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AbstractThe uncapacitated facility location problem (UFLP) represents a particular structure in integer linear program, 
and has widespread applications in real life. In this paper, the applicability of  UFLP-model is explored in problems arising in 
non-locational context. Three seemingly unrelated problems from the area of  scheduling and routing are chosen for the 
purpose and the reported works in which their relationship with the UFLP has been studied are reviewed. These problems 
are found to have structures similar to a UFLP, and based on this, computationally competitive solution procedures could be 
developed for them. The study shows that several important problems, quite diverse in application, share common 
structures with the UFLP, and identification of  this commonality can be beneficial from both modeling as well as 
algorithmic development points of  view. 
KeywordsUncapacitated facility location problem, Dynamic lot-sizing, Job-scheduling, Bus route design problem, Set 
covering problem 
 
 

                                                 
∗ Corresponding author’s email: kns@iiml.ac.in 

1. INTRODUCTION 

Among the myriads of  formulations considered in the 
literature for location problems, the uncapacitated facility 
location problem (UFLP) seems to have attracted most 
attention (Krarup and Pruzan (1983)). This may be due to 
its wide-ranging applicability to real-life decision-making. 
Apart from decision problems concerning location of  
plants or facilities (e.g., factories, schools, and warehouses), 
the underlying structure of  UFLP and other related models 
also captures the characteristics of  several non-locational 
problems which include, among others, ingot size selection 
(Vasco et al. (1988)), metallurgical grade assignment (Vasco 
et al. (1989)), archaeological settlement analysis (Bell and 
Church (1985)), data base management (Pirkul (1986)), 
production lot sizing (van Oudheusden and Singh (1988)) 
and vendor selection problem (Current and Weber (1994)). 
This paper presents a review of  reported works in which 
this model’s relationship with important problems in the 
area of  scheduling and routing has been studied. The 
purpose here is mainly twofold; one, to show that the 
structure of  UFLP applies to many seemingly unrelated 
decision problems arising in real life, and two, to identify 
the linkage among these problems which makes it possible 
to devise similar solution procedures for them. As the area 
of  scheduling and routing is vast, the paper chooses three 
important problems (viz., dynamic lot-sizing, 
job-scheduling in a production line, and the bus route 
design problem) from the area for study, and identifies 
commonality in their structures with that of  the UFLP. 
The analyses of  the above mentioned problems are found 
to have benefited from UFLP formulation as UFLP-based 

algorithms provided computationally competitive solution 
procedures for these problems. 

The selection of  the above three problems is motivated 
by many factors. First, each of  these has wide applications 
in real life e.g., in production and inventory planning, 
scheduling and others, and they are found to arise in 
several actual settings. Second, many versions of  these 
belong to difficult class of  problems and hence offer 
considerable research challenge, and third, their similarity 
in structure with the UFLP provides us with modeling 
alternatives for many practical problems. Also, applicability 
of  the UFLP-model to situations outside the locational 
context is explicitly explained. 

The contribution of  this study can be explained as 
follows. A review of  research which studies the UFLP’s 
relationship with several important problems outside the 
domain of  locational decision-making (particularly from 
scheduling and routing) is presented, and its findings are 
synthesized to identify the implicit similarity among these 
apparently unrelated problems. This provided us with 
conclusions having implications on modeling and 
algorithmic development of  many practical problems. 
While some of  the problems studied could readily get easy 
exact solution procedures, some other got alternative 
procedures with better average-case performance.  

It is to be noted, however, that this paper unlike many 
important survey articles on UFLP (e.g., Krarup and 
Pruzan (1983), Francis et al. (1983), Aikens (1985), 
Brandeau and Chiu (1989)) does not attempt to present a 
review of  all solution procedures developed to date, nor 
does it study its special structure in depth. This tries to 
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study the commonality in structures of  various problems 
from the area of  scheduling and routing, and identifies 
their linkage with the UFLP so that comparatively easy 
solution procedures can be developed for them. The 
remainder of  the paper is organized as follows. Section 2 
presents the statement and a mixed integer programming 
formulation to the UFLP. Then each of  the above 
mentioned problems viz., dynamic lot sizing, 
job-scheduling in a production line, and bus route design 
problem is studied in relation to UFLP in Sections 3, 4 and 
5, respectively. Finally, the paper concludes in Section 6 
synthesizing the findings of  the above study and giving 
indication for some future research direction.  

