
International Journal of Operations Research Vol. 5, No. 1, 44−60 (2008)

A New Ant Colony Optimization Approach for the Single Machine
Total Weighted Tardiness Scheduling Problem

Davide Anghinolfi∗ and Massimo Paolucci

Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia 13, 16145 Genova,
Italy

Received August 2006; Revised December 2006; Accepted January 2007

AbstractIn this paper the NP-hard single machine total weighted tardiness scheduling problem in presence of
sequence-dependent setup times is faced with a new Ant Colony Optimization (ACO) approach. The proposed ACO
algorithm is based on a new global pheromone update mechanism, which makes the pheromone trails asymptotically range
between two bounds arbitrarily fixed and the ACO learning mechanism independent of the values of the objective function
of the considered problem. Other features of the algorithm include a diversification mechanism for the solution
construction phase based on a local pheromone update rule whose effects are restricted to the single iterations, and a
cumulative option for the global pheromone update rule. An experimental campaign, carried out on a benchmark available
from the literature, was executed to evaluate the proposed ACO and the effectiveness of its optional features. In particular,
the obtained results were compared with the ones of a recently proposed ACO algorithm for the same problem by Liao
and Juan (2007). The analysis of the outcomes showed the competitiveness of the new ACO approach, which was able to
improve about 72% of the best known results for the benchmark. Finally, a further investigation on a different benchmark
set of instances without setup times showed the robustness of the proposed ACO algorithm.
KeywordsAnt colony optimization, Metaheuristics, Scheduling, Total weighted tardiness

∗ Corresponding author’s email: anghinolfi@dist.unige.it

1. INTRODUCTION

Ant Colony Optimization (ACO) is a recent
metaheuristic approach which aims at exploiting the
successful behaviour of real ants in cooperating to find
shortest paths to food for solving combinatorial problems
(Dorigo and Stützle (2002), Dorigo and Blum (2005)). In
most of the real species ants have an effective indirect way
to communicate each other which is the most promising
trail, and finally the optimal one, towards food: ants
produce a natural essence, called pheromone, which they
leave on the followed path to food in order to mark it. The
pheromone trail evaporates over time and it disappears on
the paths abandoned by the ants. On the other hand, the
pheromone trail can be reinforced by the passage of
further ants: thus, effective (i.e., shortest) paths leading to
food are finally characterized by a strong pheromone trail,
and they are followed by most of ants. The ACO
metaheuristic was first introduced by Dorigo, Maniezzo
and Colorni (1991 and 1996) and Dorigo (1992), and since
then it has been the subject of both theoretical studies and
applications. ACO combines both Reinforcement Learning
(RL) (Sutton and Barto (1998)) and Swarm Intelligence (SI)
(Kennedy and Eberhart (2001)) concepts:
l each single agent (an ant) takes decisions and receives

a reward from the environment, so that the agent’s
policy aims at maximizing the cumulative reward
received (RL);

l the agents exchange information to share experiences
and the performance of the overall system (the ant
colony) emerges from the collection of the simple
agents’ interactions and actions (SI).

ACO metaheuristic has been successfully applied to
several combinatorial optimization problems, from the
first travelling salesman problem applications (Dorigo et al.
(1991 and 1996)), to vehicle routing problems
(Bullnheimer et al. (1999), Reinmann et al. (2004)), and to
single machine and flow shop scheduling problems (den
Besten et al. (2000), Gagné et al. (2002), Ying and Liao
(2004)).

This paper proposes a new Ant Colony Optimization
(ACO) approach to face one among the most important
scheduling problems, i.e., the single machine total weighted
tardiness scheduling with sequence-dependent setup times
(STWTSDS) problem. The choice of the STWTSDS
problem as reference application for the proposed ACO
approach is motivated by the relevance of the considered
problem for manufacturing industries. The importance of
performance criteria involving due dates, such as (weighted)
total tardiness or total earliness and tardiness (E-T), as well
as the explicit consideration of sequence-dependent setups,
has been widely recognized in many real industrial contexts.
Both in the survey on US manufacturing practise by
Wisner and Siferd (1995) and in the one by Panwalkar et al.
(1973) meeting the due dates is identified as the most

International Journal of
Operations Research

1813-713X Copyright © 2008 ORSTW

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

45

important scheduling objective. Criteria weighting both the
early and the tardy completion of jobs with respect to their
due dates, the so-called non-regular objectives (Baker and
Scudder (1990)), have been considered to encompass the
just-in-time (JIT) philosophy aiming at reducing the level
of inventories. Among the regular objectives based on due
dates, the minimization of the total weighted tardiness is
the subject of a very large amount of literature on
scheduling; however, the coverage of the problem
including an explicit consideration of sequence-dependent
setups is not so extended. Setup operations are necessary
to prepare production resources (e.g., machines) for the job
to be executed next, and whenever they depend on the
(type of) preceding job just completed they are called
sequence-dependent setups. In the survey by Panwalkar et
al. (1973) the presence of sequence-dependent setups has
been observed in a relevant number of industrial
scheduling contexts. Nevertheless, it is often assumed the
setup times independent of the sequence of jobs on the
machine, including them into processing times; alternatively,
setup times are simply disregarded and eventually inserted
in the so found solutions. In a review on machine
scheduling problems involving setups, Allahverdi et al.
(1999) provided a number of industrial examples including
sequence-dependent setups and they indicated the
importance of taking into account setup times separately
from job processing times. In addition, it was underlined in
Rubin and Ragatz (1995) how the difficulty of total
tardiness scheduling on a single machine is increased by the
presence of sequence-dependent setups, since dominance
conditions used for simple tardiness problems do not hold
true. In addition, although in general weighted tardiness
problems with sequence-dependent setups may originate
from single or multi-machine contexts, it was observed that
the solution of single machine problems is often required
even in more complex environments (Pinedo (1995)).
 The work presented in this paper aims at analysing the
behaviour of an ACO approach which mainly differs from
previous ones in the literature for a new pheromone trail
model based on an original global pheromone update
(GPU) rule. In particular, (a) pheromone values are
independent of the problem cost (or quality) function and
they are bounded within an arbitrarily chosen and fixed
interval; (b) the new GPU rule implements the ant colony
learning system by exploiting the solution quality as a sort
of signal driving the reward mechanism, and updating the
pheromone values accordingly; in addition, this GPU rule
makes the pheromone values asymptotically increase
(decrease) towards the upper (lower) bound without
requiring any explicit cut-off, differently from the
Max-Min Ant System (MMAS) (Stützle and Hoos (2000)),
where upper and lower bounds for pheromone values are
used as well; finally, (c) a diversification strategy is adopted
which is based on a temporary perturbation of the
pheromone values performed by a local pheromone
update (LPU) rule within any single iteration.

The rest of the paper is organized as follows: Section 2
introduces a formal definition of the STWTSDS problem
and reviews the relevant literature for this problem and for

previous related ACO approaches. Section 3 illustrates the
basic aspects of the ACO approach, discussing how it can
be applied to the STWTSDS problem and highlighting the
new features introduced. Section 4 shows the extended
experimental campaign performed on the benchmark set
generated by Cicirello (2003), whose best known results
have been very recently updated both in Cicirello (2006)
and in Lin and Ying (2006), and it compares the proposed
ACO with the one presented in Liao and Juan (2007); in
addition, the results obtained to test the robustness of the
proposed ACO on a single machine total weighted
tardiness scheduling problem benchmark available from
ORLIB are presented. Finally, Section 5 draws some
conclusions.

2. PROBLEM DEFINITION AND LITERATURE

REVIEW

Formally, the STWTSDS problem requires the
scheduling of a set of n independent jobs, which are all
ready for processing at time zero, on a single machine
which is continuously available and can process only one
job at a time. For each job j = 1, ..., n, the following
quantities are given: a processing time pj, a due date dj and
a weight wj. A sequence-dependent setup time sij should be
waited before starting the processing of job j immediately
sequenced after job i. The job tardiness is defined as Tj =
max(0, Cj − dj), being Cj the completion time of job j, and
the job is said tardy if Tj > 0. A schedule corresponds to a
feasible sequencing of the jobs on the machine: due to the
regularity of the problem objective (Baker and Scudder
(1990)), having fixed a feasible sequencing, each job must
complete at its earliest completion time. The scheduling
objective is the minimization of the total weighted
tardiness, i.e.,

1

min
n

j j
j

Z w T
=

= ∑ (1)

This problem, which is denoted as 1/sij/ΣwjTj, is

strongly NP-hard since it is a special case of the 1//ΣwjTj
that has been proved to be strongly NP-hard by Lawler
(1997); the complexity of the considered problem,
confirmed by the fact that the special case without setups
and with unitary weights is still NP-hard (Du and Leung
(1990)), justifies the research of heuristic approaches for
its solution in practical cases. Nevertheless, exact
algorithms based on branch and bound (B&B) or dynamic
programming approaches have been proposed, but they
are able to tackle instances of reduced dimensions. For
example, an early B&B algorithm for the STWTSDS
problem was proposed in Rinnooy Kan et al. (1975);
Abdul-Razaq et al. (1990) faced the single machine total
tardiness scheduling with sequence-dependent setups
(STTSDS) problem, whereas the algorithm in Potts and
van Wassenhove (1985) was able to solve up to 40-job
instances for the sequence-independent problem; Luo and
Chu (2006) recently devised a B&B algorithm for the

