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1. INTRODUCTION 

Symmetric duality in nonlinear programming in which 
the dual of  the dual in the primal was first studied by Dorn 
(1960). Motivated with the results of  Dorn (1960), the 
notion of  symmetric duality was developed significantly by 
Dantzig et al. (1965), Chandra and Husain (1981), and 
Mond and Weir (1989). Dantzig et al. (1965) formulated a 
pair of  Wolfe type symmetric dual programs with the 
non-negative orthants as cones under convexity-convavity 
on the kernel function that occurs in the programs. The 
same results were subsequently generalized by Bazaraa and 
Goode (1973) to arbitrary cones. Nanda (1988) studied 
symmetric duality for a pair of  nonlinear mixed integer 
programs involving arbitrary cone under invexity. 

Mond (1974) initiated second order symmetric duality of  
Wolfe type in nonlinear programming and also indicated 
possible computational advantages of  second order dual 
over the first order dual. Later, Bector and Chandra (1986) 
presented a pair of  Mond-Weir type second order dual 
programs and proved weak, strong and self  duality 
theorems under pseudobonvexity – pseudoboncarity. Devi 
(1998) constructed a pair of  second order symmetric dual 
programs over cones and studied duality for the same; but 
this formulation of  second order symmetric dual programs 
seems quite strange and apparently different from the 
traditional Wolfe type second order symmetric dual 
programs of  Mond (1974) as well as Mond-Weir type 
second order symmetric dual programs formulated by 
Bector and Chandra (1986). 

In (1969) Balas presented a pair of  Wolfe type first order 
minimax mixed integer symmetric dual programs as a 

generalization of  the results of  Dantzig et al. (1965), while 
in (1995) Kumar et al., Husian and Chandra (1981) dealt 
with Mond-Weir type first order maximin mixed integer 
symmetric dual programs. Later, Gulati and Ahmed (1997) 
formulated second order maximin mixed integer symmetric 
dual programs and proved various duality theorems 
including self  duality theorem. 

In this research, we formulate Wolfe type second order 
dual programs with cone constraints and prove weak, 
strong, converse and self  duality theorems under 
bonvexity – boncavity condition. Further, we generalize 
these Wolfe type dual programs to maximin second order 
dual programs by constraining some of  the components of  
the two variables of  the programs to belong to arbitrary 
sets. For integers of  these programs also, symmetric as well 
as self  duality is incorporated. Particular cases are 
generated from our results. 

 
2. NOTATIONS AND PRE-REQUISITES 

Let Rk denote the k-dimensional Euclidian space. Let Γ 
be a closed convex cone with nonempty interior in Rk. 
 
Definition 1. The positive polar cone Γ* of  Γ is defined by 
 

{ }0, for allTR x xξ ξ∗Γ = ∈ ≥ ∈ Γ   

 
where xT denotes the transpose of  x. 
 

Let f(x, y) be a twice differentiable real valued function 
on an open set in Rn × Rm. Then ( , )x f x y∇  and 
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( , )y f x y∇  denote gradient vectors with respect to x and 

y respectively evaluated at ( , ).x y  2 ( , )x f x y∇  and 
2 ( , )y f x y∇  are respectively the n × n and m × m 

symmetric Hessian matrices. 2( ( , ))y
i

f x y
y
∂

∇
∂

 is the m × 

m matrix obtained by differentiating the elements of  
2 ( , )y f x y∇  with respect to yi and 2( ( , ) )y yf x y p∇  

denotes the matrix whose (i, j) the element is 
∂

∇
∂

2( ( , ) ) .y j
i

f x y p
y

 

 
Definition 2. Let C1 and C2 be closed convex cones in Rn 
and Rm respectively. A twice differentiable function f : C1 × 
C2 → R is said to be  
 
(i) Bonvex in x, if  for all x, q, u ∈ C1 and fixed y 
 

2 2

( , ) ( , )
1( , ) ( , ) ( , ) ( , )
2

T T
x x x

f x v f u v

x u f u v f u v q q f u v q

−

 ≥ ∇ + ∇ − ∇ 
 

 
(ii) Boncave in y, if  for fixed x and for all y, p, v ∈C2 
 

2

2

( , ) ( , )

( ) ( , ) ( , )

1 ( , )
2

T
y y

T
y

f x v f x y

v y f x y f x y p

p f x y p

−

 ≤ − ∇ + ∇ 

− ∇

 

 
(iii) Skew-symmetric, when both C1 and C2 are in Rn and 

C1 = C2 = C (say), and  
 

= −( ,  ) ( ,  ),f x y f x y for all x ∈ C and y ∈ C. 
 
