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AbstractIn this paper the NP-hard single machine total weighted tardiness scheduling problem in presence of  
sequence-dependent setup times is faced with a new Ant Colony Optimization (ACO) approach. The proposed ACO 
algorithm is based on a new global pheromone update mechanism, which makes the pheromone trails asymptotically range 
between two bounds arbitrarily fixed and the ACO learning mechanism independent of  the values of  the objective function 
of  the considered problem. Other features of  the algorithm include a diversification mechanism for the solution 
construction phase based on a local pheromone update rule whose effects are restricted to the single iterations, and a 
cumulative option for the global pheromone update rule. An experimental campaign, carried out on a benchmark available 
from the literature, was executed to evaluate the proposed ACO and the effectiveness of  its optional features. In particular, 
the obtained results were compared with the ones of  a recently proposed ACO algorithm for the same problem by Liao 
and Juan (2007). The analysis of  the outcomes showed the competitiveness of  the new ACO approach, which was able to 
improve about 72% of  the best known results for the benchmark. Finally, a further investigation on a different benchmark 
set of  instances without setup times showed the robustness of  the proposed ACO algorithm. 
KeywordsAnt colony optimization, Metaheuristics, Scheduling, Total weighted tardiness 
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1. INTRODUCTION 

Ant Colony Optimization (ACO) is a recent 
metaheuristic approach which aims at exploiting the 
successful behaviour of  real ants in cooperating to find 
shortest paths to food for solving combinatorial problems 
(Dorigo and Stützle (2002), Dorigo and Blum (2005)). In 
most of  the real species ants have an effective indirect way 
to communicate each other which is the most promising 
trail, and finally the optimal one, towards food: ants 
produce a natural essence, called pheromone, which they 
leave on the followed path to food in order to mark it. The 
pheromone trail evaporates over time and it disappears on 
the paths abandoned by the ants. On the other hand, the 
pheromone trail can be reinforced by the passage of  
further ants: thus, effective (i.e., shortest) paths leading to 
food are finally characterized by a strong pheromone trail, 
and they are followed by most of  ants. The ACO 
metaheuristic was first introduced by Dorigo, Maniezzo 
and Colorni (1991 and 1996) and Dorigo (1992), and since 
then it has been the subject of  both theoretical studies and 
applications. ACO combines both Reinforcement Learning 
(RL) (Sutton and Barto (1998)) and Swarm Intelligence (SI) 
(Kennedy and Eberhart (2001)) concepts:  
l each single agent (an ant) takes decisions and receives 

a reward from the environment, so that the agent’s 
policy aims at maximizing the cumulative reward 
received (RL); 

l the agents exchange information to share experiences 
and the performance of  the overall system (the ant 
colony) emerges from the collection of  the simple 
agents’ interactions and actions (SI). 

ACO metaheuristic has been successfully applied to 
several combinatorial optimization problems, from the 
first travelling salesman problem applications (Dorigo et al. 
(1991 and 1996)), to vehicle routing problems 
(Bullnheimer et al. (1999), Reinmann et al. (2004)), and to 
single machine and flow shop scheduling problems (den 
Besten et al. (2000), Gagné et al. (2002), Ying and Liao 
(2004)). 

This paper proposes a new Ant Colony Optimization 
(ACO) approach to face one among the most important 
scheduling problems, i.e., the single machine total weighted 
tardiness scheduling with sequence-dependent setup times 
(STWTSDS) problem. The choice of  the STWTSDS 
problem as reference application for the proposed ACO 
approach is motivated by the relevance of  the considered 
problem for manufacturing industries. The importance of  
performance criteria involving due dates, such as (weighted) 
total tardiness or total earliness and tardiness (E-T), as well 
as the explicit consideration of  sequence-dependent setups, 
has been widely recognized in many real industrial contexts. 
Both in the survey on US manufacturing practise by 
Wisner and Siferd (1995) and in the one by Panwalkar et al. 
(1973) meeting the due dates is identified as the most 
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important scheduling objective. Criteria weighting both the 
early and the tardy completion of  jobs with respect to their 
due dates, the so-called non-regular objectives (Baker and 
Scudder (1990)), have been considered to encompass the 
just-in-time (JIT) philosophy aiming at reducing the level 
of  inventories. Among the regular objectives based on due 
dates, the minimization of  the total weighted tardiness is 
the subject of  a very large amount of  literature on 
scheduling; however, the coverage of  the problem 
including an explicit consideration of  sequence-dependent 
setups is not so extended. Setup operations are necessary 
to prepare production resources (e.g., machines) for the job 
to be executed next, and whenever they depend on the 
(type of) preceding job just completed they are called 
sequence-dependent setups. In the survey by Panwalkar et 
al. (1973) the presence of  sequence-dependent setups has 
been observed in a relevant number of  industrial 
scheduling contexts. Nevertheless, it is often assumed the 
setup times independent of  the sequence of  jobs on the 
machine, including them into processing times; alternatively, 
setup times are simply disregarded and eventually inserted 
in the so found solutions. In a review on machine 
scheduling problems involving setups, Allahverdi et al. 
(1999) provided a number of  industrial examples including 
sequence-dependent setups and they indicated the 
importance of  taking into account setup times separately 
from job processing times. In addition, it was underlined in 
Rubin and Ragatz (1995) how the difficulty of  total 
tardiness scheduling on a single machine is increased by the 
presence of  sequence-dependent setups, since dominance 
conditions used for simple tardiness problems do not hold 
true. In addition, although in general weighted tardiness 
problems with sequence-dependent setups may originate 
from single or multi-machine contexts, it was observed that 
the solution of  single machine problems is often required 
even in more complex environments (Pinedo (1995)).  
  The work presented in this paper aims at analysing the 
behaviour of  an ACO approach which mainly differs from 
previous ones in the literature for a new pheromone trail 
model based on an original global pheromone update 
(GPU) rule. In particular, (a) pheromone values are 
independent of  the problem cost (or quality) function and 
they are bounded within an arbitrarily chosen and fixed 
interval; (b) the new GPU rule implements the ant colony 
learning system by exploiting the solution quality as a sort 
of  signal driving the reward mechanism, and updating the 
pheromone values accordingly; in addition, this GPU rule 
makes the pheromone values asymptotically increase 
(decrease) towards the upper (lower) bound without 
requiring any explicit cut-off, differently from the 
Max-Min Ant System (MMAS) (Stützle and Hoos (2000)), 
where upper and lower bounds for pheromone values are 
used as well; finally, (c) a diversification strategy is adopted 
which is based on a temporary perturbation of  the 
pheromone values performed by a local pheromone 
update (LPU) rule within any single iteration. 