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

46

STTSDS solving up to 30-job instances with reduced
computational times. Most of the recent research on total
tardiness scheduling with sequence-dependent setups is
focused on the development of heuristics: in particular,
constructive heuristics, generally corresponding to
dispatching rules, improvement heuristics and metaheuristics.
The well-known apparent tardiness cost with setups
(ATCS) heuristic, proposed by Lee et al. (1997), appears to
be the best constructive approach for the STWTSDS
problem; such heuristic extends to the case of
sequence-dependent setups the time-dependent apparent
tardiness cost (ATC) rule defined a decade before by
Vepsalainen and Morton (1987). Constructive heuristics
usually require a small computational effort (for this
reason they may be preferred in industrial applications),
but they are outperformed by improvement approaches, as
well as metaheuristics, which, in turn, are usually much
more computational time demanding. Improvement
approaches consist of local search algorithms that, starting
from an initial solution produced by a simple constructive
rule, explore a succession of neighbouring solutions until
no further improvement is possible. As noted in the paper
by Cicirello and Smith (2005), which includes a survey of
heuristic approaches for the STWTSDS problem, also Lee
et al. (1997) proposed a local search procedure based on a
reduced set of swap and insert moves to improve the
solution generated by the ATCS rule. The dominance of
improvement approaches over constructive ones is
witnessed, for example, in Potts and van Wassenhove
(1991), where the effectiveness of simple pair-wise
interchange methods against dispatching rules for the
single machine total weighted tardiness problem was
shown; more recently, constructive heuristics were
compared to a memetic algorithm in França et al. (2001),
or also in Anghinolfi and Paolucci (2006), where a hybrid
metaheuristic was proposed for a similar parallel machine
case. Cicirello and Smith (2005) analysed the behaviour of
several stochastic search procedures for the STWTSDS,
showing the effectiveness of introducing randomization.
In particular, the authors developed several algorithms, a
value-biased stochastic sampling (VBSS), a VBSS with
hill-climbing (VBSS-HC) and a simulated annealing (SA),
that were compared to limited discrepancy search (LDS)
and heuristic-biased stochastic sampling (HBSS) for a 120
benchmark problem instances defined by Cicirello (2003)
and available on the web. Several metaheuristic approaches
have been proposed for the STTSDS problem: genetic
algorithms (GA) in Rubin and Ragatz (1995) and in
Armentano and Mazzini (2000); a memetic algorithm
combining GA with local search in França et al. (2001); a
SA approach (Tan and Narasimhan (1997)); a greedy
randomized adaptive search procedure (GRASP) in Feo et
al. (1996). Tan et al. (2000) compared four
implementations of B&B, GA, random-start pair-wise
interchange (RSPWI) and SA proposed for the STTSDS in
previous works by the same authors, concluding that SA
and RSPWI are suitable approaches to face larger
instances, whereas the GA shows the worst performance.
In recent times, the Cicirello’s best known results were

independently improved in Lin and Ying (2006) and in
Cicirello (2006). Lin and Ying (2006) developed three
approaches for the STWTSDS, i.e., a SA, a GA and a tabu
search (TS), whose best results over 10 runs were
compared against the Cicirello and Smith (2005) best
known ones; the results reported by the authors show that
all the three algorithms were able to improve the previous
best known results for more than 71% of the instances
with an average computation time for each single run of
27s. Cicirello (2006) presented a GA approach for the
STWTSDS problem based on a new non-wrapping order
crossover (NWOX) operator, derived from the
well-known order crossover (OX) operator, whose
purpose is to propagate to the offspring not only the jobs’
order but also their absolute positions in the sequences;
this new NWOX operator appeared well-suited for the
STWTSDS problem, and the GA presented in Cicirello
(2006) was able to improve 49 of the 120 best known
results of the Cicirello’s (2003) benchmark.

In recent years, several ACO approaches have been
proposed to face total tardiness scheduling problems
which may include or not sequence-dependent setups. A
first implementation was studied in Bauer et al. (1999),
where the authors adapted the Ant Colony System (ACS)
(Dorigo and Gambardella (1997)) to the single machine
total tardiness problem, showing that their algorithm
outperforms a set of leading heuristics for this problem.
An analysis of the combination of different local search
strategies with an ACS algorithm for the total weighted
tardiness problem was proposed by den Besten et al.
(2000), who highlighted as dominant strategy the use of
solution neighbourhoods based on the concatenation of
simple moves; the ACO algorithm in den Besten et al.
(2000) tested over the ORLIB benchmark
(www.ms.ic.ac.uk/info.html) found always the best known
solution even for the largest instances (100 jobs) with
6.99s as average CPU time. Merkle and Middendorf (2000
and 2003) defined a new approach of evaluating
pheromone values, called Pheromone Summation (PS) rule, in
an ACO algorithm that extends to total weighted tardiness
scheduling problems, the ACS proposed for traveling
salesman problem (TSP) in Dorigo and Gambardella
(1997). Since for standard ACO approaches the probability
p(h, j) of a job j of being scheduled in a sequence place h
depends on single pheromone value associated with the
pair (j, h), the aim of the PS rule is to avoid a too much
delayed scheduling of jobs which fail to be sequenced in
their most favourite place. Similarly Merkle and
Middendorf (2001) pointed out that for permutation
scheduling problems the sequential solution construction
procedure usually adopted in ACO algorithms can be
based on a probability p(h, j) that should take into account
the previous decisions for the places preceding h; hence
the authors devised an ACO approach which alternates
iterations where “random” ants consider the sequence
places in random order to iterations where “sequential”
ants assign the jobs in the sequence order but including
also a suitable heuristic information in the selection
probability. In Merkle and Middendorf (2002) it was

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

47

remarked the need of methods like the PS rule for
permutation problems where good solutions show a
so-called “similarity property”, i.e., they usually differ for a
small number of places; in alternative to the PS rule the
authors defined a new Relative Pheromone Evaluation (RPE)
method, based on a normalization of pheromone values,
that for a single machine total earliness with multiple due
dates scheduling problem outperformed both standard
and PS rule pheromone evaluation approaches. Gagné et
al. (2002) showed the effectiveness of an ACO algorithm
for the STTSDS problem which includes a lookahead
information, obtained from a lower bound described in
Tan et al. (2000), in the heuristic component of the
transition rule used to select the next job to be included in
a partial schedule. Quite recently, the ACO algorithm by
Gagné et al. (2002), together with B&B and other
metaheuristic approaches, has been outperformed by
different variants of GRASP for the STTSDS proposed
by Armentano and Bassi de Araujo (2006) and by Gupta
and Smith (2006). An ACO algorithm for the STWTSDS
has been proposed in Liao and Juan (2007), where the
authors showed the appropriateness of their approach by
improving about 86% of the best results obtained with the
set of improvement heuristics in Cicirello (2003) for the
120 benchmark problem instances; also this algorithm is
based on ACS, but it imposes a minimum pheromone
value similarly to the MMAS (Stützle and Hoos (2000)),
and adopts a new parameter for the pheromone
initialization and a different timing for local search
execution. Two final remarks may emerge from the
literature review of ACO approaches to scheduling. Firstly
it can be observed that the presence of
sequence-dependent setups has been mainly considered
into the heuristic information exploited by the ACO
algorithms: for example, in Gajpal et al. (2006)
sequence-dependent setups influence the heuristic used to
generate a starting solution that, after a local search
enhancement, is used to initialize the pheromone trails.
Secondly, the role of the local search appears basic to
improve the behaviour of ACO algorithms.

3. THE PROPOSED ACO APPROACH

This section presents the characteristics of the new
ACO approach proposed for the STWTSDS problem. For
this purpose, some notation must be introduced. In
general a solution x of a single machine scheduling
problem of a set of n independent jobs is represented by a
sequence σ(x) = (x[1], ..., x[n]), where σ(x[h]) or simply [h],
h = 1 , ..., n , denotes the index of the job that in solution
x is sequenced in the h-th position on the machine, e.g., j =
σ(x[h]) = [h], with j = 1, ..., n. In addition, the position-job
pairs (h, j), , 1, ..., ,h j n= determined by a sequence σ(x)
are denoted as solution components of x.

The core of the approach proposed in this paper for
ACO (denoted in the following with ACOAP) is mainly
based on the Ant Colony System (ACS) (Dorigo and
Gambardella (1997)), and it includes concepts inspired to
the MMAS (Stützle and Hoos (2000)) and to the

approaches in Merkle and Middendorf (2000 and 2003);
however, how it will be detailed in the following, in the
ACOAP algorithm such concepts are encapsulated in a new
pheromone model and exploited in a real different manner.
In addition, the developed algorithm may be also
compared to the one in Liao and Juan (2007) (denoted
hereinafter as ACOLJ), whose results have been taken as
main reference to evaluate the ACOAP effectiveness.

3.1 The overall ACOAP algorithm description

Figure 1 reports the very high level structure of the
ACOAP algorithm.