In the sequel, we shall require the Fritz John type 

necessary optimality conditions derived by Bazaraa and 
Goode (1973) and which are embodied in the following 
proposition. 

 
Proposition 1. Let X be a convex set with nonempty 
interior in Rn and C be a closed convex cone in Rm. Let F 
be real valued function and G be a vector valued function, 
both defined on X. 
 
Consider the problem: 
 
(P0): Minimize F(z) 
 Subject to G(z) ∈ C and z ∈ X 
 

If  z solves the problem (P0), then there exist α0 ∈ R and 
δ ∈ C* such that 
 

0 0 0 0( ) ( ) ( ) 0 for all ,
TTF z G z z z z Xα δ ∇ + ∇ − ≥ ∈   

0( ) 0T G zδ =  

0( , ) 0α δ ≥  

0( , ) 0α δ ≠  
 

The following concept of  separability (Balas (1969)) is 
also needed in the subsequent analysis of  this research. 

 
Definition 3. Let 1 2, ,  ..., ps s s be elements of  an 
elementary vector space. A real valued function 

1 2
0 ( , ,  ..., )pH s s s  will be called separable with respect to 

1s  if  there exist real-valued function 1
1( )H s (independent 

of  2 ,  ..., )ps s  and 2
2 ( ,  ..., )pH s s  (independent of 1 ),s  

such that 
 

= +1 2 1 2
0 1 2( , , ..., ) ( ) ( , ..., ).p pH s s s H s H s s  

 
3. SECOND ORDER SYMMETRIC AND SELF 

DUALITY 

In this section, we consider a pair of  second order 
symmetric dual nonlinear programs with cone constraints 
and establish appropriate duality theorems. 

Consider the following two programs: 
Primal Problem 
 
(SP): Minimize =( , , ) ( , )G x y p f x y  

( )2

2

                                        ( , ) ( , )

1                                        ( , )
2

T
y y

T
y

y f x y f x y p

p f x y p

− ∇ + ∇

− ∇

     Subject to 2 *
2( , ) ( , )y yf x y f x y p C−∇ − ∇ ∈     (1) 

1 2( , )x y C C∈ ×                  (2) 
 
and Dual Problem 
 
(SD): Maximize ( , , ) ( , )H x y q f x y=  

( )2

2

                                          ( , ) ( , )

1                                          ( , )
2

T
x x

T
x

x f x y f x y q

q f x y q

− ∇ + ∇

− ∇

     Subject to 2 *
1( , ) ( , )x xf x y f x y q C∇ + ∇ ∈       (3) 

1 2( , )x y C C∈ ×                  (4) 
 
where  
 
(i) f: C1 × C2 → R is a twice differentiable function, 
(ii) C1 and C2 are closed convex cones with nonempty 

interior in Rn and Rm, respectively, 
(iii) *

1C  and *
2C  are positive polar cones of  C1 and C2 

respectively. 
 

Theorem 1 (Weak duality). Let (x, y, p) and (u, v, q) be 
feasible solutions of  (SP) and (SD) respectively. Assume 
that f(⋅, y) is bonvex with respect to x for fixed y and f(x, ⋅) 
is boncave with respect to y for fixed x for all feasible (x, y, 
p, u, v, q). 
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Then 
 

infimum (SP) ≥ supremum (SD). 
 