The rest of  the paper is organized as follows: Section 2 
introduces a formal definition of  the STWTSDS problem 
and reviews the relevant literature for this problem and for 

previous related ACO approaches. Section 3 illustrates the 
basic aspects of  the ACO approach, discussing how it can 
be applied to the STWTSDS problem and highlighting the 
new features introduced. Section 4 shows the extended 
experimental campaign performed on the benchmark set 
generated by Cicirello (2003), whose best known results 
have been very recently updated both in Cicirello (2006) 
and in Lin and Ying (2006), and it compares the proposed 
ACO with the one presented in Liao and Juan (2007); in 
addition, the results obtained to test the robustness of  the 
proposed ACO on a single machine total weighted 
tardiness scheduling problem benchmark available from 
ORLIB are presented. Finally, Section 5 draws some 
conclusions. 
 
2. PROBLEM DEFINITION AND LITERATURE 

REVIEW 

Formally, the STWTSDS problem requires the 
scheduling of  a set of  n independent jobs, which are all 
ready for processing at time zero, on a single machine 
which is continuously available and can process only one 
job at a time. For each job j = 1, ..., n, the following 
quantities are given: a processing time pj, a due date dj and 
a weight wj. A sequence-dependent setup time sij should be 
waited before starting the processing of  job j immediately 
sequenced after job i. The job tardiness is defined as Tj = 
max(0, Cj − dj), being Cj the completion time of  job j, and 
the job is said tardy if  Tj > 0. A schedule corresponds to a 
feasible sequencing of  the jobs on the machine: due to the 
regularity of  the problem objective (Baker and Scudder 
(1990)), having fixed a feasible sequencing, each job must 
complete at its earliest completion time. The scheduling 
objective is the minimization of  the total weighted 
tardiness, i.e., 
 

1

min
n

j j
j

Z w T
=

= ∑                              (1) 

 
This problem, which is denoted as 1/sij/ΣwjTj, is 

strongly NP-hard since it is a special case of  the 1//ΣwjTj  
that has been proved to be strongly NP-hard by Lawler 
(1997); the complexity of  the considered problem, 
confirmed by the fact that the special case without setups 
and with unitary weights is still NP-hard (Du and Leung 
(1990)), justifies the research of  heuristic approaches for 
its solution in practical cases. Nevertheless, exact 
algorithms based on branch and bound (B&B) or dynamic 
programming approaches have been proposed, but they 
are able to tackle instances of  reduced dimensions. For 
example, an early B&B algorithm for the STWTSDS 
problem was proposed in Rinnooy Kan et al. (1975); 
Abdul-Razaq et al. (1990) faced the single machine total 
tardiness scheduling with sequence-dependent setups 
(STTSDS) problem, whereas the algorithm in Potts and 
van Wassenhove (1985) was able to solve up to 40-job 
instances for the sequence-independent problem; Luo and 
Chu (2006) recently devised a B&B algorithm for the 
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STTSDS solving up to 30-job instances with reduced 
computational times. Most of  the recent research on total 
tardiness scheduling with sequence-dependent setups is 
focused on the development of  heuristics: in particular, 
constructive heuristics, generally corresponding to 
dispatching rules, improvement heuristics and metaheuristics. 
The well-known apparent tardiness cost with setups 
(ATCS) heuristic, proposed by Lee et al. (1997), appears to 
be the best constructive approach for the STWTSDS 
problem; such heuristic extends to the case of  
sequence-dependent setups the time-dependent apparent 
tardiness cost (ATC) rule defined a decade before by 
Vepsalainen and Morton (1987). Constructive heuristics 
usually require a small computational effort (for this 
reason they may be preferred in industrial applications), 
but they are outperformed by improvement approaches, as 
well as metaheuristics, which, in turn, are usually much 
more computational time demanding. Improvement 
approaches consist of  local search algorithms that, starting 
from an initial solution produced by a simple constructive 
rule, explore a succession of  neighbouring solutions until 
no further improvement is possible. As noted in the paper 
by Cicirello and Smith (2005), which includes a survey of  
heuristic approaches for the STWTSDS problem, also Lee 
et al. (1997) proposed a local search procedure based on a 
reduced set of  swap and insert moves to improve the 
solution generated by the ATCS rule. The dominance of  
improvement approaches over constructive ones is 
witnessed, for example, in Potts and van Wassenhove 
(1991), where the effectiveness of  simple pair-wise 
interchange methods against dispatching rules for the 
single machine total weighted tardiness problem was 
shown; more recently, constructive heuristics were 
compared to a memetic algorithm in França et al. (2001), 
or also in Anghinolfi and Paolucci (2006), where a hybrid 
metaheuristic was proposed for a similar parallel machine 
case. Cicirello and Smith (2005) analysed the behaviour of  
several stochastic search procedures for the STWTSDS, 
showing the effectiveness of  introducing randomization. 
In particular, the authors developed several algorithms, a 
value-biased stochastic sampling (VBSS), a VBSS with 
hill-climbing (VBSS-HC) and a simulated annealing (SA), 
that were compared to limited discrepancy search (LDS) 
and heuristic-biased stochastic sampling (HBSS) for a 120 
benchmark problem instances defined by Cicirello (2003) 
and available on the web. Several metaheuristic approaches 
have been proposed for the STTSDS problem: genetic 
algorithms (GA) in Rubin and Ragatz (1995) and in 
Armentano and Mazzini (2000); a memetic algorithm 
combining GA with local search in França et al. (2001); a 
SA approach (Tan and Narasimhan (1997)); a greedy 
randomized adaptive search procedure (GRASP) in Feo et 
al. (1996). Tan et al. (2000) compared four 
implementations of  B&B, GA, random-start pair-wise 
interchange (RSPWI) and SA proposed for the STTSDS in 
previous works by the same authors, concluding that SA 
and RSPWI are suitable approaches to face larger 
instances, whereas the GA shows the worst performance. 
In recent times, the Cicirello’s best known results were 

