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AbstractThis paper proposes inventory models for an environment where the approval time of  the production batches 
is an important problem variable. The model is motivated by industries, such as the Pharmaceutical, where a batch is 
produced and then withheld for a certain period pending release and disposition. The paper proposes a series of  cost 
functions that combine the classical EOQ model with a post-production hold time cost component when considering a 
single-tier, and a dual-tier manufacturing system. Optimal batch sizes are derived for various cases of  the post-production 
hold time and numerical examples are presented. Finally, we present a practical application example where the proposed 
inventory model is utilized to support business decision-making. 
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1. INTRODUCTION 

The pharmaceutical industry is faced with new 
challenges as it must now focus on cost reduction and 
improvements in manufacturing efficiency. In the past, 
reliance on blockbuster drugs with large profit margins 
resulted in complacency with relatively inefficient 
manufacturing operations. Today, pharmaceutical 
companies are looking into the implementation of  lean and 
six sigma concepts, and the development of  models and 
software tools that will allow higher resource utilization, 
cost reduction and better customer service. This research is 
motivated by a production problem in the pharmaceutical 
industry where the release time (post production hold time) 
is related to the batch size. While in the traditional 
economic production quantity (EPQ) model consumption 
can occur at the same time as production, in a variety of  
settings such as the pharmaceutical, products undergo 
quality evaluations that hold the completed batch until 
released for transportation and customer use, with this 
post-production hold time possibly being a function of  the 
batch size, thus smaller batches could require just a few 
hours, while larger batches could require days. This 
research contributes to the literature in inventory models 
by addressing the case where the post-production holding 
time represents a considerable cost and therefore should be 
taken into consideration in the batch size decision-making 
process. It is common in the pharmaceutical industry to 
observe cases where the post-production hold time is 
longer than the actual manufacturing time. 

Our model extends the economic production quantity 
problem to include post-production hold time. The EPQ 

problem has been extensively studied in operations 
research. From the the basic single-stage, single-item lot 
sizing models a number of  variants and improved versions 
have been developed and published (Beltran and Krass 
(2002)) and multiple researchers have developed multi-item 
or multi-stage models to relax the single-item constraint 
(Kaminsky and Simchi-Levi (2003)). For example, Kreng 
and Wu (2000a) developed a multi-item model that 
considers the production rate as an adjustable parameter in 
the determination of  the economic production quantity. 
Kreng and Wu (2000b) also developed an EPQ model that 
includes a setup reduction capability in the decision process. 
Chiu (2003) considered a variant in which a proportion of  
defective items are produced and are withheld for posterior 
repair or disposition, with backorders permitted. Hsu 
(2003) developed an economic lot size model for 
perishable products with age-dependent inventory and 
backorder costs. Giri and Chaudhuri (1998) developed 
EOQ models for perishable products where the demand is 
a function of  the on-hand inventory. Sarker and Parija 
(1996) and Parija and Sarker (1999) developed models that 
combines the ordering policy for raw materials with the 
determination of  the batch size for the manufacturing of  a 
product to be delivered on fixed intervals. Hall (1996) 
integrated the distribution system (i.e., cost of  
transportation) into the total cost function to examine its 
effects on EPQ decisions. 

Recent models aim at integrating various elements of  
the supply chain in the inventory optimization problem. 
Sarker and Khan (2001) worked on a problem that 
considers the raw material ordering quantities and the 
finished product production quantities in a single model 

International Journal of 
Operations Research 

1813-713X Copyright © 2007 ORSTW 



Ruiz-Torres and Santiago: Inventory Models Considering Post-production Holding Time and Cost 
IJOR Vol. 4, No. 4, 220−229 (2007) 
 

221 

that minimizes the combined system costs. Lee (2005) 
considers a single product supply chain and considers the 
batch sizes for delivery to the customer, for production of  
the finished good, and for the manufacturer of  the main 
raw material component. Thus the model seeks to 
minimize the ordering/setup costs and the holding costs 
for the buyer, manufacturer and supplier. This research is 
in line with the supply chain perspective as it considers two 
levels of  production (supplier and manufacturer). This 
problem is also relevant in the Pharmaceutical industry as 
the production of  the active ingredient is tightly linked/ 
coordinated to the production of  the finished product (e.g. 
tablets), and both production stages are often elements of  
the same corporation. 