 
2. THE UNCAPACITATED FACILITY 

LOCATION PROBLEM (UFLP) 

The UFLP deals with the supply of  a single product 
from a subset of  facilities (i = 1, 2, ..., m) to a set of  
customers (j = 1, 2, ..., n) with a pre-specified demand, dj, 
for that product. The adjectives “uncapacitated” and 
“simple” subsume identical meaning and are 
interchangeably used in facility (plant) location literature. 
Given the cost structure (i.e., fixed cost fi associated with 
facility i, and cij, the variable cost of  supplying customer j’s 
demand from facility i), it is sought to identify a minimum 
cost transportation plan which satisfies each customer’s 
demand. Defining Xij as the fraction of  customer j’s 
demand to be supplied from facility i, the UFLP can be 
represented as: 
 

1 1 1

m m n

i i ij ij
i i j

Min f Y c X
= = =

 
+ 

 
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{ }0,1 , 1, ...,iY i m∈ =                              (5) 
 

The objective function (1) represents the sum of  fixed 
as well as variable costs which is to be minimized. The 
constraint set (2) specifies that each customer j’s demand is 
met. Constraints (3) ensure that shipment to any customer 
is possible only from an existing facility. Yi is a Boolean 
variable which takes a value 1 if  facility i is open (in 
existence), and zero if  it is closed (non-existent). 

Several solution procedures, approximate as well as exact 
(e.g., by Kuehn and Hamburger (1963), Efroymson and 
Ray (1966), Khumawala (1972), Hansen (1972)), for this 
problem have been suggested in the literature. Some others 
are by Cornuejols et al. (1977), Karkazis (1985), Guignard 
(1988), Galvao (1993), Klose (1998). Some recent 
algorithms, approximate but very effective for large-size 
problems, are due to Kratica et al. (2001), Recende and 
Werneck (2006), Sun (2006). A comparatively recent review 
of  facility location models and their solution procedures 
has been presented in Klose and Drexl (2005). The 

dual-based algorithms by Bilde and Krarup (1977) and 
Erlenkotter (1978) have been found to be very effective. 
Goldengorin et al. (2003) presented enhanced branch and 
bound algorithms for the problem. Erlenkotter’s computer 
code, DUALOC, which was later improved significantly in 
average-case efficiency by Körkel (1989), is considered to 
be the fastest code described in the literature so far for the 
exact solution of  UFLP. Availability of  such effective 
algorithms has proved to be a major motivating factor for 
the present study. 

 
3. THE DYNAMIC LOT-SIZING PROBLEM 

(DLSP) 

In a generic DLSP, a facility manufactures a single 
product to satisfy known integer demands (dj for each 
period j) over a pre-specified planning horizon divided into 
“n” discrete time-periods. Capacity restrictions on 
production and inventory are ignored. A fixed cost, fi, is 
incurred if  production is set up in period i. Marginal 
production cost, ci (in period i), and inventory holding cost, 
ht (for carrying inventory from period t to t + 1), are linear. 
Unsatisfied demands may (or may not) be backlogged, and 
shortage cost, if  any, is linear. The problem is to determine 
an overall production schedule in order to satisfy each 
demand at minimum total cost. 

Due to their importance in production planning and 
inventory control, lot-sizing problems have been widely 
studied. Starting with Wagner and Whitin (1958) who 
developed an O(n2) algorithm based on dynamic 
programming (DP), several researchers (e.g., Zabel (1964), 
Eppen et al. (1969), Zangwill (1969), Blackburn and 
Kunreuther (1974) among others) developed efficient 
algorithms for different versions of  the above problem. 
Krarup and Bilde (1977), however, presented an integer 
linear programming formulation which made this problem 
equivalent to a UFLP. Not only this, they also developed an 
algorithm, “PLP-B”, which runs in O(mn) time. In DLSP 
→ UFLP transformation, each period j of  the given 
planning horizon is considered as a possible site for facility 
location, and also it represents a customer with demand, dj. 
The production setup cost, fi in period i, is equivalent to 
the fixed cost of  locating facility at that site. Hence, an 
n-period lot-sizing problem is equivalent to a UFLP of  
dimension (n × n) with demand of  each of  the customers 
equal to the demand in each of  the n periods, and fixed 
costs of  locating facilities equal to production setup costs. 
The variable cost, cij, defined as the cost of  satisfying 
period j’s demand from the production in period i, is 
calculated as follows: 
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Then the DLSP will be represented by the formulation 
(1) to (5) where Xij denotes fraction of  period j’s demand 
to be supplied from the production in period i. The 
objective function (1) represents the total cost that is to be 
minimized. Constraints (2) ensure that each period’s 
demand is fully met and the constraint set (3) provides that 
setup cost is incurred only when there is production at 
positive level. Yi takes value 1 if  production is set up in 
period i, and 0 otherwise. 

