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AbstractThe Portfolio selection problem is a relevant problem arising in finance and economics. Some practical 
formulations of  the problem include various kinds of  nonlinear constraints and objectives and can be efficiently solved by 
approximate algorithms. Among the most effective approximate algorithms, are metaheuristic methods that have been 
proved to be very successful in many applications. This paper presents an overview of  the literature on the application of  
metaheuristics to the portfolio selection problem, trying to provide a general descriptive scheme. 
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1. INTRODUCTION 

Portfolio selection is one of  the most relevant and 
studied topics in finance. The problem, in its basic 
formulation, is concerned with selecting the portfolio of  
assets that minimizes the risk subject to the constraint of  
guaranteeing a given level of  returns. Individuals and 
institutions prefer to invest in portfolios rather than single 
assets (or securities) because it enables them to dampen the 
risk, by diversification of  the investments, without 
negatively affecting expected returns. In this paper, we deal 
with the so-called Mean-Variance portfolio selection 
(hereinafter referred to as PSP), formulated in the seminal 
work by Markowitz (1952). In that work, the author rejects 
the hypothesis that investors wish to maximize expected 
returns, because this criterion does not imply that a 
diversified portfolio is preferable to a non-diversified one. 

Thus, he states that the goal is to select a portfolio with 
minimum risk at given minimal returns. Alternatively, the 
problem can be formulated as a multi-criteria optimization 
problem in which risk has to be minimized while return 
has to be maximized. Notwithstanding its potential in 
capturing the basic properties of  the problem suffers from 
several drawbacks. First, it might be difficult to gather 
enough data and information for estimating risk and 
returns. Second, the estimation of  return and covariance 
(used for defining the risk) from historical data is very 
sensitive to measurement errors (Chopra and Ziemba 
(1993)). Finally, it is nowadays considered too simplistic for 
practical purposes, because it does not incorporate 
non-negligible aspects of  real-world trading, such as 
maximum size of  portfolio, minimum lots, transaction 
costs, preferences over assets, management costs, etc. 
These aspects can be modeled by adding constraints to the 
original formulation, leading to the constrained PSP: This 

problem has been shown to be NP-Complete (Mansini and 
Speranza (1999)). In some cases, problem characteristics, 
such as its size, or realworld requirements, such as very 
limited computation time allowed or limited precision in 
estimating instance parameters, make exact methods not 
particularly suitable for tackling large instances of  the 
constrained PSP, therefore researchers and practitioners 
have to resort to approximate algorithms and, in particular, 
to metaheuristics and hybrid techniques (Blum and Roli 
(2003)). In this work, we give an overview of  the use of  
metaheuristic techniques to solve the PSP. We first present 
and discuss the different models from the literature on 
metaheuristics for the PSP and we also introduce a 
classification of  them, that can provide a general scheme 
for analyzing and comparing such models. Then, we survey 
the most relevant metaheuristic approaches for the PSP. 
The distinction between model and solving technique is 
becoming particularly effective in the recent years, due to 
the development of  constraint programming-oriented 
approaches, as demonstrated by recent successes of  
software tools such as Comet (Van Hentenryck and Michel 
(2005)), ILOG Solver (2001) and EasyLocal++ (Di 
Gaspero and Schaerf (2003)). 

The paper begins with illustrating the main motivations 
of  this work in Section 2. In Section 3 we provide an 
incremental description of  the various models of  PSP used 
in metaheuristic applications. The problem model is 
considered as an object with three attributes: decision 
variables and their domains, objectives and constraints. On 
the basis of  such attributes, we also provide classification 
such that each actual problem formulation can be seen as 
an instance of  a general abstract model, the basic (or 
default) instance of  which is the Markowitz model. Section 
4 presents the various metaheuristic approaches to the PSP 
by analyzing them through a general framework for 
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metaheuristics called MAGMA (Milano and Roli (2004)). 
First, the basic building block of  algorithms based on 
metaheuristics are presented, such as the search space, the 
neighborhood structures and the cost function. Then, we 
overview the most important techniques from the literature, 
starting from solution construction procedures till 
advanced search strategies. Section 5 summarizes the most 
important works form the literature that explicitly address 
the issue of  comparing different metaheuristic approaches 
for the PSP. Finally, in Section 6 we briefly summarize 
related works and we conclude with Section 7 outlining 
future research and application directions in the field. 

 
2. MOTIVATIONS 

Research on design and implementation of  effective and 
efficient PSP solvers is very active. Many different 
formulations and approaches have been proposed in the 
literature. In the last decade, a large number of  
publications concerning the application of  heuristic 
techniques to the PSP has appeared. On the other side, 
metaheuristic based solvers are nowadays the state of  the 
art in many real-world constrained combinatorial 
optimization problems (Blum and Roli (2003), Hoos and 
Stützle (2004)). Moreover, recent advances in 
methodologies and tools for developing metaheuristic- 
based solvers, such as development frameworks (Di 
Gaspero and Schaerf (2003)) and languages (ILOG Solver 
(2001) and Van Hentenryck and Michel (2005)), are making 
them more appealing also as engineering techniques for 
general problem solving in the industry. For this reason, we 
believe that, by providing a uniform and general 
description of  the literature on metaheuristics for PSP, we 
may help the development of  more advanced solvers also 
for other formulations of  portfolio selection problems. 
The literature on this specific subject is not homogeneous 
in terminology, definitions and goals and very fragmented. 
Furthermore, it is common to encounter publications with 
no clear distinction between problem model and solving 
algorithm, thus making it very difficult to re-use this piece 
of  knowledge. With this contribution we aim at survey the 
literature on metaheuristics applied to PSP trying to 
provide a general scheme in which to locate the different 
approaches. This would enable scholars and practitioners 
to identify strengths and weaknesses of  current modelling 
and solving approaches and provide them with some hints 
for the developments of  new hybrid solvers for this class 
of  financial problems. 
 
3. PSP MODELING 

Constrained optimization problems can be defined by 
specifying variables, along with their domains, objectives 
and constraints among variables. These entities can also 
play the role of  model attributes and serve as the basis for 
a classification of  the different models. Attributes may 
have several qualifycations, that, in turn, may be subdivided 
in more detailed categories, till reaching the specification 
of  the actual attribute instantiation. For instance, objectives 

(an attribute) can either be single or multicriteria 
(qualifications); each qualification can be specified by 
instantiating the actual objective function, for example the 
minimization of  a given risk measure. 

In this section, we provide an overview of  the models 
that can be found in the literature on metaheuristics 
applied to the PSP, trying to capture the diverse 
formulations by means of  a unique classification, with the 
aim of  giving a general view of  PSP modeling along with 
the possibility of  making comparison among the models. 
We first present the Markowitz model, that constitutes the 
basis upon which the other models are obtained as 
variations and extensions. This description has not the goal 
of  providing an overview of  all the formulations of  the 
PSP, but rather of  illustrating, in a unifying view, the 
diverse models of  the problem as described in the specific 
literature on metaheuristics. 
 
3.1 The basic model: Markowitz model 

In the PSP in canonical form we want to find a portfolio 
that minimizes the risk at given levels of  return rate1. In 
the Markowitz formulation the risk measure is given by the 
variance of  the portfolio. This measure is the objective 
function most commonly used in related works. 

The Markowitz model (1952) is as follows: 
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where n is the number of  assets and xi is the proportion of  
money invested in asset i. For each asset the rate of  return 
is represented by a random variable Ri, whose mean is 
given by ri and represents the expected return (per period) 
of  asset i; σij is the real-valued covariance of  expected 
returns on assets i and j. The objective function is the 
variance (herein called risk-measure) 2 ,pσ  given by 
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∑∑  The portfolio return is represented by a 

random variable and the expected return is given by 

1

,
n

i i
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r x
=
∑  whilst rp represents the minimum required 

portfolio return. Constraint (3) ensures that asset weights 
sum up to one, as they are considered as fractions of  the 
whole amount of  money to be invested. 

                                                 
1In agreement with the main literature on the subject, here we 
consider the problem objective as the minimization of the risk 
measure. The problem can also be modelled as a maximization of 
returns or in other ways. See Fernando (2000) for a brief 
discussion on this topic. 
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Figure 1. Conceptual representation of  the Markowitz model. Rectangles represent the instantiation of  a qualification 

(ellipse). In gray, qualifications and instantiations not present in the model. 
 

The Markowitz model can be considered as the most 
simple formulation of  the PSP. Its conceptual 
representation is depicted in Figure 1. Note that the three 
attributes, variables, objectives and constraints, can be 
directly instantiated, as in the case of  constraints, or further 
varied and extended in many ways. Every modification can 
be viewed as the result of  the combination of  simple 
variations, each of  which affecting only one attribute. For 
instance, different risk measures can be chosen, or 
constraints that make the model more realistic can be 
added. The problem we consider in this paper is a 
‘single-period’ (i.e., single-stage) problem; in particular, we 
do not take into account possible adjustments between 
estimated and actual returns. Moreover, the PSP 
formulations we discuss are deterministic. 

The works we are going to survey take into account only 
portfolios composed of  stocks. This is a simplification of  
real-world market, but the proposed approaches can be 
easily extended to other kind of  securities like options, 
future contracts and commodities, as well as to features as 
adjusted returns, dividends, spreads. The case of  
debentures2 (conceived as risk-free assets, as their return is 
fixed and their variance is null) deserve instead more 
attention: They were investigated by Tobin (1958 and 1965), 
removing the condition that each asset must be risky. Any 
combination of  a risk-free asset s and a portfolio P 
composed of  risky assets will show a correlation between 
the expected return and the variance: 
 

p s
s

p

r r
r r σ

σ

−
= + ⋅                               (5) 

 
where r and σ are, respectively, the expected return and 

the variance of  the combination of  risk free asset and risky 
portfolio, rs is the return of  risk-free asset and rp and σp are, 
respectively, the expected return and the variance of  the 

                                                 
2Examples are given by corporate bonds, mortgage bonds, gold 
bonds, common bonds. 

risky portfolio. The ratio p s

p

r r
σ

−
 is referred to as 

reward-to-variability ratio and used in some works, see 
Maringer (2005 and 2001) and Section 4.2.8. In this 
framework, the investment decision is split in two phases: 
First determine the risky portfolio P optimizing the 
reward-to-variability ratio and then combine it with the 
risk-free asset (separation theorem). In this way, the 
risk-aversion of  investors does not affect the choice of  the 
risky portfolio, but only the proportions to be assigned to 
the risky portfolio P and to the risk free-asset s: A very 
risk-averse investor will allocate a huge proportion of  his 
endowment to the risk-free asset, while a very risky seeking 
will prefer to invest more in the risky portfolio. 

In the following, we will detail the most important 
extensions of  the basic model, by keeping in the 
background the conceptual model scheme. 
 