Figure 1. The overall ACOAP algorithm.

A set A of m artificial ants is considered. At each

iteration k, every ant a identifies a solution k
ax building a

sequence ()k
axσ of the n jobs, whose objective value

()k
aZ x is then simply computed by assigning to each job

its feasible (i.e., taking into account both processing times
and setups) earliest start time for that sequence. Every ant
a builds the sequence ()k

axσ by iterating n selection
stages: first, the set of not sequenced jobs for ant a, 0 ,aU
is initialized as 0 {1 , ..., };aU n= then, at stage h = 1 , ..., n,
the ant a selects one job j from the set 1h

aU − to be inserted
in the position h of the partial sequence, and updates

1 \{ }h h
a aU U j−= ; at stage h = n all the jobs are sequenced

and .n
aU = ∅ The job selection at each stage h of the

construction procedure at iteration k is based on a rule
that is influenced by the pheromone trail

(,)k h jτ associated with the possible solution components
(,),h j where 1 .h

aj U −∈
A characteristic that distinguishes the proposed

algorithm from all the previous approaches is that the
pheromone values assigned to (,)k h jτ are independent
of the objective or quality function values associated with
previously explored solutions including the component
(,). h j Pheromone trails here represent a sort of measure
of the utility of including a component during the
construction of “good” solutions that is progressively

Initialization;
k = 1;
While <termination condition not met>
{
 For each ant a ∈ A
 {
 Construction of solution ;k

ax
 Local pheromone update;
 }
 Local Search phase;
 Global pheromone update;
 k = k + 1;
}

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

48

learned from the solution space exploration. In addition,
an arbitrary range [,]Min Maxτ τ is adopted for the
pheromone values, which is independent of the specific
problem or instance considered. Also in MMAS lower and
upper bounds are imposed for (,),k h jτ but they must be
appropriately selected and dynamically updated each time a
new best solution is found, taking into account the
objective function values. Differently, in the ACOAP
algorithm such bounds are independent of the objective
function and arbitrarily selected, since any pair of values,
such that ,Min Maxτ τ< can be chosen. Note that in this
way Maxτ and Minτ are removed from the set of
parameters needed by the algorithm. In addition, the
variation of (,) [,]k Min Maxh jτ τ τ∈ during the exploration
process, i.e., the ant colony learning mechanism, is
controlled by a new GPU rule (described in the following)
that imposes a smooth variation of (,)k h jτ within these
bounds such that both extremes are asymptotically reached.
Note that such a characteristic is different from MMAS,
where the lower and upper bounds are used as cut-off
thresholds. The new pheromone-based learning
mechanism of the ACOAP algorithm relies on three
features: (a) the new kind of asymptotic pheromone trails
previously described; (b) a local pheromone update (LPU)
rule that induces a pheromone perturbation to favour a
stronger intra-iteration diversification mechanism than in
standard ACS, but it keeps the scope of such perturbation
restricted to each single iteration; (c) a new unbiased global
pheromone update rule. The features (b) and (c) will be
detailed in the following where, in order to make simpler
and more readable the expressions, a relative pheromone
value (,) (,) ,k k Minh j h jτ τ τ′ = − such that (,)k h jτ ′ ∈
[0,],Maxτ ′ where ,Max Max Minτ τ τ′ = − is used. The ACOAP
algorithm in Figure 1 can now be detailed.

Initialization. For each solution component (,),h j h, j
= 1, ..., n, an initial value of the pheromone trail is assigned
by fixing 0 (,) ()/ 2;Max Minh jτ τ τ= + in addition, the best
current solution x* is initialized as an empty solution and
the associated objective value Z(x*) is fixed to infinity.

Job selection rule. At a selection stage h of iteration k, an
ant a determines which job j ∈ 1h

aU − is inserted in the h-th
position of the sequence as follows. First, similarly to the
ACS, it is chosen which job selection rule must be used
between exploitation and exploration: a random number q is
extracted from the uniform distribution U[0, 1] and if q ≤
q0 the exploitation rule is used, otherwise the exploration
one. The parameter q0 (fixed such that 0 ≤ q0 ≤ 1) directs
the ants’ behaviour towards either the exploration of new
paths or the exploitation of the best paths previously
emerged. The exploitation rule selects the job j in a
deterministic way as

[]
-1

arg max{ (,) (,) }k

h
a

k
u U

j h u h u βτ η
∈

′= ⋅ (2)

whereas the exploration rule according to a selection probability
(,)p h j computed as

[]

[]
1

(,) (,)
(,)

(,) (,)

k

k

h
a

k

k
u U

h j h j
p h j

h u h u

β

β

τ η

τ η
−∈

′ ⋅
=

′ ⋅∑
 (3)

The quantity (,),h jη associated with the solution

component (,),h j is an heuristic value which is computed,
as done in Liao and Juan (2007), equal to the priority

(,)tI h j of assigning job j in position h at time t according
to the ATCS rule (Lee et al. (1997))

[1]

1 2

(,) (,)
max(, 0)

exp exp

t

j j j h j

j

h j I h j
w d p t s
p k p k s

η

−

=

− −   
= −   

   

 (4)

where

1

[1][] [] [1]
1

()
h

i i i h j
i

t s p s
−

− −
=

= + +∑ (5)

p and s are respectively the average processing time

and the average setup time, and k1 and k2 are the
lookahead parameters fixed as originally suggested in Lee
et al. (1997). Therefore, similarly to the ACO approaches
previously reviewed, even in the ACOAP algorithm the
influence of the sequence-dependent setups is
encapsulated in the heuristic values used in the job
selection rule. The parameter βk in (2) and (3) is the
relative importance of the heuristic value with respect to
the pheromone trail one at iteration k; the initial value β0
of such parameter is updated at each iteration with the
following exponential rule

1k kβ ϕ β+ = ⋅ (6)

where ϕ is a factor fixed in [0, 1]. The progressive
reduction of parameter βk was not included in previous
approaches to the STWTSDS problem, but, to the best
authors’ knowledge, it has been first introduced in the
ACO algorithm proposed by Merkle et al. (2002) for
resource constrained scheduling problems; in this way, the
influence of the heuristic values (,)h jη on the ants’
decisions diminishes iteration after iteration, leaving to the
pheromone trails the leading role of driving the solution
construction process. Finally, note that for this reason the
choice of the heuristic to compute the (,)h j values
could appear less critical, but still necessary in the initial
iterations when the pheromone is equally distributed over
all the possible solution components.

Local pheromone update. (intra-iteration diversification). As
often done in previous ACO approaches to avoid
premature convergence of the algorithm, a LPU is

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

49

performed after any single ant a completed the
construction of a solution xa in order to make more unlike
the selection of the same sequence by the following ants.
In the ACOAP the local pheromone update rule adopted is

(,) (1) (,) 1, ..., ; ([])k k ah j h j h n j x hτ ρ τ σ′ ′= − ⋅ ∀ = = (7)

where ρ is a parameter fixed in [0, 1]. A new characteristic
introduced for the ACOAP is to consider such kind of
update strictly local, i.e., to use it to favour the
diversification of the sequences produced by the ants
within the same iteration. Note that rule (7) imposes a
perturbation on the (relative) pheromone values which is
stronger than the one in the standard ACS approach, since
it drives pheromone values towards Minτ instead of 0 .τ
Therefore, here rule (7) is used to temporarily modify the
pheromone values only in the single iteration scope, since
such changes are deleted before executing the global
pheromone update phase and starting the next iteration. This
feature, said reset of the local pheromone update (RLPU),
appears consistent with the interpretation of the
pheromone values as learned utility, as it assigns only to
the GPU the crucial task of modifying the pheromone
trails according to the colony exploration experience.

Local search phase. After all the ants have completed
the solution construction procedure at an iteration, an
intensification phase may be performed, which consists of
one or more local search (LS) explorations starting from a
subset XLS of the solutions found in the iteration. In
particular, two rules (said LS timing rules) can be used to
determine the set XLS and, depending on its cardinality,
how many LS explorations must be executed:

l Best in Iteration (BI) rule: XLS always includes a single

starting solution corresponding to the best solution
found in the current iteration, i.e., k

bx =

1,...,
arg min ().k

aa m
Z x

=
 Then, according to this rule a single

LS is always executed in each iteration.
l Improved Solution Without LS (ISWLS): let *

WLSx be
the best solution found by any ant in the previous
iterations without using the LS; then, XLS may include
one or more solutions found in the current iteration k
improving * ,WLSx ie * { : () (),k k

a a WLSx x Z x Z x= <
1, ..., }.a m= With the ISWLS the number of LSs

executed in one iteration can vary from zero to m,
even if this latter appears a very unlikely case.