The linear programming (LP) relaxation of  the above 
formulation of  DLSP is guaranteed to have optimal 
solution in integers because the coefficient matrix, cij, has a 
special structure (totally unimodular). PLP-B, however, 
does not solve the LP problem directly. It solves the dual 
of  the LP-relaxation of  the above problem. The procedure 
is so simple that comparatively large-size problems are 
claimed to have been solved by hand. Although, in the 
worst case “PLP-B” gives rise to the same order of  
computations [O(n2)] as the DP algorithm does for the 
DLSP without backlogging, the UFLP formulation is 
claimed to be better on account of  being more 
user-friendly and simple. Later, Wagelmans et al. (1992) 
developed an O(nlogn) algorithm based on UFLP 
formulation for this problem. The same complexity results 
using different approach were independently obtained by 
Federgruen and Tzur (1991) and Aggarwal and Park (1993). 
For a detailed review of  various solution procedures for 
single item lot sizing problems, one may refer to Brahimi et 
al. (2006). 

Also, due to its above relationship with the LP, UFLP 
formulation of  lot-sizing problems has resulted in more 
efficient sensitivity analysis of  such problems (van Hoesel 
and Wagelmans (1990, 1991)). The LP-formulation with 
some valid inequalities has the advantage that it provides 
with a complete linear description of  the convex hull of  
feasible solutions for the DLSP. Barany et al. (1984) and 
Pochet and Wolsey (1988) used this to reformulate and 
solve multi-item capacitated lot-sizing problems. 

Van Oudheusden and Singh (1988) studied the modeling 
and computational aspects of  DLSP-UFLP relationship. 
They presented formulations in which the entire area of  
lot-sizing could be studied as a particular field of  facility 
location. First, they modeled DLSP with backlogging as an 
instance of  UFLP, and performed computational 
experiments based on alternative implementation of  DP 
and UFLP-based algorithms on various sizes of  these 
problems. In case of  backlogging, (6) gets modified to 
include 
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        for 
i

ij j i t
t j

c d c b i j
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where bt is the unit shortage cost for period t. 
Computational results presented on the basis of  solving a 
large number of  problems of  various time periods showed 
that the UFLP-based algorithms performed much better in 
case of  all the problems solved. It is worth noting here that 
the complexity of  DP algorithm for DLSP with 

backlogging is O(n3) whereas UFLP-based algorithm for 
such problems, in worst case, is not bound to run in 
polynomial time. However, the latter performed 
consistently better for all cases of  the problems solved. 

In a closely related work, Singh and van Oudheusden 
(1992) considered a case of  DLSP with price-sensitive 
demands in which pricing and production decisions are 
made simultaneously. They formulated the problem as a 
general location model that was found equivalent to the 
classical UFLP. This formulation had the advantage that 
such problems with backlogging, which to our knowledge 
have not been earlier considered in the literature, could be 
easily dealt with through this approach. 

Apart from the above wherein average case performance 
of  UFLP-approach is consistently found superior in a wide 
range of  lot-sizing decisions, it is emphasized here that this 
approach also offers alternative formulations to many 
practical problems. As cij does not require any specific 
structure, several variants of  the standard DLSP can be 
easily dealt with by adjusting the cij values. We may recall 
(Bitran and Yanasse (1982)) that if  cost coefficients, cij and 
fi, in an UFLP are replaced by andij ij j i ic kc k f kf′ ′ ′= + = , 

respectively, for some k > 0 and any ,k′  then the optimal 
solution remains unchanged. This provides a lot of  
flexibility under this framework for the determination of  
lot sizes for perishable items which cannot be stored 
beyond a certain period, and also some other products 
essentially requiring some storage time before being fit for 
use. 

