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AbstractGiven a directed network G = (V, A) with positive capacity for each a ∈ A, and a specified set of  source-sink 
pairs of  vertices, the objective is to remove a set of  arcs with minimum capacity so that the resulting network stops all 
communication from sources to their respective sinks. We study the facial structure of  the polytope associated with the 
solutions of  this problem and identify a general class of  facets. We develop two algorithms: a simple cutting plane algorithm 
and a branch-and-cut algorithm for this problem and present computational results. 
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1. INTRODUCTION 

A multicommodity disconnecting set (MDS) problem, 
also known as a directed multicut problem, consists of a 
directed network G = (V, A) with positive integer capacity 
ca for each a ∈ A, and a set K ⊂ V × V of ordered pairs of 
nodes of G. The objective is to find a minimum capacity 
MDS, that is a minimum capacity arc set C ⊂ A such that 
in the graph G′  = (V, A\C), there is no (s, t)-path for any 
(s, t) ∈ K. Assume |V| = n, |A| = m, A = {a1, a2, ..., am}, cj 
≡ caj, |K| = q, and K = {(s1, t1), ..., (sq, tq)}. 

When q = 1, the problem is the well known min-cut 
problem for single commodity networks and can be solved 
efficiently by finding a max-flow, and using duality to find 
a min-cut of the same value. This duality relationship of 
max-flow min-cut is generally not retained for 
multicommodity networks. The problem is NP-hard for q 
≥ 3, since a special case of this problem, the multiterminal 
cut problem where the objective is to disconnect a set of q 
nodes from each other, is NP-complete for q ≥ 3 in 
Dahlhaus et al. (1994). For general q, the problem is 
NP-hard even on trees of height 1 (i.e. star networks) in 
Vazirani (2003). 

The MDS problem was studied initially in the seventies 
(Bellmore and Ratliff  (1971)) in the defense of 
communi-cation networks. If one considers cj as the cost of 
destroying arc aj then the attacker would want to find a 
minimum MDS to be able to make the communication 
network completely useless with minimum cost. To the 
best of our knowledge, the only exact algorithms for the 
problem in the literature were reported in Aneja and 
Vemuganti (1977) and Bellmore et al. (1970). 

The multicut problem on undirected graphs is one of 
the fundamental NP-hard problems studied extensively for 
developing approximation polynomial algorithms in 
Shmoys (1997). The dual of the LP-relaxation of 

MDS-problem is the well known linear multicommodity 
max-flow problem in Ahuja et al. (1993). Several other 
applications of the problem are mentioned in Kortsarts et 
al. (2005), where an O(n2/3)-approximation algorithm is 
given for the problem. In fact most of the recent results 
are for developing approximation algorithms for 
undirected networks in Kortsarts et al. (2005). The best 
known approximation algorithm for the undirected 
networks in Garg et al. (1996) is of factor O(log q).  

In this paper, we develop a general class of facets for the 
0/1 polytope associated with the problem. We develop a 
branch-and-cut algorithm for the problem and compare its 
computational performance with a simple cutting plane 
algorithm based on approximation algorithm for solving 
the multicommodity max-flow problem. 

 
2. AN INTEGER PROGRAMMING 

FORMULATION 

Let Ωj be the set of all simple paths (no repeated nodes) 
from sk to tk, k = 1, ..., q, and 1 .q

j j=Ω = Ω∪  Define, for 
each arc aj ∈ A, a binary variable xj which takes the value 1 
if arc aj belongs to the MDS; and 0, otherwise. Then the 
minimum MDS problem can be formulated in Aneja and 
Vemuganti (1977) as a set-covering problem: 
 

Minimize
1

m

j j
j

c x
=

∑  

subject to: 

: j

j
j a P

x
∈

∑ ≥ 1 for all P ∈ Ω (1) 

xj = 0/1, j = 1, ..., m. 
 

If *x  = ( * *
1 ,  ..., mx x ) is an optimal solution to Eq. (1), 

then *D  = { *: 1j ja x = } is called a minimum MDS. 
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An equivalent formulation that is easy to work with, 
from a polyhedral study point of view, is obtained by 
defining a complement variable yj = 1 − xj for all j: 

Maximize
1

m

j j
j

c y
=

∑  

subject to: 

: j

j
j a P

y
∈

∑ ≤ |P| − 1 for all P ∈ Ω (2) 

yj = 0/1     j = 1, ..., m. 
 