Proof. By bonvexity of  f(⋅, y), we have 
 

( , ) ( , )f x v f u v−

2 21
( ) ( , ) ( , ) ( , )

2
T T

x x xx u f u v f u v q q f u v q ≥ − ∇ + ∇ − ∇   (5) 

 
and by boncavity of  f(x, ⋅), we have 
 

2( , ) ( , ) ( ) ( , ) ( , )T
y yf x v f x y v y f x y f x y p − ≤ − ∇ + ∇   

21
                           ( , )

2
T

xp f x y p− ∇               (6) 

 
Multiplying (6) by (–1) and adding the resulting 

inequality to (5), we obtain 
 

( )

( )

2 2

2 2

1( , ) ( , ) ( , ) ( , )
2

1( , ) ( , ) ( , ) ( , )
2

T T
y y y

T T
x x x

f x v y f x y f x y p p f x y p

f u v u f u v f u v q q f u v q

 − ∇ +∇ − ∇  
 − − ∇ +∇ − ∇  

 

2( , ) ( , )T
x xx f u v f u v q ≥ ∇ + ∇   

2( , ) ( , ) .T
y yv f x y f x y p − ∇ + ∇                    (7) 

 
Now since x ∈ C1 and ∇ + ∇ ∈2 *

1( , ) ( , ) ,x xf u v f u v q C  
we have 
 

2( , ) ( , ) 0T
x xx f u v f u v q ∇ + ∇ ≥                    (8) 

 
and since v ∈ C2 and − ∇ + ∇ ∈2 *

2[ ( , ) ( , )] ,y yf x y f x y C  we 
have 
 

2( , ) ( , ) 0T
y yv f x y f x y p − ∇ + ∇ ≥                 (9) 

 
The inequality (7) together with (8) and (9), yields, 

 
2 2

2 2

1
( , ) [ ( , ) ( , ) ] ( , )

2
1( , ) [ ( , ) ( , ) ] ( , )
2

T T
y y y

T T
x x x

f x y y f x y f x y p p f x y p

f u v u f u v f u v q q f u v q

− ∇ + ∇ − ∇

≥ − ∇ + ∇ − ∇

 
This implies 

 
infimum (SP) ≥ supremum (SD). 

 
Theorem 2 (Strong duality). Let ( , , )x y p  be an 
optimal solution of  (SP). Also let 
 
(A1): the matrix 2 ( , )y f x y∇  is non singular, and 

(A2): 
2( ( , ) )y y f x y p∇ ∇  be negative definite. 

Then ( , ,  0)x y q =  is feasible for (SD) and the 
objective values of  the programs (SP) and (SD) are equal. 
Moreover, if  the requirements of  Theorem 1 are fulfilled, 
then ( , ,  )x y q  is an optimal solution of  (SD). 
 
Proof. We use Proposition 1 to prove this theorem. Here  
z = (x, y, p), ( , , )z x y p= , x ∈ C1, p ∈ Rm and y ∈ C2  
 

( )2

2

( ) ( , ) ( , ) ( , )

1 ( , )
2

T
y y

T
y

F z f x y y f x y f x y p

p f x y p

= − ∇ + ∇

− ∇
 

 
2 *

2( ) ( , ) ( , )  and y yG z f x y f x y p C C= −∇ + ∇ =  
 

Since ( , , )x y p  is an optimal solution of  (SP), by 
Proposition 1, there exist α ∈ R and β ∈ *

2C  such that 
 

2

( , ) ( ) ( , )

( ) ( , ) ( )
2

x x y

x y

f x y y f x y

py f x y p x x

α α β

α
α β

 ∇ − + ∇ ∇

− + + ∇ ∇ −
 

2( ) ( , )yy p f x yα α β− + + ∇  

2( ) ( , ) ( ) 0
2 x y
p

y f x y p y y
α

α β + + + ∇ ∇ − ≥         (10) 

2( ) ( , ) 0yy p f x yα α β+ + ∇ =                    (11) 
2( , ) ( , ) 0T

y yf x y f x y pβ  ∇ + ∇ =                (12) 
( , ) 0α β ≥                                   (13) 
( , ) 0α β ≠                                   (14) 
 
The relation (11), in view of  the hypothesis (A1), gives 
 
β α= − +( ).y p                               (15) 
 

It follows that α ≠ 0, for if  α = 0, (15) implies β = 0. 
Hence (α, β) = 0 contradicts (14). Thus α > 0. 

Now putting x x= and using (15) in (10), we obtain, 
 

α  ∇ ∇ − ≥ 
2( ) ( ( , ) ) ( ) 0

2
T

y y
p

f x y p y y , for all y ∈ C2. 

