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Abstract—A duality theorem for a pair of Wolfe-type second-order minimax mixed integer symmetric dual programs over

cones is proved under separability and n-bonvexity/n-boncavity of the function £(x, y) appearing in the objective, whete

£:R"xR” > R. Mond-Weir type symmetric duality over cones is also studied under n-pseudobonvexity/n-

pseudoboncavity assumptions. Self duality (when the dual problem is identical to the primal problem) theorems atre also

obtained.
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1. INTRODUCTION

Symmetric duality in mathematical programming, in
which dual of the dual is the primal problem, was first
introduced by Dorn (1960). He studied symmetric dual
quadratic programs. Subsequently, Dantzig et al. (1965)
extended the notion of symmetric duality by considering
the problems:

Primal (P) Min F = 4(x, y) —]TVJk(x,‘y)
subjectto V A(x, y)<0
x20,y20
Dual (D) Max G =£(x, y)—x'V _&(x, y)
subjectto V_£(x, y)=0
x20,920

where x € R", yeR” and £:R"xR” R is a twice

differentiable function, called kernel function in the
literature. V_A(x, y) and V £(x, y) denote the gradient

vectors of £ with respect to x and y, respectively.

For the above primal (P) and dual (D) problems, weak
and strong duality results were obtained assuming £(x, y) to
be convex in x, for each y, and concave in y, for each x.
These problems are general nonlinear programming
programs. By substituting

1
k(x, 9) =JTX+ij—yTAx+E(xTDX—]TE]),

where ¢€R",beR”, A is an m X n matrix and D and E
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are # X n and m X m positive semidefinite symmetric
matrices respectively, we obtain the following problems
studied by Dorn (1960) and Cottle (1963):

1
Primal (D) Min F=c'x+—(x"Dx+ ' )

subject to Ax+Ey =5
x20,920

P .
Dual (DD)  Max G=b'y=—(x'Dx+ ')

subjectto A" y—Dx<¢
x20,920

Bazaraa and Goode (1973) extended the wotk of
Dantzig et al. (1965) over arbitrary cones.

Balas (1970) introduced minimax symmetric dual
programs by constraining some of the primal and dual
variables of problems (P) and (D) to belong to arbitrary
sets, for instance, the set of integers. The problems studied
by Balas are

Primal  Max , Min ,  &(x, 7))~ (") V .A(x, )
subjectto  V y:/é(x,]) <0
x'eU, y' el”

x%, 9720

Dual ~ Min Max_ . k(x, )= (x")'V L k(x, )

subjectto V ,&(x, y)20
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x'eU, y' el

x*, 9020

where V ,A(x, y) andv}lzk(x,‘y) stand for the vectors

of partial derivatives of £ in the components of
x> eR"™ and ]2 e R”™, respectively, and U, 17 are
the arbitraty sets of integers in R" and R™, respectively.

Consider now the following nonlinear programming
problems:

(P1) Min  f(x)
subject to  g(x)<0
where the functions f:R"+>Rand g:R"+>R” are
differentiable on R”.
Wolfe (1961) introduced the following dual for (P1):

(WD1) Max f(x)+ y" g()
subject to V_f(x)+ 3"V _g(x)=0
20

and proved duality theorems assuming convexity of the
functions f and g Observing that the duality theorems
obtained by Wolfe for the pair (P1) and (IWD1) do not hold
for generalized convex (pseudoconvex and quasiconvex,
defined below) functions, Mond and Weir (1981)

introduced the following dual:

(MD1) Max  f(x)
subject to V_f(x)+ 3"V _g(x)=0

5 g(x)20
320

and obtained duality relations under the assumptions that f
is pseudoconvex and g is quasiconvex.
A function f is said to be pseudoconvex if for all

n
x, u€R",

(x=u)'V_f(x)20 = f(x)= f(#)=0,

and quasiconvex if forall x, #e€R",

F)= f(n) 0= (x—u)' ' V_ f(x)<0.

The dual problems (IWD1) and (MD1) are known as
first-order duals and named as Wolfe and Mond-Weir duals,
respectively. Kumar et al. (1995) formulated a pair of
Mond-Weir type minimax mixed integer symmetric dual
programs.

Mangasarian (1975) extended the Wolfe dual (WD1) to
second-order dual problem (§D1) as follows:

(5D Max f(x)+ 5" 8(x)=5 oL (V. J()+ V5" g,
subject to V_f(x)+ 3" V_g(x)
(Vo f()+V 0" 2(x)p =0
220

where p, €R", V__ f(x) denotes the Hessian matrix

with respect to x.