3.2 Variables and domains 

We first briefly discuss the possible choices for variable 
domains in a PSP model. In the Mean-Variance model, 
variables are real and they range between zero and one, as 
they represent the fraction of  available money to invest in 
an asset 3 . This choice is quite ‘natural’ and has the 
advantage of  being independent of  the actual budget. 
Conversely, another possibility is to choose integer values 
for variables and make them range between zero and the 
maximum available budget4. When variables are integer, it 
is possible to add to the model constraints that involve 
actual budget values, such as minimum trading lots and 
also introduce more realistic objective functions. The 
integer formulation better explains real-world situations: 
For instance, it turns out that small investors are more 
sensitive to integer constraint on variables, as the resulting 

                                                 
3For the sake of simplicity, we are not taking into account short 
sales yet. They will be introduced in Section 3.4.4. 
4In the presence of the so-called rounds, the domain values 
correspond to the number of rounds (see Section 3.4.5). 
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portfolios are less diversified (Maringer (2005)). Other 
advantages and disadvantages of  the two approaches will 
be discussed in the following sections, in which variations 
in the basic are presented. 
 

3.3 Objective function 

In the most common PSP formulations, the objective 

can be either to minimize the risk (satisfying a given return), 
or maximize the return (not exceeding a given maximum 
risk), or both. In the former cases the problem is 
single-criterion, while in the latter case it is multi-objective. 
Metaheuristics have been mostly applied to single-criterion 
models, but there are some notable works which deal with 
multi-criteria models, such as Subbu et al. (2005), Fieldsend 
et al. (2004), and Moral-Escudero et al. (2006). The 
applications on the single-objective formulation (in which 
the risk has to be minimized) very often solve a PSP 
instance as a function of  the desired expected return R, 
that is then seen as an instance parameter. Solving the 
instance for R ranging over values from a finite set, gives 
an estimation of  the efficient frontier that could be drawn 
by directly solving the bi-objective formulation. In these 
cases, it is common to use the expression “efficient 
frontier” also for that set of  solution points, even if  it is 
just an approximation of  such a frontier. In our 
classification, we consider these two qualifications for the 
attribute objectives, as shown in Figure 2. 
 
3.3.1 Single-criterion objectives 

Although metaheuristics have been successfully applied 
to tackle both single and multi-criteria optimization 
problems, the PSP has been mostly modeled as a 
single-criterion optimization problem. 

A way of  modeling the problem in a single-criterion 
framework to be tackled by metaheuristics consists in 
including constraint (2) in the objective function in a 
Lagrangean relaxation fashion (Chang et al. (2000), Xia et 
al. (2000), and Kellerer and Maringer (2003)): 

 

1 1 1

max  (1 )
n n n

i i ij i j
i i j

r x x xλ λ σ
= = =

− −∑ ∑∑               (6) 

 
subject to constraints (3) and (4), where λ is a trade-off  
coefficient ranging in [0, 1]. If  λ = 0 the investor 
completely disregards risk and aims to maximize returns; 
conversely, when λ = 1, the investor is risk averse and only 
wants to minimize risk. By resolving the problem for a set 
of  values of  λ it is possible to estimate the efficient 
frontier for the Markowitz unconstrained problem 
(referred to as UEF). The investor can then choose the 
portfolio depending on specific risk/return requirements. 
The UEF is composed of  Pareto optimal solution, i.e., 
solutions such that no criterion can be improved without 
deteriorating any other criterion. In our example, a solution 
s is said to be efficient (Pareto-optimal) if  there is no other 
solution s1 such that return(s1) > return(s) and risk(s1) ≤ 
risk(s) or return(s1) ≥ return(s) and risk(s1) < risk(s). 

Obviously, metaheuristics cannot guarantee the optimality 
of  solutions, and are aimed in providing us with an 
approximation of  the actual Pareto frontier. In the 
following we will distinguish between the actual efficient 
frontier (UEF) and the approximated one (AUEF). 
Moreover, since we are going to introduce other classes of  
constraints in our discussion, we will refer to the 
constrained efficient frontier as CEF, whilst its 
approximation will be referred to as ACEF. We notice here 
that the unconstrained frontier dominates the constrained 
one and the goal of  most works introducing metaheuristics 
tackling the PSP is to draw out the CEF for the problem at 
hand, so we assume that the algorithms we will discuss are 
aimed at drawing out the CEF instead of  single portfolios, 
if  not differently explicitly stated. The class of  constraints 
introduced varies amongst works and will be explained for 
each implementation. 

The single-criterion problem (Eqs. (1) and (4)) can be 
solved for a set of  equally distributed values for the 
minimum required return rp, so solving several instances of  
the problem introducing different values of  rp, in constraint 
(2) in order to obtain a distribution of  equally distanced 
points able to provide us with a range of  solutions, 
exploiting an approach similar to multi-objective problem 
solving (Schaerf (2002), Moral-Escudero et al. (2006), and 
Crama and Schyns (2003)). In this way the efficient frontier 
is bounded by the minimum risk portfolio (MRP), defined 
as the solution of  the problem without lower bound on 
return (rp = 0). MRP has its own return rmrp: It follows that 
solving instances whose rp ≤ rmrp the solution will be the 
MRP itself, whilst for larger values of  rp the solution will 

consist of  portfolios so that 
1

.
n

i i p
i

x r r
=

=∑ 5 

It is worth noticing here that the Mean-Variance 
formulation presents its main drawbacks in being 
incompatible with the axiomatic models of  preference for 
choice under risk (Whitmore and Findlay (1978)) and 
lacking in coherence (Artzner et al. (1999))5. This 
consideration, together with the ones previously mentioned 
(see Section 1) motivated researchers to define other risk 
measures: So far we have only considered variance as the 
risk measure, but other different measures can be taken, 
thus defining different objective functions. Markowitz 
himself  suggested the use of  semi-variance instead of  
variance in order to assess portfolio risk. Semi-variance can 
be defined as 
 
semivar = 2

: [ ]

( [ ])
j

j j
j r E R

p r E R
≤

−∑                    (7) 

 
where R is a distribution of  returns, often statistically 
computed by enumerating the most probable scenarios, rj is 
the return of  the jth element of  the distribution, pj its 
probability and E[R] the mean of the distribution. This         
                                                 
5A risk measure is said to be coherent when it fulfills properties 
of translation invariance, subadditivity, positive homogeneity and 
monotonicity, see Artzner et al. (1999) for details. 
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Figure 2. Conceptual representation of  the PSP model attributes variables and objectives. 

 
measure is equivalent to variance if  return distribution is 
symmetric around the mean and captures the essence of  
risk as perceived by investors, characterized by the 
likelihood of  incurring into a loss. Its drawback is that an 
investor can perceive the loss not necessarily when returns 
are below the mean, but below some other subjective 
threshold τ. This idea refers to the part of  distribution 
below a certain target of  return, and for this reason the 
corresponding measures are referred to as target downside 
risk measures: 
 

( ) ( )
i

q
j i

r T

DSR p rτ τ
≤

= −∑                         (8) 

 
When q = 2 the formula is referred to as target 
semi-variance expression; in this case if  τ = E[r] the 
formula is equivalent to semi-variance. 

The threshold τ is referred to as Value-at-Risk (VaR) and 
can be conceived as a measure of  the portfolio 
catastrophic risk, since investors are concerned with the 
chance of  loosing their wealth because of  a 
low-probability-high-impact-event (Subbu et al. (2005)). τ 
has been used as the threshold below which the investor 
perceives a loss (Gilli and Këllezi (2001), Gilli et al. (2006), 
and Maringer (2003 and 2005)) and in their context VaR is 
bounded in the constraints and the objective to maximize 
is the expected return of  the portfolio. The probability that 
portfolio returns fall below the VaR level is called Shortfall 
Probability: 
 
SP = p(r < VaR)                               (9) 
 

where r stands for 
1

.
n

i i
i

x r
=
∑ 6 Furthermore, the Expected 

Shortfall is defined as the expected return of  portfolio 
given that its value has fallen below VaR: 
 

                                                 
6The definitions of measures such Var and CVaR were originally 
based on prices rather than returns. Indeed they are also modeled 
with returns in some works (Angelelli et al. (2004), Mansini et al. 
(2003)). For homogeneity we decided to present them as based 
on returns: This could lead to different optimization results when 
using continuous rates of returns. It is out of the scope of this 
work giving details of this issue. 

ES = E(r | r < VaR)                           (10) 
 
Similarly to Variance, VaR lack in coherence and it does 
not stress the importance of  portfolio diversification in 
order to reduce the risk (Artzner et al. (1999)). Anyway, it is 
nowadays one of  the most used risk measures, as it is 
imposed by the Basel agreement, which allows banks to use 
their own VaR models n order to assess the credit risk 
(Basel Committee on Banking Supervision (2004)). 

Amongst other approaches it is worth mentioning the 
Mean-Absolute-Deviation model (MAD) (Konno et al. 
(1991)), in which the risk is defined as the mean absolute 
deviation of  the portfolio rate of  return. This model does 
not rely on probabilistic assumptions on returns (it is 
equivalent to the Markowitz model if  returns are 
considered as normally distributed) and it is easier to 
handle because it does not require the covariance matrix: 
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, this equation can be reformulated 

as follows: 
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Following the same ideas, in Speranza (1996) risk is 

measured as the mean semi-absolute deviation of  the rate 
of  return below the average: 

 

1 1

min(0, ( ) )
T n

it i i
t i

r r x

T
= =
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                      (13) 

 
This function is shown to be equivalent to MAD, as 
semi-deviation is equal to half  of  absolute deviation. 

Furthermore, since the Mean-Variance formulation is 
non linear, efforts have been made to model the problem 
as a linear programming model. Amongst them, besides 
the above cited ones, the approach proposed by Young 
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(1998) defines the risk as the minimum return achieved by 
a portfolio over a set of  scenarios (worst case realization): 
The optimization problem, in this framework, consists in 
finding the portfolio whose worst case realization is 
maximum. A generalization of  this approach is the 
Conditional Value at Risk (CVaR), obtained measuring the 
mean of  a specified quantile of  worst realization 
distribution (Rockafellar and Uryasev (2002)). 

Up to now we described only risk measures to be 
minimized. Indeed the PSP can be formalized as a 
maximization problem in which a safety measure must be 
optimized. It has been shown (Mansini et al. (2003)) that 
for each risk measure there exists a corresponding safety 
measure (obtained combining return and risk measures) 
and vice-versa, but minimizing a risk measure is not always 
equivalent to maximize the corresponding safety measure: 
Equality holds only if  measures are independent from 
distribution-specific parameters (e.g. minimizing semi- 
variance (formula 7) is not equivalent to maximize its 
corresponding safety-measure, as its formulation is 
function of  the mean of  return distribution). 
 
3.3.2 Multi-criteria objectives 

In the multi-criteria variant of  the PSP model, the 
objectives are usually the following (Streichert et al. (2004a) 
and Armañanzas and Lozano (2005)): 

 

1 1

min
n n

ij i j
i j

x xσ
= =
∑∑                            (14) 

1

max
n

i i
i

r x
=
∑                                  (15) 

 
subject to constraints (3) and (4). 

Moreover, it is possible to have several functions to 
optimize: Subbu et al. (2005), for instance, propose the 
following: 
 

 Portfolio expected return
  Variance
 Portfolio Value at Risk 

max
min
min 







                 (16) 

 
This model can also handle preferences, by introducing 

other three metrics: Market-yield, Dollar duration weighted 
Market-yield and Transaction costs. These metrics are used 
to describe and structure ordinal preferences. 