 
Putting y p y= +  and using α > 0, from the above 

inequality 
 

2( ( , ) ) 0T
y yp f x y p p ∇ ∇ ≥   

 
which, because of  (A2), yields, 
 

0p =                                       (16) 
 
Using (15) and (16) along with α > 0 in (10) we have 
 
∇ − ≥( , )( ) 0,x f x y x x for all x ∈ C1                    (17) 
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Since C1 is closed convex cone, therefore, for each x ∈ C1 
and 1x C∈ , it implies 1x x C+ ∈ . Now, replacing x by 
x x+  in (17), we have 
 

( )2( , ) ( , ) 0 0T
x xx f x y f x y∇ + ∇ ⋅ ≥                (18) 

 
This implies 

 
∇ + ∇ ⋅ ∈2 *

1( , ) ( , ) 0 .x xf x y f x y C  
 

Thus ( , ,  0)x y q =  is feasible for (SD). 
Putting x = 0 in (17) and x = x  in (18), we have 
respectively 
 

( )2( , ) ( , ) 0 0T
x xx f x y x y∇ + ∇ ⋅ ≤  

 
and 
 

( )2( , ) ( , ) 0 0.T
x xx f x y x y∇ + ∇ ⋅ ≥  

 
These together implies 
 

( )2( , ) ( , ) 0 0.T
x xx f x y x y∇ + ∇ ⋅ =                (19) 

 
Using yβ α=  and 0p =  along with α > 0 in (12), we 
have 
 

( )2( , ) ( , ) 0 0T
y yy f x y x y∇ + ∇ ⋅ =                (20) 

 
Consequently, we obviously have, 
 

(
)

(

)

2 2

2 2

( , , ) ( , ) ( , )

1( , ) ( , )
2

( , ) ( , )
1( , ) ( , )
2

( , , )

T
y

T
y y

T
x

T
x x

G x y p f x y y f x y

x y p p f x y p

f x y x f x y

x y q q f x y q

H x y q

= − ∇

+∇ − ∇

= − ∇

+∇ − ∇

=

 

 
That is, the objective values of  (SP) and (SD) are equal. 

By Theorem 1, the optimality of  ( , ,  )x y z  for (SD) 
follows. 

 
We will only state a converse duality theorem (Theorem 

3) as the proof  of  this theorem would follow analogously 
to that of  Theorem 2. 
 
Theorem 3 (Converse duality). Let ( , ,  )x y q  be an 
optimal solution of  (SD). Also let 
 
(C1): the matrix 2 ( , )x f x y∇  is nonsingular, and 
(C2): 2( ( , ) )x x f x y q∇ ∇  be a positive definite. 

Then ( , , 0)x y p =  is feasible for (SP) and the 
objective values of  (SP) and (SD) are equal. Furthermore, 
if  the hypotheses of  Theorem 1 are met, then ( , , )x y p  is 
an optimal solution of  (SP). 

 
Theorem 4 (Self  duality). Let f: Rn × Rm → R be skew 
symmetric and C1 = C2, then (SP) is self  dual. Furthermore, 
if  (SP) and (SD) are dual programs and ( , , )x y s  is an 
optimal solution for (SP), then =( , , 0)x y p  and 
( , , 0)y x q =  are optimal solutions for (SP) and (SD), 
and ( , , ) 0 ( , , )G x y p H x y q= = . 
 
Proof. Recasting the problem (SD) as a minimization 
problem, we have 
 
(SD)1:  

( ){
}

2

2

Minimize ( , ) ( , ) ( , )

1                ( , )
2

T
x x

T
x

f x y x f x y f x y q

q f x y q

− − ∇ + ∇

− ∇
 

 
Subject to 2 *

1( , ) ( , )x xf x y f x y q C∇ + ∇ ∈  
    1 2( , )x y C C∈ × . 