However, none of  the variants found in the literature 
have considered a production model applicable to 
industries that have a holding time after completion of  a 
batch, and then ship out the entire batch at once instead of  
over time. There is a significant cost issue here as small 
batches with short release times result in high setup costs 
and small holding costs, with large batches with longer 
release times result in reduced setup costs but larger 
holding costs. This paper proposes a model to address this 
relevant issue. The paper is organized as follows. Section 2 
presents the basic problem. Section 3 describes the model 
when considering a single-tier system. Section 4 provides a 
numerical example of  the single-tier problem. Section 5 
describes the two-tier problem. Section 6 discusses two 
cases of  the two-tier problem and presents numerical 
examples. Finally, Section 7 summarizes the work and 
presents directions for future work. 

 
2. BASIC PROBLEM DEFINITION 

We consider single-tier and two-tier inventory control 
problems where one finished product is manufactured. The 
manufacturer produces the product in batches and a batch 
cannot be released to the customers until a release time is 
complete. Thus the model assumes no consumption during 
production; until the complete batch is produced and 
released. Three costs are considered: the production setup 
cost, the holding cost during production, and the holding 
cost during post production waiting disposition and release. 
Our objective is to develop economic lot size models to 
minimize the total costs to the system considering various 
release time functions. The inventory pattern is illustrated 
in Figure 1.  

The following notation is used throughout the 
remaining of  the paper. 

 
D Annual demand of  the buyer. 
sj Setup cost per batch for tier j. 
cj Cost of  finished product at tier j. 
Qj Production batch size at tier j. 
pj Production time per unit at tier j. 
rj Release time per unit at tier j. 
tpj Production time per batch at tier j. 
trj Release time per batch, time units at tier j. 
T Total time units per year. 

i Annual capital cost per dollar invested in inventory. 
n Ratio of  tier 0 batches to be produced per tier 1 

batch. 
x Function that results in the nearest integer equal to 

or exceeding x (e.g. 2.2 = 3). 
x Function that results in the nearest integer equal to 

or not exceeding x (e.g.  2.2  = 2). 
 

tpj trj

Qj

 
Figure 1. The inventory pattern with post-production 

hold time. 
 
We assume all costs are independent of  order size. The 

inventory does not change in value with a change in 
delivery time (it will be accepted by the customers when it 
is released) and inventory is not perishable (e.g. 
Pharmaceutical Products have a set life, typically 1-5 years). 
Production time per unit is assumed to follow a linear 
relationship ( =j j jtp Q p ). The cost and time required to 
transport materials between the two-tiers, as well as the 
setup time are factors not considered in this study. 
 
3. THE SINGLE-TIER PROBLEM COST 

EQUATIONS  

In the case of  a single-tier problem, the cost model 
resembles the traditional EPQ model. We let j = 0 
represent the single-tier and the costs equations are as 
follow. Eq. (1) describes the Annual Setup Cost while Eq. 
(2) describes the Annual Holding Costs. Total costs are the 
sum of  Eqs. (1) and (2). 
 

= 0 0/ASC s D Q        (1) 

0 0 0( 2 )/ 2= +AHC c iD tp tr T          (2) 
 

To determine the optimal lot size ∗
0Q , we differentiate 

the total cost equation with respect to Q, and set it equal to 
zero (dTC/dQ = 0). We first assume tr0 is a constant and 
not related to the batch size and 0 0 0 .tp Q p=  Therefore, 
for this case, the optimal batch size, 0 ,Q∗  is as in Eq. (3), 
which becomes the traditional EOQ equation if  0 ,=T Dp  
implicating constant production (consumption for an 
EOQ model). Clearly, the time available must be larger that 
the time used, 0 .T Dp≥  We now change the assumption 
regarding the release time tr0 and model it as 0 0 0 .tr Q r=  
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In this case, differentiation results in Eq. (4), and Eq. (5) 
provides 0 ,Q∗  the optimal batch size when 0 0 0 .tr Q r=  

 
1

2
0 0 0 0(2 /( ))∗ =Q s T c ip                          (3) 

2 2
0 0 0 0 02 2 /( )oQ p Q r s T c i+ =                    (4) 

1
2

0 0 0 0 0(2 /( (2 )))∗ = +Q s T c i r p                    (5) 
 