The approach consisting in weighting the criteria of  a 
multi-criteria objective function is common when the 
model is aimed to support decision processes. 

For example, in Ehrgott et al. (2004), the objective is to 
maximize a weighted sum of  five measures (annual 
price-performance, annual dividend, three year 
price-performance, S & P rating and volatility) and weights 
are to be defined by users in order to specify their 
preferences. 

A different multi-objective formulation is given in Ong 
et al. (2005). According to existing models, they assume 

portfolio risk being divided in the uncertainty risk and the 
relation risk. The uncertainty risk measures the uncertainty 
on future return rates, whilst relation risk measures the 
trending degree of  the sequence. In this framework the 
objective is given by 

 
 Portfolio expected return

  Uncertainty Risk
  Relation risk 

max
min
min







                 (17) 

 
Many other objective functions and utility measures have 

been proposed, an overview of  which can be found in 
Kallberg and Ziemba (1983). 

A visual conceptual overview of  the different kinds of  
objectives is depicted in Figure 2, along with the possible 
choices for variable domains. 

Before discussing the third attribute of  the model, i.e., 
constraints, we have to note that the estimation of  returns 
from real-world data raises statistical and practical issues 
that have to be taken into account when the PSP is tackled. 
A discussion on this topic is out of  the scope of  this paper 
and we forward the interested reader to the specific 
literature on the subject (Nawrocki (2000), Beasley (1990 
and 2006), Gilli and Këllezi (2001), Gilli et al. (2006), 
Dueck and Winker (1992), and Wang et al. (2006)). 
 
3.4 Constraints 

Constraints can be first distinguished into two classes: 
theoretical and practical. The first class includes budget 
and return constraints, while practical constraints are 
motivated by actual problem requirements, such as 
minimum lots imposed by law. 
 
3.4.1 Budget and return constraints 

Budget and Return constraints are the most important 
ones, because they characterize the essential part of  the 
problem. These constraints are included in the 
unconstrained Markowitz model and are used to 
theoretically define the feasibility of  a solution: 
 

1

1
n

i
i

x
=

=∑                                    (18) 

1

n

i i p
i

r x r
=

≥∑                                  (19) 

 
Constraint (18) means that all the capital must be 

invested. If  an integer formulation is used, in which assets 
are represented by their actual value rather than their ratio 
to the whole portfolio, it can be expressed in the following 
way (Lin et al. (2001), Mansini and Speranza (1999), and 
Speranza (1996)): 
 

0 1
1

n

i
i

C x C
=

≤ ≤∑                              (20) 
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where C0 and C1 are respectively the lower and upper 
bound on the budget. Constraint (20) is less tight than 
constraint (18) and it is imposed when minimum lots are 
added to the formulation, as introducing them (in an 
integer formulation) makes it more difficult to find a 
solution w.r.t the former budget constraint (see Section 
3.9)7. 

Return constraint (19) is very important as returns 
represent one of  the two main aspects of  the problem. 

As stated above, a shortcoming of  the original 
Markowitz formulation is that it does not incorporate 
many aspects of  real-world trading, such as maximum size 
of  portfolio, minimum lots, transaction costs, preferences 
of  which assets to include in the portfolio, management 
costs, etc. These aspects can be modeled by introducing 
constraints of  the type that we have called ‘practical’, that 
are introduced in the following. 
 
3.4.2 Cardinality constraints 

The number of  assets in the portfolio is often either set 
to a given value or it is bounded. Introducing a binary 
variable zi equal to 1 if  asset i is in the portfolio and 0 
otherwise, the constraint can be expressed as follows: 

 

1

n

i
i

z k
=

≤∑                                    (21) 

 
This constraint is imposed to facilitate the portfolio 

management and to reduce its management costs. When 
the model contains this constraint, it can be named “The 
asset paring problem” (Liu and Stefek (1995)). Accordingly 
to financial and OR literature, it has been experimentally 
shown that, when the cardinality constraint is imposed, the 
ACEF tends to tightly approximate the UEF for high 
values of  k (Fieldsend et al. (2004) and Chang et al. (2000)). 
The inequality form is quite common (see, for instance, 
Schaerf (2002), Crama and Schyn (2003), and Kellerer and 
Maringer (2003)), however the constraint can also be 
expressed in the equality form (Armañanzas et al. (2005)), 

i.e., 
1

n

i
i

z k
=

=∑ . 

 
3.4.3 Floor and ceiling constraints 

With these constraints we impose a minimum and 
maximum proportion (εi and δi respectively) allowed to be 
held for each asset in portfolio, so that xi = 0 ∨ εi ≤ xi ≤ δi 
(i = 1, ..., n); in other words, the portion of  the portfolio 
for a specific asset must range in a given interval: 
 

i i i i iz x zε δ≤ ≤                               (22) 
 

Ceiling constraints (i.e., upper bound constraints) are 

                                                 
7In an integer formulation the budget constraint (18) must be 

reformulated as 
1

.
n

i
i

x C
=

=∑  

introduced to avoid excessive exposure to a specific asset 
and in some case are imposed by law. Floor constraint (i.e., 
lower bound) is used to avoid the cost of  administrating 
very small portions of  assets and may be implied by 
transaction costs (see Section 3.12). 

It is also possible to impose different upper and lower 
bounds for each asset, but this opportunity has not yet 
been explored in the literature. 
 
3.4.4 Short sales 

In the model we discussed in Section (3.1) asset weights 
are non-negative (constraint (4)): This constraint means 
that no short sales are allowed and it is imposed in almost 
all the works we are analyzing (a notable exception is given 
by Rolland (1997), whilst in Crama and Schyns (2003) 
short sales are allowed in the initial formulation). Indeed, it 
is a common practice to sell assets that are not yet owned 
by the investor at the time, in expectation of  a price falling: 
This can be formulated replacing constraint (4) with 

 
  ix i∈ ∀¡                                  (23) 

 
This relaxation was introduced in Black (1972), and in 

this formulation it is possible to find an exact analytical 
solution for the PSP. 

Note that, if  short sales are to be forbidden, constraint 
(4) becomes redundant when imposing floor constraints. 

 
3.4.5 Rounds 

The unconstrained Markowitz model considers 
investments as perfectly divisible, so as to be represented 
by a real variable, whilst in several markets (such as the 
Japanese and most of  European ones) securities are 
negotiated as multiples of  minimum lots. For each asset 
there exists a minimum tradable lot, referred to as round. 
Rounds are usually measured in unities of  money, so this 
constraint is encountered in the PSP integer formulation 
(Lin et al. (2001), Kellerer et al. (2000), and Mansini and 
Speranza (1999)). If  pj is the price of  asset j and ρj its 
minimum tradable quantity, the minimum lot cj of  asset j, 
measured in unities of  money, is given by cj = ρjpj. If  
rounds are introduced in the formulation, they becomes 
the integer decision variables (Kellerer et al. (2000) and 
Mansini and Speranza (1999)). 

When using the continuous formulation its application 
consists in imposing that each weight must be multiple of  a 
given fraction (Streichert et al. (2004a)), and, obviously, its 
meaning is different from imposing rounds in integer 
formulation. 

Although rounds are imposed by the Exchange Market 
independently of  the investor size, their effects (measured 
in terms of  deviation from the unconstrained results) seem 
to be relevant for small investors but negligible for big ones 
and their introduction has the effect of  reducing the 
number of  different assets in the optimal portfolio. 

 
3.4.6 Class constraints 
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In the real world of  finance it may happen that investors 
ideally partition the assets in mutually exclusive sets 
(classes). Each set consists of  assets with common 
characteristics (insurance assets, naval assets, etc.), and 
investors want to limit the proportion of  each class. Let M 
be the set of  classes Γ1, ..., ΓM, Lm and Um the lower and 
upper proportion limit (respectively) for class m, the class 
constraint can be defined as 
 

    1, ...,
m

m i m
i

L x U m M
∈Γ

≤ ≤ =∑                  (24) 

 
Similar is the Asset Class Management, in which the 
universe of  assets is split into subsets of  assets (classes) 
with similar features. The best representative of  each class 
is selected and optimization is performed on this 
pre-selection (Farrell (1997) and Gratcheva and Falk 
(2003)). 
 
3.4.7 Preassignment 

An investor may wish some specific assets be included in 
the portfolio, in proportion fixed or to be determined. This 
constraint can be imposed by setting zi = 1 for the 
corresponding assets and imposing more or less restrictive 
upper and lower bounds. It has been discussed informally 
by Chang et al. (2000), but is not addressed in the 
experimental setting. 
 
3.4.8 Transaction 

Transaction costs consist of  the amount of  money to be 
paid in order to buy assets. They cannot be considered 
properly as constraints, as they rather represent extensions 
of  the model allowing to take into account additional 
real-world features. As stated in Konno and Wijayanayake 
(2001) the total costs follow a non-convex function on the 
size of  the transaction: At the beginning it is concave up to 
a certain point (unit-transaction cost gradually decrease as 
size increase), then it increases linearly up to another point 
(unit-transaction costs are here constant) and then 
becomes convex due to the illiquidity premium (unit prices 
increases due to the shortage of  supply). Thus, transaction 
costs can be plotted as a V-Shaped function (Xia et al. 
(2000)). 

It has been proved that ignoring transaction costs leads 
to inefficient portfolios (Arnott and Wagner (1990)). 
Nevertheless metaheuristics lacks in including transaction 
costs and just a few authors considered it in their 
formulation (Lin et al. (2001), Vedarajan et al. (1997), Xia 
et al. (2000), and Maringer (2002 and 2005)). This is 
because most works use the Mean-Variance formulation 
(see Section 3.1) that fails in including fixed transaction 
costs (but it can handle proportional costs). Indeed, even if  
Modern Portfolio Theory states that diversified portfolio 
are preferable to non-diversified ones (Markowitz (1959)), 
there is evidence that investors choose non-diversified 
portfolios (Blume and Friend (1975), Guiso et al. (1996),  
and Jansen and van Dijik (2002)). This is due to the action 

of  transaction costs, since they are not included in the 
original model. 

Transaction costs are instead taken into account by 
works exploiting other approaches, such as LP based 
heuristics approaches (see Section 6). In these works, 
exploiting an integer formulation, both fixed and 
proportional transaction costs are taken into account.8 

Fixed transaction costs can also be applied if  the sum of  
money invested in the individual asset exceeds a given 
threshold (Kellerer et al. (2000)): This is made in order to 
facilitate small investors exclude taxes and other fixed costs 
when the amount invested in an individual security is small. 

