choice 
of  whj, such as s + *

hjw , the objective function value z2 is 
produced: 
 
z2 = jv  + (1 – η1)wij – βh(s + *

hjw )               (52) 
 
Since w1j ≤ s from Eq. (49), then z2 ≤ zS, where 
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*
1

*
1

(1 ) ( )

(1 )
S j h hj

j h hj h

z v s s w

v w s

η β

β η β

= + − − +

= − + − −
                  (53) 

 
The last term in this relation is strictly negative, thus z2 ≤ zS 
< z1, and the claim is proven. Therefore, *

1 jw  = 0 and *
hjw  

= ( jv  − chj). 
 

To summarize Theorem 1, note that given jv  = c1j = 
min{cij|i ∈ Io}, an optimal choice for the whj for the 
Pareto-optimal cut is as follows: 
 

1 max 0,  min( )j pj jw c v = −      for p = 2, …, m   (54) 

2 3 0j j kjw w w= = … = =                        (55) 

0 ( ) 0
( ) 0

hj j
hj

j hj hj j

c v
w

v c c v
∀ − ≥ 

=  − ∀ − < 
                  (56) 

for h = k + 1, …, m 
 
These dual variables have the following economic 
interpretation. Variable w1j from Eq. (54) is for determining 
the potential extra cost of  serving customer j if  plant 1 is 
closed, and may be interpreted as a penalty term to be 
imposed for closing plant 1. Variables w2j through wkj are 
zero because there is no extra shipping cost to customer j, 
and thus no penalty to be imposed, if  one of  these open 
plants are closed. Finally, variables whj are the shipping cost 
savings that may be obtained by opening the closed plant h. 
Note that this interpretation parallels the interpretation of  
the wij for the Balinski cut discussed earlier. 
 
Theorem 2. Given an m-dimensional facility vector y  = 
[1, 1, 1, ..., 1; 0, 0, 0, ..., 0], with level = k and core point 

oy = [η1, η2, η3, ..., ηk, βk+1, βk+2, βk+3, ..., βm] that meets 
the following additional condition: 1 − ηq < βp, for all q ∈ 
Io and all p ∈ Ic. Then a Pareto-optimal cut constructed 
with y  and this core point ,oy  according to Eq. (54) – 
(56), is the same constraint as the Balinski cut constructed 
with .y  
 
Proof. Assume without loss of  generality that jv  = c1j = 

min{cij|i ∈ Io}. Since the core point oy  meets the 
conditions of  Theorem 1, the Pareto-optimal conditions 
Eq. (54)–(56) for the wij are satisfied. The Pareto-optimal 
value for vj is then computed from Eq. (23), rearranged as: 
 

1

m

j j i ij
i

v v y w
=

= + ∑                              (57) 

 
But the second term of  Eq. (57) may be rewritten over Io 
and Ic. 
 

o c

j j q qj p pj
q I p I

v v y w y w
∈ ∈

= + +∑ ∑                    (58) 

 

Since py  = 0 for all p ∈ Ic, the third term of  the 
right-hand side of  Eq. (58) is zero. Since qy  = 1 for all q 
∈ Io, and the dual variables w2j through wkj are all zero, the 
second term of  Eq. (58) is simplified to yield: 

1j j jv v w= +                                 (59) 
 

Given the assumption that plant 1 was the cheapest 
source for customer j, the Pareto-optimal solution is to 
construct the Benders cut based on the vj from Eq. (59) 
and the wij from Eq. (54)–(56). But this produces the same 
cut coefficients as the set of  dual variable solutions for the 
Balinski cut, where the penalty term w1j = Δ1j, and the 
savings terms whj = wpj for all p ∈ Ic. The initial assumption 
may be relaxed by requiring only that some plant q ∈ Io be 
the current cheapest source for customer j. Thus there 
exists a core point such that the Balinski cut is 
Pareto-optimal. 