4. NUMERIC EXAMPLES FOR THE SINGLE- 

TIER MODEL 

We assume D = 2,000, s0 = $400, i = 20%, c0 = $250,  
p0 = 0.225, and T = 500 (some of  these values were used 

by Lee (2005)). The selected experimental values are not 
intended to represent a particular application or industry, 
instead to demonstrate the sensitivity of  the model to the 
cost and time parameters. Table 1 presents the results when 
r0 is considered at three levels, 0.1, 0.3, and 0.5 time units; 
s0 is considered at two levels, $400 and $200; and c0 at two 
levels, $250 and $125. Similar to the traditional EOQ 
model, a decrease in the setup cost results in a reduction in 
batch size, while a reduction in per unit cost results in a 
higher batch size. As the per unit release time increases, the 
batch size decreases as holding costs increase with an 
increase in r0, thus obviously total costs increase as r0 
increases, but in a non-linear fashion.  

 
Table 1. Numerical examples when release time is related to the batch size 

s0 c0 r0 
∗
0Q  

PRODUCT 

ASC 
$ 

AHC 
$ 

TC 
$ 

400 250 0.1 137.2 5,831 5,831 11,662 
  0.3 98.5 8,124 8,124 16,248 
  0.5 80.8 9,899 9,899 19,799 
 125 0.1 194.0 4,123 4,123 8,246 
  0.3 139.3 5,745 5,745 11,489 
  0.5 114.3 8,000 6,125 14,125 

200 250 0.1 97.0 4,123 4,123 8,246 
  0.3 69.6 5,745 5,745 11,489 
  0.5 57.1 7,000 7,000 14,000 
 125 0.1 137.2 2,915 2,915 5,831 
  0.3 98.5 4,062 4,062 8,124 
  0.5 80.8 4,950 4,950 9,899 

 

 
Figure 2. The two-tier problem. 

Tier 1 Tier 0 

Tier 1 

Finished 

Product 

Tier 0 

Finished 

Product 

Q1 

Q0 

Q0 = 2Q1 

Tier 1 Tier 0 

Q0 

Q1 

Q0 = 1/3 Q1 
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5. THE TWO-TIER PROBLEM COST 
EQUATIONS 

This model assumes a first tier manufacturer (j = 1) 
feeding the end product manufacturer (j = 0). The model 
assumes that either the batch size of  the tier 1 
manufacturer is an integer multiplier of  the batch size of  
the tier 0 manufacturer or vice versa (e.g. 1/n is an integer 
value). An example for both cases is presented in Figure 2. 
As in the single-tier case, three costs are considered: setup 
costs, production holding costs, and post-production 
holding costs. The decision variables are 1Q  and n given 

0 1=Q nQ . 
The Annual Setup Costs per tier are /j js D Q  given 

there are /D Q  cycles. Therefore Eq. (6) includes all the 
costs with n and 1Q  as the decision variables. When n and 

1Q  increase, setup costs decrease. 
 

1 1 0 1 1 0 1/ /( ) ( ) /( )= + = +ASC s D Q s D nQ ns s D nQ     (6) 
 
The holding costs for the Tier 1 element of  the chain 

are incurred during production, during release time, and 
finally during consumption by the Tier 0 element. The 
three areas to be included in the holding cost equation 
when n ≥ 1 are presented in Figure 3. Given the maximum 
inventory amount when n ≥ 1 is 0 ,Q  the three areas are 
defined as: 1 0 1 /(2 ),=a Q ntp T  =2 0 1 / ,a Q tr T  and 

3 0 0 /(2 ).=a Q tp T  There are 0/D Q  cycles per year and 
thus the Annual Holding Cost for the Tier 1 manufacturing 

process if  n ≥ 1 is given by Eqs. (7) (substituting for 
1 1 1=tp Q p  and 0 1 0=tp nQ p ). 

 
( ) 1 1 1 1 1 01 1 ( 2 )/(2 )≥ = + +nAHC Dc i nQ p tr nQ p T        (7) 

 
When n ≤ 1 (and 1/n an integer) the areas to be 

considered are presented in Figure 4. The maximum 
inventory amount is Q1 and the three areas are defined as 
follows: 1 1 1 /(2 ),=a Q tp T  =2 1 1 / ,a Q tr T  and 3a =  

1 0 /(2 ).Q tp Tn  Given there are 1/D Q  cycles per year, 
the Annual Holding Cost for the Tier 1 manufacturing 
process if  n ≤ 1 is given by Eqs. (8). When n = 1, AHC1(n≥1) 
= AHC1(n≤1). 
 