Maringer (2005) investigates fixed only, proportional 
only, proportional with lower bound and proportional plus 
fixed costs, using an integer formulation in which the 
invested amount varies from 500 up to 10000000 euros. It 
is shown that the higher the fixed costs, the smaller the 
cardinality of  the portfolios and the portfolio 
performances: This effect is more evident for small 
investors. Proportional costs instead, depending exclusively 
on the transaction volume, cannot be avoided by 
substituting securities by adding shares to already included 
ones. Nevertheless, even in this case the higher the cost, 
the smaller the cardinality of  the portfolios and the 
portfolio performances. The case of  compound costs is 
even more interesting and has been tackled by Angelelli et 
al. (2004) too, where the proportional cost to be paid for a 
given asset cannot be lower than a threshold Pmini. This 
means that for each asset i, assuming that pci represents its 
associated proportional cost, the investor will always buy a 
number of  rounds (as they represents decision variables, 
see Section 3.4.5) xi such that pciqixi ≥ Pmini, where qi 
represents asset price. This implicitly defines a lower bound 
ε for each asset: 

 

i
i

i i

Pmin
pc q

ε
 

=  
 

                                (25) 

 
The higher Pmini, the higher the lower bound, while the 
higher the proportional costs, the smaller the lower bound. 
This lead to the phenomenon that for a given Pmini, the 
portfolio will be more diversified the higher the transaction 
cost is. Imposing proportional plus fixed combines the 
effect of  the two costs, as increasing them will reduce 
portfolio diversification. 

So, considering all typologies, global transaction costs 
tend to reduce portfolio diversification, but this assertion 
must be taken cum grano salis as investor behavior 
depends on subjective factors too: In Glover et al. (1995) it 
is explicitly stated that if  the investor is risk-averse the 
portfolio held is more diversified with taxes and transaction 
costs, whilst diversification is not requested by investors 
with low risk-aversion if  taxes and transaction costs are 
included in the model. It is clear however that only 

                                                 
8Taxes can be considered as additional proportional costs whose 
amount is determined w.r.t the type of trader and the kind of 
operation performed, see Mansini and Speranza (1999). 
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proportional costs are suitable to be included in the 
continuous model, as the remainder is sensitive to the 
invested amount. 
 
3.4.9 Turnover and trading constraints 

For the sake of  completeness, we also mention a class 
of  constraints that arise in the multi-period formulation of  
the problem. These constraints define upper and lower 
bounds, respectively in case of  buying and selling, for the 
variation of  asset values from one period to the next one. 
Moreover, they are usually combined with transaction costs 
and taxes. These constraints have been introduced by 
Crama and Schyns (2003) in a variant of  the single-period 
formulation. 

The complete classification of  the PSP model variants 
that can be found in the main literature on the subject is 
depicted in Figure 3. In the next section we present an 
overview of  the main metaheuristic approaches for 
tackling the PSP. 
 
4. METAHEURISTIC TECHNIQUES FOR 

PORTFOLIO SELECTION 

Metaheuristics are solving strategies based on which 
approximate algorithms for combinatorial optimization 
problems can be designed and implemented. In general, 
metaheuristic-based algorithms can not prove the 
optimality of  the returned solution, but they are usually 
very efficient in finding (near-)optimal solutions. Some 
techniques, such as tabu search, iterated local search, 
variable neighborhood search, ant colony optimization and 
evolutionary algorithms have proved to be very successful 
in tackling real-world problems. For further details on 
metaheuristics we forward the reader to Blum and Roli 
(2003) and Hoos and Stützle (2004). In this section, we 
provide a review of  the most relevant metaheuristic 
approaches to the PSP. To this purpose, we will adopt the 
standpoint provided by MAGMA, a general framework for 
metaheuristics (Milano and Roli (2004)). MAGMA 
(MultiAGent Metaheuristics Architecture) provides a 
framework for classifying and designing metaheuristic as a 
multi-agent system. Metaheuristics can be seen as the result 
of  the interaction among different kinds of  agents: the 
basic architecture contains three levels, each hosting one or 
more agents. At each level there are one or more 
specialized agents, each implementing an algorithm. 
LEVEL−0 provides a feasible solution (or a set of  feasible 
solutions) for the upper level, therefore it can be 
considered as the (initial) solution construction level. 
LEVEL−1 deals with solution improvement and agents 
perform a trajectory in the search space until a termination 
condition is verified (basic local search level). LEVEL−2 
agents have a global view of  the space, or, at least, their 
task is to guide the search toward promising regions and 
provide mechanisms for escaping from local optima (long 
term strategy level). Classical metaheuristic techniques, 
such as tabu search, can be easily described via these three 
levels. This basic three level architecture can be enhanced 

with the introduction of  a fourth level of  agents, 
LEVEL−3 agents, coordinating lower level agents. With 
this fourth level, the framework can also describe hybrid 
techniques such as large neighborhood search, in which 
complete solvers are integrated into metaheuristics (De 
Backer et al. (2000) and Pesant and Gendreau (1999)). We 
first survey the basic concepts metaheuristics for PSP are 
based upon, i.e., the various choices for defining the set of  
feasible solutions, the neighborhood structure(s) and the 
cost function. Then, we give an overview of  the techniques 
level by level, starting from the solution construction till 
the most general search strategies. 
 
4.1 Metaheuristic attributes 

We can conceive a metaheuristic as an abstract class 
whose attributes are the search space, the cost function and 
the neighborhood structure(s) that represents the basic 
components of  the search strategy. Once these attributes 
are instantiated, the search strategy can be designed by 
instantiating the algorithm for each of  the search levels, i.e., 
solution construction, solution improvement, search 
strategy and coordination strategy. 
 
4.1.1 The search space 

Usually, a solution to the PSP is represented by an array 
of  n variables x1, ..., xn, where xi represents the fraction of  
the amount invested in asset i (or the actual amount of  
money in the integer variable model). Besides those 
variables, auxiliary variables and data structures can be 
added for improving algorithm efficiency. An important 
distinction has to be made in the way the different 
approaches deal with constraint violations. Indeed, some 
works define the search space explored by the algorithm as 
consisting of  only feasible portfolios (i.e., satisfying all the 
constraints in the model), while in other works the search 
process is allowed to explore also infeasible solutions. 

We therefore can classify the search processes depending 
on how they handle infeasibility: 

 
l All feasible approach: Each candidate solution s must 

satisfy the constraints at any step of  the search 
process (e.g. Chang et al. (2000)); 

l Repair approach, in which if  an infeasible solution is 
found, this is immediately forced to satisfy the 
constraints by means of  an embedded repair 
mechanism (e.g. Streichert et al. (2004a)); 

l Penalty approach: It is allowed to visit infeasible 
solutions, but those will be assigned a penalty in the 
cost function, depending on the amount of  violation 
(e.g. Schaerf  (2002)). 

 
Repair mechanisms provide a tradeoff  between 

exploration and intensification. A basic repair approach is 
presented in Diosan (2005) and Rolland (1997): These 
works tackle an unconstrained formulation, so constraints 
likely to be violated are the budget and return constraint. 
In this case the only action to be performed is to             
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Figure 3. Conceptual representation of  all the PSP model attributes (variables, objectives and constraints). 

 
normalize weights so as to sum to one, but in Diosan 
(2005) weights are normalized at each step, whilst (Rolland 
(1997)) repairs solutions only after finding five consecutive 
infeasible moves. This mechanism repairs asset weights in 
the following way: 
 

i
i

j
j

xx
x

′ =
∑

 

 
where xi represents the actual weight of  asset i and ix ′  
the repaired weight. 

Extended versions of  this mechanism are given by 
Schaerf (2002) (idR and idID), where the repair mechanism 
must satisfy the floor and ceiling constraints too. This is 
done by normalizing, for each asset i, values xi − εi rather 
than xi, as previously introduced, in order to ensure that no 
asset can fall below the minimum allowed εi. The repaired 
asset weights (accordingly with the previously introduced 
notation) will be: 

 
i i

i i
j i

j

xx
x

ε
ε

ε
−′ = +
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A more complex typical repair mechanism is explained 

in Streichert et al. (2004b), referring to a formulation with 
cardinality and minimum lots constraints. This mechanism 

takes as input a non-normalized solution vector and repairs 
the solution through the following deterministic procedure: 

 
1. A vector x ′  is generated: If  cardinality constraint is 

imposed, it will contain only the k asset with highest 
weights whilst the surplus variables are set to 0; 
otherwise x ′  will be composed of  all assets; 

2. All weights are normalized so as to sum to one. This is 
done by setting weights / ;i i j

j

x x x′′ ′ ′= ∑  

3. A further modification is required to meet minimum 
lots constraints: Asset weights are forced to the largest 
roundlot level less or equal than the current asset 
weight, i.e., (  mod ).i i i ix x x c′′′ ′′ ′′= − The residual 
amount of  budget is redistributed so as to meet 
minimum lots constraints by buying quantities of  ci of  
assets with the largest ( ix ′′  mod ci) until all the budget 
is spent. 

 
This repair mechanism can anyway fail in finding feasible 
solutions w.r.t return constraint. In this case, as authors 
exploit a genetic algorithm, the fitness of  the portfolio will 
be assigned the worst possible value. 

Indeed, these three ways of  handling constraints are 
mostly used together, deciding, for each constraint, which 
is the most suitable way for handling them. For instance, 
budget constraint is used to norm the solution, so it is 
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preferred having solutions strictly satisfying them, 
exploiting either a feasible approach (Crama and Schyns 
(2003)) or a repair mechanism (Kellerer and Maringer 
(2003)). Also return constraint is used to norm the solution, 
but it can be used in both feasible or penalty approaches. 
The choice between these two strategies depends on the 
cost function used: Penalty approach is used if  the cost 
function consists of  a combination of  the objective of  the 
problem and the violation of  the return constraint, as it 
allows moving toward an infeasible state, assigning a 
penalty for the violation of  constraints (the main examples 
of  this approach will be discussed in Section 4.1.2); if  
other cost functions are used, the feasible approach is 
preferred (Crama and Schyns (2003)). 

There is, instead, no reason for preferring one of  these 
strategies when dealing with other constraints: For instance, 
at point (1) we explicitly referred to the case of  cardinality 
constraint as being repaired by a useful mechanism, but 
ensuring that solutions are always feasible w.r.t. to this 
constraint has been exploited in Crama and Schyns (2003), 
Kellerer and Maringer (2003), Maringer (2001), and 
Armañanzas and Lozano (2005). 

We mention that it turns out to be difficult determining 
which class a search method belongs to, as it can be 
difficult to determine if  a search trajectory moves only in 
feasible areas because of  its formulation or because an 
implicit repair mechanism is embedded. For this reason, 
the pure all-feasible approach can be hardly found in 
literature, and the few examples are to be reformulated as 
unconstrained PSP (Catanas (1998) and Fernando (2000)). 
 
4.1.2 Cost function 

When the PSP is attacked by metaheuristic algorithms, it 
is important to distinguish between objective function and 
cost function. The former represents the function to be 
optimized to solve the problem, while the latter represents 
the function guiding the search process over the search 
space. In many metaheuristic algorithms the objective of  
the problem is used as evaluation function, but sometimes 
different cost functions can better guide the search toward 
promising solutions. 