Again, if *x  is optimal to Eq. (1), then, clearly, *y  = 
1 − *x  is an optimal solution to Eq. (2), where 1 is the 
m-vector of all ones. 

We will assume, without loss of generality, that the 
network does not contain any arc that connects a source si 
to its sink ti. 

Let P and ′P  be the polytopes defined, respectively, by 
the convex hull of feasible solutions to Eq. (1) and Eq. (2). 
Then clearly there is a one-to-one correspondence between 
the points in P and points in ′.P  
 
Lemma 1. Polytope P is full dimensional. 
 
Proof. Since, by assumption, no arc in the network 
connects any source to its sink, for any arc aj ∈ A, the 
solution y such that yj = 1 if a = aj , and 0 otherwise, is a 
feasible solution to Eq. (2). Hence P ′  contains all m unit 
m-vectors and, of course, the zero m-vector. These m + 1 
vectors are clearly affinely independent. Hence ,P ′  and, 
therefore, P are m dimensional. 
 
Lemma 2. Consider a path P ∈ Ω. Suppose no subpath of 
P is a path in Ω. Then the inequality 

: j

j
j a P

x
∈

∑ ≥ 1 is a facet 

of P. 
 
Proof. We need to show m affinely independent solutions 
to Eq. (1) for which this inequality holds as an equality. We 
will show, equivalently, that corresponding m solutions to 
Eq. (2) satisfy 

: j

j
j a P

y
∈

∑ = |P| − 1, and are affinely 

independent. Suppose path P = (
1 2
, ,  ...,

ri i ia a a ), so that 
|P| = r. By assumption, Dt = A − {

1 2
, ,  ...,

ri i ia a a } + {
ti

a } 
is an MDS for t = 1, ..., r. That is, removing from the 
network all arcs except the ones in the set {{

1 2
, ,  ...,

ri i ia a a } 
− {

ti
a }} destroys all paths in Ω. This means that for t = 

1, ..., r, the incidence vector of A\Dt, i.e. the m-vector yt, 
where: 
 

1 2
1,  if \ { , , ..., } { }
0,  otherwise                                        

r tt i i i it
j

j A D a a a a
y

∈ = −
= 


 (3) 

 
is a feasible solution to Eq. (2), and 

: i j

t
j

j a P

y
∈

∑ = r − 1. It is 

quite easy to see that the r vectors {yt: t = 1, ..., r} are 

linearly, and hence affinely, independent. We now show 
that each arc that is not part of this path yields one 
additional linearly independent vector satisfying the above 
constraint at equality. 

Consider now an arc as ∈ A − {
1 2
, ,  ...,

ri i ia a a }, from 

node us to node vs. Suppose there is a proper subpath µP , 
of P, from node us to node vs. Let 

li
a  be any arc in P\ µP . 

Then clearly Ds = A − {
1 2
, , ...,

ri i ia a a } − {as} + {
li

a } is an 

MDS. Otherwise, if there is no such subpath µP , then Ds = 
Dt ∪ {as} is an MDS for any t = 1, ..., r. Let ys be the 
incidence vector of A\Ds. It is easy to check that ys is 
feasible to (2) and 

: i j

s
j

j a P

y
∈

∑ = r − 1. Now, it is quite easy to 

check that S = {y1, ..., ym} is a linearly independent set of 
vectors. 

 
Before we describe a new class of facet defining 

inequalities, somewhat similar to, but more general than, 
the Möbius Ladder inequalities defined for the “Linear 
Order Polytope” in Grötschel et al. (1985) and “Acyclic 
Subgraph Polytope” in Grötschel et al. (1985) problems, 
we illustrate these inequalities with a simple example 
generally given to show that the single commodity 
max-flow min-cut theorem does not hold for 
multi-commodity networks. 

Consider a three commodity network in Figure 1. This 
network has three chains with one chain for each 
commodity. Setting all arc capacities to one, an optimal 
disconnecting set is obtained by removing any two arcs 
from the set {a1, a2, a3}, with a total capacity of 2. Now 
solving the relaxed linear program (LP) associated with (1) 
gives the following linear program: 
 

Minimize
9

1
j

j

x
=

∑  

subject to: 
x4 + x1 + x2 + x9 ≥ 1 (4) 
x6 + x2 + x3 + x5 ≥ 1 
x8 + x3 + x1 + x7 ≥ 1 
xj ≥ 0 ∀ j = 1, ..., 9. 