( ) 1 1 1 1 1 01 1 ( 2 )/( 2 )≤ = + +nAHC Dc i Q p tr Q p T          (8) 

 
We assume once a batch completes its post-production 

hold, it is automatically shipped to the customers and 
therefore eliminated from the inventory. The Annual 
Holding Cost of  the Tier 0 manufacturer is as in Eq. (9). 
The total costs equations for the two conditions are 
presented in Eqs. (10) and (11). 
 

0 0 1 0 0( 2 )/(2 )= +AHC Dc i nQ p tr T                 (9) 

( ) ( )≥ ≥= + + 01 1 1n nTC ASC AHC AHC              (10) 

( ) ( )≤ ≤= + + 01 1 1n nTC ASC AHC AHC              (11) 

 

a1

a2
a3

tp1 tp0tr1tp1

Q0

 
Figure 3. Holding cost areas for tier 1 manufacturer when n ≥ 1. 

 

a1 a2 a3

tp1 tp0tr1 tp0 tp0

Q1

  
Figure 4. Holding cost areas for tier 1 manufacturer when n ≤ 1. 
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6. TWO-TIER PROBLEM CASES AND THE 
OPTIMAL SOLUTION  

As in the case of  the single-tier system, we consider two 
cases of  the release time in the determination of  an 
optimal solution. In case 1 the release time is fixed and not 
related to the batch size, in case 2 the release time is 
linearly related to the batch size (as production time).   

 
6.1 Case 1: Fixed release time 

This case assumes the release times are not related to the 
batch size, and therefore the annual holding costs 
associated with release times are a fixed value. The problem 
in this case is then the optimization of  total costs during 
the production times, constrained by the post-production 
release times. To determine the optimal (Q1, n) the 
traditional approach is to differentiate the total cost 
equation with respect to Q, and set it to zero (dTC/dQ = 0). 
However, as in Sarker and Khan (2001), given n is an 
unknown integer variable, no differentiation is possible. 
However, assuming a fixed (an optimal value) for n, Eq. (12) 
shows the result of  the differentiation and Eq. (13) the 
optimal batch size (with no time constraints) when n ≥ 1. 
 

1 0 1( )/( )ns s nQ+  

1 1 1 1 0 0 1 0/(2 )( ) /(2 )( )c i T nQ p nQ p c i T nQ p= + +       (12) 

( )
12 2

1 0 1 1 1 0 0 01 1 (2 ( )/( ( )))nQ T ns s in c p c p c p≥′ = + + +     (13) 

 
Eq. (13) reduces to the EOQ equation if  T = Dp1 (i.e. 

equivalent to continuous production during the time T), n 
= 1, and all Tier 0 variables are set to 0. Eq. (13) also 
reduces to the traditional EOQ formula if  we set T = Dp0, 
n = 1 and all Tier 1 variables are set to 0. Eq. (14) provides 
the optimal solution (assuming a known optimal value of  n) 
in the case n ≤ 1. Eq. (14) also reduces to the EOQ 
equation if  T = Dp1, n = 1 and all Tier 0 variables are set to 
0 or if  T = Dp0, n = 1 and all Tier 1 variables are set to 0. 

 

( )
1

2
1 0 1 1 1 0 0 01 1 (2 ( )/( ( )))≥′ = + + +nQ T ns s in c p c p c p      (14) 

 
In the fixed release case, the optimal solution is found 

with n ≤ 1 as described next. By plugging the ( )≥′1 1nQ  

equation into the ASC Eq. (6) with n = 1 and comparing it 
with n > 1, it can be shown that as n increases from 1, ASC 
increases and therefore total costs increase (given the total 
costs are based on the point where AHC = ASC). This 
simple result demonstrates that in the fixed release case, 

the optimal solution will not have n > 1. On the other hand, 
when comparing ASC (n = 1) with ASC (n < 1), ASC may 
increase or decrease (and therefore total costs). Therefore 
the optimal TC will be found when n ≤ 1. Using an 
approach similar to Sarker and Khan (2001) we substitute 

( )≥′1 1nQ  in TC(n≤1) and obtain Eq. (15). When ( )≤
2

1z nTC  is 

minimized, TC(n≤1) is minimized. Assuming n to be a 
continuous variable and m = 1/n we differentiate ( )≤

2
1z nTC  

with respect to n and equate to zero, obtaining Eq. (16). 
 