For the primal and dual models (P1) and (5§D1), the
duality results do not hold under convexity/concavity
assumptions. Mangasarian established duality results under
somewhat involved assumptions (see Bector and Chandra
(1987), page 144).

Mond (1974) obtained Mangasarian’s duality relations
between (P1) and (SD1)
convexity/concavity assumptions. Second-ordetr convex

under  second-order

functions were later called bonvex by Bector and Chandra
(1986a).
A function f:R" > R is said to be bonvex at » € R"if

forall x, p, €R”,

)= fn)2 (x =)' [V _f(n)+V [ () p]
1y
_Ep1 V. . f@)p.

The definition of convexity follows if the vector
P =0.

Bector and Chandra (1986b) formulated second-order
Mond-Weir type symmetric dual programs and established
duality theorems involving pseudobonvex functions.

A function f:R" > R is said to be pseudobonvex at

neR" if forall x, p, eR”,

(=) [V f () + Y o fa) ]2 0
= f(x)2 f() —%pf V. f)p,

The definition of pesudoconvexity follows if the
vector p, =0.
Hanson (1981), replacing the difference vector (x —ux)

in the definition of a convex function by 1(x,#) where
n:R"xR"+=R", introduced a new class of functions.

These functions were named invex by Craven (1981) and
n-convex by Kaul and Kaur (1985).
A function fis said to be invex with respect to 1 (or 1-

convex) if forall x, € R”,

)= [y zn" (x,u)V_ f(u).

In this paper, we consider Wolfe and Mond-Weir type
second-order minimax mixed integer dual programs over
arbitrary cones. The symmetric duality theorems are
established under separability and 1n-bonvexity/n-oncavity
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of the function A(x, y) for the Wolfe type dual and
n-pseudobonvexity/ n-pseudoboncavity of £(x, y) for

the Mond-Weir type dual. Our work subsumes several
papers that have appeared in the literature (see Section 6).

The motivating force for studying such minimax
mathematical programming problems has been the fact
that they arise frequently in game theory, approximation
theory and vatious situations relating to decision making
under uncertainty.

2. NOTATIONS AND PRELIMINARIES

Let R! be the non-negative orthant of R". We
constrain some of the components of xeR” and
y€R” to belong to arbitraty sets of integers as in Balas
(1970). Suppose that the first #, (0 <z <) components
of x belong to U and the first 7, (0 <z, <) components
of y belong to 1. Then we write (x, y)=(x',x%, 5", %),
where x' = (x,,x,, ey X, %0 = s s Y, ) and x?

n—m

and y° belong to R and R”™™, respectively. Let

V.. .k(x,7)and Vyz y:/é(ﬁ?, ) denote the Hessian matrix

with respect to x° and jy° evaluated at

(%, ),
respectively.

Definition 1. A convex set C of R” is called a convex
cone if for each x € C and A >0, AxeC.

Definition 2. " ={zeR": x5 <0 forall x € C}is called
the polar of the cone C.

Let T, and T, be closed convex cones in R” and

R”, respectively, with non-empty interiors. Let 5, c R”

and S5, ©R” be open sets such that T, xT, < 5, x5, .

Definition 3. The function £ is said to be n,-bonvex in
the first variable # on S for fixed » €S, if there exists a
function 1, : §; x5, = R”, such that for any p, e R,
’é(‘x’”) _’é(”’”) 2 771T (o, 2) [Vx’é(”’”) + Vm’é(”’”)pl]
1 .
_Epll Vxx/é(”’ ”)pl H
for all x, 7€, and £ is said to be 7n,-bonvex in the

second variable » on S, for fixed # €S, if there exists a

functionn, : 5, x5, = R” such that for any , e R”,

k(uy, y)—k(u,v)

2 7721 (]’”) [V‘y’é(”’”) + Vﬂ/é(ﬂ,ﬁ)l’] ] _Eril Vﬂ/é(ﬂ,ﬁ)f] >

forall y,reS,.

Definition 4. The function £ is said to be n,-
pseudobonvex in the first variable # on S, for fixed
vedS,, if there exists a function 7, :5, xS, = R” such

that for any p, € R,

N ()| V A(,0)+V _k(at,0) ]2 0

=> K1) 2 A0) = IV (00)

forall x, € S, and £ is said to be 7, -pseudobonvex in
the second variable » on §, for fixed »eS,,if there
exists a function 1,:5,xJS, > R” such that for any

m
rneR”,

1, (1)[V k(u,0)+V | k(u,0)r]20

1
= k(u, y) = k(u,v) —Erfv”k(ﬂ,v)n,

forall y,» € 5,.