An example of  cost function for the PSP is provided by 
Schaerf  (2002) who defines a cost function in which the 
cost associated to the violation of  return constraint 

1( ( ))f x  is combined with the original objective function 

2( ( ))f x . The overall cost function to be minimized is a 
weighted sum of  the two components 1 1 2 2( ) ( )w f x w f x+ , 
where w1 and w2 vary during search according to a shifting 
penalties mechanism. 
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A similar approach is followed by Gilli and Këllezi 
(2001). They choose the following objective function: 
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where  p  is the penalty term. 
 
4.1.3 Neighborhood relations 

The neighborhood relation defines the states of  the 
search space that are reachable from the current state of  
the search. The definition of  neighborhood structures to 
be used during search is one of  the key components of  
metaheuristic algorithm design. 

In general, neighborhood relations can be divided in two 
classes: 

 
1. Neighbors are generated by modifying the weights of  

a subset of  the assets of  the current portfolio. 
2. Neighbors are generated by modifying all the assets in 

the current portfolio. 
 

We can ideally define a neighbor of  a solution by 
selecting one asset to be modified, specifying the amount 
of  variation and performing the change. This asset is 
referred to as pivot (Armañanzas and Lozano (2005)). 
Then, this modification is counterbalanced by changing the 
weights of  some other assets. If  only a predetermined 
subset of  assets is selected to be modified the 
neighborhood is said to belong to class 1, otherwise the 
neighborhood is said to belong to class 2. 9 

The neighborhood structures of  class 1 can either 
consist only of  feasible solutions (e.g. Schaerf (2002), 
structure TID) or allowing infeasible moves too (e.g. 
Rolland (1997)). The simplest neighborhoods in this group 
are generated by modifying the pivot weight and 
counterbalancing this change by modifying the weight of  
only one other asset (Rolland (1997) TID; Gilli and Këllezi 
(2001)). This structure can be generalized by introducing 
an integer c representing the number of  assets to be 
modified in order to counterbalance the pivot weight 
variation. Crama and Schyns (2003) use c = 2, but it is 
possible to set c at any number, even 0, thus allowing 
infeasible moves9. In the previously described 
neighborhoods, the step size is set before choosing the 
assets involved in the modification; however, neighbors can 
also be generated by varying this value. For example, in 
Armañanzas and Lozano (2005) neighbors are generated by 

varying step from a minimum of  pivotw
n

 to a maximum of  

                                                 
9In this case a repair mechanism should be included. 
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,pivotw  being forced to assume all multiples of  .pivotw
n

 

Neighborhoods of  class 2 are generally used in 
population-based algorithms (Diosan (2005), Loraschi and 
Tettamanzi (1997), Streichert et al. (2004a), and Lin et al. 
(2001)), especially in genetic algorithms, in which crossover 
and mutation operators could return infeasible solutions. 
In this case, it is often impossible to determine which asset 
plays the role of  pivot. Anyway, there are some 
representative cases in which the pivot is used, such as in 
Chang et al. (2000), Catanas (1998), and Schaerf (2002). 
The first examples of  neighborhood relations in local 
search for the PSP were introduced by Rolland (1997). 
These neighborhoods are defined for the unconstrained 
model, i.e. the one with only theoretical constraints as 
explained in Section 3, and can be considered the basic 
structures upon which further developments have been 
designed. In the first structure (referred to as RollandI) the 
neighbor of  a solution is defined as a solution in which the 
weight of  only one asset is increased or decreased of  a 
given quantity, called step. The second neighborhood 
(referred to as RollandII) is defined so that the weight of  an 
asset is increased or decreased of  a given step and the 
value of  one other asset is respectively decreased or 
increased of  the same value. 

With these two neighborhood structures, the assets 
contained in the final solution are a subset of  the starting 
portfolio, since the assets to be modified are chosen 
amongst the ones present in the portfolio. Anyway, this 
does not prevent the search from being able to explore all 
the possible asset combinations, because the model is 

unconstrained and the portfolio is initialized with 1
ix

n
= , 

for each asset i = 1, 2, ..., n. We also observe that RollandI 
might move the search to infeasible solutions. These 
neighborhoods are well suited for the unconstrained model, 
but have to be modified for the constrained models 
because assets cannot be present in the portfolio in any 
quantity. Hence, these neighborhood structures are 
modified by embedding asset insertion and deletion 
operations. 

RollandII can be modified by transferring a quantity from 
one assets i to another asset j even if  the latter does not 
belong to the portfolio. In this case, asset j will be inserted 
in the portfolio (see the neighborhood called TID in 
Schaerf (2002) and Gilli and Këllezi (2001)). This approach 
should also include some mechanism to handle upper and 
lower bounds, in case they are present in the formulation. 
RollandI can be modified by enforcing the satisfaction of  
the budget constraint and by allowing insertions and 
deletions of  assets. Feasibility w.r.t. the budget constraint 
can be enforced by increasing the weight of  one asset and 
decreasing the other asset weights (Catanas (1998)). More 
precisely, if  a solution is given by a weight vector (x1, ..., xn), 

the neighboring one is ( 1

1
x
step+

, ...,
1

ix step
step

+
+

, ..., 
1

nx
step+

), 

for only one i, 1 < i < n. This neighborhood is proven to be 
complete, i.e., for a long enough sequence of  moves, each 

solution can in principle be reached. Completeness does 
not depend on the initial solution and holds iff  

1
1

step
n

≤
−

. The possibility of  having asset insertions and 

deletions leads to neighborhoods defined in Schaerf (2002), 
called idR and Chang et al. (2000). This neighborhood 
takes into account the case that an asset i is decreased so 
that its value falls below its lower bound ε; hence, asset i is 
deleted and another asset j is inserted in the portfolio. 
Conversely, if  asset i is increased so that its value exceeds 
its upper bound δ, then its weight is set to δ and all other 
asset weights are normalized. Observe that all these 
variants do not change the number of  assets in the 
portfolio. A further improvement is thus possible by 
allowing neighbor solutions to have different number of  
assets (see Schaerf (2002), idID), defined by allowing three 
kinds of  operations on the selected asset i: 

 
l If  asset i is already in the portfolio, increase its weight 

of  a given quantity. If  the resulting value exceeds the 
upper bound δ, then set the value to δ. 

l If  asset i is already in the portfolio, decrease its value 
of  a given quantity. If  the value falls below the lower 
bound ε, asset i is deleted and not replaced by any 
asset. 

l If  asset i is not in the portfolio, it is inserted in the 
portfolio with weight equal to its lower bound. 

 
After these operations, asset weights are normalized. 

 
4.2 Metaheuristic search components 

In this section, we describe the search methods 
composing the metaheuristics for the PSP. We first present 
trajectory based strategies, such as simulated annealing and 
tabu search, and then we introduce population-based 
metaheuristics, such as evolutionary algorithms and ant 
colony optimization. 
 
4.2.1 Initial solution 

It has been empirically observed that metaheuristics for 
the PSP are usually quite robust with respect to the choice 
of  the initial solution. This assertion has been formally 
proven by Catanas (1998), subject to the specific 
neighborhood structure defined therein. For this reason, 
most works assume as starting solution a randomly 
generated one or a solution constructed by means of  a 
simple heuristic procedure (Ehrgott et al. (2004)), possibly 
embedding also a mechanism to ensure feasibility of  the 
initial portfolio (Crama and Schyns (2003)). 
 
4.2.2 Iterative improvement 

Iterative improvement can be considered as the simplest 
local search, as it performs a path in the search space by 
moving from a solution to a neighboring one with a lower 
cost. This search can be named best improvement, if  the 
neighbor chosen is the best among the feasible neighbors, 
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or first improvement, if  the chosen neighbor is the first 
state found during the neighborhood enumeration that is 
better than the current one. Iterative improvement is 
usually incorporated into a more complex strategy, rather 
than being used as a stand alone local search. For instance, 
in Glover et al. (1995) iterative improvement is the local 
search component of  a variable neighborhood search 
technique. As another example, we mention Armañanzas 
and Lozano (2005) who use a greedy search to refine 
solutions found by an ant algorithm. 
 
4.2.3 Simulated annealing 

The possibility of  moving to solutions with a higher cost 
(i.e., performing degrading moves) characterizes Simulated 
annealing (SA). The probability of  moving toward 
solutions worst than the current one depends on the cost 
difference between the two solutions and it also decreases 
during the search. This probabilistic acceptance criterion 
enables the search to escape from local optima. Crama and 
Schyns (2003) apply SA to various PSP models by first 
considering in the model only one constraint class at a time 
(floor, ceiling and turnover first, then trading and 
cardinality), then they include all constraints in the model. 
The authors experiment with three strategies: 

 
l Independent runs, starting from the same initial 

solution; 
l Subsequent runs, using as initial solution for the 

current run the best one found in the previous one; 
l Run the algorithm a number of  times such that a list P 

of  promising solutions is created, then perform |P| 
independent runs, using as initial solutions the ones 
stored in P. 

 
The fact that there is no clear dominance among these 

strategies gives support to the statement that such search 
processes are insensitive to the initial solution. SA by 
Crama and Schyns is able to plot the UEF exactly and 
achieves good performances in the model with floor, 
ceiling and turnover constraints. Nevertheless, the ACEF 
returned in the model with trading constraints appears to 
be quite rugged. Anyway, in all the cases this technique is 
able to approximate the CEF in reasonable runtimes for 
medium-sized instances. 

The concepts of  SA can also be effectively utilized 
inside population-based algorithms, as done in Kellerer and 
Maringer (2003) and Gomez et al. (2006). In the approach 
proposed in Kellerer and Maringer (2003), an initial 
population of  random portfolios is generated. Then, for 
each portfolio po in the initial population, a new portfolio pn 
is created by selecting some assets i and modifying them 
according to the following rule: 

 
max( , 0)

in iox x sω ω= +                          (28) 
 
where s is randomly chosen in the range [−Ut, Ut] and this 
range decreases over time. Weights are then normalized 
and pn is evaluated and accepted or not depending on the 

Metropolis criterion. Once the new population is created, it 
is further refined by replacing worst portfolios either by a 
clone of  a probabilistically selected portfolio with higher 
fitness with probability r or, with probability 1 − r, by a 
portfolio composed of  assets with average weights over 
best portfolios. 

An interesting application of  SA for a multi-objective 
formulation is presented in Armañanzas and Lozano 
(2005), in which moves are always accepted if  at least one 
criterion is improved, while deteriorating moves are subject 
to the SA usual probabilistic acceptance criterion. This 
approach, applied in a formulation with floor, ceiling and 
cardinality constraints, seems to find good solutions in the 
lower part of  the frontier, where risk and profits are small. 
 
4.2.4 Threshold accepting 

Threshold accepting (TA) shares some analogies with 
SA, as a degrading move can be accepted if  the cost 
difference between the current and the new solution is 
within a given threshold, that is progressively decreased to 
zero. The threshold decreasing schedule is defined by 
estimating the distribution of  distances between objective 
values of  neighboring positions (an analogous parameter 
tuning procedure is undertaken also for SA). TA has been 
applied to the PSP by Dueck and Winker (1992) and Gilli 
et al. (2001 and 2006). These works are primarily aimed at 
comparing risk measures, so the algorithm represents the 
technical mean to investigate financial aspects. For example, 
in Dueck and Winker (1992) different risk measures are 
compared. Experimental results show that the solutions 
corresponding to a risk measure are generally not efficient 
w.r.t. another risk measure. In this way it is possible to 
directly compare risk measures. In Dueck and Winker 
(1992) it is stated that the ACEF is not smooth, since it 
turns out to be composed of  linear fragments, and the 
curve switches from a segment to another one when the 
fraction held in a particular asset changes sharply. 