One particular situation in which UFLP framework 
could be of  immense use is where various cost estimates 
are not available. Let us consider a situation in which the 
production manager can estimate an appropriate number 
of  production setups over a given planning horizon. If  it is 
reasonable to accept that setup, and production and 
inventory costs do not vary over time, then the problem 
can be formulated as a p-Median problem (pMP), a 
problem closely related to UFLP. In pMP, the sum of  
supply costs incurred is minimized whereas a closely 
related p-Center problem (pCP) will minimize only the 
maximum supply cost. The coefficients cij in case of  pMP 
can be calculated as: 
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The pMP, as is evident from above, can be solved 

without having to make even a single cost estimate! 
Similarly, p-Center problem (pCP) will minimize the 
maximum production level in the time period under 
consideration if  (8) is replaced by 
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This may be useful in the context of  capacitated 

production planning when, for instance, the overall 
capacity limitation is rather flexible. This idea can be easily 
extended to problems with backlogging as well. 

It is not difficult to show that the pMP and the pCP as 
applied to the above lot-sizing problems are easy to solve. 
Hence, all p-medians or p-centers can be calculated in 
polynomial time. Also, sensitivity analysis on the value of  p, 
the appropriate number of  production setups, is possible 
without much computational effort. This shows that this 
approach can be seen as a real alternative to the classical 
modeling of  lot-sizing problems under dynamic demand 
conditions. 

To summarize, the dynamic lot-sizing and uncapacitated 
facility location problems share a common mathematical 
structure and identification of  this commonality could be 
advantageous from both computational as well as modeling 
viewpoints. Due to this relationship, alternative solution 
procedures become readily available for DLSP and several 
of  its variants and extensions (Robinson and Gao (1996), 
Martel and Gascon (1998)). Not only this, UFLP 
framework offers modeling alternatives to many real-life 
lot-sizing problems involving perishable items and cases 
where cost data are not precisely available. As a result of  
DLSP–UFLP linkage, the facility location area may also get 
benefited. The knowledge about the availability of  O(n4) 
and O(n3) algorithms (Florian and Klein (1971), Florian et 
al. (1980), van Hoesel and Wagelmans (1996)) for lot-sizing 
problems with equal, finite capacity in each time period 
could be valuable in finding an efficient solution for a 
capacitated version of  the facility location problem. It is 
noteworthy that the latter has been found equivalent to a 
matching problem in a graph (Cornuejols et al. (1991)). 

 
4. JOB-SCHEDULING IN A PRODUCTION LINE 

In this section, we identify another application of  UFLP 
i.e., in a job-scheduling problem. The problem is stated as 
follows: A batch of  jobs is to be processed on a single 
facility (i.e., production line or multi-purpose machine). 
Each job may be processed in one of  several “states” of  
the facility but at varying production costs. One state may 
be sufficient for processing many jobs. 
Sequence-dependent changeover costs are incurred when 
the state of  the facility (line) changes. It is required to 
determine the sequence of  states of  the facility and 
allocation of  jobs to states that minimize the total cost. 

The above is a real-life problem and there are indications 
in the literature (e.g., see Allahverdi et al. (1999) for a 
detailed survey of  such problems) that such problems do 
arise in various settings. For example, Burstall (1966) 
encountered the above problem in a firm which 

manufactured steel tubes. He developed a heuristic 
procedure to solve the problem. Buzacott and Dutta (1971) 
presented a similar problem that generally occurs in a 
machine shop consisting of  multi-purpose machines. Their 
DP-based algorithm allowed the resolution of  problems of  
up to 12 jobs and any “practical” number of  states. For 
problems of  more than 12 jobs they suggested a heuristic 
using the method of  successive approximation.  