The function £ is n-boncave or n-pseudoboncave if —£&
is M-bonvex or n-pseudobonvex, respectively.

Definition 5. Let s',s%, .57

be elements of an arbitrary
vector space. A vector function G(s',5%, ...,s") will be
called additively separable with respect to s' if there exist
vector functions H(s') (independent of s°, ..,s”) and

K(s*, ..,s") (independent of s ), such that
G(s', 5%, sy = H(sHY+ K(s%,..., 7).

Examples of functions which are n-bonvex (and hence
n-pseudobonvex), n-pseudoconvex, or 1-quasiconvex but
not generalized convex are given in Pandey (1991) and
Kaul and Kaur (1985).

In what follows, Ci and C; are closed convex cones in

R”™™ and R”™™, respectively.

3. WOLFE TYPE SECOND-ORDER SYMMETRIC
DUAL PROGRAMS

We consider the following pair of nonlinear mixed
integer symmetric dual programs:

Primal (WP)
Max Min . F(x, 5, p)=k(x, 5)=(3")'V .&(x, y)

—(")'V . k(x,0)p

AR Y
subjectto  V 2K(, )+ \% 2 pR(x, y)p e C, 1
x'eU, yel” @)
x*eC, ?3)
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Dual (WD)
Min Max_ .G(x,y,r) = k(x, )= (x")' 'V L&(x, y)
—(xz)TVXsz/é(x,y)r
1 .
——r'V, LR, y)r
2 XX
subject to —{V ,&(x, )+ V . Ak(x, y)r} € C} “)
x'eU,y el 5)
s eq, ©)

where p and rare m—m, and n—n, dimensional vector

variables.

Theorem 1. (Symmetric duality). Let (x,7,p) be an
optimal solution for (IWP). Also let:

(i) A(x,y) be additively separable with respect to x' or y';

(i) A(x, ) be m,-bonvex in x” for each (x', y) and
n,-boncave in y*for each (x', y);

(iii) 4&(x, ) be thrice differentiable in x”*and y?;

iv) V 2 yzlé(p_c, 7) be non-singular;

—r N
(v) the vector p V)‘2 (V);)‘Z,é(x,])p)—o imply that

P=0;
i) n,e*a°)+u’ eC, forall x* eC;

(i) (0%, y*)+ 9> e C, forall »* €C,.

The p =0, F(x,7,p)=G(x,7,7),and (X, 3,7 =0)is an
optimal solution for (IWD).

Proof. Let
Z=Max Min . {k(x,3)=()")'V .k(x, )
N 1 .
~ON'Y ok P PV k()P
(x,0,p) €5}
and
W =Min Max_ , {k(x, y)=(x")"V_k(x, »)
2\T 14
—(x7) szxz/é(x,])r—ar szxz/é(X,j/)Vi
(x, y,r)eT}
where S and T are feasible regions for (WP) and (WD),
respectively.

As £(x, y) is taken to be additively separable with respect

to x' or y' (say with respect to x"), it follows that

k(x, 3) =R (x')+ £ (x, ). 0]

Therefore, V)‘Z/é(x,y) ZVJ‘Z/éZ(xZ,J/) and Z can be

written as

Z :Maxx1 N[inx2 ,

=Max ,Min ;Min , ,
X y X%,

Or

5

B () +E£ (5, )
—(")'V £ ()
—(Jz)”'V,z‘,zéz(Xiﬁp

1 ..
—EP’ \ },:/cz(xz,ﬁp :

VBNV LR, )P

eC,,x*eC,x'elU,y el
B () +E (7, y)
~(N)'V R, )
—ON)'V LR P
1
5PV K )

V}z /éz (Xz > J}) + V‘)‘l‘)‘z /éz (Xz > J})p

o 2 1 1
eC,x eC,x elU,y el

Z=Max Min {k'(x")+¢()):x" €U,y eV},

where

$(»')=Min . .

Similary,
W = Min ; Maxx1

where

y(y')=Max . ,

E =00 Y E G )
SOV )
BV G

V() +V LR, ) p

eC,;, x*eC,
{/él(x])+l//(]1):x] EU,J/1 e},

£, )= () VL (7, )
=) VL & ()
1 .,
—Erl szxzzéz (%, y)r:

~{V & (7, )+ VLK (X, )
eC’, y eC,

®)

)

(10)

)
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For any given y', (9) and (11) are a pair of Wolfe type
second-order symmetric dual nonlinear programs and in
view of assumptions (ii)-(vii), Theorem 3.2 in Gulati et al.
(2007) becomes applicable. Therefore, for y'=73' we

obtain

p=0and ¢(3")=y(3")

where the functions ¢ and y ate given by (9) and (11),
respectively.