independently improved in Lin and Ying (2006) and in 
Cicirello (2006). Lin and Ying (2006) developed three 
approaches for the STWTSDS, i.e., a SA, a GA and a tabu 
search (TS), whose best results over 10 runs were 
compared against the Cicirello and Smith (2005) best 
known ones; the results reported by the authors show that 
all the three algorithms were able to improve the previous 
best known results for more than 71% of  the instances 
with an average computation time for each single run of  
27s. Cicirello (2006) presented a GA approach for the 
STWTSDS problem based on a new non-wrapping order 
crossover (NWOX) operator, derived from the 
well-known order crossover (OX) operator, whose 
purpose is to propagate to the offspring not only the jobs’ 
order but also their absolute positions in the sequences; 
this new NWOX operator appeared well-suited for the 
STWTSDS problem, and the GA presented in Cicirello 
(2006) was able to improve 49 of  the 120 best known 
results of  the Cicirello’s (2003) benchmark. 

In recent years, several ACO approaches have been 
proposed to face total tardiness scheduling problems 
which may include or not sequence-dependent setups. A 
first implementation was studied in Bauer et al. (1999), 
where the authors adapted the Ant Colony System (ACS) 
(Dorigo and Gambardella (1997)) to the single machine 
total tardiness problem, showing that their algorithm 
outperforms a set of  leading heuristics for this problem. 
An analysis of  the combination of  different local search 
strategies with an ACS algorithm for the total weighted 
tardiness problem was proposed by den Besten et al. 
(2000), who highlighted as dominant strategy the use of  
solution neighbourhoods based on the concatenation of  
simple moves; the ACO algorithm in den Besten et al. 
(2000) tested over the ORLIB benchmark 
(www.ms.ic.ac.uk/info.html) found always the best known 
solution even for the largest instances (100 jobs) with 
6.99s as average CPU time. Merkle and Middendorf  (2000 
and 2003) defined a new approach of  evaluating 
pheromone values, called Pheromone Summation (PS) rule, in 
an ACO algorithm that extends to total weighted tardiness 
scheduling problems, the ACS proposed for traveling 
salesman problem (TSP) in Dorigo and Gambardella 
(1997). Since for standard ACO approaches the probability 
p(h, j) of  a job j of  being scheduled in a sequence place h 
depends on single pheromone value associated with the 
pair (j, h), the aim of  the PS rule is to avoid a too much 
delayed scheduling of  jobs which fail to be sequenced in 
their most favourite place. Similarly Merkle and 
Middendorf  (2001) pointed out that for permutation 
scheduling problems the sequential solution construction 
procedure usually adopted in ACO algorithms can be 
based on a probability p(h, j) that should take into account 
the previous decisions for the places preceding h; hence 
the authors devised an ACO approach which alternates 
iterations where “random” ants consider the sequence 
places in random order to iterations where “sequential” 
ants assign the jobs in the sequence order but including 
also a suitable heuristic information in the selection 
probability. In Merkle and Middendorf  (2002) it was 



Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem 
IJOR Vol. 5, No. 1, 44−60 (2008) 
 