 
Since f is skew symmetric, 
 

( , ) ( , )x yf x y f y x∇ = −∇   
 
and 
 

2 2( , ) ( , );x yf x y f y x∇ = −∇  
 
and C1 = C2, the problem (SD)1 becomes 
 

{
}

2

2

Minimize  ( , ) ( ( , ) ( , ) )

1                  ( , )
2

T
y y

T
y

f x y x f x y f x y q

q f x y q

− ∇ +∇

− ∇
 

Subject to 2 *
2( , ) ( , )y yf y x f y x q C−∇ − ∇ ∈  

1 2( , )x y C C∈ ×  
 
which is just the primal problem (SP). Thus (SP) is self  
dual. Hence if  ( , , )x y q  is an optimal solution for (SP), 
then and conversely, Also, =( , , ) ( , , ).G x y p H x y q  

Now we shall show that ( , , ) 0.G x y p =  
 

( )2( , , ) ( , ) ( , ) ( , )T
y yG x y p f x y y f x y f x y p= − ∇ + ∇  

21
( , )

2
T

yp f x y p− ∇                     (21) 

 
Since 2y C∈  and 2 *

2( , ) ( , ) ,y yf x y f x y p C−∇ − ∇ ∈  
therefore, we have 
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( )2( , ) ( , ) 0.T
y yy f x y f x y p− ∇ + ∇ ≥               (22) 

 
Using (22) in (21), we have 
 

21
( , , ) ( , ) ( , )

2
T

yG x y p f x y p f x y p≥ − ∇ . 

 
Using the conclusion 0p =  of  Theorem 2, we get 
 

≥( , , ) ( , ).G x y p f x y                           (23) 
 

Similarly, in view of  x ∈ C1 together with 
2 *

1( , ) ( , )y yf x y f x y q C∇ + ∇ ∈ , and 0q = , we have 
 

≤( , , ) ( , ).H x y q f x y                          (24) 
 
By Theorem 2, we have 
 

≤ = ≤( , ) ( , , ) ( , , ) ( , ).f x y G x y p H x y q f x y  
 
This implies 
 

= = = = −( , , ) ( , , ) ( , ) ( , ) ( , ).G x y p H y x q f x y f y x f x y  
 
Consequently, we have 
 

( , , ) 0G x y p = . 
 
4. MAXMIN SYMMETRIC AND SELF DUALITY 

Let U and V be two arbitrary sets of  integers in 1nR  
and 1mR  respectively. Let K1 and K2 be closed convex 
cones with nonempty interiors in − 1 ,n nR  and − 1 ,m mR  
respectively. Let f(x, y) be a real valued function defined on 
an open set in n mR R×  containing S × T where        
S = U × K1 and T = V × K2. Let *

iK  (i = 1, 2) be the 
polars of  Ki. 

We consider the following pair of  nonlinear mixed 
integer programs: 

 
Primal Problem 
 

( )
1 2

2 2

2

, ,

2 2

2

(MSP):  ( , , )

          ( , ) ( ) ( , ) ( , )

1          ( , )
2

x x y s

T
y y

T
y

Max Min x y s

f x y y f x y f x y s

s f x y s

φ

= − ∇ + ∇

− ∇

 

Subject to 2 2
2 *

2( , ) ( , )y yf x y f x y s K−∇ − ∇ ∈  

∈ ∈ ×1 2
1,  ( , ) .x U x y K T  

 
and  
 
Dual Problem 
 

(
)

1 2

2

2 2

, ,

2

2 2

(MSD):  ( , , )

           ( , ) ( ) ( , )

1            + ( , ) ( , ) ( ) ( , )
2

y x y r

T
x

T T
x x

Min Max x y r

f x y x f x y

f x y r f x y r f x y r

ψ

= − ∇

∇ − ∇

 

Subject to 2 2
2 *

1( , ) ( , )
x x

f x y f x y r K∇ + ∇ ∈  
1 2

2,  ( , )y V x y S K∈ ∈ ×  
 
where 1m ms R −∈  and 1 .n nr R −∈  
 

Also their feasible solutions will be denoted by 
 

2 2

1 2
1

2 *
1

{( , , )| ,( , ) ,

         ( , ) ( , ) }
x x

A x y s x U x y K T

f x y f x y r K

= ∈ ∈ ×

∇ + ∇ ∈
 

 

2 2

1 2
2

2
2

{ , , } ,( , ) ,

       ( , ) ( , ) }.
y y

B x y r y V x y S K

f x y f x y s K ∗

= ∈ ∈ ×

− ∇ − ∇ ∈
 

 
Theorem 5 (Symmetric duality). Let ( , , )x y s be an 
optimal solution of  (MSP). Also, Let 
 
(i) f(x, y) be separable with respect to x1 or y1, 
(ii) f(x, y) be bonvex in x2 for every (x1, y), and boncave in 

y2 for every (x, y1), 
(iii) f(x, y) be thrice differentiable in x2 and y2, 
(iv) 2

2 ( , )y f x y∇  is non singular, and  

(v) 2 2
2( ( , ) )y y f x y s∇ ∇  is negative definite. 