Now, we need only to show that (x,7,7 =0) is
optimal for (WD). If this is not the case, there exist
9" el such that w(y")<y(3'). But then, in view of

assumptions (iv) and (v), we have
=y (T)>v (") =¢0"),

contradicting the optimality of (¥,7,p=0) for (WD).

Hence (x,7,7=0) isan optimal solution for (WD).

4. MOND-WEIR TYPE SECOND-ORDER
SYMMETRIC DUAL PROGRAMS

We now consider the following pair of nonlinear mixed
integer symmetric dual programs:

Primal (MP)
1 ..
Max  Min . M(x, y, p) = &(x, y) -3 PV ke p)p

subject to V. A(x, )+ V . .k(x, y)p € C, (12)

) [V ke, )V ke, pp |20 (1)
x'eU, y el” (14)
x> eC, (15)

Dual (MD)
Min Max_ . N(x, y,r) = &(x, j)—%rTVﬁx:é(x, 9)r
subject to —{V ,k(x, y)+V . .k(x, y)r} € o (16)
() [VXZ/@(X,J) +V L k(x, ])r:| <0 (17)
x'eU,y el (18)
) ed, (19)

Theorem 2. (Symmetric duality). Let (x,7,p) be an
optimal solution for (MP). Also, let:

() A(x, y) be additively separable with respect to x' or
b

(ii) 4(x, y) be n,-pseudobonvex in x°for each (x', y)
and n,-pseudoboncave in y*for each(x', y);

(iif)y 4(x, ) be thrice differentiable in x”and y°;

(iv) either V o Tz/é(?c, 7) be positive definite and
»'V )‘z/é(?c, 7)=20o0rV E )‘Z/é(?c, 7) be negative definite
and 7'V A(%,5)<0;

V) V&)V A, J)p#0;

i) n(x*,0°)+u" €C, forall x* € C;

i) (0%, y*)+ > e C, forall »* € C,.

Then p=0, M(x,7,p)=N(x,7,7), and (x, 7,7 = 0)

is an optimal solution for (MD).

Proof. Let

1 .
£ —— 'V, L A(x, :
Z=Max Min . (7) 2]j g R 2)P

(x,0,p)€P

and

1 .
/é(x,j)—zrl szxzzé(x,j)r:

(x,9,r)€ 0

W =Max ,Min |,
J X

where P and ( are feasible regions for (MP) and (MD),

respectively.
As k(x, y) is taken to be additively separable with

respect to x' or y' (say with respect tox'), it follows
that

k(x, ) =R (x)+ £ (x, ). (20)

Therefore, Vyzlé(x,j) =Vy2/é2(x2,j) and Z can be
written as
E(x")+ £ (x7, y)

1 4 2, 2 .

YT LACENNE
V)
Z = Max_ Min , + V}z‘)‘z/éz(xz, NpeC;, 1)
OV £ )

+V LR (N, ) ph 20,

x*eC,x'elU, y'el”

Or,

Z=Max_Min ,[£'(x)+¢()'):x" €U, ) el”],

where
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1 .
B, ) =20V o B ()0

V}yzzéz(xz,])+V););é2(xz,])]j € CZ*’

¢(y')=Min . . 'V LB, )
+V K (3, ) ph 20,
x’ e C,
(22)
Similarly,
W =Min Max ,[£'(x)+y()'):x' €U,y €],
where
1
éz(xz,])—ErTvxle £ (Xz,j)r:
V. (", )
vy = Maxxld; +V.. B (2, yrrec),
(x")H{V . £ (7, )
+V LR (67, <0, 5t eC,
23)

For any given y', programs (22) and (23) are a pair of
Mond-Weir type second-order symmetric dual nonlinear

programs and in view of assumptions (ii)-(vi), Theorem
4.2 in Gulati et al. (2007) becomes applicable. Therefore,

for y'=7'we obtain

=0 and ¢(3)=w(7")

where the functions ¢ and y are given by (22) and (23),
respectively.

Now, we need only to show that (¥,7,7 =0) is
optimal for (MD). If this is not the case, there exist
3" el such that w( ™)<y (3'). But then, in view of

assumptions (iv) and (v), we have

6T =vT)>v () =00"),

contradicting the optimality of (x,7,p =0) for (MP).
Hence (x,y,7 = 0) is an optimal solution for (MD).