In general, any LS algorithm can be used for the

intensification phase in ACOAP. In particular, an LS
algorithm similar to one in Tasgetiren et al. (2004), which
in turn is based on a variant of the variable
neighbourhood search (Mladenovic and Hansen (1997)),
has been adopted. The LS algorithm, summarized in
Figure 2, performs a random neighbourhood exploration
allowing both an alternation of random insert and swap

moves; in addition the algorithm executes a limited
number of random restarts as in the iterated local search.
Note that a similar neighbourhood structure is used in
Liao and Juan (2007). Random moves consist of picking at
random two sequence positions in the current solution
and inserting (swapping) the job in the first position after
(with) the job in the second one. The algorithm executes
an exploration sequence first made of a succession of
random insert moves until no improvement is found, and
then made of a succession of swap moves: whenever a
swap move is not able to find an improved solution, then a
new sequence of random insert moves is started and the
exploration counter is incremented. After n⋅(n − 1)
explorations have been completed, the algorithm executes
a random restart from the current best solution. The
maximum number of allowed random restarts is bounded
by n/5, thus the overall complexity of the LS algorithm is
O(n3). As a result of the LS phase, the best current
solution x* is possibly updated.

Figure 2. The LS algorithm.

Global pheromone update. Two main peculiarities of
the ACOAP algorithm, which differentiate it from the
previous approaches, are in the meaning given to the
pheromone trail values and consequently in the way such
values are updated after the completion of an iteration. It
has been already pointed out that the (relative) pheromone
values (,)k h jτ ′ adopted in the ACOAP range in
[0,];Maxτ ′ such values are changed in the GPU phase with
a rule, called Unbiased Pheromone Update (UPU) since it
neither uses any cost nor quality function, but it performs
a smooth update of the pheromone trails associated with a

x = x0;
restart_counter = 0;
repeat
{
 x1 = random_insert_move (x);
 exploration_counter = 0;
 repeat
 {
 neighbourhood_counter = 1;
 while neighbourhood_counter ≤ 2
 {
 if neighbourhood_counter = 1
 x2 = random_insert_move (x1);
 else
 x2 = random_swap_move (x1);
 if Z(x2) < Z(x1)
 x1 = x2;
 else
 neighbourhood_counter++;
 }
 exploration_counter++;
 } until (exploration_counter < n*(n − 1))

 restart_counter++;
} until (restart_counter < n/5)

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

50

set of quality solution components. Let *
kΩ be the set of

the best solution components (said, the best component set)
determined after the completion of iteration k; then, the
UPU rule consists of the three following steps:

1. pheromone evaporation for the solution components

not included in *
kΩ

*

1(,) (1) (,) (,)k k kh j h j h jτ α τ+′ ′= − ⋅ ∀ ∉ Ω (8)

where 0 ≤ α ≤ 1 is a parameter establishing the
evaporation rate;

2. computation of the maximum pheromone
reinforcement (,)k h jτ ′∆ for the solution
components in *

kΩ

*(,) (,) (,)k Max k kh j h j h jτ τ τ′ ′ ′∆ = − ∀ ∈ Ω (9)

3. update of the pheromone trails to be used in the next
iteration for the solution components in *

kΩ

*
1(,) (,) (,) (,)k k k kh j h j h j h jτ τ α τ+′ ′ ′= + ⋅ ∆ ∀ ∈ Ω (10)

The UPU rule guarantees that (,) [0,]k Maxh jτ τ′ ′∈ and
(,)k h jτ ′ converges towards the bounds asymptotically

((,)k h jτ ′∆ is progressively reduced as much as (,)k h jτ ′
approaches to Maxτ ′ , as well as the decrease of (,)k h jτ ′
towards 0 in (8)) with a law similar to the most frequently
used cooling schedule for the SA metaheuristic
(Kirkpatrick et al. (1983)). An example of the trend due to
the UPU rule is depicted in Figure 3. This figure shows,

for a fixed solution component (h, j) = (H, J), the effect of
the evaporation step (8), with α = 0.1, on the associated
pheromone (,)k H Jτ from its initial value τ0 at iteration
k = 0, to a value close to τMin at iteration k = 40; then,
assuming that the component (H, J) is included in *

kΩ
for k = 41, ..., 100, the figure shows the consequent
asymptotical increase of (,)k H Jτ towards τMax due to
steps (9) and (10); finally, (,)k H Jτ is again subject to the
evaporation (8), having assumed *(,) kH J ∉ Ω for k >
100.
Two possibilities are available for defining the best
component set *

kΩ :

l Best-so-far (BS) solution component set: *

kΩ includes
only the solution components associated with x*, i.e.,

{ }* *(,) : 1, ..., ; ([])k h j h n j x hσΩ = = = (11)

l Cumulative BS (CBS) solution component set: if a

component (h, j) is present in x*, that is, h appeared a
“good” sequence position for job j, hence, taking into
account that a tardiness cost must be minimized, it
should be sensible to consider j even more urgent for
successive sequence positions if job j misses to be
sequenced as h-th; according to this rationale, the set

*
kΩ is defined as

{ }* *(,) : , ..., ; 1, ..., ; ([])k l j l h n h n j x hσΩ = = = = (12)

Figure 3. An example of the asymptotical variation of the pheromone value between its lower and upper bounds due to the

UPU rule.

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

51

(a)

(b)

Figure 4. An example of the effect on the UPU rule of the two different options for defining * .kΩ

An example of the effects of the UPU rule with the
two different options for defining the best component set
is provided in Figure 4. Both diagrams in this figure
represent the pheromone values (,)k h Jτ , h = 1, ..., 10,
associated with a specific job j = J, after 60 iterations
(having fixed α = 0.05); in particular, it is assumed that for
k = 1, ..., 20, *(6,) kJ ∈ Ω , for k = 21, ..., 40, *(4,) kJ ∈ Ω
and finally for k = 41, ..., 60, *(5,) .kJ ∈ Ω Therefore, it is
reasonable to assume that the algorithm has learned that
the “good” position for job J should be around h = 5.
However, using a BS solution component set, the
pheromone values depicted in diagram (a) of Figure 4

highlight the possibility that such knowledge could be
almost completely disregarded: if, for example, the
application of the exploration rule (3) fails to sequence J
in position 5, this job could be dramatically delayed since
its pheromone values for the subsequent positions could
be much smaller than the one of competitor jobs. On the
other hand, the CBS, incrementing also the pheromone
values of the positions following the one of job J in the
best so far solution x*, produces the pheromone values
shown in diagram (b) of Figure 4 that make very unlikely
the delayed sequencing of J previously described. Note
that a rationale similar to the CBS was used in the PS rule
described in Merkle and Middendorf (2000 and 2003) and

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

52

in the RPE method in Merkle and Middendorf (2002);
however, in the ACOAP the CBS is an option of the UPU
rule that alters the learning mechanism forcing the
increase of pheromone values, whereas the mentioned
previous methods are used to modify the evaluation of
pheromone trails in the solution construction process.

Termination conditions. The algorithm is stopped when
a maximum number of iterations, or a maximum number
of iterations without improvements, is reached.

4. EXPERIMENTAL ANALYSIS OF THE

PROPOSED ACO APPROACH

The ACOAP algorithm was coded in C++ and an
experimental campaign was executed on a Pentium IV, 2.8
GHz, 512 Mb PC, in order to analyze its performances.
The adopted benchmark was the set of 120 problem
instances with 60 jobs provided by Cicirello (2003),
available at http://www.cs.drexel.edu/~cicirello/
benchmarks.html. Note that the same benchmark was
used for testing the ACOLJ in Liao and Juan (2007). The
benchmark was produced by generating 10 instances for
each combination of three different factors usually
referenced in the literature (for a definition and discussion
see, e.g., Pinedo (1995)): the due date tightness δ, the due
date range R, and the setup time severity ξ, selected as
follows: δ ∈{0.3, 0.6, 0.9}, R ∈ {0.25, 0.75}, ξ ∈ {0.25,
0.75}. For each test two possible reference results were
considered: the best known solutions available from
Cicirello (2006) (denoted in the following with BKC) and
the best solutions provided by the ACOLJ algorithm in
Liao and Juan (2007). In addition, the best results obtained
by the ACOAP were finally compared to the up-to-date
best known results among the ones presented in Cicirello
and Smith (2005) and Cicirello (2006), the ones produced
by ACOLJ and by the SA, GA and TS algorithms proposed
in Lin and Ying (2006), presenting a new set of best
known results for this benchmark.

In order to make the comparison between the ACOAP
and ACOLJ results more sound, a set of m = 30 ants was
considered and the same pair of termination criteria used
in Liao and Juan (2007) were adopted, i.e., the maximum
number of iterations = 1000, and the maximum number
of non improving iterations = 50. In addition, some
preliminary experiments were conducted on a subset of
instances to determine suitable values for the other
parameters needed by the ACOAP. In particular, they were
set as follows: α = 0.1, β0 = 1, ρ = 0.05, q0 = 0.7, and ϕ =
0.9; such values were respectively selected from the
following sets, α ∈ {0.05, 0.1, 0.3}, β0 ∈{0.5, 1, 1.5, 3}, ρ
∈ {0.05, 0.08, 0.1}, q0 ∈ {0.5, 0.7, 0.9}, and always setting
ϕ = 1 − α. The selection of these parameter values may
affect the algorithm performance, but the tests conducted
denoted a low sensitivity to their changes, showing an
average relative cost variation not greater than 2%. It
should be mentioned for the sake of completeness that
the upper bound of the relative pheromone value was

fixed in the ACOAP code as 100Maxτ ′ = , so that an initial
pheromone value 0 (,) 50h jτ ′ = was associated with any
solution component; however, it must be remarked once
again that any positive value can be assigned to Maxτ ′ since
this choice does not affect the algorithm behaviour.