In the present paper, an implicit enumeration algorithm 
based on branch and bound technique is proposed. The 
purpose here is to show how a UFLP-based procedure can 
be helpful in finding solution to the above problem. The 
basic idea underlying this algorithm is to dissociate the two 
aspects of  the problem viz., selection of  states of  the line 
(facility) to be used, and determination of  the sequence in 
which they occur. For the selection of  states, the similarity 
of  the above stated job-scheduling problem with the UFLP 
is exploited and an algorithm for the latter is used, and for 
determining the sequence of  selected states an algorithm 
for the traveling salesman problem (TSP; Little et al. (1963)) 
is used. Both of  these are successfully embedded into one 
under a branch and bound framework. Computational 
experience with the algorithm on solving fairly reasonable 
size problems has been quite encouraging (see e.g., Singh 
(2007)). 

The problem may be characterized by the following 
assumptions. There is a single production line (or only one 
multi-purpose facility) which has “m” different states. At 
one time the facility cannot be in more than one state. 
There are “n” jobs to be processed. For each job there is at 
least one state of  the facility in which it can be processed. 
In general, a job can be processed when the facility is in 
one of  several states but at different costs. All jobs are of  
equal importance. None of  the states of  the line is capable 
of  processing all the jobs at the minimum cost. Two types 
of  costs are considered: cij, the cost of  processing job j 
when the facility is in state i, and hik, the changeover cost 
from state i to state k of  the facility. The two special cases 
can be easily derived. One, if  hik = C (a constant) for all i 
and k, then the job scheduling problem reduces to a UFLP. 
On the other hand, if  the states of  the line can process 
only one job each then the problem becomes very similar 
to a TSP. 

Introducing Boolean variables, Xij : equal to 1 if  job j is 
processed when the facility is in state i, and 0 otherwise; 
and Yik : equal to 1 if  the kth state of  the facility is used 
and immediately follows the ith state in the sequence, and 0 
otherwise, the job-scheduling problem as stated above can 
be represented as follows: 
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{0,1}ikY ∈                                                                                      (14) 
{ 1, 2, ..., ; 1, 2, ..., ; 1, 2, ..., }i m j n k m= = =  
 
and denoting the set of  variables Yik ≠ 0 by 

{ 1,  2,  ...,  1},
p pi kY p m m′= ≤ −  there must exist a 

permutation of  the values of  the index “p” such that 
 

1{ 1, 2, ..., 1}p pk i p m+ ′= = −                                                       (15) 
 

The objective function (10) represents the sum of  
processing and changeover costs. The constraints (11) 
require that each job must be processed when the facility is 
in exactly one state. Constraints (12) ensure that only the 
states in the optimal sequence need be used. Constraints 
(13) and (14) express that jobs as well as changeover must 
be done either completely or not at all, and (15) provides 
for exactly one ordered sequence of  states used for 
processing jobs.  

In a closely related paper by Singh (2007), the 
formulation, (10) to (15), has been shown to have a 
structure similar to that of  the traveling purchaser problem 
(TPP). Hence an algorithm to solve TPP (see Singh and 
van Oudheusden (1997) for details) with some 
modifications is used to solve the above problem. The 
main difference between TPP and the above 
job-scheduling problem is that whereas the former requires 
a tour to start from and end at the same city, the latter 
requires only an ordered sequence of  the states of  the 
facility finally selected. This could be dealt with by creating 
a dummy state of  the line in which a dummy job (may be 
n+1th) is processed at cost zero. Also, changeover costs 
from this dummy state to other states of  the line are set 
equal to zero. 

Computational results based on the implementation of  
the above algorithm (Singh (2007)) on various sizes of  
randomly generated job-scheduling problems indicate that 
problems with as many as 100 jobs and up to 10-20 states 
can be solved in reasonable computational effort. This 
represents a quantum improvement over the performance 
of  any earlier known algorithm for this problem (e.g., 
Burstall’s heuristic could solve problems of  up to 8 states 
and 19 jobs, and Buzacott and Dutta could solve optimally 
problems of  up to 12 jobs and any ‘practical’ number of  
states). Later, Laporte et al. (2003) developed an improved 
algorithm for the TPP but the algorithm proposed by 
Singh and van Oudheusden (1997) is sufficient to solve any 
practical job-scheduling problem of  the type stated above. 
This algorithm can also be used as a heuristic by 
terminating the computation as and when first feasible 
solution is found. In many cases it has been found that this 
solution is reasonably close to an optimal solution and 
requires very small computation time. 