 
Then 
 
(a) 0s =  
(b) 2

2( ) ( , ) 0T
x

x f x y∇ =  
(c) ( , , 0) ( , , 0)x y s x y rφ ψ= = = , and 
(d) ( , , )x y r is an optimal solution of  (MSD) 
 
Proof. Let 
 

1 2 , ,
{ ( , , ) : ( , , ) }

x x y s
Z Max Min x y s x y s Aφ= ∈  

 
and 
 

1 2, ,
{ ( , , ) : ( , , ) }

y x y r
W Min Max x y r x y r Bψ= ∈  

 
Since f(x, y) is separable with respect to x1 or y1 (say, with 

respect to x1), it follows that 
 

1 1 2 2( , ) ( ) ( , ).f x y f x f x y= +                    (25) 
 

Therefore, 2 ( , )
y

f x y∇ = 2
2 2( , )y f x y∇ and 

2
2 ( , )y f x y∇  =  2

2 2 2( , ).y f x y∇  
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Now Z can be rewritten as 
 

{ (
) }

2
1 2

2 2

1 1 2 2 2 2 2

, ,

2 2 2 2

( ) ( , ) ( ) ( , )

1
                       ( , ) ( , )

2

T
yx x y s

T
y y

Z Max Min f x f x y y f x y

f x y s s f x y s

= + − ∇

+∇ − ∇
 

}
{

(

2 2

1 2 21

2

2 2 2 2 2 *
2

2 2 1 1
1 2

1 1 2 2

, ,

2 2 2

subject to ( , ) ( , )

                 ( , ) ,  and 

                = ( ) ( , )

                                            ( ) ( , )

   

y y

x x y sy

T
y

f x y f x y s K

x y K K x U y V

Max Min Min f x f x y

y f x y

− ∇ − ∇ ∈

∈ ∈ ∈

+

− ∇

)
}

2

2

2 2 2

2 2 2

                                         ( , )

1                                            ( , ) ,
2

y

T
y

f x y s

s f x y s

+∇

− ∇

 

 
or 
 

1 1

1 1 1 1 1 1{ ( ) ( ) , }
x y

Z Max Min f x y x U y V= + Θ ∈ ∈     (26) 

 
where 
 

({
) }

2
2 2

2 2

1 1
0

2 2 2 2 2

, ,

2 2 2 2 2 2

(MSP) : ( )

            ( , ) ( ) ( , )

1                         ( , ) ( , )
2

T
yx y s

T
y y

y

Min f x y y f x y

f x y s s f x y s

Θ

= − ∇

+∇ − ∇

 

Subject to 2 2
2 2 2 2 2 *

2( , ) ( , )y yf x y f x y s K−∇ − ∇ ∈  
2 2

1 2( , )x y K K∈ × . 
 

Similarly, 
 

1 1

1 1 2 1 1 1{ ( ) ( ) , }
y x

W Min Max f x y x U y V= + Θ ∈ ∈      (27) 

 
where 
 
(MSD)0: 2 1( )yΘ  

{ (

) }

2
2 2

2 2

2 2 2 2 2

, .

2 2 2 2 2 2

( , ) ( ) ( , )

1           ( , ) ( , )
2

T
xx y r

T
x x

Min f x y x f x y

f x y r r f x y r

= − ∇

+∇ − ∇
 

Subject to 2 2
2 2 2 2 *

1( , ) ( , )
x x

f x y f x y r K∇ + ∇ ∈  
2 2

1 2( , )x y K K∈ × . 
 

For any given y1, the program (MPS)0 and (MPD)0 are a 
pair of  second order symmetric dual nonlinear program 
involving cone treated in the proceeding section and hence 
in view of  assumptions (ii)-(v), Theorem 2 becomes 
applicable. 