Besides solving a floor and ceiling constrained 
mean-variance PSP, Gilli and Këllezi (2001) tackle a more 
realistic problem in a downside-risk framework in which 
decision variables are integers. The problem is formulated 
as a maximization of  future returns, while value-at-risk and 
expected-shortfall are compared as risk measures 
constraining the shortfall probability for a given level of  
ES and Var. In a further work (Gilli et al. (2006)) TA is 
used to compare three different risk measures: Value at 
Risk (VaR), Expected Shortfall (ES) and Omega measure 
(defined as the ratio of  the weighted conditional 
expectation of  losses over the weighted conditional 
expectation of  gains) in a formulation with cardinality and 
upper/lower bounds constraints. Results show that 
Mean-VaR portfolios are more diversified than those 
obtained with ES criteria, while ES frontier dominates the 
other two. 

These works stress the fact that much attention has to 
be paid to the choice of  an appropriate risk measure. 
Indeed, efficient portfolios with respect to a risk measure 
are usually not efficient with respect to other measures and 
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efficient portfolios are very different from each other with 
respect to different utility functions. 
 
4.2.5 Tabu search 

The Tabu search metaheuristic (TS) moves away from 
local optima by forbidding the search to execute the 
inverse of  the last l recently performed moves. This simple 
mechanism, enhanced with the exploitation of  the search 
history for intensifying and diversifying the search, makes 
TS one of  the best performing local search strategies. The 
application of  TS to the PSP has its milestones in the 
works by Rolland (1997) and Glover et al. (1995). These 
works refer to different formulations of  the problem and 
moreover Glover tackles a multi-period formulation. 
Nevertheless, both deserve to be analyzed for the richness 
of  concepts presented.  

Rolland uses a TS for the unconstrained problem. The 
author tackles two problems of  minimizing variance and 
minimizing variance given an expected level of  returns. 
That work is more oriented in finding a single point 
(describing the trajectory followed by the algorithm over 
time to reach it) rather than drawing out the whole UEF. 

The approaches designed for tackling these two problem 
formulations differ in the repair mechanism. In the 
minimum variance formulation, after having executed five 
steps in the infeasible search space area, the algorithm 
repairs the incumbent solution as follows: 

 
l If  the investment exceeds the budget (i.e. if  

1i
i

x >∑ ), find the asset i with maximum sum of  

covariance referring to other assets (i such that 

ij i j
j

x xσ∑  is maximal) and decrease xi in order to 

ensure feasibility; 
l If  the investment is less than the budget (i.e. if  

1i
i

x <∑ ), find the asset i with minimum sum of  

covariance referring to other assets (i such that 

ij i j
j

x xσ∑  is minimal) and increase xi in order to 

ensure feasibility. 
 

The algorithm for the minimum-variance-given-return 
formulation initially tries to reach the desired level of  
returns, repairing the solution as follows (after having 
visited consecutively five infeasible solutions): 

 
l find i such that 

 

1 j i j j p
j j

x r x r r
   

− ⋅ − −       
∑ ∑             (29) 

is minimized; 
l  If  the investment exceeds the budget (i.e. if  

1i
i

x >∑ ), decrease xi in order to make the solution 

feasible. 

l If  the total investment is less than budget (i.e. if  
1i

i

x <∑ ), increase xi so as to make the solution 

feasible. 
 

When the return level of  the best solution found is 
within the 0,005% of  the desired level, the repair 
mechanism invoked is the one described for the minimum 
variance problem, so that the solution is feasible w.r.t. the 
requested minimum-variance point after the requested 
return level has been reached. 

Even if  the proposed TS is said to attain good 
performances, it is useful only to find single point instead 
of  the whole UEF, therefore this implementation does not 
represent the most powerful solution for real-world 
problems; however, it can be useful when only one desired 
level of  return is given. 

Glover et al. tackle the asset-allocation with fixed-mix, a 
problem similar to the PSP. This is a multi-period problem 
in which we want, for each period, to respect the 
proportions of  asset classes (in this case assets, bonds and 
treasury bills) out of  the whole portfolio, in order to attain 
the same risk profile for each period, taking into account 
cash-flows generated by the portfolio management. At the 
beginning of  each period, the portfolio must be 
re-balanced in order to ensure feasibility, as assets generate 
dividends to be re-invested, transaction costs must be taken 
into account and constraints on proportions held can be 
considered. The simplest strategy is given by selling a 
portion of  asset classes with returns higher than the 
average return and buying a portion of  asset classes with 
returns below average. 

Both cases with and without transaction costs are 
investigated and the search strategy is implemented by 
interleaving TS with variable scaling. With this term we 
indicate a strategy in which the neighborhood changes over 
iterations due to a change of  the step length of  moves (the 
biggest step length is 5% and the smallest is 1%). Step 
lengths are defined and ranked in decreasing order, and an 
Iterative improvement search is performed with the first 
step length. When no improvements are obtained, the step 
length changes to the next value and the Iterative 
improvement procedure is repeated starting from the last 
solution found. This process is iteratively repeated until the 
last step value of  the list is reached. At this point, if  
improvements were reached over the list, the process 
restarts from the first value, otherwise the procedure stops. 
At the end of  this phase, a TS run is performed; in case of  
improvements, the search switches back to variable scaling 
and the process continues until no improvements are 
achieved. The step size is crucial for the effectiveness of  
the algorithm and in TS it is set at a higher value than in 
Variable Scaling so as to diversify the search. The ACEF is 
compared with the frontier obtained with exact global 
optimization, and it is shown that they are almost identical, 
in both the cases with or without transaction costs. 

Tabu Search has been widely applied to solve the PSP. It 
is easy to find it in works aimed at comparing the 
performance of  different algorithms on the same instance 
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(see Section 5). A very successful application of  TS can be 
found in Schaerf  (2002), in which TS is improved by 
dynamically changing the neighborhood structures. 
 
4.2.6 Variable neighborhood search 

Variable Neighborhood Search (Hansen and Mladenović 
(1999)) (VNS) is a metaheuristic that dynamically changes 
neighborhood structures during search, so that a 
neighborhood is substituted by another one when the 
current solution cannot be further improved. There is no 
explicit application of  VNS to the PSP, however, as this 
strategy is very general, its principles can be found in some 
important works in the literature. This is the case of  the 
work by Glover et al. (1995), in which the implementation 
of  variable scaling can be considered a VNS, as a new 
neighborhood is introduced by changing the step when no 
further improvement is possible. A similar technique can 
be found in Ehrgott et al. (2004), in which the search 
switches between two neighborhoods. Moreover, similar 
ideas can be found in Schaerf (2002), in which TS is 
implemented in a token ring sequence, in which runs using 
a different neighborhood structures are interleaved. 

It is worth mentioning also the work by Speranza (1996), 
in which a heuristic algorithm is defined and applied to 
Milan Stock Market using an integer formulation enriched 
by introducing proportional transaction costs (floor, ceiling 
and cardinality constraints are discussed but not addressed 
in the computational analysis). Here, in order to satisfy the 
constraints on capital, assets are ordered and re-numbered 
in non-decreasing order of  xi in the portfolio; then x1 is 
increased (and, if  this move is unsuccessful, decreased) by 
one unit. If  the new solution is feasible, the algorithm 
stops, otherwise the procedure is repeated over x2, ..., xn. 
At the end of  this phase, if  no feasible solution is found, 
the cycle is repeated increasing assets by two units, then 
three and so on. This mechanism can be considered as a 
kind of  VNS, even if  the neighborhood cardinality is 
constant over the whole process and the neighbor selection 
process is deterministic. 
 
4.2.7 Evolutionary algorithms 

Evolutionary algorithms (EA) are population-based 
metaheuristics whose inspiring principle is the Darwin 
theory of  natural evolution and selection. These search 
strategies maintain and manipulate a set of  solutions at 
each iteration, combining the best solutions of  the current 
set to generate the solutions of  the new set. Often 
EA-based metaheuristics are enhanced by hybridizing EAs 
with advanced constructive procedures and local search 
strategies. The strategies presented in these works can be 
better labelled as memetic algorithms, as local search runs 
are executed to improve the quality of  the solutions 
constructed by the EA. 

The first applications of  EAs to the unconstrained PSP 
are presented by Arnone et al. (1993), Loraschi and 
Tettamanzi (1997), and Loraschi et al. (1995). In Arnone et 
al. (1993) a genetic algorithm (GA) is implemented for the 

PSP with down-side measure of  risk. In the algorithm, one 
population is handled and individuals are generated 
according to investor preferences: a specie is defined for 
each λ (where λ is the trade-off  coefficient between return 
and risk, as discussed in Section 3.3). Individuals are 
generated such as their probability of  belonging to a specie 
is proportional to the investor’s interest in that specie. At 
each generation, a new individual replaces the worst one in 
the previous population. 

In a further work (Loraschi et al. (1995)), a distributed 
genetic algorithm is applied in which each λ value is 
associated to a subpopulation. As the AUEF (the 
unconstrained PSP is tackled) is composed by plotting a 
point for each λ, the greater the number of  populations, 
the finer the resolution of  the frontier. Migrations of  
individuals between populations corresponding to 
neighboring values of  λ are permitted, in order to avoid 
premature convergence of  the algorithm. Individuals are 
allowed to mate only with individuals of  the same 
population or of  adjacent ones. This implementation 
outperforms the previous sequential version, and in 
Loraschi and Tettamanzi (1997) a detailed description of  
the implementation and risk measures is provided. In 
parallel implementation of  GA, if  the cardinality constraint 
is imposed it is possible to search in parallel several ACEF 
corresponding to each value of  k, using information from 
each of  these to improve the search process of  others. 
With this approach, the ACEF approximates the UEF with 
increasing precision, as k increases and constrained optimal 
portfolios are shown to be not significantly different from 
unconstrained ones, except for very small number of  assets 
and very low risk levels. 

Liu and Stefek (1995) tackle the PSP with cardinality and 
ceilings constraints, comparing GA with a heuristic 
proprietary method and they investigate crossover rates, 
population size and elitist strategy showing that GA can 
achieve good performances, even if  worse than the 
heuristic, especially concerning execution time. 

Memetic algorithms for the PSP are presented in 
Maringer and Winker (2003), in which the use of  SA and 
TA inside the EA framework is compared to tackle the 
unconstrained PSP. The results discussed indicates that TA 
is more suitable when VaR is used as risk measure, while 
SA makes the algorithm perform better when ES is chosen. 
An explanation of  this result is given by observing that 
VaR induces a rugged search space, while ES induces a 
smoother landscape. In that work also the use of  a kind 
elitist strategy is investigated, that implements a sort of  
intensification of  the search around the best found 
solutions. This strategy improves the performance of  the 
algorithm when the search space is smooth, while doesn’t 
payoff  when the search space is rugged, as it reinforces the 
local optimum we want escape from. Moreover, the 
introduction of  this kind of  intensification makes the 
algorithms more robust against parameter values. 