 
An optimal solution to the above linear program is given 

by *x  where *
1x  = *

2x  = *
3x  = 1/2, and *

jx  = 0, j = 
4, ..., 9, otherwise, resulting in an optimal objective value of 
3/2. We derive a Chvatal-Gomory (C-G) inequality in 
Wolsey (1998) by adding up the three constraints and 
dividing by two: 
 

x1 + x2 + x3 + (1/2)
9

4
j

j

x
=

∑  ≥ 3/2 

 
which implies: 9

1
j
j jx=
=∑ ≥ 3/2, and hence 9

1j jx=∑ ≥ 2, 
as x is integer. Adding this constraint to the LP (4) and 
solving the problem results in an integer optimal solution 
with an objective value of 2. 
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Figure 1. A three commodity network. 

 
Here is another example of four commodity 

sub-network in Figure 2: 
 

 
Figure 2. A 4-commodity network. 

 
Assuming all arcs with unit capacity, the relaxed LP is: 

 

Minimize
8

1
j

j

x
=

∑  

subject to: 
x1 + x2 + x3 + x4 + x5 ≥ 1 
x3 + x4 + x5 + x6 + x7 ≥ 1    (5) 
x1 + x5 + x6 + x7 + x8 ≥ 1 
x1 + x2 + x3 + x7 + x8 ≥ 1 
xj ≥ 0 ∀ j = 1, ..., 8, 

 
whose optimal solutions is * ,x  where *

jx  = 1/5 for all j. 
We get a C-G valid inequality by adding these four 
inequalities, dividing by 3: 8

1j jx=∑ ≥ 2. Solving LP (5), 
with this additional inequality, yields an integer optimal 
solution with *

1x  = *
3x  = 1, and *

jx  = 0, otherwise. 
It will follow from our lemma below that such C-G valid 

inequalities are indeed facets of the polytope P. 
 
Definition 1. Let S = {P1, P2, ..., Pk} be a set of k different 
paths in Ω, such that no subpath of any of these paths is a 
path in Ω. Let r be an integer such that 2 ≤ r ≤ k − 1 and r 
does not divide k. For convenience, assume that for s > k, 
Ps would refer to the path Ps mod k. Let M be the subgraph 
obtained by the union of the k paths in S. Then M is called 
a Möbius Ladder if: 
1. Every r “consecutive paths” of S have a common 

subpath. That is, paths Pi, Pi+1, ..., Pi+r−1 have a 
common subpath µ ,iP  i = 1, ..., k. 

2. Subpaths µ ,iP  i = 1, ..., k are mutually disjoint. 
3. Any non-consecutive r paths of S have no subpath in 

common. 
 

Note that Figure 1 and Figure 2 are Möbius Ladders 
with k = 3, r = 2, and k = 4, r = 3, respectively. 
 
Lemma 3. If M is a Möbius Ladder then 

j
ja M

kx
r∈

 ≥   
∑  is a facet of polytope P. 

 
Proof. We first show that this is a valid inequality for P. 
Let B be the set of all arcs in subpaths µ1P , µ 2P , ..., 
µ kP .That is B = { µ=

=∈ ∪ 1: i k
ij j ia a P }. Consider addition of k 

valid path inequalities corresponding to the k paths in S: 
 

1 j i

k

j
i a P

x
= ∈
∑ ∑ ≥ k (6) 

 
This inequality can be rewritten as: 

 

: : \j j

j j j j
j a B j a M B

x xα α
∈ ∈

+∑ ∑ ≥ k (7) 

 
From properties 1. and 2. of the Möbius Ladder, it 

follows that αj = r for j such that aj ∈ B, and from property 
3. of the Möbius Ladder, we can conclude that 1 ≤ αj < r, 
for j such that aj ∈ M\B. Hence, dividing Eq. (7) by r, we 
get: 
 

: : \j j

j
j j

j a B j a M B

kx x
r r

α

∈ ∈

+ ≥∑ ∑  (8) 

 
which implies: 
 

: : \j j

j j
j a B j a M B

kx x
r∈ ∈

+ ≥∑ ∑  (9) 

 
Since the left hand side is an integer, we get the C-G 
inequality: 
 

j

j
a M

kx
r∈

 ≥   
∑  (10) 

 
Hence, Möbius Ladder inequalities are valid for P. 