To conclude the section, a useful application of  
UFLP-model is identified in a job-scheduling problem that 
is encountered in many real settings. An integer 
programming formulation for the problem showed that its 
structure is similar to the TPP. A variant of  the TPP 
algorithm is used to solve the problem and computational 

experience shows that problems with 100 jobs and up to 
20 states can be easily solved. This seems to have 
considerably improved the results earlier obtained by 
Burstall, and Buzacott and Dutta. 

 
5. BUS ROUTE DESIGN PROBLEM 

In this section we identify an application of  the 
UFLP-model in the area of  routing. A bus route design 
problem (BRDP) is addressed through an interactive use 
of  UFLP. In fact, a standard BRDP as such does not seem 
to exist. Each BRDP will be characterized by the issues and 
criteria involved therein. The problem considered here may 
be stated as follows: Given the road network and demand 
for travel by bus from one area (point or zone) in a city to 
another, it is required to determine optimal set of  routes 
for a bus service in the city which maximizes profits to the 
operator. A case of  minimization of  cost to the operator 
with an acceptable level of  service to the users was 
considered by van Oudheusden et al. (1987). They modeled 
the problem as a set covering problem (SCP), a problem 
closely related to UFLP. 

The solution to the above problem involves two quite 
independent steps: i) generation of  a set of  potentially 
suitable bus routes and ii) selection of  optimal routes from 
the given set. The generation of  alternative bus routes may 
be done by a heuristic procedure in which major traffic 
generators are linked by shortest routes passing through 
the points (areas) where demands are higher than the 
average demand. Areas with less traffic are then connected 
to the nearest routes. Thus a comparatively large set of  
suitable routes is identified. In the second step, “optimal” 
election of  routes is made out of  routes identified earlier in 
step (i) through the use of  optimization models (UFLP in 
the present case), and this is the main concern of  this 
section. During the selection process no 
alteration/modification of  initial routes is done. However, 
it is possible and many a time desirable to alter the initial 
set of  routes according to the new insights gained from the 
selection phase. The demand is considered to be sensitive 
to the level of  service. The case of  comparatively 
insensitive demand is also relevant to many of  the 
developing countries with few alternative modes of  
transport, and almost “captive” ridership. But the case 
considered here is generally appropriate for developed 
countries where transit demand is sensitive to the level of  
service provided, and the main issue to be addressed is 
how to attract ‘choice’ riders. The level of  service may get 
expressed through the walk distance to a bus route and the 
frequency of  service available on the route. Hence, the 
operator will have to improve the level of  service (e.g., by 
increasing the frequency of  service or providing service on 
more number of  routes etc.) to attract more and more 
people. This will get reflected on the income accrued to 
the operator. However, better service would incur more 
operating cost. If  income is considered as a negative cost 
to the operator then an optimal design would be the one 
that minimizes the total cost (or maximizes total profits) to 
the operator. Let us define: 
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ijc ′  = total income from users of  zone j if  they use 
route i 

ijX  = 1 if usersof zone  use route
0 otherwise

j i



 

if  = cost associated with route i, and this is estimated 
from the data on capital cost, maintenance cost, 
running cost and the cost of  the crew. A route 
with different frequency of  service will have 
different costs and may be considered (for 
analysis purposes) as different routes 
 

m = total number of  potential routes indexed by i = 
1, 2, ..., m 
 

n = number of  traffic areas (demand points) the city 
is divided in, indexed by j = 1, 2, ..., n 
 

Then the problem may be expressed as:  
 

1 1 1

 
m m n

i i ij ij
i i j

Min f Y c X
= = =

′−∑ ∑ ∑                                                                                        (16) 

subject to 
1

1 1, .. . ,
m

ij
i

X j n
=

= =∑                                               (17) 

0                      1, ..., ; 1, ...,i ijY X i m j n− ≥ = =                                 (18) 

{ }0,1                        1, ..., ; 1, ...,ijX i m j n∈ = =                                (19) 

{ }0,1                         1, ...,iY i m∈ =                                                                           (20) 
 

If  we define ,ij ijc c ′= −  the above problem becomes a 
UFLP, and hence can be solved by any of  the available 
approaches. The constraints (17) ensure that each zone is 
served by some route, whereas constraints (18) ensure that 
a zone can be assigned to a route only when that route is 
selected in the optimal set of  routes.  