The previously discussed works (together with Wang et 
al. (2006), Ehrgott et al. (2004), Xia et al. (2000), and 
Chang et al. (2000)) tackle the inherently multi-criterion 
PSP using single-objective formulations and techniques 
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(see Section 3.3.1). Indeed GA, by being inherently 
effective in diversifying the search, shows good 
performances especially in multi-objective formulations of  
PSP, as shown by the applications of  MOEAs 
(MultiObjective Evolutionary Algorithms) (Streichert et al. 
(2003, 2004a and 2004b) and Ong et al. (2005)): For 
instance, NSGA II (Deb et al. (2000)) represents one of  
most powerful multi-objective metaheuristics and has been 
applied to PSP in Lin et al. (2001) and Diosan (2005). 
Furthermore it has been argued that handling PSP in 
single-objective fashion make strategies less flexible to 
decision makers preferences (Subbu et al. (2005)). 

In this multi-objective framework, PSP is tackled by 
Streichert et al. (2003, 2004a and 2004b) using a two 
objectives optimization model, enriching their 
implementation by adding an archive in order to store the 
frontier obtained so far. In their work, they introduce the 
knapsack representation of  portfolios, comparing it with 
the standard one. The authors also investigate the use of  
Lamarckism. In fact, these algorithms embed a repair 
mechanism that prevents the search from rejecting 
infeasible solutions. In the GA version without 
Lamarckism, only the phenotype of  an individual (i.e., the 
normalized vector of  assets) is altered by the repair 
mechanism, while the genotype (i.e., the non-normalized 
vector of  assets) remains unaltered. Conversely, in the 
version with Lamarckism, the repair mechanism modifies 
the genotype too, according to the phenotype. In each case, 
this solution representation leads to a better performance 
than the standard one. Moreover, Lamarckism helps to 
improve performances too. Furthermore, different variable 
representations (binary and real-valued) are also compared 
and different coding (Streichert et al. (2004a)) and 
crossover operators (Streichert et al. (2004b)) are 
examined. 

We should observe that the model with floor, ceiling and 
cardinality constraints is the most commonly used in 
literature when GAs are applied (Chang et al. (2000), 
Ehrgott et al. (2004), and Fernandez and Gomez (2005)). 
GAs have also been used in conjunction with formulations 
differing from the canonical Mean-Variance one, in order 
to define more realistic customer-oriented frameworks. An 
interesting example is represented by Xia et al. (2000), in 
which the objective function to maximize is given by the 
usual weighted objective function (Eq. (6)), but they solve 
this model for different isolated values of  λ rather than 
trying to plot the whole frontier. They show that in the 
obtained portfolios return is higher than the best one 
provided by optimization software for Mean-Variance 
(LINGO (Kallrath (2004))) even if  they are more risky. 

One of  the main contribution of  that work is that the 
expected return is considered as a variable, rather than an 
instance data. The return ranges in an interval in which 
arithmetical mean represents lower bound a if  its recent 
history trend has been increasing, the upper bound b if  its 
trend has been decreasing. No additional constraints are 
added to the formulation. V-Shaped transaction costs are 
also investigated for portfolio revision, but they are only 

considered as proportional10. Transaction costs (embedded 
in a MAD objective function) and single λ values analysis 
are considered in Wang et al. (2006) in which a sample 
procedure for stochastic returns is introduced instead of  
the classical scenario analysis. 

More complex approaches are proposed aimed at 
helping decision making by introducing other measures 
either to define an ordinal-preference framework in which 
other measures are added to the formulation (see Subbu et 
al. (2005) and Ehrgott et al. (2004)), or to predict the future 
return rate and to estimate the uncertainty risk of  the 
future return rate when the sample is small (Ong et al. 
(2005)). 
 
4.2.8 Particle swarm 

The nature-inspired paradigm referred to as Particle 
swarm is a promising search paradigm, especially when 
continuous optimization problems are tackled. 
Nevertheless, its application to the PSP is still limited, and 
the works on this topic do not tackle the standard 
formulation, being aimed at finding one portfolio optimal 
with respect to a measure such as the reward-to-variability 
ratio out of  a given set of  assets, rather than drawing out 
the whole efficient frontier (Kendall and Su (2005) and 
Mous et al. (2006)). 
 
4.2.9 Ant colony optimization 

Ant colony optimization (ACO) is a population-based 
metaheuristic that is inspired by the foraging behavior of  
ants. Solutions are built component by component, 
according to a probabilistic procedure that bias the choice 
of  the next solution component on the basis of  the quality 
of  the previous constructed solutions. Usually, ACO also 
incorporates some local search algorithm to improve the 
quality of  the solutions built. Initially conceived for 
discrete spaces, ACO has been adapted also for continuous 
spaces, too (see, for instance, Socha (2004)). Nevertheless, 
the potential of  ACO for tackling the PSP appears still not 
completely exploited. 

A successful application of  ACO can be found in a PSP 
modeled with the cardinality constraint (Armañanzas and 
Lozano (2005) and Maringer (2001)). The approach 
consists in defining a population of  n ants that explore a 
completely connected graph composed of  n nodes. Assets 
and nodes are in one-to-one mapping and the path 
traversed by an ant corresponds to the assets to be chosen 
for the portfolio. Path lengths are of  exactly k steps, where 
k is the portfolio cardinality. In the case of  multi-criteria 
optimization, ants are divided in populations such that each 
population solves a problem corresponding to one 
objective function (Armañanzas and Lozano (2005)). When 
ants terminate the exploration phase, a greedy search 
refines the solutions. This method finds better solutions 

                                                 
10 In a further work (Xia et al. (2001)) risk-free assets are 
introduced and the formulation is based on a linear programming 
model. 
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than SA and iterative improvement and results are 
particularly striking in the upper part of  the frontier, where 
risk and profits are high. 

ACO has found application in problems similar to the 
PSP such as the so-called multi-objective project portfolio 
selection (Doerner et al. (2001 and 2004)), a generalization 
of  the bin-packing problem in which we want to choose a 
portfolio of  project proposals (e.g. research and 
development projects) constraining the problem so as to 
ensure that the portfolio will contain not more than a given 
maximum number of  projects out of  a certain subset (e.g. 
projects pursuing the same goal) and imposing resource 
limitations and minimum benefit requirements. 
 
5. COMPARATIVE STUDIES 

The comparison of  the techniques for tackling the PSP 
described in the literature is an awkward task, primarily 
because data-sets are rarely the same, different algorithm 
implementations can lead to unfair comparisons, utility and 
performance measures are often different. Furthermore, 
comparisons can be driven by different criteria, such as 
efficiency, robustness, performance with respect to a given 
model, etc. For these reasons, the comparison amongst 
different works is not possible and we have to resort to 
papers describing and comparing different algorithms on 
the same instance set and model. Before overviewing the 
most relevant works on this subject, we briefly comment 
on the performance measures used for the comparison of  
the algorithms. 

Performance measures are usually obtained by 
comparing constrained results (ACEF) with the ones 
obtained in the unconstrained case for each level of  return 
(each point of  the UEF) and computing statistical 
measures (mean and median percentage error, standard 
deviation etc.) for the overall frontier. There are however 
many ways to define an error measure. For instance, Chang 
et al. (2000) consider the distance of  the point from the 
UEF, defined as the minimum between the distance on the 
x-axis direction and the distance on the y-axis direction11. 
Another measure can be found in Streichert et al. (2003, 
2004a and 2004b), where the algorithm performance is 
computed as the percent difference between the area below 
the UEF and the obtained ACEF. The issue of  comparing 
two frontiers is just an instance of  the more general 
problem of  comparing algorithms for multi-objective 
optimization (Paquete and Stützle (2006)). Often, also 
statistical tests are used (Fieldsend et al. (2004) and Diosan 
(2005)), especially to determine if  the difference between 
UEF and CEF is significant, and some works introduce 
measures to determine the best portfolio in a frontier 
(Dueck and Winker (1992)). 

One of  the first comparative works is due to Catanas 
(1998). That paper is focused on investigating properties 
of  the proposed neighborhoods (see Section 4.1.3). The 
author uses TS and SA, implemented in both robust and 

                                                 
11A similar approach is proposed by Fernandez and Gomez 
(2005). 

dynamic way to tackle the unconstrained PSP. In the robust 
implementation, the step is kept fixed during all iterations, 
while in the dynamic one it is decreased to zero during the 
execution. Furthermore, a schema for the variation of  the 
step is defined such that its value is increased if  solution 
quality worsens and decreased if  solution quality improves. 
Moreover, a threshold on the minimum value of  step is 
introduced, since too small values can make the search 
stagnate. 

Chang et al. (2000) introduce cardinality and floor and 
ceiling constraints and observe that the CEF becomes 
discontinuous. This is due to the fact that feasible 
proportions of  assets are dominated (because of  the 
existence of  portfolios with lower variance and higher 
return); furthermore portions of  frontier could not be 
reachable for a classical λ-weighting drawing approach (due 
to minimum proportion constraints). In Chang et al. (2000), 
the authors implement GA, TS and SA to solve the 
problem. Results show that GA is able to approximate the 
UEF with the lowest average mean percentage error. 
Regarding the constrained problem, GA seems to perform 
better than SA and TS, but differences are not as clear as in 
the unconstrained case, so they use portfolios from the 
three metaheuristics to draw out the ACEF. Their approach 
is to store, for each heuristic, all the improving solutions 
found in the search process and, finally, deleting the 
dominated ones. The sets obtained by the three heuristics 
are then pooled to draw the ACEF. This approach shows 
that for the constrained problem the ACEF approximate 
sthe UEF when the asset cardinality is high (as already 
stated in Fieldsend et al. (2004), see Section 4.2.7). 

Jobst et al. (2001) compare the results presented in 
Chang et al. (2000) against two heuristic methods. The first 
is an integer-restart procedure that plots the CEF starting 
from the highest return and its corresponding risk to lower 
return and reduced risk. The result obtained at each stage is 
supplied as starting point to the next (lower return) stage, 
considering it as first feasible value (this heuristic is 
referred to as warm restart heuristic). The second, inspired 
to an idea similar to Speranza (1996), first solves a 
continuous relaxation without any constraints, then uses 
the k assets with highest weights as input for a problem in 
which constraints are imposed (this heuristic is referred to 
as re-optimization heuristic). Both heuristics are embedded 
in a branch-and-bound and are said to outperform 
metaheuristics used in Chang et al. (2000). Anyway, we 
should note that re-optimization heuristic could not be 
able to draw the whole frontier when the continuous 
relaxation produces a portfolio with less than k assets. 