The experimental campaign performed consisted of
five tests described in the rest of this section.

4.1 Determination of the ACOAP best configuration

(Test 1)

The purpose of this test is to evaluate which of the
following ACOAP features can improve the algorithm
performance for the considered benchmark: progressive
decrease of the importance of the heuristic value (βdec);
use of the cumulative BS solution components in the global
pheromone update (CBS); reset of the LPU at the end of
each iteration (RLPU).

The ISWLS timing rule was used for the LS, and, in
order to compare the results from this test with the ones
of ACOLJ, the same experimental scheme in Liao and Juan
(2007) was adopted, i.e., 10 algorithm runs were executed
taking for each benchmark instance the best result. Table 1
reports in the first three columns the type of ACOAP
configuration for the three features (βdec, CBS, RLPU)
tested, denoting with a binary value the presence (“1”) or
absence (“0”) of the relevant feature. The produced
results for each configuration are compared with the
reference ones in Liao and Juan (2007) both reporting the
average percentage deviation (Avg % Deviation) (computed
as 100⋅(result − reference)/reference) with both reference and
result greater than zero) and the average percentage
number of instances whose best result found by ACOLJ
was improved by the ACOAP algorithm (Avg % Number of
Improved Instances); note that the latter column also reports
in brackets respectively the average percentage number of
instances for which the ACOAP got worse and equal
results than ACOLJ. From Table 1 it should be apparent
that only the feature corresponding to the reset of the
LPU after the completion of any iteration is actually
important for producing improved performance with the
considered benchmark. This fact is confirmed by the
diagram in Figure 5, showing the average percentage
deviations with their 95% confidence intervals: in this
diagram all the intervals of the configurations with the
RLPU are not overlapping and lower than the ones
without it. A further analysis was conducted in order to
evaluate if the comparisons with the ACOLJ results can be
considered appropriate or they are biased by the presence
of outliers: in fact, since the objective values in the
benchmark (see Table 7) differ for several orders of
magnitude, such a correction would mitigate the possible
influence of quite reduced absolute differences in the
objectives for instances with small reference values. Thus,
Table 2 shows the results obtained after a correction
eliminating from the computation of the averages the
instances with a percentage deviation not in the interval
(−40%, 40%); in this table the Avg % Number of Improved

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

53

Instances, as well as the worse and equal ones in brackets,
are computed with respect to the remaining number of
instances after having eliminated the outliers. The values in
Table 2 are quite similar to the ones in Table 1 (note that
in the two tables the average % number of instances with
result equal to the ACOLJ one is mainly due to zero cost
solutions); in addition, Figure 6 confirms also in this case
the relevance of the RLPU feature. Thus, Test 1
underlined that it is fundamental to associate this feature
with the used LPU in the new pheromone model adopted

in the ACOAP algorithm. The average CPU time required
for this test was 4.30s (with a minimum of 0.59s and a
maximum of 1970s), which is comparable with the
computation time indicated in Liao and Juan (2007). Then,
Test 1 seems to highlight the good quality of ACOAP with
respect to ACOLJ, since the ACOAP configurations with
the RLPU feature improved on the average the best
known results of ACOLJ; in addition, note that with such
configurations ACOAP was also able to find one zero cost
solution more than ACOLJ.

-8

-6

-4

-2

0

2

4

6

8

111 011 001 101 100 010 000 110

Figure 5. The average percentage deviations of the different configurations in Table 1 with the 95% confidence intervals.

-6

-5

-4

-3

-2

-1

0

1

2

3

111 001 011 101 010 110 000 100

Figure 6. The average percentage deviations of the different configurations in Table 2 with the 95% confidence intervals.

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

54

Table 1. Comparison of the different configurations of the ACOAP tested (Test 1)
Configuration Comparison with ACOLJ

βdec CBS RLPU Avg % Deviation
Avg % Number of
Improved Instances

1 1 1 −3.75% 67.5% (19.2%, 13.3%)
0 1 1 −3.54% 70.0% (16.7%, 13.3%)
0 0 1 −3.50% 65.8% (20.8%, 13.3%)
1 0 1 −3.34% 63.3% (23.3%, 13.3%)
1 0 0 2.51% 28.3% (58.3%, 13.3%)
0 1 0 2.71% 34.2% (52.5%, 13.3%)
0 0 0 3.52% 26.7% (59.2%, 14.2%)
1 1 0 3.74% 34.2% (52.5%, 13.3%)

Table 2. Comparison of the different configurations of the ACOAP tested without the (−40%, 40%) outliers (Test 1)

Configuration Comparison with ACOLJ

βdec CBS RLPU Avg % Deviation Avg % Number of
Improved Instances

1 1 1 −3.57% 63.3% (23.3%, 13.3%)
0 0 1 −3.55% 61.7% (25.0%, 13.3%)
0 1 1 −3.44% 65.8% (20.8%, 13.3%)
1 0 1 −2.67% 58.3% (28.3%, 13.3%)
0 1 0 0.75% 31.7% (55.0%, 13.3%)
1 1 0 1.06% 31.7% (55.0%, 13.3%)
0 0 0 1.20% 24.2% (61.7%, 14.2%)
1 0 0 1.31% 25.8% (60.8%, 13.3%)

4.2 Evaluation of the ACOAP average results (Test 2)

In spite of the encouraging results from Test 1, it was
considered sensible analysing the ACOAP performance
with a different experimental scheme. In fact, according to
Birattari and Dorigo (2005), it seems questionable to
evaluate the performance of a stochastic algorithm on the
basis of its best result over M runs, but an average result is
instead considered a more appropriate performance index.
As pointed out in Birattari and Dorigo (2005), taking the
best result over M runs corresponds to a sort of trivial
“null-metaheuristic” which is based on the random restart of
the algorithm; in addition, the actual computation time of
such null-metaheuristic is M times greater than the computed
average CPU time for a single run. Test 2 was then
designed in order to evaluate the average performance
over 10 runs of the proposed algorithm with a different
LS timing rule, the BI one, which usually showed longer
computation times. This choice seemed appropriate
because the resulting CPU times were approximately M
times greater than the ones for Test 1. On the other hand,
the use of the LS with BI rule appeared a suitable way to
exploit the extended time that in this test becomes
available for each run, making the average results
comparable with the best ACOLJ ones. Test 2 was
performed for only one ACOAP configuration selected on
the basis of the outcome of Test 1, i.e., (βdec, CBS, RLPU)
= (1, 1, 1). The results obtained are shown in Table 3,
which reports in the columns the average percentage
deviation and the average number of improved (worse and
equal) instances of both the average and the worst ACOAP
results over 10 runs with respect to BKC, ACOLJ, and
ACOLJ without the (−40%, 40%) outliers. Again, the

comparison with ACOLJ puts into evidence the quality of
the proposed algorithm; the relevant role of the outliers
(in this case favouring ACOAP) can be observed
considering the difference in the comparison with ACOLJ
including or excluding them in the computation of the
averages. In addition, even for this test the ACOAP was
able to find one zero cost solution more than ACOLJ. It
seems quite important to underline the robustness of the
proposed algorithm with the BI timing rule by observing
that even the ACOAP worst results over 10 runs
outperformed on the average the BKC and ACOLJ best
known ones; this suggests that the results obtained in each
single run in Test 2 were quite stable and the average
ACOAP performance could be considered a representative
index of the algorithm behaviour in each run. The
observed average CPU time for Test 2 was 65.90s (with a
minimum of 1.00s and a maximum of 265.59s). Such a
greater computation time is due to the different behaviour
of the BI timing rule, which executes one LS per iteration,
compared to the ISWLS one. To better understand the
difference between the two LS timing rules, both the best
and average results obtained for the (βdec, CBS, RLPU) =
(1, 1, 1) configuration with the ISWLS rule and with the
BI one were compared, as well as the relevant
computation times. It was first observed that the best and
average results with the ISWLS rule were respectively
9.84% and 40.25% worse than the ones produced with the
BI rule; on the other hand, the superiority of the BI rule
seems compensated by the longer average CPU time,
65.90s, compared to 4.30s of the ISWLS. The reason of
such a large difference can be understood by observing
that the ratio between the number of LSs and the number
of iterations executed by the ACOAP with the BI rule is

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

55

obviously 100%, whereas with the ISWLS is on the
average only 8.2% (note that in the worst, but very unlikely,
case the ISWLS could execute a LS for all the ants in every
iteration). Besides, in Test 2 with the BI rule the average
percentage of the total CPU time spent by the ACOAP
algorithm in executing LSs was 92.8% with an average
number of LSs equal to 127.4, whereas in Test 1 with the
ISWLS rule it was 53.6% with an average of 9.5 LSs.

However, in accordance with the mentioned observation
of Birattari and Dorigo (2005), the fair average CPU time
for the algorithm with the ISWLS rule should be about
43.0s since its best results were obtained with 10 restarts;
this fact reduces the gap between the average times to the
same order of magnitude, so that the BI rule can be again
considered superior.