For estimating ,ijc ′  transit demand is estimated first. As 
explained earlier, it is assumed to be a function of  two 
attributes – service frequency and walk distance. The 
variation in transit usage is taken to be same as given in 
Kocur and Hendrickson (1982). Now transit demands 
being available and assuming a uniform fare for all trips, 

ijc ′  can be easily evaluated.  
The above modeling approach was used to determine an 

optimal route network in a city of  3 million people in India 
(refer to van Oudheusden et al. (1987) for details). The city 
was divided into 60 zones, and travel demand between 
various origin-destination (OD) pairs was collected 
through mass transit survey. At the first instance, some 31 
routes were generated out of  which 13 were selected in the 
optimal solution. After optimization the solution was 
checked to ascertain whether the assumed frequency of  
service on routes was sufficient to serve the demand. This 
way vehicle size restriction could be taken in to 
consideration. In case of  need, frequency was accordingly 
adjusted. The same route with different frequencies of  
service over time, as it normally happens during morning 
and evening peak and noon-time lull periods, is treated as 

different routes in the analysis.  
Unlike SCP where a given zone j is covered by a route i 

if  the route provides a minimum acceptable level of  
service, there are no zones (areas) which are required to be 
‘covered’ in UFLP-modeling. A single route optimal 
solution is theoretically possible in this case. However, if  it 
is required that a given minimum number of  commuters 
of  a zone j must be served, this can be ensured by 
manipulating corresponding cij values. By manipulating the 
cij values corresponding to various zones simultaneously, 
pre-specified levels of  demand coverage can be ensured. 

The use of  SCP and UFLP for a bus route design 
problem is really innovative. They provide simple and 
flexible modeling approach to urban transportation 
planning. Although, they consider single objective and are 
mainly used for “many to one” travel pattern but it is 
possible to adapt them to multi-objective case and “many 
to many” travel pattern. In short, an interactive use of  
these models can support a decision process in which 
several criteria and issues that cannot be modeled explicitly 
may be considered. 

 
6. CONCLUSION 

Application of  the uncapacitated facility location model 
to some important problems in the area of  scheduling and 
routing is studied. Several important conclusions can be 
drawn based on this study. First, it is evident that the 
uncapacitated facility location problem is not merely a 
location model rather it represents a mathematical 
structure that also applies quite well to many important 
problems outside the domain of  locational 
decision-making. In each of  the three problems studied we 
could identify two aspects: one, an ordered discrete 
principal aspect (e.g., periods to set up production in, states 
of  production line to be in the optimal solution, and the 
routes to be finally chosen); and the other, a non-ordered 
subservient aspect that depends on the first (e.g., demands 
to be supplied from a particular period’s production, jobs 
to be processed when the line is in a particular state, and 
zones to be served by each selected route). It is this 
commonality in characteristic that provides the three 
seemingly unrelated problems with a structure similar to a 
UFLP. In fact, it is our conjecture that UFLP can provide 
modeling alternatives to many problems having the above 
characteristics. Second, it may also be concluded from the 
above study that for structured problems, the mixed 
integer programming formulations can be more flexible 
and tree search algorithms having the same or even more 
forbidding worst-case behavior can outperform other (e.g., 
dynamic programming based) algorithms. This may seem 
to be in conflict with our intuitive belief, but we can clearly 
see this coming true in the last two sections.  

At a more specific level, it can be said that alternative 
solution approaches become readily available as a result of  
UFLP formulation of  the lot-sizing problems. From the 
study made, it is quite evident that these solution 
approaches are computationally more competitive than 
traditional DP-based approaches. Not only this, many of  
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the practical problems in the area of  lot sizing where cost 
estimates are not available could be modeled as pMP, and 
solved by a polynomial time algorithm. Also, the 
job-scheduling problem encountered by Burstall in a real 
setting could be easily solved by a branch and bound 
algorithm that solves a related UFLP for determining 
bounds. The methodology proposed for the bus route 
design through the interactive use of  optimization models 
viz., set covering and uncapacitated facility location 
problems is quite innovative. 
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