 
As a result of  Theorem 2, the Balinski choices for the 

dual variables for the jth subproblem given in Eq. (60)–(62) 
are thus provably Pareto-optimal: 
 

min  { | }j ij ov c i I= ∈                           (60) 

0
max  {( ), 0}

o
ij

j ij c

i I
w

v c i I
∀ ∈ 

=  − ∀ ∈ 
               (61) 

max  {min  ( ),  0}qj pj jc v∆ = −   for p ∈ Io ∪ Ic\{q}  (62) 
 
The condition 1 − ηq < βp, for all pairs of  open and closed 
plants, imposed upon the core point in Theorem 2 is not 
very restrictive. For example, one may choose a core point 
where all ηq = .8 and all βp = .9. This satisfies the 
additional condition imposed upon the core point in the 
theorem, as well as the feasibility and fractionality 
conditions of  a core point. If  all components of  yo are 
increased, such that each ηq = .998 and each βp = .999, the 
new core point still satisfies all the conditions of  the 
theorem, and yo approaches the vector my , representing 
the case of  all plants open. Alternatively, one may choose 
to set all ηq = .01 and all βp = .99, and still satisfy all the 
conditions of  Theorem 2. The resulting core point 
approaches the facility vector cy =[0, 0, 0, ..., 0; 1, 1, 1, ..., 
1], with level c = m − k. This cy  may be considered a 
complement of  the original .y  Thus, it is relatively easy 
to construct a core point that meets the conditions of  the 
theorem. 
 
5. PRELIMINARY COMPUTATIONAL RESULTS 

A study was performed to compare the effectiveness of  
the traditional Benders cut method with the Balinski cut 
method. For each algorithm, the total number of  cuts 
employed to find the solution, the total number of  pivots 
employed to find the solution, the solution times in 
seconds needed for the algorithm, and whether the optimal 
solution was found or not was recorded. Solutions were          
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Table 1. Comparisons of  Benders cuts and Balinski cuts for 25 test problems 

 Results with Benders Cuts Results with Balinski Cuts 
 Total Solution Total Solution 

 Cuts Total Time Optimal Cuts Total Time Optimal 
Problem Used Pivots (Seconds) Found? Used Pivots (Seconds) Found? 

KHS1 33 586,252 1,890.31 No 11 804 5.05 Yes 
KHS2 68 511,792 2,328.24 Yes 12 919 5.10 Yes 
KHS3 33 70,146 234.59 No 16 2,452 12.91 Yes 
KHS4 19 6,152 21.36 Yes 12 442 3.24 Yes 
KHS5 79 1,813,794 10,705.76 Yes 11 344 3.07 Yes 
KHS6 57 577,096 2,479.77 Yes 11 488 3.40 Yes 
KHS7 47 219,736 844.53 Yes 10 780 3.96 Yes 
KHS8 50 123,905 520.65 Yes 16 4,430 14.29 Yes 
KHS9 60 1,109,337 5,172.56 Yes 83 1,572 8.18 Yes 
KHS10 25 51,694 150.33 Yes 14 446 4.40 Yes 
KHS11 17 3,956 17.36 Yes 10 195 2.09 Yes 
KHS12 20 3,125 15.05 Yes 9 65 1.15 Yes 
KHS13 72 1,668,777 9,039.92 Yes 10 302 2.52 Yes 
KHS14 78 1,027,194 5,644.09 Yes 10 288 2.20 Yes 
KHS15 82 618,010 3,494.74 Yes 20 9,733 38.40 Yes 
KHS16 45 196,917 735.02 Yes 17 3,847 13.18 Yes 
SE1 12 123,130 329.06 No 10 194 1.75 Yes 
SE2 44 * >57,600 No 37 4,295,215 15,965.08 Yes 
SE3 94 ** >86,400 No 48 2,068,154 8,607.43 Yes 
SE4 103 9,154,431 67,912.68 No 54 1,923,023 8,393.38 Yes 
SE5 103 3,908,558 28,265.32 No 74 1,993,787 11,362.54 Yes 
SE6 102 2,664,779 19,837.94 Yes 62 901,347 4,507.13 Yes 
SE7 70 1,165,609 6,277.49 Yes 43 374,700 1,472.18 Yes 
SE8 25 128,000 385.31 Yes 19 45,289 122.82 Yes 
SE9 21 56,743 164.95 Yes 15 19,528 58.22 Yes 