47 

remarked the need of  methods like the PS rule for 
permutation problems where good solutions show a 
so-called “similarity property”, i.e., they usually differ for a 
small number of  places; in alternative to the PS rule the 
authors defined a new Relative Pheromone Evaluation (RPE) 
method, based on a normalization of  pheromone values, 
that for a single machine total earliness with multiple due 
dates scheduling problem outperformed both standard 
and PS rule pheromone evaluation approaches. Gagné et 
al. (2002) showed the effectiveness of  an ACO algorithm 
for the STTSDS problem which includes a lookahead 
information, obtained from a lower bound described in 
Tan et al. (2000), in the heuristic component of  the 
transition rule used to select the next job to be included in 
a partial schedule. Quite recently, the ACO algorithm by 
Gagné et al. (2002), together with B&B and other 
metaheuristic approaches, has been outperformed by 
different variants of  GRASP for the STTSDS proposed 
by Armentano and Bassi de Araujo (2006) and by Gupta 
and Smith (2006). An ACO algorithm for the STWTSDS 
has been proposed in Liao and Juan (2007), where the 
authors showed the appropriateness of  their approach by 
improving about 86% of  the best results obtained with the 
set of  improvement heuristics in Cicirello (2003) for the 
120 benchmark problem instances; also this algorithm is 
based on ACS, but it imposes a minimum pheromone 
value similarly to the MMAS (Stützle and Hoos (2000)), 
and adopts a new parameter for the pheromone 
initialization and a different timing for local search 
execution. Two final remarks may emerge from the 
literature review of  ACO approaches to scheduling. Firstly 
it can be observed that the presence of  
sequence-dependent setups has been mainly considered 
into the heuristic information exploited by the ACO 
algorithms: for example, in Gajpal et al. (2006) 
sequence-dependent setups influence the heuristic used to 
generate a starting solution that, after a local search 
enhancement, is used to initialize the pheromone trails. 
Secondly, the role of  the local search appears basic to 
improve the behaviour of  ACO algorithms. 
 
3. THE PROPOSED ACO APPROACH 

This section presents the characteristics of  the new 
ACO approach proposed for the STWTSDS problem. For 
this purpose, some notation must be introduced. In 
general a solution x of  a single machine scheduling 
problem of  a set of  n independent jobs is represented by a 
sequence σ(x) = (x[1], ..., x[n]), where σ(x[h]) or simply [h], 
h = 1 , ..., n , denotes the index of  the job that in solution 
x is sequenced in the h-th position on the machine, e.g., j = 
σ(x[h]) = [h], with j = 1, ..., n. In addition, the position-job 
pairs (h, j), ,    1,  ...,  ,h j n= determined by a sequence σ(x) 
are denoted as solution components of  x.  

The core of  the approach proposed in this paper for 
ACO (denoted in the following with ACOAP) is mainly 
based on the Ant Colony System (ACS) (Dorigo and 
Gambardella (1997)), and it includes concepts inspired to 
the MMAS (Stützle and Hoos (2000)) and to the 

approaches in Merkle and Middendorf  (2000 and 2003); 
however, how it will be detailed in the following, in the 
ACOAP algorithm such concepts are encapsulated in a new 
pheromone model and exploited in a real different manner. 
In addition, the developed algorithm may be also 
compared to the one in Liao and Juan (2007) (denoted 
hereinafter as ACOLJ), whose results have been taken as 
main reference to evaluate the ACOAP effectiveness. 

 
3.1 The overall ACOAP algorithm description  

Figure 1 reports the very high level structure of  the 
ACOAP algorithm. 

 

 
Figure 1. The overall ACOAP algorithm. 

 
A set A of  m artificial ants is considered. At each 

iteration k, every ant a identifies a solution k
ax  building a 

sequence ( )k
axσ  of  the n jobs, whose objective value 

( )k
aZ x  is then simply computed by assigning to each job 

its feasible (i.e., taking into account both processing times 
and setups) earliest start time for that sequence. Every ant 
a builds the sequence ( )k

axσ  by iterating n selection 
stages: first, the set of  not sequenced jobs for ant a, 0 ,aU  
is initialized as 0 {1 ,  ..., };aU n=  then, at stage h = 1 , ..., n, 
the ant a selects one job j from the set 1h

aU − to be inserted 
in the position h of  the partial sequence, and updates 

1 \{ }h h
a aU U j−= ; at stage h = n all the jobs are sequenced 

and .n
aU = ∅  The job selection at each stage h of  the 

construction procedure at iteration k is based on a rule 
that is influenced by the pheromone trail 

( , )k h jτ associated with the possible solution components 
( ,  ),h j where 1 .h

aj U −∈  
A characteristic that distinguishes the proposed 

algorithm from all the previous approaches is that the 
pheromone values assigned to ( , )k h jτ  are independent 
of  the objective or quality function values associated with 
previously explored solutions including the component 
( ,  ). h j Pheromone trails here represent a sort of  measure 
of  the utility of  including a component during the 
construction of  “good” solutions that is progressively 

Initialization; 
k = 1; 
While <termination condition not met> 
{ 
   For each ant a ∈ A 
    { 
       Construction of  solution ;k