5. SELF DUALITY

A mathematical problem is said to be self dual if it is
formally identical with its dual, that is, if the dual is recast
in the form of the primal, the new problem so obtained is
the same as the primal. In general, (WP) and (WD) are not
self dual without an added restriction on 4 The vector

function £:R"xR” > Ris said to be skew symmetric if

forall x, yeR”,
’é(ﬁ/ax) = _’é(x3jj)'

Theorem 3. Let £:R"xR"+=> R be skew symmetric
and C, =C,. Then (WP) is a self dual. Furthermore, if

(WP) and (WD) ate dual programs and (X,7,p) is an
optimal solution for (WP), then p» =0, (7,%,7 =0) is an

optimal solution for (WD) and the values of the two
objective functions are equal to zero.

Proof: (WD) can be written as
Max Min . —&(x, )+ (x")" V. &(x, )

1
+(x2)T szxl /é(x,])r+ErTVX2X2/é(x,])r

subjectto =V L&(x, y) =V . .k(x, y)r € c’
x'eU,y' el”
) eq

Since 4 is skew symmetric

’é(x>]) = _é(JGX)» sz /é(X,J/) = _v)‘l k(]"x) and
V. k(x, ) ==V - )‘z/é(y,x).

Therefore, the above problem becomes
Max Min_ . &(y,x)=(x")'V . &(y,x)
1
—(x)'V L k(y,x)r——r'V Ry, x)r
I 2 I
subjectto  V )‘zé(j,x) +V 2 )‘lé(j,x)r eC’

x'eU, y' el
) e o
which is (WP). Thus (WP) is a self dual.

Hence if (x,7,p) is optimal for (PP), then p=0
and {J,x,7 =0) is optimal for (WD). Also, F(X,7,p)
= G(7,x,7). Now we show that F(x,7, p)=0.
F(,5,0)=&%,75)=(")'V &, 7)

) I o
OV AEDF P AE T

_ . 1_ -
2KE D) -5FV AT

(using (1), (6), and the definition of polar cone)
=A(x, 7).
(by Theorem 1)

Similatly, G(x,7,7)<4(x,y). Hence by Theorem 1,

k%, ) S F(x,5,0)=G(x,73,7) S A(%,7),
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which implies that
F(E’j’;) = G(j,;(,?) =k(>_c’j) =é(j,>_c) z_k(>_(>j)»

and therefore F(x,7,p)=0.

Theorem 4. Let4: R" xR" = R be skew symmetric and
C,=C,. Then (MP) is a self dual. Furthermore, if (MP)

and (MD) are dual programs and (X,7, p)is an optimal
solution for (MP), then » =0, (7,x,7 =0)is an optimal
solutions for (MD) and the value of the two objective
functions are equal to zero.

Proof. (MD) can be written as

1
Max ,Min_, —&(x, J)+Eﬂvx2 LR,

subject to =V ,A(x, y)=V . .k(x, y)r € c’
(") {V 2 ke, )+ V (6, p)ry <O
x'eU,y el
Jeq

Since £ is skew symmetric

’é(xa‘y) :—/é(‘y,x), Vxﬁ ’é(X’]):_v‘)‘ﬁ ’é(jax)

and

V.. k(x,)= —V}z}2 k(y,x)
Therefore, the above problem becomes

Maxj1 1\/[111“‘2 R(y,x) —%V’[V}zﬁ k(y,x)r

subject to V}\z E(y,x)+ Vﬁ)‘2 k(y,x)reC’
(Y, k(1) +V L k(23 20
x'eU, y' el
) e

which is (MP). Thus (MP) is a self dual. Hence if (x,7, p)
is optimal for (MP), then p=0 and (j,x,7 =0) is
optimal for (MD). Also, M(x,7, p)=N(7,%,7). Now we
show that M(x,7,7)=0.

_ = _ . 1 -
M(XLLP):’é(x’])_Ep V‘)‘Z}Z’é(xa‘y)p
= k(x,y) (by Theorem 2)

Similarly, N(7,x,7)=&(y,x). Therefore,

M(x,7,p) = N(J,%,7) = &(%,7) = &(7,%) = =k(¥, J)

and hence M(x,7,p)=0.

6. SPECIAL CASES

We now consider some of the special cases of the

problems considered above. For these cases C, =R[™

"
and C, =R

(a) Over these specific cones, our problems are reduced
to the programs of Gulati et al. (2000).

(b) If n(x,#)=x—-u and n,(»,y)=v—y, then we
get the programs studied in Gulati and Ahmad (1997).

(© If U=¢and " =¢, then (WP) and (WD) are
reduced to the problems studied in Mond (1974). Also,
if p=0andr=0,then (WP) and (WD) become the
symmetric dual programs of Dantzig et al. (1965).

(d If p = 0 and r = 0, then we get the programs
considered in Kumar et al. (1995).
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