1 0 1 1 1 0 0 0( ),= + = + +X ns s Y c p c p c p  
2 2 2 2 2 2 2 2 2 2

1 1/ /(4 )zTC X D n Q D i Q Y T= +  
2 /(2 )D iXY Tn+                          (15) 

1
2

0 0 1 1 1 0 1 0 0( /( ))∗ = +m c p s c p s c p s                  (16) 
 

To obtain the optimal n, we need to determine the two 
integer values of  the inverse, thus let ma =  m*  and    
mb = m*. Next, we find the ( )≤′1 1nQ  for n = 1/ma (if    

ma > 0) and for n = 1/mb, and then the corresponding total 
costs. The optimal solution is one of  these two solution 
points. 

To illustrate the behavior of  the model we present some 
examples employing a variable set similar to that used in 
Section 4. We assume the following values: D = 2,000, i = 
20%, s0 = $400, c0 = $250, c1 = $125, p0 = p1 = 0.0625, tr0= 
4, tr1 = 8, and T = 500. Table 2 presents the optimal value 
of  m from Eq. (16), the ma and mb values, the 
corresponding ( )≤′1 1nQ , and the corresponding total costs 

for s1 values of  200, 800, 4,000, and 8,000. Given m is an 
integer, there are two instances where the total costs are 
minimized by both adjacent solution points. Figures 5 to 8 
illustrate the Total Cost and ′1Q  values as n changes from 
1 to 1/7 respectively. Intuitively, as s1 increases the optimal 
solution would include fewer setups in that tier, which is 
equivalent to a reduction in n.  

 
6.2 Case 2: Release time a linear function of  Q 

As in Section 4, this case assumes trj is related to the 
batch size by the function .j jr Q  Similar to Section 6.1, 
we fix the value of  n and differentiate for the appropriate 
total cost equation (Eqs. (10) and (11)). The two equations 
needed to obtain the optimal batch sizes are presented next.

 
Table 2. Example data for the relationship between n, Q1, and total cost 

s1 m* ma mb ′1Q (ma) ′1Q (mb) TC(ma) TC(mb) 
200 0.71 0 1 -- 309.8 -- 9346.0 
800 1.41 1 2 438.2 584.2 12554.5 12554.5 

4,000 3.16 3 4 1117.1 1197.3 20219.0 20308.3 
8,000 4.47 4 5 1567.7 1633.0 26094.9 26094.9 
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Figure 5. Example relation between n, 1 ,Q∗  and total cost with s1 = 200. 
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Figure 6. Example relation between n, 1

∗Q , and total cost with s1 = 800. 
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Figure 7. Example relation between n, ∗

1Q , and total cost with s1 = 4,000. 
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Figure 8. Example relation between n, ∗

1Q , and total cost with s1 = 8,000. 
 

( ) 1 01 1

1
2

1 1 1 0 1 1 0 0 0 0

(2 ( )

            /( ( 2 2 )))

≥′ = +

+ + + +

nQ T ns s

in nc p nc p c r nc p c r
  (17) 

( ) 1 01 1

1
2

1 1 1 0 1 1 0 0 0 0

(2 ( )

            /( ( 2 2 )))

≤′ = +

+ + + +

nQ T ns s

in c p c p c r nc p c r
    (18) 

 
In the case where the release time is a linear function of  

the batch size, all integer values of  n and m (m = 1/n) are 
possible optimal solutions. Following the processes 
performed in Section 6.1, we solve for n and m by plugging 
each ′1Q  equation into the corresponding TC equation. 
The optimal n and m values are given in Eqs. (19) and (20). 