Therefore, for 1 1y y=  we have 
 

2
2 2 20,  ( ) ( , ) 0T

x
s x f x y= ∇ =                (28) 
 
and  
 

1 1 2 1( ) ( )y yΘ = Θ                              (29) 
 

It remains to show that ( , ,  0)x y r =  is optimal for 
(MSD). If  this is not the case, there exists *1y V∈  such 
that 2 *1 2 1( ) ( ).y yΘ < Θ  But then, in view of  the 
assumptions (iv) and (v), we have 
 

1 1 2 1 2 *1 1 *1( ) ( ) ( ) ( ),y y y yΘ = Θ > Θ = Θ  
 
which contradicts the optimality of  2 2( , , 0)x y s =  for 
(MSP). Hence ( , , 0)x y r = is an optimal solution for 
(MSD). 

Also, (25) and (28) prove (b), whereas φ =( , , 0)x y s  
ψ= =( , , 0)x y r  follows form (26), (27) and (29). 
 
As earlier, here to, the converse duality theorem 

(Theorem 6) will be merely stated. 
 
Theorem 6 (Converse duality). Let ( , , )x y r be an 
optimal solution of  (MSD), also let 
 
(i) f(x, y) be separable with respect to x1 and y1 
(ii) f(⋅, y) be bonvex in x2 for every (x1, y), and boncave in 

y2 for every (x, y1), 
(iii) f(x, y) be thrice differentiable in x2 and y2, 
(iv)  2

2 ( , )
x

f x y∇  is non singular, 

(v) 2 2
2( ( , ) )

x x
f x y r∇ ∇  is positive definite. 

 
Then 
 
(e) 0r =  
(f) 2

2( ) ( , ) 0T
yy f x y∇ =  

(g) ( , , 0) ( , , 0)x y s x y rφ ψ= = =  and 
(h) ( , , )x y s  is an optimal solution of  (MSP). 
 
Theorem 7 (Self  duality). Let f : Rn × Rm → R be skew 
symmetric. Then (MSP) is self  dual. Further, if  (MSP) and 
(MSD) are dual programs and ( , , )x y s is an optimal 
solution for (MSP), then ( , , 0)x y s =  and ( , , 0)x y r =  
are optimal solution for (MSP) and (MSD) respectively, and 

( , , ) 0 ( , , )x y s x y rφ ψ= = . 
 
Proof. The proof  follows along the lines of  proof  of  
Theorem 4. 
 
5. SPECIAL CASES 

If  1
nC R+=  and 2

mC R+=  where nR+  and mR+ are 
nonnegative orthants in Rn and Rm, then the problems (SP) 
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and (SD) will reduce to the following problems treated by 
Mond (1974): 

 
Primal (P):  

0Minimize ( , , )G x y p ( , ) ( , ) T
yf x y y f x y= − ∇  

2 21
( , ) ) ( , )

2
T

y yf x y p p x y p+∇ − ∇  

Subject to 2( , ) ( , ) 0,y yf x y x y p∇ + ∇ + ≤   
0, 0,x y≥ ≥  

 
and 
 
Dual (D):  

0Maximize ( , , ) ( , ) ( , )T
xH x y q f x y y f x y= − ∇  

2 21
( , ) ) ( , )

2
T

x xf x y p q x y q+∇ − ∇ +  

Subject to 2( , ) ( , ) 0x xf x y f x y q∇ + ∇ ≥  
0, 0x y≥ ≥ . 

 
It is to be remarked that y ≥ 0 and x ≥ 0 can be deleted 

respectively from the problems (P) and (D) as these 
constraints are not essential. 

If  only p and q are required the zero vectors, then our 
problem (SP) and (SD) become the following (first order) 
symmetric dual programs over cones studied by Bazaraa 
and Goode (1973): 

 
Primal (P0):  
Minimize ( , ) ( , )T

yf x y y f x y− ∇  

Subject to *
2( , )y f x y C−∇ ∈ , 

1 2( , )x y C C∈ × , 
 

Dual (D0):  
Maximize ( , ) ( , )T

xf x y x f x y− ∇  
Subject to *

1( , )x f x y C−∇ ∈ , 

1 2( , ) .x y C C∈ ×  
 

Finally, if  U and V are empty sets and p = s and r = q, 
Then (MSP) and (MSD) will become, the problems (SP) 
and (SD) considered in Section 3. 
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