Table 3. Comparison of the results of ACOAP over 10 runs (Test 2)

 Comparison with

BKC ACOLJ
ACOLJ

 without outliers
Avg % Deviation −7.01% −6.58% −3.65%

Average results
over 10 runs Avg % Number

of Improved Instances
74.2%

(11.7%, 14.2%)
65.0%

(21.7%, 13.3%)
63.2%

(22.8%, 14.0%)
Avg % Deviation −2.80% −2.15% −1.64%

Worst results
over 10 runs Avg % Number

of Improved Instances
48.3%

(35.5%, 14.2%)
45.0%

(41.7%, 13.3%)
42.1%

(43.9%, 14.0%)

Table 4. The performance of ACOAP with the ACOLJ LS algorithm (Test 3)
 Comparison with

BKC ACOLJ
ACOLJ

without outliers
Avg %

Deviation
−4.96% −4.16% [−3.75%] −3.14% [−3.57%]

Avg % Number
of Improved

Instances

65.0%
(20.0%, 15.0%)

62.5% [67.5%]
(24.2%, 13.3%)

61.9% [63.3%]
(24.6%, 13.6%)

Table 5. The performance of ACOAP without learning mechanism (Test 4)

 Comparison with
 BKC ACOLJ

ACOLJ
 without outliers

Avg %
Deviation 0.76% [−7.01%] 1.28% [−6.58%] 0.60% [−3.65%]

Avg % Number
of Improved

Instances

38.3% [74.2%]
(45.5%, 14.2%)

35.0% [65.0%]
(51.7%, 13.3%)

35.0% [63.2%]
(51.3%, 13.7%)

Table 6. Analysis of the statistical significance of the results of Test 2 (Test 5)

Avg % deviation

from ACOLJ
Statistical

significance

0.3 −14.73% yes

0.6 −5.38% yes δ

0.9 0.18% no

0.75 −6.25% yes R
0.25 −6.90% yes

0.25 −5.55% yes
ξ

0.75 −7.58% yes

Global −6.58% yes

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

56

4.3 Evaluation of the importance of the LS algorithm

(Test 3)

Test 1 and Test 2 could raise the doubt about how
much the role of the LS is critical. Test 3 and the
successive Test 4 try to make this aspect clearer. Test 3 was
not performed using the LS described in Figure 2, but
with an alternative LS algorithm similar to the one
adopted in Liao and Juan (2007) with the ISWLS timing
rule; in addition, as for Test 2, only the (βdec, CBS, RLPU)
= (1, 1, 1) configuration was analysed for the ACOAP and,
as for Test 1, the best result over 10 runs was taken. Hence,
the purpose of this test was to evaluate if the goodness of
ACOAP compared to the ACOLJ results was only due to a
better effectiveness of the LS algorithm utilized in the
previous tests. The outcomes from Test 3 are presented in
Table 4 that reports the average percentage deviations and
the average number of improved (worse and equal)
instances with respect to the BKC, ACOLJ, and ACOLJ
without the (−40%, 40%) outliers, including for the two
latter cases in square brackets the associated results
previously shown for Test 1. The required average CPU
time for this test was 16.16s (with a minimum of 0.59s and
a maximum of 38.95s), whose 62.9% was devoted to LS
explorations with an average number of LS executions
equal to 75.7. Table 4 underlines the good behaviour of
the ACOAP algorithm even with a simpler LS procedure; in
particular, the column excluding the outliers puts into
evidence the overall robustness of the ACOAP results for
the considered benchmark. Finally, note that in this test,
based on the best result over 10 runs, the ACOAP
produced an average percentage deviation from the ACOLJ
better than the corresponding one in Test 1 and was also
able to find two zero cost solutions more than ACOLJ: this
fact seems to suggest further the appropriateness of an
average performance index for stochastic algorithm, as
this better percentage deviation was due to particularly
good results in some of the runs for a few instances which
belong also to the outliers.

4.4 Evaluation of the importance of the ACO

learning mechanism (Test 4)

As a counterpart of the previous Test 3, Test 4 aims at
evaluating how important is the ACO core algorithm
implemented in the ACOAP, i.e., the pheromone trail based
learning mechanism. Thus, a no-learning configuration
was forced for the ACOAP, imposing no pheromone
update (α = ρ = 0) and (βdec, CBS, RLPU) = (0, 0, 0). On
the other hand, as for Test 2, the more powerful LS with
the BI rule was used, and the average result over 10 runs
was considered. The percentages in Table 5 clearly show a
worsening with respect to the previous results for Test 2,
which are here reported in square brackets. As for Test 1
and Test 2, even in this case the algorithm was able to find
one zero cost solution more than ACOLJ. The average
CPU time for this test was 41.74s (with a minimum of
0.98s and a maximum of 135.43s), devoted for 91.5% to
LS executions whose average number, corresponding to

the average number of iterations, was 79.5.

4.5 Statistical significance of the results (Test 5)

A final analysis was executed whose purpose was
twofold: to verify the statistical consistency of the results
obtained (i.e., to determine if the differences in the
ACOAP results with respect to the ACOLJ ones were
produced by chance or if they are sufficient to consider
the ACOAP better on the average than the ACOLJ for the
considered benchmark); to deeply analyse the performance
of the ACOAP for the different classes of problem
instances included in the benchmark set. The results
previously obtained for Test 2, detailed in Table 4, were
here considered representative of behaviour of the
ACOAP (note that, for not reducing too much the number
of available samples, no outlier was removed); then, two
well-known non parametric statistical tests, the Friedman’s
test and the Wilcoxon ranksum test Devore (1991), were used
to compare the best ACOLJ results with the average
ACOAP ones. Both statistical tests produced the same
responses, which are reported in Table 7 in the Statistical
significance column: here, “yes” denotes that the results
from ACOAP and ACOLJ are significantly different (i.e., the
null hypothesis that the differences in the outcomes of the
two algorithms are caused by randomness can be rejected),
“no” otherwise. The column Avg % deviation from ACOLJ
reports, as in the previous tables, the average percentage
deviations from ACOLJ. The Global row shows that the
whole result of Table 2 is actually representative of a
better behaviour of the ACOAP. The other rows in Table 7
are grouped according to the due date tightness δ, due
date range R, and setup time severity ξ factors. According
to the results in Table 7, the R and ξ parameters do not
seem to greatly affect the improved effectiveness of the
proposed algorithm when it is compare with ACOLJ.
However, the improvement provided by the ACOAP
algorithm increases as the factor δ decreases. It can be
observed that the ACOAP produced better average results
than ACOLJ, which are also significantly different, for all
the sub-classes of benchmark instances but one: for δ =
0.9, when the due dates are the tightest, the ACOAP was
not able to improve the results of the ACOLJ, but for this
case the two algorithms showed a comparable behaviour.

4.6 An updated set of best known result for the

Cicirello’s benchmark

A final complete report of the best known results
produced by the ACOAP during the whole experimental
campaign on the Cicirello’s benchmark is shown in Table 7,
where such results are compared with the up-to-date best
known results available from the literature. In detail, Table
7 reports the best known results from the proposed
algorithm in the column ACOAP best, whereas the previous
up-to-date best known results in the column Previous
BK. In addition, the type of algorithm that produced the
previous best known result is reported in the

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

57

Table 7. The best-know results for the Cicirello’s (2003) benchmark including the new ACOAP ones

Inst. ACOAP Best Previous BK Previous best algorithm Inst. ACOAP Best Previous BK Previous best algorithm
1 513 684 GA3 61 75916 76396 SA3
2 5082 5082 TS3 62 44869 44769 TS3
3 1769 1792 SA3 63 75317 75317 SA3
4 6286 6526 GA3 64 92572 92572 SA3
5 4263 4662 GA3 65 126696 127912 SA3
6 7027 5788 ACOLJ2 66 59685 59832 SA3
7 3598 3693 GA3 67 29390 29390 GA3
8 129 142 GA3 68 22120 22148 TS3
9 6094 6349 GA3 69 71118 64632 ACOLJ2

10 1931 2021 SA3 70 75102 75102 GA3
11 3853 3867 GA3 71 145825 150709 GA3
12 0 0 ALL 72 45810 46903 TS3
13 4597 5685 GA3 73 28909 29408 SA3
14 2901 3045 GA3 74 32406 33375 TS3
15 1245 1458 GA3 75 22728 21863 TS3
16 4482 4940 GA3 76 55296 55055 SA3
17 128 204 SA3 77 32742 34732 SA3
18 1237 1610 GA3 78 20520 21493 TS3
19 0 208 GA3 79 117908 121118 GA3
20 2545 2967 GA3 80 18826 20335 GA3
21 0 0 ALL 81 383485 384996 GA3
22 0 0 ALL 82 409982 410979 SA3
23 0 0 ALL 83 458879 460978 TS3
24 1047 1063 GA3 84 329670 330384 SA3
25 0 0 ALL 85 554766 555106 SA3
26 0 0 ALL 86 361685 364381 SA3
27 0 0 SA3, GA3, TS3 87 398670 399439 GA3
28 0 0 GA4, SA3, GA3, TS3 88 434410 434948 GA3
29 0 0 ALL 89 410102 410966 SA3
30 130 165 SA3 90 401959 402233 GA3
31 0 0 ALL 91 340030 344988 TS3
32 0 0 ALL 92 361407 365129 GA3
33 0 0 ALL 93 408560 410462 VBSS1