We now show that each arc in M provides an MDS for 
G whose incidence vector x satisfies Eq. (10) at equality, 
and that the |M| incidence x-vectors so obtained are 
linearly independent. For a path Pj from the set S, consider 

the following set of k
r

 
  

 subpaths: µ 1{ ,jP +  
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µ 1j rP + + , ..., µ ( 1) 1kj r
r

P  + − +  
}. Then removing one arc from each 

one of these disjoint subpaths, and any arc from Pj, and all 

arcs of A\M, provides an MDS of cardinality k
r

 
  

 + 

|A\M|, and hence its incidence x-vector satisfies Eq. (10) 
as an equality. It is easy to see that the |Pj| incidence 
x-vectors obtained in this manner are linearly independent. 
Proceeding in this manner with each of the k paths in S, 
we can obtain |M| such incidence x-vectors which are 
linearly independent. 

Equivalently, we have |M| complement linearly 
independent y-vectors which satisfy 

j
ja M

y
∈∑  = |M| − 

.k
r

 
  

 Each such y-vector is an incidence vector of a 

disconnected graphthe graph after an MDS is removed 
from the graph, and hence contains all arcs of the Möbius 

Ladder except the k
r

 
  

 arcs removed as described above. 

Finally we prove the lemma by providing |A\M| 
additional such linearly independent y-vectors, one for each 

arc in A\M, which satisfy 
j

ja M
y

∈∑  = |M| − .k
r

 
  

 

Arguments are similar to the ones given in Lemma 1. 
Consider an arc as ∈ A\M. There are two cases to consider. 
In the first case, suppose as is an arc from node us to node 
vs, and there is a subpath µ ,P  of Pj ∈ S, from node us to 
node vs in M. Then, consider the following disconnected 
set of arcs: remove from M ∪ {as} an arc from P\ µP , and 

one arc from each of the k
r

 
  

 subpaths: µ 1{ jP + , 

µ 1j rP + + , ..., µ ( 1) 1kj r
r

P  + − +  
}. Incidence y-vector of this 

disconnected set clearly satisfies 
j

ja M
y

∈∑  = |M| − 

k
r

 
  

. In the second case, adding the arc as does not add 

any subpath to M, and any disconnected network obtained 
earlier, with this additional arc, still remains disconnected. 
Further, its incidence y-vector satisfies the Möbius Ladder 
equality and is clearly linearly independent of the existing 
|M| y-vectors and any other y-vector obtained in this 
manner for other arcs in A\M. This proves our lemma. 

 
From an algorithmic point of view it is important to 

know if we can efficiently solve the separation problem for 
path as well as Möbius Ladder inequalities. We do not 
know of any efficient method for identifying violated 
Möbius Ladder inequalitiesi.e. an efficient algorithm for 
testing if a given fractional solution to the relaxed LP 
associated with Eq. (1) violates a Möbius ladder inequality. 
But Dijkstra’s shortest path algorithm in Dijkstra (1959) 
solves efficiently the separation problem for path 
inequalities. 

Before we describe a branch-and-cut algorithm for our 
problem, we shall review certain results for a cutting plane 

algorithm studied in Aneja and Vemuganti (1977). The cuts 
developed in Aneja and Vemuganti (1977) will be used, 
along with path-cuts, in our branch-and-cut algorithm. 
Also, we will describe a simple modification of this cutting 
plane algorithm, that does not require us to solve the 
relaxed LP associated with Eq. (1) exactly, and compare its 
computational performance with the branch-and-cut 
algorithm. 

Consider the relaxed LP associated with the set covering 
problem Eq. (1) in a matrix form: 
 
Minimize cTx 
subject to: 

Ax ≥ 1 (11) 
x ≥ 0. 

 
Matrix A is the path-arc incidence matrix of G and is 

known only implicitly. Any 0/1 solution of Eq. (11) is the 
incidence vector of an MDS. If we define a “proper MDS” 
as an MDS such that none of its proper subsets is an MDS, 
then the incidence vector of any proper MDS is an extreme 
point of Eq. (11). Further, the rows of A , the submatrix 
of A formed by columns of a proper MDS with cardinality 

p, can be permuted to obtain 
P

A  such that the top p 

rows of 
P

A  form an identity matrix. Specifically, 
suppose D0 = {

1i
a , ..., 

pia } is a proper MDS, and A  = 

(
1i

A , ..., 
piA ), then there exists a permutation matrix P 

such that P A  = 
P

A  = 
I
R

 
 
 

. A basis B0 for the 

corresponding extreme point can be easily obtained by 
adding surplus variables corresponding to rows of R. 