 
1

2
0 1 1 1 1 1 1 1 0 1 0 0 1 1 0(2 /( 2 ))∗ = + + +n s c p s c p s c p s c p s c r     (19) 

1
2

1 0 0 1 0 0 0 1 1 0 1 0 0 1 1(( )/( 2 ))∗ = + + +m s c p s c r s c p s c p s c r     (20) 
 
Given the integer nature of  n and m, we evaluate both na 

and nb for n* and both ma and mb for m* by na =  n* , nb = 
n*, ma =  m*  and mb = m*. One of  these four points 
(with the related batch size) provides the optimal solution.  

Table 3 presents three example instances for the linear 
case with D = 2,000, i = 20%, s0 = 400, s1 = $200, c0 = 
$250, c1 = $125, p0 = p1 = 0.2, and T = 500. In the first 
instance, r0 = r1 = p0 = p1 = 0.2, and for this instance both 
m* and n* are less than 1, and the solution with n = m = 1 
(Q = 110), thus clearly we only need to consider the 
solution with n = 1. In the second instance the value of  r0 
is increased to 2, which results in m* = 1.66 and n* = 0.41, 
thus the optimal will be when n = 1 or 1/2, with solution 
(67, 1/2) being the optimal. The third instance presented in 
Table 3 has r0 = 0.2 and r1 = 2, resulting in m* =0.30 and n* 
= 2.58, thus clearly n = 1, 2, or 3 will result in the optimal 
solution, with solution (47, 2) being the optimal. Clearly, as 
demonstrated by these experiments, the optimal solution is 
sensitive to the release time variable. 

Table 4 presents two additional instances where we set r0 
= r1 = 0.2 and vary the values of  the setup cost and item 

cost with the objective of  demonstrating that cost 
parameters will have an effect on the optimal solution. In 
the first instance presented in Table 4 with s1 = 2,000 and 
s0 = 400, the value of  n* = 0.26 and m* = 2.24, thus the 
optimal solution will have one of  the following values for n: 
1, 1/2, or 1/3. The optimal solution is (272, 1/3), which is 
intuitive given as s1 increases it is preferable to have fewer 
setups in the tier 1 operation (the baseline value with s1 = 
200 had n = 1, ′1Q  = 110). In the second instance with c0 
= 2,500, the value of  n* = 0.41 and m* = 2.24, thus as in 
the previous instance, the optimal solution will have one of  
the following values for n: 1, 1/2, or 1/3. The optimal is 
(61, 1/2), noting how the size of  the batch sizes decreased 
(when compared to the baseline of  ′1Q  = 110) with the 
increase in the item cost of  the tier 0 operation, an intuitive 
result due to the increase in holding costs. 

 
7. APPLICATION OF THE MODEL 

In many industrial environments, including the 
Pharmaceutical manufacturing sector, equipment 
capabilities and production recipes determine the 
production batch sizes options. Further, production times 
are not a linear function of  the batch size and the 
post-production time is based on historical performance of  
the analyzed product (or similar products when the 
information is not available). However, the proposed cost 
models can be used to analyze the possible batch 
combinations. Table 5 presents a sample data case where all 
batch sizes are integer multiples of  each other while Table 
6 presents the costs results associated with each batch 
combination assuming c1 = 1,000, c0 = 2,500, s1 = s0 = 
1,000, D = 30,000, i = 20%, and T = 2,400 hours. Note 
that all batch combinations presented in Table 6 require 
less time than the 2,400 hours available. The optimal batch 
sizes are 1Q  = 1,000 and 0Q  = 500 with a total cost of  
$268,750. This simple result illustrates that this model can 
be quite useful in determining the optimal batch 
combination when investment options are being analyzed, 
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for example reduction in setup costs, production time, or 
release time. Furthermore, the proposed cost models could 
be combined with mathematical programming to find the 

optimal solution when full enumeration is a cumbersome 
task. 

 
 

Table 3. Example instances in a two-tier system and release time linearly related to the batch size 
Modified 

Parameters  n ′1Q  TC 

r0 = 0.2 n* = 0.82 3 51 26,331 
r1 = 0.2 na = 0, nb = 1 2 67 24,000 

 m* = 0.71 1 110 21,909 
 ma = 0, mb = 1 1/2 149 23,851 
  1/3 180 26,362 
     

r0 = 2 n* = 0.41 3 22 59,777 
r1 = 0.2 na = 0, nb = 1 2 30 53,666 

 m* = 1.66 1 51 46,989 
 ma = 1, mb = 2 1/2 67 46,667 
  1/3 79 49,616 
     

r0 = 0.2 n* = 2.58 3 39 34,254 
r1 = 2 na = 2, nb = 3 2 47 33,941 

 m* = 0.30 1 65 36,661 
 ma = 0, mb = 1 1/2 86 44,754 
  1/3 102 51,918 

 
 