KHS1–KHS16 are problems from Kuehn and Hamburger (1963) and Sá (1969). 

SE1–SE9 are problems from Schrage (1975) and Erlenkotter (1978). 

* – Terminated because of  ≥ 10 million pivots after 16 hours. 

** – Terminated because of ≥ 10 million pivots after 24 hours. 

 
obtained with a user-written interface for LINDO and 
solved on a personal computer. Problem solution 
techniques were specifically designed to indicate the 
relative performances of  Benders cuts vs. Balinski cuts in a 
controlled and common setting and not designed to be 
competitive with state-of-the-art solution procedures with 
respect to number of  cuts, number of  pivots, and solution 
times but were. First, five small problems were solved to 
verify the programming and check for initial differences. 
These problems included an m = n = 4 problem from 
Manne (1964), an m = n = 10 problem from Spielberg 
(1969), an m = 5 and n = 8 problem from Khumawala 
(1972 and 1973), an m = 5 and n = 4 problem from Bilde 
and Krarup (1977), and an m = 3 and n = 5 problem from 
Martin (1998). There were no discernible differences 
between Benders and Balinski cut methods for these 
problems with respect to number of  cuts, number of  
pivots, or solution times. 

The methods were then compared with two larger sets 
of  problems. Kuehn and Hamburger (1963) and Sá (1969) 
together developed 16 problems, each with m = 25 and n = 

50, for four different levels of  fixed costs and three 
different configurations. Schrage (1975) and Erlenkotter 
(1978) both considered an m = n = 33 problem of  Karg 
and Thompson (1964) for various levels of  fixed costs. In 
Table 1 are the results of  the differences obtained with the 
two cutting procedures for these problems. Note that for 
this initial comparison, different solution times were 
employed as the stopping criteria for the problems. 

All of  the problems converged to an optimal solution 
when Balinski cuts were employed while seven of  25 
problems failed to converge to an optimal solution with 
Benders cuts. Employing Balinski cuts resulted in the 
number of  cuts, number of  pivots, and solution times 
being clearly dominant for every case except for the one 
outlier, problem KHS9, where the total number of  cuts 
employed was greater for the Balinski procedure, but the 
total number of  pivots and overall solution time were 
dominated by the Balinski procedure. 
 
6. SUMMARY AND FUTURE RESEARCH 

DIRECTIONS 
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In this paper a Balinski cut constructed by employing 
any feasible facility vector for the master problem of  a 
UFLP was shown to be a Pareto-optimal cut. Furthermore, 
these Balinski cuts can be easily generated, without running 
a time consuming second linear program at each iteration 
to determine the appropriate dual variables used to 
construct such a Pareto-optimal cut. Initial computational 
results were provided to indicate the relative efficiency of  
Balinski cuts over Benders cuts. 

Pareto-optimality of  Balinski cuts for the UFLP, and 
thus the natural preference of  Balinski cuts over Benders 
cuts, are nice properties. An indication of  where more 
promising approaches to solving the UFLP might be found 
is indicated. Now the challenge is to explore incorporating 
Balinski cuts and/or variants of  it to produce a competitive 
algorithm(s) for efficiently solving the UFLP. Comparisons 
to current state-of-the-art methodologies for solving the 
UFLP, such as branch-and-bound methods based on 
Lagrangian relaxation incorporating dual ascent and 
subgradient optimization, are also worthy research 
endeavors. 
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