ax  
       Local pheromone update; 
     } 
     Local Search phase; 
     Global pheromone update; 
     k = k + 1; 
} 
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learned from the solution space exploration. In addition, 
an arbitrary range [ , ]Min Maxτ τ  is adopted for the 
pheromone values, which is independent of  the specific 
problem or instance considered. Also in MMAS lower and 
upper bounds are imposed for ( , ),k h jτ  but they must be 
appropriately selected and dynamically updated each time a 
new best solution is found, taking into account the 
objective function values. Differently, in the ACOAP 
algorithm such bounds are independent of  the objective 
function and arbitrarily selected, since any pair of  values, 
such that ,Min Maxτ τ<  can be chosen. Note that in this 
way Maxτ  and Minτ  are removed from the set of  
parameters needed by the algorithm. In addition, the 
variation of  ( , ) [ , ]k Min Maxh jτ τ τ∈  during the exploration 
process, i.e., the ant colony learning mechanism, is 
controlled by a new GPU rule (described in the following) 
that imposes a smooth variation of  ( , )k h jτ  within these 
bounds such that both extremes are asymptotically reached. 
Note that such a characteristic is different from MMAS, 
where the lower and upper bounds are used as cut-off  
thresholds. The new pheromone-based learning 
mechanism of  the ACOAP algorithm relies on three 
features: (a) the new kind of  asymptotic pheromone trails 
previously described; (b) a local pheromone update (LPU) 
rule that induces a pheromone perturbation to favour a 
stronger intra-iteration diversification mechanism than in 
standard ACS, but it keeps the scope of  such perturbation 
restricted to each single iteration; (c) a new unbiased global 
pheromone update rule. The features (b) and (c) will be 
detailed in the following where, in order to make simpler 
and more readable the expressions, a relative pheromone 
value ( , ) ( , ) ,k k Minh j h jτ τ τ′ = − such that ( , )k h jτ ′ ∈  
[0, ],Maxτ ′  where ,Max Max Minτ τ τ′ = −  is used. The ACOAP 
algorithm in Figure 1 can now be detailed. 

 
Initialization. For each solution component ( ,  ),h j  h, j 
= 1, ..., n, an initial value of  the pheromone trail is assigned 
by fixing 0 ( , ) ( )/ 2;Max Minh jτ τ τ= + in addition, the best 
current solution x* is initialized as an empty solution and 
the associated objective value Z(x*) is fixed to infinity. 
 
Job selection rule. At a selection stage h of  iteration k, an 
ant a determines which job j ∈ 1h

aU − is inserted in the h-th 
position of  the sequence as follows. First, similarly to the 
ACS, it is chosen which job selection rule must be used 
between exploitation and exploration: a random number q is 
extracted from the uniform distribution U[0, 1] and if  q ≤ 
q0 the exploitation rule is used, otherwise the exploration 
one. The parameter q0 (fixed such that 0 ≤ q0 ≤ 1) directs 
the ants’ behaviour towards either the exploration of  new 
paths or the exploitation of  the best paths previously 
emerged. The exploitation rule selects the job j in a 
deterministic way as 
 

[ ]
-1

arg  max{ ( ,  ) ( ,  ) }k

h
a

k
u U

j h u h u βτ η
∈

′= ⋅               (2) 

whereas the exploration rule according to a selection probability 
( , )p h j  computed as 

 
[ ]

[ ]
1

( , ) ( , )
( , )

( , ) ( , )

k

k

h
a

k

k
u U

h j h j
p h j

h u h u

β

β

τ η

τ η
−∈

′ ⋅
=

′ ⋅∑
               (3) 

 
The quantity ( , ),h jη  associated with the solution 

component ( ,  ),h j is an heuristic value which is computed, 
as done in Liao and Juan (2007), equal to the priority 

( , )tI h j of  assigning job j in position h at time t according 
to the ATCS rule (Lee et al. (1997)) 
 

[ 1]

1 2

( , ) ( , )
max( , 0)

exp exp

t

j j j h j

j

h j I h j
w d p t s
p k p k s

η

−

=

− −   
= −   

   

  (4) 

 
where   

 
1

[ 1][ ] [ ] [ 1]
1

( )
h

i i i h j
i

t s p s
−

− −
=

= + +∑          (5) 

 
p  and s  are respectively the average processing time 

and the average setup time, and k1 and k2 are the 
lookahead parameters fixed as originally suggested in Lee 
et al. (1997). Therefore, similarly to the ACO approaches 
previously reviewed, even in the ACOAP algorithm the 
influence of  the sequence-dependent setups is 
encapsulated in the heuristic values used in the job 
selection rule. The parameter βk in (2) and (3) is the 
relative importance of  the heuristic value with respect to 
the pheromone trail one at iteration k; the initial value β0 
of  such parameter is updated at each iteration with the 
following exponential rule  

 
1k kβ ϕ β+ = ⋅               (6) 

 
where ϕ is a factor fixed in [0, 1]. The progressive 
reduction of  parameter βk was not included in previous 
approaches to the STWTSDS problem, but, to the best 
authors’ knowledge, it has been first introduced in the 
ACO algorithm proposed by Merkle et al. (2002) for 
resource constrained scheduling problems; in this way, the 
influence of  the heuristic values ( , )h jη  on the ants’ 
decisions diminishes iteration after iteration, leaving to the 
pheromone trails the leading role of  driving the solution 
construction process. Finally, note that for this reason the 
choice of  the heuristic to compute the  ( ,  )h j  values 
could appear less critical, but still necessary in the initial 
iterations when the pheromone is equally distributed over 
all the possible solution components. 
 