34 0 0 ALL 94 333047 335550 ACOLJ2

35 0 0 ALL 95 517170 521512 GA3
36 0 0 ALL 96 461479 461484 ACOLJ2

37 400 755 SA3 97 411291 413109 TS3
38 0 0 ALL 98 526856 532519 VBSS1

39 0 0 ALL 99 368415 370080 ACOLJ2
40 0 0 ALL 100 436933 439944 GA3

41 70253 71186 TS3 101 352990 353408 TS3
42 57847 58199 TS3 102 493936 493889 TS3
43 146697 147211 SA3 103 378602 379913 ACOLJ2
44 35331 35648 SA3 104 358033 358222 TS3
45 58935 59307 GA3 105 450806 450808 SA3
46 35317 35320 TS3 106 455093 455849 GA3
47 73787 73984 SA3 107 353368 353371 SA3
48 65261 65164 SA3 108 461452 462737 TS3
49 78424 79055 TS3 109 413408 413205 SA3
50 31826 32797 TS3 110 418769 419481 TS3
51 50770 52639 GA3 111 346763 347233 ACOLJ2
52 95951 99200 GA3 112 373140 373238 ACOLJ2
53 87317 91302 SA3 113 260400 261239 GA3
54 120782 123558 VBSS1 114 464734 470327 ACOLJ2
55 68843 69776 GA3 115 457782 459194 ACOLJ2
56 76503 78960 GA3 116 532840 527459 ACOLJ2
57 66534 67447 ACOLJ2 117 506724 512286 ACOLJ2
58 47038 48081 TS3 118 355922 352118 ACOLJ2
59 54037 55396 SA3 119 573910 579462 TS3
60 62828 68851 GA3 120 397520 398590 ACOLJ2

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

58

Previous best algorithm column; in such column the
superscript to the algorithm acronym denotes the
reference where the associated result was presented, i.e., (1)
Cicirello and Smith (2005), (2) Liao and Juan (2007), (3)
Lin and Ying (2006), and (4) Cicirello (2006). Note that in
that column “ALL” is used to denote the zero cost
instances for which all the referred algorithms produced
the same zero cost result. The results reported in bold are
a new set of best known results for the Cicirello’s
benchmark. From Table 7 it can be observed that the best
results provided by the ACOAP are able to improve the
previous best known ones for 72.50% of the instances,
whereas they are worse for 8.33% and equal for 19.17% of
the instances.

4.7 A comparison with the ORLIB benchmark

To further evaluate its effectiveness and robustness, the
ACOAP algorithm was tested on a slightly modified
problem disregarding the setup times, i.e., the single
machine total weighted tardiness (STWT) scheduling. A
benchmark for the STWT problem available via ORLIB
(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.ht
ml), consisting of three sets of 125 randomly generated
instances with 40, 50, and 100 jobs, has been considered.
This benchmark was used to analyse the performance of
the ACS algorithm proposed for the STWT problem by
den Besten et al. (2000). Optimal solutions are known for
the 40 and 50 job instances, whereas for the 100 job
instances only the best known ones are available; note that
these latter best known solutions have been presented in
Crauwels et al. (1998) and in Congram et al. (2002) and
not modified anymore since then. This final test was
performed by executing 10 runs of the ACOAP algorithm
with the same setting used for Test 2 (i.e., α = 0.1, β0 = 1,
ρ = 0.05, q0 = 0.7, ϕ = 0.9, and with the configuration
(βdec, CBS, RLPU) = (1, 1, 1)), without performing any
kind of tuning specific for this different benchmark and
considering only the most challenging set of 100 job
instances. The results obtained showed that the ACOAP
algorithm was able to find the best known solutions for all
the 100 job instances on every run of the algorithm in
acceptable computation times (9.60s on the average, with
0.046s minimum and 112.70s maximum) that could be
considered comparable with the ones reported in den
Besten et al. (2000).

5. CONCLUSIONS

In this paper the NP-hard single machine total weighted
tardiness scheduling problem with sequence-dependent
setups has been faced by means of a new ACO approach.
This problem is particularly relevant since it aims at
minimizing the costs caused by violations of due dates and
it takes into account the time possibly wasted for changing
the type of production, which are both important aspects
in modern manufacturing. Therefore, such problem
represents also a challenging combinatorial optimization
problem to experiment the effectiveness of the proposed
ACO approach.

The algorithm presented in the paper includes several
new features: the most relevant one corresponds to the
pheromone learning model based on a new type of
asymptotic pheromone trails and a new global pheromone
update mechanism (UPU).

The main novelties in ACOAP algorithm are to make the
pheromone trails, which can be thought of as a sort of
proxy attributes measuring the utility of including a
component in high quality solutions, independent of the
objective (or quality) function of the specific problem or
instance considered, and the introduction of a new UPU
rule for the global pheromone update step, which makes
the pheromone trails smoothly range between a lower and
an upper bound only asymptotically reached. Differently
from previous GPU rules, the UPU one does not increase
the pheromone values of components on the basis of the
absolute or relative objective function values associated
with the (best) explored solutions, but on the basis of the
persistence, iteration after iteration, of such components
in the best solutions. In addition, ACOAP includes an
intra-iteration diversification mechanism based on a
stronger LPU rule than in standard ACS approaches, and a
RLPU feature allowing to reset the perturbation in
pheromone trails induced by the LPU. Other ACOAP
additional features that seemed sensible to experiment in
order to face the STWTSDS problem were (a) the
progressive decrease of the importance of the heuristic
value β already introduced in Merkle et al. (2002) to reduce
a possible bias in the system learning mechanism, and (b)
the use of the UPU rule with a CBS component solution
set, since in a weighted tardiness scheduling context, if the
algorithm learns that a certain sequence position could be
the right one for a job (due to its urgency), it appears
appropriate to reinforce its attitude to consider that job
even more urgent for successive positions.

The effectiveness of the new ACO approach has been
analysed through an extended experimental campaign on
the benchmark instance set generated by Cicirello (2003),
and it has been highlighted by the comparison with the
recent ACO algorithm presented in Liao and Juan (2007)
as well as the set of up-to-date best known results. In
addition, the robustness of the proposed algorithm has
been verified even testing it on a different STWT problem
benchmark available from ORLIB. However, the results
collected showed that the RLPU feature appears
fundamental, whereas the progressive reduction of β as
well as the use of CBS component solution set did not
appreciably affect the algorithm performance for the
considered benchmark. Particular attention has been paid
to the importance of the algorithm intensification phase,
implemented by a LS procedure, with respect to the ACO
learning mechanism. A comparison of the results
produced in Test 4 with the ones of Test 2, even taking
into account the outcomes of Test 3, can suggest some
remarks. LS or iterated LS algorithms certainly have an
important role as intensification mechanisms in
metaheuristics like ACO for combinatorial optimization,
but they must be considered only a component of these
ones. From an opposite standpoint, learning mechanisms,
as the one present in ACO, can drive powerful LS

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

59

algorithms to deeply explore particular promising areas in
the solution space. The cooperation between learning and
intensification finally appears a decisive factor to design
algorithms able to provide high quality results in an
acceptable computation time. The improvement of such
cooperation, as well as the study of more effective
pheromone models to reduce the need of extended
intensification phases, should represent possible future
theoretical developments of the proposed approach.

REFERENCES

1. Abdul-Razaq, T.S., Potts, C.N., and van Wassenhove,
L.N. (1990). A survey of algorithms for the single
machine total weighted tardiness scheduling problems.
Discrete Applied Mathematics, 26: 235-253.

2. Allahverdi, A., Gupta, J.N.D., and Aldowaisan., T.
(1999). A review of scheduling research involving
setup considerations. OMEGA, 27: 219-239.

3. Anghinolfi, D. and Paolucci, M. (2006). Parallel
machine total tardiness scheduling with a new hybrid
metaheuristic approach. Computers & Operations
Research, in press (available online).

4. Armentano, V.A. and Bassi de Araujo, O.C. (2006).
Grasp with memory-based mechanisms for
minimizing total tardiness in single machine
scheduling with setup times. Journal of Heuristics, 12:
427-446.

5. Armentano, V.A. and Mazzini, R. (2000). A genetic
algorithm for scheduling on a single machine set-up
times and due dates. Production Planning and Control, 11:
713-720.

6. Baker, K.R. and Scudder, G.D. (1990). Sequencing
with earliness and tardiness penalties: A review.
Operations Research, 38: 22-35.

7. Bauer, A., Bullnheimer, B., Hartl, R.F., and Strauss, C.
(1999). An ant colony optimization approach for the
single machine total tardiness problem. Proceedings of
the 1999 Conference on Evolutionary Computation (CEC’99),
Washington D.C., USA, pp. 1445-1450.

8. Birattari, M. and Dorigo, M. (2005). How to assess
and report the performance of a stochastic algorithm
on a benchmark problem: Mean or best result on a
number of runs? IRIDIA−Technical Report Series No.
TR/IRIDIA/2005-007.