Clearly PB0 = 0
PB  = 

0I
R I

 
 − 

, 0 0
P PB B  = I, and 1

0B−  = 

0
PB P . If we define, 

0

T
Bc  = (

1i
c , ..., 

pic |0, ..., 0) = (
1

T
Bc , 0), 

AP = PA, and P
jA  = PAj , then it is easy to see that: 

 

jz  = 
0

T 1
0B jc B A−  = 

0

T
0
P

B jc B PA  = 
0

T
0( )P P

B jc B A  = 
1

T P
B jc A  

 
Hence, the reduced cost corresponding to xj is given by 

jc = cj − 
1

T P
B jc A . 

That is, reduced costs for all non-basic variables can be 
obtained by knowing only the top p rows of AP . Further, 
to obtain these top p rows, one for each arc in D0, all we 
need is the corresponding proper MDS D0. To generate a 
row corresponding to arc 

1i
a  we proceed as follows. 

Obtain µG  by removing from G all arcs of D0 except 
1i

a . 

Any path P ∈ Ω that is still a path in µG  must use arc 
1i

a  
since D0 is a proper MDS, and hence can be used as a row 
corresponding to arc 

1i
a . Remaining (p − 1) rows are 

generated similarly. 
So given D0, define Q to be the set of non-basic 

variables with negative reduced costs. That is, Q = {j: jc  
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< 0}. Then Q = ∅ implies that D0 is an optimal MDS. 
Equivalently, if D0 is not optimal then Q ≠ ∅, and an 
optimal MDS must satisfy the cut jj Q

x
∈∑  ≥ 1. Based 

on this result, the following cutting plane algorithm was 
proposed in Aneja and Vemuganti (1977) for Eq. (1): 
 
Algorithm 1. 
 
Step 1. Denote the original problem Eq. (1) as SC1, z  = 

1

m
jj

c
=∑ , and t = 1. 

Step 2. Let ˆ tx  be an optimal solution to the relaxed LP 
associated with SCt. Terminate if 

1
ˆm t

j jj
c x

=∑  ≥ z . 

Otherwise,  ˆ tx  is a feasible solution to SCt. 
Extract from  ˆ tx  a proper solution xt to SCt. If 
cTxt < ,z  set z  = cTxt, and record xt as the best 
solution so far. 

Step 3. Determine Q, the set of variables with negative 
reduced cost. Terminate if Q ≠ ∅. Other create 
SCt+1 by adding the cut jj Q

x
∈∑  ≥ 1 to SCt, set t 

← t + 1 and go back to Step 2. 
 

Computational experiments with the algorithm reported 
in Aneja and Vemuganti (1977) showed that in Step 2, 
either the LP provided an integer optimal solution, or 
strong lower bound provided by the LP solution was 
crucial to termination of the algorithm. To obtain an 
optimal solution to the relaxed LP associated with SC1, 
note that the dual of the relaxed LP is the multicommodity 
max-flow problem: 
 
Maximize P

P

f
∈Ω
∑  

subject to: 

: , j

P
P P a P

f
∈Ω ∈
∑  ≤ cj (12) 

fP ≥ 0, ∀P ∈ Ω. 
 

Columns of Eq. (12) are known only implicitly. This LP 
was solved by the revised simplex method using a column 
generation scheme. Clearly, the dual optimal solution 
provided 1x̂ . With slight modification ˆ tx  is similarly 
obtained. 

We are now ready to describe our modified simple 
cutting plane algorithm. Recently a very simple and 
interesting algorithm has been proposed in Garg and 
Könemann (1998) and improved in Fleischer (2000) to 
obtain an ε-approximate solution to Eq. (12). This fully 
polynomial approximation scheme (FPAS) terminates with 
feasible solutions to both the primal and the dual LPs, and 
proceeds as follows. 

The algorithm starts with zero flow and xj = δ for each 
arc aj in A, where 1/(1 )( (1 )) .n εδ ε ε −= + +  The algorithm 
proceeds in iterations. Treating xj as the length of arc aj , it 
finds a shortest path, say P0, in Ω. Let c0 = min{cj: aj ∈ P0}. 