Table 4. Second example instances in a two-tier system and release time linearly related to the batch size 
Modified 

Parameters 
 n ′1Q  TC 

 n* = 0.26 4 111 75,578 
s1 = 2,000 na = 0, nb = 1 3 128 66,613 

 m* = 2.24 2 156 56,285 
 ma = 2, mb = 3 1 219 43,818 
  1/2 249 39,911 
  1/3 272 39,856 
  1/4 291 40,746 
     
 n* = 0.41 4 15 77,460 

c0 = 2,500 na = 0, nb = 1 3 19 70,805 
 m* = 2.24 2 25 63,498 
 ma = 2, mb = 3 1 43 55,426 
  1/2 61 53,555 
  1/3 74 55,507 
  1/4 86 58,286 

 
 

Table 5. Data for the application case 
Code Batch Size tp1 tr1 tp0 tr0 

A 500 11h 24h 6h 10h 
B 1,000 14h 26h 6h 25h 
C 2,000 16h 36h 8h 46h 
D 4,000 19h 48h 11h 90h 
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Table 6. Results for all batch combinations 

Comb. 
Q1 

UNITS 

Q0 

UNITS 
n 

ASC 
$ 

AHC1 

$ 
AHC0 

$ 
TC 
$ 

A-A 500 500 1 120,000 81,250 81,250 282,500 
A-B 500 1,000 2 90,000 95,000 175,000 360,000 
A-C 500 2,000 4 75,000 125,000 312,500 512,500 
A-D 500 4,000 8 67,500 183,750 596,875 848,125 
B-A 1,000 500 1/2 90,000 97,500 81,250 268,750 
B-B 1,000 1,000 1 60,000 90,000 175,000 325,000 
B-C 1,000 2,000 2 45,000 110,000 312,500 467,500 
B-D 1,000 4,000 4 37,500 148,750 596,875 783,125 
C-A 2,000 500 1/4 75,000 140,000 81,250 296,250 
C-B 2,000 1,000 1/2 45,000 125,000 175,000 345,000 
C-C 2,000 2,000 1 30,000 120,000 312,500 462,500 
C-D 2,000 4,000 2 22,500 143,750 596,875 763,125 
D-A 4,000 500 1/8 67,500 203,750 81,250 352,500 
D-B 4,000 1,000 1/4 37,500 173,750 175,000 386,250 
D-C 4,000 2,000 1/2 22,500 163,750 312,500 498,750 
D-D 4,000 4,000 1 15,000 157,500 596,875 769,375 

 
8. CONCLUSIONS  

This paper presents inventory models of  direct 
application to the pharmaceutical industry that consider 
post-production hold time and cost. The paper proposed 
optimal models and procedures for single-tier and two-tier 
manufacturing systems that considers setup and holding 
costs. The two-tier model considers two levels of  a supply 
chain and assumes these batch sizes can be related by an 
integer value. The analysis demonstrated that in the case of  
two-tiers and fixed release times, we only need to consider 
cases where the batch size of  the first tier is larger or equal 
to the batch size of  the second tier. However, when 
considering the post-production hold time as a function of  
the batch size, any relationship between the batches is 
possible. Numerical examples demonstrated that the 
models are sensitive to the cost and time parameters.  

This paper also presents a practical application example 
where the proposed inventory model is used to support 
business decision-making. The example assumes actual 
production and post-production hold time data is available 
for a variety of  batch sizes. By calculating the inventory 
costs associated with all the batch combinations the 
optimal batch size combination can be determined. An 
implementation such as this could be used to perform 
‘what if  analysis’, e.g. change in the production time, 
release time, or in the setup cost.  

Future research related to this problem can extend into 
several directions. For example, the consideration of  setup 
times whose duration is a function of  the batch size. 
Furthermore, in the two-tier case, transportation costs and 
time could be an important variable that should be 
included. Finally, the modeling of  time parameters as 
stochastic, for example the post-production hold times, 

could provide a better representation of  some industrial 
applications. 
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