Local pheromone update. (intra-iteration diversification). As 
often done in previous ACO approaches to avoid 
premature convergence of  the algorithm, a LPU is 
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performed after any single ant a completed the 
construction of  a solution xa in order to make more unlike 
the selection of  the same sequence by the following ants. 
In the ACOAP the local pheromone update rule adopted is 
 

( , ) (1 ) ( , ) 1,  ..., ; ( [ ])k k ah j h j h n j x hτ ρ τ σ′ ′= − ⋅ ∀ = =   (7) 
 
where ρ is a parameter fixed in [0, 1]. A new characteristic 
introduced for the ACOAP is to consider such kind of  
update strictly local, i.e., to use it to favour the 
diversification of  the sequences produced by the ants 
within the same iteration. Note that rule (7) imposes a 
perturbation on the (relative) pheromone values which is 
stronger than the one in the standard ACS approach, since 
it drives pheromone values towards Minτ  instead of  0 .τ  
Therefore, here rule (7) is used to temporarily modify the 
pheromone values only in the single iteration scope, since 
such changes are deleted before executing the global 
pheromone update phase and starting the next iteration. This 
feature, said reset of  the local pheromone update (RLPU), 
appears consistent with the interpretation of  the 
pheromone values as learned utility, as it assigns only to 
the GPU the crucial task of  modifying the pheromone 
trails according to the colony exploration experience. 
 
Local search phase. After all the ants have completed 
the solution construction procedure at an iteration, an 
intensification phase may be performed, which consists of  
one or more local search (LS) explorations starting from a 
subset XLS of  the solutions found in the iteration. In 
particular, two rules (said LS timing rules) can be used to 
determine the set XLS and, depending on its cardinality, 
how many LS explorations must be executed: 
 
l Best in Iteration (BI) rule: XLS always includes a single 

starting solution corresponding to the best solution 
found in the current iteration, i.e., k

bx =  

1,...,
arg min ( ).k

aa m
Z x

=
 Then, according to this rule a single 

LS is always executed in each iteration. 
l Improved Solution Without LS (ISWLS): let *

WLSx  be 
the best solution found by any ant in the previous 
iterations without using the LS; then, XLS may include 
one or more solutions found in the current iteration k 
improving * ,WLSx  ie * { : ( ) ( ),k k

a a WLSx x Z x Z x= <  
1,  ...,  }.a m= With the ISWLS the number of  LSs 

executed in one iteration can vary from zero to m, 
even if  this latter appears a very unlikely case. 

 
In general, any LS algorithm can be used for the 

intensification phase in ACOAP. In particular, an LS 
algorithm similar to one in Tasgetiren et al. (2004), which 
in turn is based on a variant of  the variable 
neighbourhood search (Mladenovic and Hansen (1997)), 
has been adopted. The LS algorithm, summarized in 
Figure 2, performs a random neighbourhood exploration 
allowing both an alternation of  random insert and swap 

moves; in addition the algorithm executes a limited 
number of  random restarts as in the iterated local search. 
Note that a similar neighbourhood structure is used in 
Liao and Juan (2007). Random moves consist of  picking at 
random two sequence positions in the current solution 
and inserting (swapping) the job in the first position after 
(with) the job in the second one. The algorithm executes 
an exploration sequence first made of  a succession of  
random insert moves until no improvement is found, and 
then made of  a succession of  swap moves: whenever a 
swap move is not able to find an improved solution, then a 
new sequence of  random insert moves is started and the 
exploration counter is incremented. After n⋅(n − 1) 
explorations have been completed, the algorithm executes 
a random restart from the current best solution. The 
maximum number of  allowed random restarts is bounded 
by n/5, thus the overall complexity of  the LS algorithm is 
O(n3). As a result of  the LS phase, the best current 
solution x* is possibly updated. 

 

 
Figure 2. The LS algorithm. 

 
Global pheromone update. Two main peculiarities of  
the ACOAP algorithm, which differentiate it from the 
previous approaches, are in the meaning given to the 
pheromone trail values and consequently in the way such 
values are updated after the completion of  an iteration. It 
has been already pointed out that the (relative) pheromone 
values ( , )k h jτ ′  adopted in the ACOAP range in 
[0, ];Maxτ ′  such values are changed in the GPU phase with 
a rule, called Unbiased Pheromone Update (UPU) since it 
neither uses any cost nor quality function, but it performs 
a smooth update of  the pheromone trails associated with a 

x = x0; 
restart_counter = 0; 
repeat 
{ 
  x1 = random_insert_move (x); 
  exploration_counter = 0; 
  repeat 
  { 
    neighbourhood_counter = 1; 
    while neighbourhood_counter ≤ 2 
    { 
      if  neighbourhood_counter = 1 
        x2 = random_insert_move (x1); 
      else  
        x2 = random_swap_move (x1); 
      if  Z(x2) < Z(x1) 
         x1 = x2; 
      else  
        neighbourhood_counter++; 
     } 
     exploration_counter++; 
   } until (exploration_counter < n*(n − 1)) 

   restart_counter++; 
} until (restart_counter < n/5) 
 



Anghinolfi and Paolucci: A New Ant Colony Optimization Approach for the Single Machine Total Weighted Tardiness Scheduling Problem 
IJOR Vol. 5, No. 1, 44−60 (2008) 
 

50 

set of  quality solution components. Let *
kΩ  be the set of  

the best solution components (said, the best component set) 
determined after the completion of  iteration k; then, the 
UPU rule consists of  the three following steps: 
 
1. pheromone evaporation for the solution components 

not included in *
kΩ  

 
*

1( , ) (1 ) ( , ) ( , )k k kh j h j h jτ α τ+′ ′= − ⋅ ∀ ∉ Ω       (8) 
 
where 0 ≤ α ≤ 1 is a parameter establishing the 
evaporation rate; 

