International Journal of Operations Research Vol. 4, No. 3, 181-188 (2007)

Second-Order Symmetric Duality for Minimax Mixed Integer Programs over Cones

T. R. Gulati^{1,*} and S. K. Gupta²

¹Department of Mathematics, Indian Institute of Technology, Roorkee-247 667 (India)

²School of Mathematics and Computer Applications, Thapar University, Patiala-147 004 (India)

Received April 2006; Revised August 2006; Accepted February 2007

Abstract—A duality theorem for a pair of Wolfe-type second-order minimax mixed integer symmetric dual programs over cones is proved under separability and η -bonvexity/ η -boncavity of the function k(x, y) appearing in the objective, where $k: R^n \times R^m \mapsto R$. Mond-Weir type symmetric duality over cones is also studied under η -pseudobonvexity/ η -pseudoboncavity assumptions. Self duality (when the dual problem is identical to the primal problem) theorems are also obtained.

Keywords—Integer programming, Symmetric duality, Minimax, Self duality, η -bonvexity

-

^{*} Corresponding author's email: trgmaiitr@rediffmail.com