Flow on path P0 is augmented by c0, and length of each arc 
in P0 is modified as follows: xj ← xj(1 + ε(c0/cj)) ∀aj ∈ P. 
This process of finding a shortest path and augmenting 
flows is repeated until the length of any shortest path in Ω 
is at least 1. At this point appropriate scaling of flows and 
x-value of each arc provides the desired pair of primal and 
dual solutions. The algorithm terminates in at most 
(m/ε)(log1+ε n) iterations. 

We modified the cutting plane scheme given in 
Algorithm 1 by replacing the LP optimal solutions with the 
ones obtained by the FPAS scheme described above, with 
some simple modifications. For example, we use the 
approximate solution to the relaxed LP for SCt as a starting 
solution for the solving relaxed LP for SCt+1. 

For the branch-and-cut algorithm we proceed, 
informally, as follows. We start with solving an LP with 
|K| = q constraints: one path-constraint for each (s, t) ∈ K. 
Formally, let P1, ..., Pq be any q simple paths from (s1, t1), ..., 
(sq, tq), respectively. Solve the LP: 
 

Minimize 
1

m

j j
j

c x
=

∑  

subject to: 

j i

j
a P

x
∈
∑  ≥ 1, i = 1, ..., q (13) 

xj ≥ 0, j = 1, ..., m. 
 

Let x0 be an optimal solution to Eq. (13). Treating 0
jx  

as the length of arc aj, find a shortest path, say P0 with 
length l(P0), in Ω. If l(P0) < 1, we add the cut 

0j
ja P

x
∈∑  ≥ 

1 to Eq. (13) and resolve the LP. We repeat this process as 
long as the shortest path length is less than one. 

Suppose this process stops with an optimal LP solution 
0x̂ . If 0x̂  is integer, we terminate as we have found an 

optimal solution to Eq. (1). Otherwise, we consider the 0/1 
vector  0x̂  which is a feasible solution to Eq. (1). The 
corresponding MDS is µD  = {aj: 0ˆ jx  > 0}. To obtain a 

“good” proper MDS D0 from µD , we sort the arcs of µD  
in non-decreasing order of their x-values, and try removing 
each arc from µD , in that order, to see if the resulting set 
is still an MDS. Using D0 we generate a set Q as described 
earlier. If Q = ∅, we terminate with an optimal MDS D0. 

Suppose Q ≠ ∅. If 0ˆ jj Q
x

∈∑  < 1, the cut jj Q
x

∈∑  ≥ 

1 is added to the existing LP and resulting LP is resolved, 
repeatedly, until the shortest path length is at least one. If 

0ˆ jj Q
x

∈∑  ≥ 1, we branch on a variable xj with fractional 
0ˆ -value,jx  and proceed with the branch-and-bound 

algorithm in a standard manner. 
Note that at any intermediate node of the 

branch-and-bound tree, variables can be partitioned into 
three sets: S1 (variables set to 1), S0 (variables set to 0), and 
F (free variables). Clearly solving Eq. (11) with these 
restrictions is equivalent to solving Eq. (11) over a network 
where the arcs corresponding to variables in S1 are 
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removed from the network, and an infinite cost is assigned 
to arcs for variables in S0. This allows us to use path-cuts 
as well as Q-cuts at intermediate nodes of the tree as well. 

 
3. COMPUTATIONAL EXPERIMENTS 

To compare the two approaches, 140 networks were 
randomly generated as follows. We tried two different sets 
of nodes: 50 and 100; five different sets of arcs: 100, 200, 
300, 400 and 500; two sets of commodities with |K| = 5 
and 10, and either all arc capacities to be 1, or random 
integer from 1 to 8. The capacities range was thus from 1 
to cmax (= 1 or 8). For each combination tried, 5 random 
problems were generated. Each network was generated as 
follows. First, a directed cycle with n nodes was created to 
create a strongly connected network of m arcs, and 
remaining m − n arcs were then added at random. 

Table 1 below provides summary information for 28 
different sets. Both algorithms were run using Xpress-MP 
on a PC with Pentium IV(R) CPU 3GHz with 2GB of 
memory. Numbers reported in the table are for 28 sets of 5 
problems each for certain node size and arc size, giving rise 
to a total of 140 problems in our computational 
experiments. For the branch-and-cut algorithm, the two 
columns, respectively, report the average number of cuts, 
and the average time in seconds for the set of 5 randomly 
generated problems. For the modified cutting plane 
algorithm, the time limit for each problem was set at 1800 
seconds. Column labeled “# solved” reports the number of 
problems, out of a set of 5 problems, for which the 
algorithm stopped with an optimal solution. The “Avg. 

time” column represents the average time for solved 
problems in each set. 