2. computation of  the maximum pheromone 
reinforcement ( , )k h jτ ′∆  for the solution 
components in *

kΩ  
 

*( , ) ( , ) ( , )k Max k kh j h j h jτ τ τ′ ′ ′∆ = − ∀ ∈ Ω       (9) 
 

3. update of  the pheromone trails to be used in the next 
iteration for the solution components in *

kΩ  
 

*
1( , ) ( , ) ( , ) ( , )k k k kh j h j h j h jτ τ α τ+′ ′ ′= + ⋅ ∆ ∀ ∈ Ω  (10) 

 
The UPU rule guarantees that ( , ) [0, ]k Maxh jτ τ′ ′∈  and 
( , )k h jτ ′ converges towards the bounds asymptotically 

( ( , )k h jτ ′∆  is progressively reduced as much as ( , )k h jτ ′  
approaches to Maxτ ′ , as well as the decrease of  ( , )k h jτ ′  
towards 0 in (8)) with a law similar to the most frequently 
used cooling schedule for the SA metaheuristic 
(Kirkpatrick et al. (1983)). An example of  the trend due to 
the UPU rule is depicted in Figure 3. This figure shows, 

for a fixed solution component (h, j) = (H, J), the effect of  
the evaporation step (8), with α = 0.1, on the associated 
pheromone ( , )k H Jτ  from its initial value τ0 at iteration 
k = 0, to a value close to τMin at iteration k = 40; then, 
assuming that the component (H, J) is included in *

kΩ  
for k = 41, ..., 100, the figure shows the consequent 
asymptotical increase of  ( , )k H Jτ towards τMax due to 
steps (9) and (10); finally, ( , )k H Jτ  is again subject to the 
evaporation (8), having assumed *( , ) kH J ∉ Ω  for k > 
100. 
Two possibilities are available for defining the best 
component set *

kΩ : 
 
l Best-so-far (BS) solution component set: *

kΩ  includes 
only the solution components associated with x*, i.e., 

 
{ }* *( , ) : 1, ..., ; ( [ ])k h j h n j x hσΩ = = =         (11) 

 
l Cumulative BS (CBS) solution component set: if  a 

component (h, j) is present in x*, that is, h appeared a 
“good” sequence position for job j, hence, taking into 
account that a tardiness cost must be minimized, it 
should be sensible to consider j even more urgent for 
successive sequence positions if  job j misses to be 
sequenced as h-th; according to this rationale, the set 

*
kΩ  is defined as 

 
{ }* *( , ) : , ..., ; 1, ..., ; ( [ ])k l j l h n h n j x hσΩ = = = =  (12)

 

 
Figure 3. An example of  the asymptotical variation of  the pheromone value between its lower and upper bounds due to the 

UPU rule. 
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(a) 

 
(b) 

Figure 4. An example of  the effect on the UPU rule of  the two different options for defining * .kΩ  
 

An example of  the effects of  the UPU rule with the 
two different options for defining the best component set 
is provided in Figure 4. Both diagrams in this figure 
represent the pheromone values ( , )k h Jτ , h = 1, ..., 10, 
associated with a specific job j = J, after 60 iterations 
(having fixed α = 0.05); in particular, it is assumed that for 
k = 1, ..., 20, *(6, ) kJ ∈ Ω , for k = 21, ..., 40, *(4, ) kJ ∈ Ω  
and finally for k = 41, ..., 60, *(5, ) .kJ ∈ Ω  Therefore, it is 
reasonable to assume that the algorithm has learned that 
the “good” position for job J should be around h = 5. 
However, using a BS solution component set, the 
pheromone values depicted in diagram (a) of  Figure 4 

highlight the possibility that such knowledge could be 
almost completely disregarded: if, for example, the 
application of  the exploration rule (3) fails to sequence J 
in position 5, this job could be dramatically delayed since 
its pheromone values for the subsequent positions could 
be much smaller than the one of  competitor jobs. On the 
other hand, the CBS, incrementing also the pheromone 
values of  the positions following the one of  job J in the 
best so far solution x*, produces the pheromone values 
shown in diagram (b) of  Figure 4 that make very unlikely 
the delayed sequencing of  J previously described. Note 
that a rationale similar to the CBS was used in the PS rule 
described in Merkle and Middendorf  (2000 and 2003) and 
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in the RPE method in Merkle and Middendorf  (2002); 
however, in the ACOAP the CBS is an option of  the UPU 
rule that alters the learning mechanism forcing the 
increase of  pheromone values, whereas the mentioned 
previous methods are used to modify the evaluation of  
pheromone trails in the solution construction process.  

 
Termination conditions. The algorithm is stopped when 
a maximum number of  iterations, or a maximum number 
of  iterations without improvements, is reached.  
 