9. Bullnheimer, B., Hartl, R.F., and Strauss, C. (1999). An
improved ant system algorithm for the vehicle routing
problem. Annals of Operations Research, 89: 319-328.

10. Cicirello, V.A. (2003). Weighted tardiness scheduling
with sequence-dependent setups: A benchmark library.
Technical Report, Intelligent Coordination and
Logistics Laboratory, Robotics Institute, Carnegie
Mellon University, USA.

11. Cicirello, V.A. (2006). Non-wrapping order crossover:
An order preserving crossover operator that respects
absolute position. Proceedings of GECCO’06 Conference,
Seattle, Washington, USA, pp. 1125-1131.

12. Cicirello, V.A. and Smith, S.F. (2005). Enhancing
stochastic search performance by value-based

randomization of heuristics. Journal of Heuristics, 11:
5-34.

13. Congram, R.K., Potts, C.N., and van de Velde, S.L.
(2002). An iterated dynasearch algorithm for the
single-machine total weighted tardiness scheduling
problem. INFORMS Journal on Computing, 14: 52-67.

14. Crauwels, H.A.J., Potts, C.N., and van Wassenhove
L.N. (1998). Local search heuristics for the single
machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 10: 341-350.

15. den Besten, M., Stützle, T., and Dorigo, M. (2000).
Ant colony optimization for the total weighted
tardiness problem. Proceedings of the PPSN VI, Sixth
International Conference Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, 1917, Springer,
Berlin, pp. 611-620.

16. Devore, J.L. (1991). Probability and Statistics for
Engineering and the Sciences, 3rd ed., Brooks/Cole
Publishing Company, Pacific Grove, California.

17. Dorigo, M. (1992). Optimization, Learning and Natural
Algorithms (in Italian), PhD Thesis, Dipartimento di
Elettronica, Politecnico di Milano, Italy.

18. Dorigo, M. and Blum, C. (2005). Ant colony
optimization theory: A survey. Theoretical Computer
Science, 344: 243-278.

19. Dorigo, M. and Gambardella, L.M. (1997). Ant colony
system: A cooperative learning approach to the
traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 1: 53-66.

20. Dorigo, M. and Stützle, T. (2002). The ant colony
optimization metaheuristics: Algorithms, applications
and advances. In: F. Glover and G. Kochenberger
(Eds.), Handbooks of Metaheuristics, Int. Series in
Operations Research & Management Science, Kluver,
Dordrech, 57: 252-285.

21. Dorigo, M., Maniezzo, V., and Colorni, A. (1991).
Positive feedback as a search strategy. Tech. Report
91-016, Dipartimento di Elettronica, Politecnico di
Milano, Italy.

22. Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant
system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man and
Cybernetics-Part B, 26: 29-41.

23. Du, J. and Leung, J.Y.T. (1990). Minimizing total
tardiness on one machine is NP-hard. Mathematics of
Operations Research, 15: 483-495.

24. Feo, T.A., Sarathy, K., and McGahan, J. (1996). A
grasp for single machine scheduling with sequence
dependent setup costs and linear delay penalties.
Computers & Operations Research, 23: 881-895.

25. França, P.M., Mendes, A., and Moscato, P. (2001). A
memetic algorithm for the total tardiness single
machine scheduling problem. European Journal of
Operational Research, 132: 224-242.

26. Gagné, C., Price, W.L., and Gravel, M. (2002).
Comparing an ACO algorithm with other heuristics
for the single machine scheduling problem with
sequence-dependent setup times. Journal of the
Operational Research Society, 53: 895-906.

Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem
IJOR Vol. 5, No. 1, 44−60 (2008)

60

27. Gajpal, Y., Rajendran, C., and Ziegler H. (2006). An
ant colony algorithm for scheduling in flowshops with
sequence-dependent setup times of jobs. The
International Journal of Advanced Manufacturing Technology,
30: 416-424.

28. Gupta, S.R. and Smith, J.S. (2006). Algorithms for
single machine total tardiness scheduling with
sequence dependent setups. European Journal of
Operational Research, 175: 722-739.

29. Kennedy, J. and Eberhart, R.C. (2001). Swarm
Intelligence, Morgan Kaufmann Publishers, USA.

30. Kirkpatrick, S., Gelatt Jr., C.D., and Vecci, M.P. (1983).
Optimization by simulated annealing. Science, 220:
671-80.

31. Lawler, E.L. (1997). A “pseudopolynomial” algorithm
for sequencing jobs to minimize total tardiness. Annals
of Discrete Mathematics, 1: 331-342.

32. Lee, Y.H., Bhaskaran, K., and Pinedo, M. (1997). A
heuristic to minimize the total weighted tardiness with
sequence-dependent setups. IIE Transactions, 29: 45-52.

33. Liao, C.-J. and Juan, H.C. (2007). An ant colony
optimization for single-machine tardiness scheduling
with sequence-dependent setups. Computers &
Operations Research, 34: 1899-1909.

34. Lin, S.-W. and Ying, K.-C. (2006). Solving
single-machine total weighted tardiness problems with
sequence-dependent setup times by meta-heuristics.
The International Journal of Advanced Manufacturing
Technology, available online (www.springerlink.com).

35. Luo, X. and Chu, F. (2006). A branch and bound
algorithm of the single machine schedule with
sequence dependent setup times for minimizing total
tardiness. Applied Mathematics and Computation, to
appear, available online.

36. Merkle, D. and Middendorf, M. (2000). An ant
algorithm with a new pheromone evaluation rule for
total tardiness problems. Proceedings of the EvoWorkshops
2000, Lecture Notes in Computer Science, 1803: 287-296.

37. Merkle, D. and Middendorf, M. (2001). A new
approach to solve permutation scheduling problems
with ant colony optimization. Proceedings of the
EvoWorkshops 2001, Lake Como, Italy, pp. 484-494.

38. Merkle, D. and Middendorf, M. (2002). Ant colony
optimization with the relative pheromone evaluation
method. Proceedings of the EvoWorkshops 2002, Lecture
Notes in Computer Science, 2279: 325-333.

39. Merkle, D. and Middendorf, M. (2003). Ant colony
optimization with global pheromone evaluation for
scheduling a single machine. Applied Intelligence, 18:
105-111.

40. Merkle, D., Middendorf, M., and Schmeck, H. (2002).
Ant colony optimization for resource-constrained
project scheduling. IEEE Transactions on Evolutionary
Computation, 6: 333-346.

41. Mladenovic, N. and Hansen, P. (1997). Variable
neighbourhood search. Computers & Operations Research,
24: 1097-1100.

42. Panwalkar, S., Dudek, R., and Smith, M. (1973).
Sequencing research and the industrial scheduling

problem. In: M. Beckmann, P. Goos, and H. Zurich
(Eds.), Symposium on the Theory of Scheduling and Its
Applications, Springer-Verlag, New York, pp. 29-38.

43. Pinedo, M. (1995). Scheduling: Theory, Algorithms, and
Systems. Prentice Hall, Englewood Cliffs, NJ.

44. Potts, C.N. and van Wassenhove, L.N. (1991). Single
machine tardiness sequencing heuristics. IIE
Transactions, 23: 346-354.

45. Reinmann, M., Doerner, K., and Hartl, R.F. (2004).
D-ants: Savings based ants divide and conquer the
vehicle routing problems. Computers & Operations
Research, 31(4): 563-591.

46. Rinnooy Kan, A.H.G., Lageweg, B.J., and Lenstra, J.K.
(1975). Minimizing total costs in one machine
scheduling. Operations Research, 23: 908-927.

47. Rubin, P.A. and Ragatz, G.L. (1995). Scheduling in a
sequence dependent setup environment with genetic
search. Computers & Operations Research, 22: 85-99.

48. Stützle, T. and Hoos, H.H. (2000). Max-min ant
system. Future Generation Computer System, 16: 889-914.

49. Sutton, R.S. and Barto, A.G. (1998). Reinforcement
Learning: An Introduction, MIT Press, Cambridge.

50. Tan, K.C. and Narasimhan, R. (1997). Minimizing
tardiness on a single processor with sequence-
dependent setup times: A simulated annealing
approach. Omega, 25: 619-634.

51. Tan, K.C., Narasimhan, R., Rubin, P.A., and Ragatz,
G.L. (2000). A comparison of four methods for
minimizing total tardiness on a single processor with
sequence dependent setup times. Omega, 28: 313-326.

52. Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., and Gencyilmaz,
G. (2004). Particle swarm optimization algorithm for
single machine total weighted tardiness problem.
Proceedings of the 2004 Congress on Evolutionary Computation
(CEC′04), Portland, Oregon, pp. 1412-1419.

53. Vepsalainen, A.P.J. and Morton, T.E. (1987). Priority
rules for job shops with weighted tardiness cost.
Management Science, 33: 1035-1047.

54. Wisner, J.D. and Siferd, S.P. (1995). A survey of US
manufacturing practices in make-to-order machine
shops. Production and Inventory Management Journal, 1:
1-7.

55. Ying, G.C. and Liao, C.J. (2004). Ant colony system
for permutation flow-shop sequencing. Computers &
Operations Research, 31: 791-801.