For the branch-and-cut algorithm, 131 of 140 problems 
terminated at the first iteration. Out of these 131 problems, 
120 terminated with an integer LP solution, and the 
remaining 11 terminated either because the rounded up LP 
objective value was equal to the value of the proper MDS 
found, or the set Q generated for the MDS was a null set. 

As was reported in our computational results earlier in 
Aneja and Vemuganti (1977), Algorithm 1, with exact LP 
solutions, performed well since most of the time the LP 
optimal solution was integer. When the LP solution did not 
terminate integer, and the algorithm did not terminate at 
the first iteration, its performance was not very satisfactory. 
The branch-and-cut algorithm proposed here overcomes 
this difficulty and performs extremely well under these 
circumstances. The depth of the branch-and-bound tree 
was rather small in most cases. In our experiments, only 
one tree reached a depth of 8, and no other exceeded a 
depth of 3. For exploring the branch-and-bound tree we 
tried both depth-first search (putting unfathomed nodes on 
a stack) and breadth-first search (putting unfathomed 
nodes on a queue). There was no discernible difference in 
the performance of the algorithm between these two 
strategies. 

As is clear from our computational results, Algorithm 1 
performed poorly. This primarily is due to poor 
performance of the approximation algorithm for solving 
linear programs. Only 115 of the 140 problems tried 
terminated with an optimal solution in the specified time  

 
Table 1. Computation results 

  Branch-and-Cut Mod. Cutting Plane 
Set n, m, q, cmax Avg. # cuts Avg. time (sec) # solved Avg. time (sec) 
1 50, 100, 5, 1 12.4 < 0.5 5 5.8 
2 50, 100, 5, 8 11 < 0.5 5 6 
3 50, 100, 10, 1 26.4 0.8 1 12 
4 50, 100, 10, 8 22 0.5 4 23.3 
5 50, 200, 5, 1 38.8 1 3 3.3 
6 50, 200, 5, 8 48 1.3 5 38.8 
7 50, 200, 10, 1 91.6 2 3 43.3 
8 50, 200, 10, 8 69.2 1.5 5 80.8 
9 50, 300, 5, 1 60.8 1 5 15.8 
10 50, 300, 5, 8 69.8 1 5 74.4 
11 50, 300, 10, 1 127.2 2.8 5 75.8 
12 50, 300, 10, 8 159.6 4.3 3 427.3 
13 100, 200, 5, 1 16.4 1.5 5 35.4 
14 100, 200, 5, 8 24.6 1.8 5 71.8 
15 100, 200, 10, 1 52.8 2.5 4 43.5 
16 100, 200, 10, 8 51.4 4 1 130 
17 100, 300, 5, 1 24.6 2 5 20.2 
18 100, 300, 5, 8 22 2.3 4 38.8 
19 100, 300, 10, 1 63.6 4 4 117 
20 100, 300, 10, 8 82 2.5 4 491.3 
21 100, 400, 5, 1 43.8 1.8 4 19.8 
22 100, 400, 5, 8 71.4 2.3 4 112.8 
23 100, 400, 10, 1 90.4 3.3 5 112.8 
24 100, 400, 10, 8 114.8 3.5 3 497.3 
25 100, 500, 5, 1 45.2 3.3 5 28.4 
26 100, 500, 5, 8 60 4.5 5 152.8 
27 100, 500, 10, 1 110.4 10.8 5 258.4 
28 100, 500, 10, 8 130.8 12 3 1033        
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limit of 30 minutes. Of the remaining 25 problems, 15 
problems had generated the optimal solution as an upper 
bound. 

4. CONCLUSIONS 

In this paper we have presented two algorithms for the 
multicommodity disconnecting set problem: a 
branch-and-cut algorithm, and a simple cutting plane 
algorithm that relies on solving linear programs 
approximately by applying Dijkstra’s shortest path 
algorithm repeatedly. From a computational point of view, 
the branch-and-cut algorithm performs extremely well and 
is far superior to the cutting plane algorithm. 

The advantage of our simple cutting plane algorithm of 
course lies in its simplicity and its ability to work with 
much larger problems due to very minimal memory and 
space requirements. We are currently exploring ways in 
which the approximation algorithm for solving LPs could 
be expedited thereby improving performance of the cutting 
plane algorithm. 
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