Another important work that compares different 
techniques is the one by Schaerf  (2002), in which the 
model includes floor, ceiling and cardinality constraints. 
The author defines three neighborhood relations, that 
specify moves that satisfy the budget constraint, and 
defines a cost function that account for the violation of  the 
other constraints. The initial state is selected as the best 
amongst 100 randomly generated portfolios with k assets. 
A first phase of  experiments with Best and First Iterative 
improvement, SA and TS run as single solvers is 
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performed. Then TS, the most promising solver in the 
preliminary experimental analysis, is chosen for an 
extensive experimental analysis, combining neighborhood 
relations in various token-ring strategies. In this case, the 
step length is set to a higher value in the first used solvers 
to favor diversification, while it is set to a smaller value in 
the last used solvers for intensifying the search. 
Experimental results show that the best performances are 
achieved by token ring solvers with random steps, even if  
fixed steps seem to behave well too. Single solvers do not 
attain comparably good results. 

Armañanzas and Lozano (2005) compare iterative 
improvement, SA and ACO in a multi-objective 
formulation with cardinality, floor and ceiling constraints. 
The algorithms used are tailored to the multi-objective 
problem, and ACO outperforms the other techniques. The 
simple greedy search (iterative improvement) shows poor 
performances if  used alone, but turns out to be effective 
when used to refine solutions provided by ACO. 
Interestingly, ACO and SA best performances are found in 
different areas of  the frontier: the first in the upper part of  
the frontier, the latter in the lower part. 

Also Ehrgott et al. (2004) proposes a multi-objective 
framework with cardinality, floor and ceiling constrains in 
which utility functions are interpolated over utility values 
for a set of  points. They use SA, TS, GA and a local search 
similar to a VNS embedding a random escaping 
mechanism to avoid stagnation at local minima. They test 
the algorithms over both random and real-world instances. 
Results on both instance classes show that GA appears to 
be the best performing solver. The local search and SA 
achieve good results, while TS performances appear to be 
the worst ones. 

A further interesting comparison is made by Fernandez 
and Gomez (2005), in which metaheuristics by Chang et al. 
(2000) are compared with a neural net approach. An 
Hopfield network 12  is used to plot the ACEF when 
cardinality constraint and bounds (lower and upper bounds) 
are imposed. Their results show that there is no 
significative difference between their neural network and 
metaheuristics such as GA, TS and SA. In order to 
improve the performance, portfolios from the four 
approaches are pooled and dominated solutions are deleted, 
so as to obtain an improved ACEF (the same approach 
pursued by Chang et al. (2003)). The quality of  solutions 
returned is high, making this neural nets approach 
successful 13 . Nevertheless, the number of  different 
portfolios returned by the neural net is lower than the 
number returned by other heuristics, therefore, even if  the 
                                                 
12Hopfield networks (Hopfield (1999)) are neural network 
composed of a single layer of neurons fully connected and are 
widely applied in combinatorial optimization (Smith (1999)).12 
13Indeed, neural nets can capture non linear relations among 
variables and do not need model assumptions, therefore they are 
suited for forecasting future returns without relying on the stock 
returns normal distribution assumption. This idea has been also 
exploited in Steiner and Wittkemper (1997) and Zimmermann 
and Neuneier (1999) in order to optimize portfolio management. 

quality is high, stand-alone neural nets approaches are not 
suitable for solving the problem in the whole frontier. 
 
6. RELATED WORK 

For the sake of  completeness, in this section we briefly 
review heuristic approaches based on linear programming, 
that can be very useful as components of  more robust and 
complex metaheuristic strategies. These works are also 
important because they provide experimental results for 
the mean semi-absolute deviation (see Section 3.3.1) and 
they deal with integer formulations of  the PSP, in which 
assets are assigned integer values corresponding to the 
actual amount of  money to be invested in each asset and 
variables are formalized as the number of  rounds to be 
purchased for each asset. 

Speranza (1996) models the problem by including 
transaction costs, minimum lots, cardinality, floor and 
ceiling constraints and by introducing two auxiliary binary 
variables to indicate whether a security has fixed 
transaction costs and whether it belongs to the portfolio. 
The idea presented is to relax the integer constraint on 
quantities, transforming the problem into a linear 
programming one (to be solved efficiently even when the 
number of  securities is high) and finding a solution to it. 
Fractional asset weights are then rounded to the closest 
integer and heuristics are applied to force the solution to 
satisfy capital and rate of  return requirements. If  the 
algorithm terminates without solutions, less restrictive 
bounds on capital are iteratively set. This algorithm is 
tested on small instances and does not guarantee to find a 
feasible solution (it has been further tested in Mansini and 
Speranza (1999) and did not compare very favourably 
against competitor solvers); nevertheless it provides good 
performance when the total number of  assets is low and 
reaches a solution close to the optimal one when the 
invested capital is large. 

In Mansini and Speranza (1999), the formulation of  the 
problem includes minimum lots and proportional taxes. 
The authors provide three heuristic algorithms based upon 
the idea of  solving sub-problems of  the original 
formulation, involving subsets of  initial universe of  assets: 
These subsets are composed of  assets chosen exploiting 
the information obtained by solving the continuous 
relaxation, i.e., reduced costs. In the first heuristic (referred 
to as Basic-MILP-based-heuristic) they solve the 
continuous relaxation of  the problem. Then, they use this 
solution to feed the mixed integer-linear programming 
solver. The second heuristic (referred to as 
Reduced-cost-MILP-heuristic) considers a vector xR with a 
number of  assets greater than the vector of  assets i s.t. xi ≠ 
0 as input of  MILP-procedure, thus including also assets 
whose quantity in the solution of  the relaxed problem is 
zero. The third method consists in an iterated routine: after 
solving the relaxed problem, the vector xR is used as input 
for a MILP procedure. After each step, half  of  the assets i 
s.t. xi = 0 is deleted and half  is replaced in the solution. 
The process ends when a given number of  securities has 
been considered. This third heuristic is the most effective, 
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but requires more computational time. These heuristics 
performs reasonably better than simple problem specific 
heuristics proposed in Speranza (1996) and they have the 
advantage of  being more general and are also used in 
Kellerer et al. (2000) in a formulation enriched by 
introducing fixed transaction costs and minimum lots. 
These heuristics are applied to four different models that 
include rounds and fixed costs applied if  the amount of  
money invested in a security exceeds a minimum threshold. 

Even if  adding constraints make it intractable to solve 
real-world instances of  the PSP with proof  of  optimality 
(see, e.g., Jobst et al. (2001)), also exact methods have been 
proposed for the constrained PSP: Konno and 
Wijayanayake (1999 and 2001) use a piecewise linear 
convex underestimation strategy inside a branch and 
bound to model a continuous PSP with concave 
transaction costs, imposing ceiling constraints, no short 
sales, no cardinality and no floor constraint. The same 
approach is then modified to handle minimum lots, 
rounding off  the solution found14. Mansini and Speranza 
(2005) consider the semi-MAD related safety measure 
(downside underachievement) to be maximized, using an 
integer formulation with rounds, ceiling constraint, fixed 
and proportional transaction costs and forbidden short 
sales. They divide the problem into two sub-problems, 
solving the first and considering the solution as lower 
bound for the second sub-problem. Experiments show 
that the first procedure alone can be effectively used as 
heuristic, indeed the authors show that in the instances 
considered this procedure can find an optimal solution, 
therefore it is very likely that it can achieve a very good 
performance in general. Nevertheless, like Konno and 
Wijayanayake (1999 and 2001) this work is aimed at finding 
single points over the frontier instead of  the whole frontier, 
so a comparison with metaheuristic techniques is not 
possible. 

Exact methods have been also employed as components 
of  hybrid metaheuristics for the constrained PSP. For 
example, quadratic programming (QP) has been used in Di 
Gaspero et al. (2007) and Moral-Escudero et al. (2006) in a 
problem decomposition in which a metaheuristic searches 
in the space of  assets only (i.e., on the binary variables zi) 
and at each step the QP solver determines the optimal 
allocation over them (cardinality, floor and ceiling 
constraints are introduced). The difference between these 
two works is the metaheuristic strategy they use: Di 
Gaspero et al. (2007) use Iterative Improvement (first and 
best) and Tabu Search, whilst Moral-Escudero et al. (2006) 
use a genetic algorithm. The promising results obtained by 
these works indicate that hybridization is able to improve 
performances in both terms of  time and solution quality. 
 
7. CONCLUSIONS 

In this work, we have defined a framework for 
classifying metaheuristic approaches for the PSP, 
introducing the main aspects of  the models of  the 

                                                 
14Also portfolio rebalancing is considered. 

problem and the general components of  the metaheuristics 
developed to tackle it. 

This overview enlightens the potential of  metaheuristics 
for portfolio selection problems and it may also enable us 
to delineate some guidelines for the design of  
metaheuristic solvers for the PSP. First of  all, from the 
analysis of  the literature it clearly emerges that a best 
method whatsoever does not exists.15 A second important 
observation is that the development of  a successful 
metaheuristic solver is the result of  a skilled combination 
of  factors, among which a careful choice of  algorithm as a 
function of  the model, the choice of  a suitable 
programming language and a development phase in which 
the different design choices are systematically evaluated. To 
address this issue, we envision a massive use of  
programming languages such as Comet (Van Hentenryck 
and Michel (2005)) and frameworks such as 
EASYLOCAL++ (Di Gaspero and Schaerf (2003)). 
Indeed, these tools enable the designers to test different 
search strategies and variants on the same problem model. 
Moreover, the concentration on a sole heuristic is often not 
sufficient to achieve results meeting practical requirements. 
Hence, the need for the design of  hybrid metaheuristics 
and hybrid solvers in general, nowadays state-of-the-art 
solvers for many real-world applications.16 

The PSP is only a representant of  a class of  problems 
consisting in the management of  portfolios of  different 
nature. There is plenty of  scope for applying metaheuristic 
techniques to this classes of  problems, as to date they 
appear to be not investigated enough. Indeed, 
metaheuristics provide flexible and powerful solving 
strategies that can effiectively and efficiently tackle the 
various instantiations of  the PSP, from the basic 
Markowitz formulation, to more elaborated models 
including also side constraints. Moreover, we believe that 
metaheuristic and hybrid approaches could be very 
successful also to tackle dynamic and multi-period 
formulations of  portfolio selection, in which issues of  
rebalancing, index-tracking and re-optimization arise. 

The works we discussed in this paper show, on the one 
hand, the potential of  such solving strategies and, on the 
other hand, the modelling and algorithm design issues that 
have to be addressed for implementing effective tools. 
Future research is now focusing on the development of  
methodologies for designing and implementing 
constraint-based metaheuristics and hybrid techniques. 
Furthermore, the practical importance of  stochastic 
optimization has contributed to increase the efforts in 
providing effective solvers for such a kind of  problems, 
both off-line and on-line. Finally, it is important to 
recognize that research on the PSP is inherently 
interdisciplinary and, for these problems to be effectively 
attacked, it requires a cross-fertilization between 
                                                 
15This empirical observation is also supported by the so-called No 
free lunch theorems (Wolpert and Macready (1997)). 
16Advances on hybrid metaheuristics can be found in the 
proceedings of HM − The international workshop on hybrid 
metaheuristics (Almeida et al. (2006)). 16 
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algorithmics and finance. 
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