4. EXPERIMENTAL ANALYSIS OF THE 

PROPOSED ACO APPROACH 

The ACOAP algorithm was coded in C++ and an 
experimental campaign was executed on a Pentium IV, 2.8 
GHz, 512 Mb PC, in order to analyze its performances. 
The adopted benchmark was the set of  120 problem 
instances with 60 jobs provided by Cicirello (2003), 
available at http://www.cs.drexel.edu/~cicirello/ 
benchmarks.html. Note that the same benchmark was 
used for testing the ACOLJ in Liao and Juan (2007). The 
benchmark was produced by generating 10 instances for 
each combination of  three different factors usually 
referenced in the literature (for a definition and discussion 
see, e.g., Pinedo (1995)): the due date tightness δ, the due 
date range R, and the setup time severity ξ, selected as 
follows: δ ∈{0.3, 0.6, 0.9}, R ∈ {0.25, 0.75}, ξ ∈ {0.25, 
0.75}. For each test two possible reference results were 
considered: the best known solutions available from 
Cicirello (2006) (denoted in the following with BKC) and 
the best solutions provided by the ACOLJ algorithm in 
Liao and Juan (2007). In addition, the best results obtained 
by the ACOAP were finally compared to the up-to-date 
best known results among the ones presented in Cicirello 
and Smith (2005) and Cicirello (2006), the ones produced 
by ACOLJ and by the SA, GA and TS algorithms proposed 
in Lin and Ying (2006), presenting a new set of  best 
known results for this benchmark. 

In order to make the comparison between the ACOAP 
and ACOLJ results more sound, a set of  m = 30 ants was 
considered and the same pair of  termination criteria used 
in Liao and Juan (2007) were adopted, i.e., the maximum 
number of  iterations = 1000, and the maximum number 
of  non improving iterations = 50. In addition, some 
preliminary experiments were conducted on a subset of  
instances to determine suitable values for the other 
parameters needed by the ACOAP. In particular, they were 
set as follows: α = 0.1, β0 = 1, ρ = 0.05, q0 = 0.7, and ϕ = 
0.9; such values were respectively selected from the 
following sets, α ∈ {0.05, 0.1, 0.3}, β0 ∈{0.5, 1, 1.5, 3}, ρ 
∈ {0.05, 0.08, 0.1}, q0 ∈ {0.5, 0.7, 0.9}, and always setting 
ϕ = 1 − α. The selection of  these parameter values may 
affect the algorithm performance, but the tests conducted 
denoted a low sensitivity to their changes, showing an 
average relative cost variation not greater than 2%. It 
should be mentioned for the sake of  completeness that 
the upper bound of  the relative pheromone value was 

fixed in the ACOAP code as 100Maxτ ′ = , so that an initial 
pheromone value 0 ( , ) 50h jτ ′ =  was associated with any 
solution component; however, it must be remarked once 
again that any positive value can be assigned to Maxτ ′ since 
this choice does not affect the algorithm behaviour. 

The experimental campaign performed consisted of  
five tests described in the rest of  this section. 

 
4.1 Determination of  the ACOAP best configuration 

(Test 1) 

The purpose of  this test is to evaluate which of  the 
following ACOAP features can improve the algorithm 
performance for the considered benchmark: progressive 
decrease of  the importance of  the heuristic value (βdec); 
use of  the cumulative BS solution components in the global 
pheromone update (CBS); reset of  the LPU at the end of  
each iteration (RLPU). 

The ISWLS timing rule was used for the LS, and, in 
order to compare the results from this test with the ones 
of  ACOLJ, the same experimental scheme in Liao and Juan 
(2007) was adopted, i.e., 10 algorithm runs were executed 
taking for each benchmark instance the best result. Table 1 
reports in the first three columns the type of  ACOAP 
configuration for the three features (βdec, CBS, RLPU) 
tested, denoting with a binary value the presence (“1”) or 
absence (“0”) of  the relevant feature. The produced 
results for each configuration are compared with the 
reference ones in Liao and Juan (2007) both reporting the 
average percentage deviation (Avg % Deviation) (computed 
as 100⋅(result − reference)/reference) with both reference and 
result greater than zero) and the average percentage 
number of  instances whose best result found by ACOLJ 
was improved by the ACOAP algorithm (Avg % Number of  
Improved Instances); note that the latter column also reports 
in brackets respectively the average percentage number of  
instances for which the ACOAP got worse and equal 
results than ACOLJ. From Table 1 it should be apparent 
that only the feature corresponding to the reset of  the 
LPU after the completion of  any iteration is actually 
important for producing improved performance with the 
considered benchmark. This fact is confirmed by the 
diagram in Figure 5, showing the average percentage 
deviations with their 95% confidence intervals: in this 
diagram all the intervals of  the configurations with the 
RLPU are not overlapping and lower than the ones 
without it. A further analysis was conducted in order to 
evaluate if  the comparisons with the ACOLJ results can be 
considered appropriate or they are biased by the presence 
of  outliers: in fact, since the objective values in the 
benchmark (see Table 7) differ for several orders of  
magnitude, such a correction would mitigate the possible 
influence of  quite reduced absolute differences in the 
objectives for instances with small reference values. Thus, 
Table 2 shows the results obtained after a correction 
eliminating from the computation of  the averages the 
instances with a percentage deviation not in the interval 
(−40%, 40%); in this table the Avg % Number of  Improved 
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Instances, as well as the worse and equal ones in brackets, 
are computed with respect to the remaining number of  
instances after having eliminated the outliers. The values in 
Table 2 are quite similar to the ones in Table 1 (note that 
in the two tables the average % number of  instances with 
result equal to the ACOLJ one is mainly due to zero cost 
solutions); in addition, Figure 6 confirms also in this case 
the relevance of  the RLPU feature. Thus, Test 1 
underlined that it is fundamental to associate this feature 
with the used LPU in the new pheromone model adopted 

in the ACOAP algorithm. The average CPU time required 
for this test was 4.30s (with a minimum of  0.59s and a 
maximum of  1970s), which is comparable with the 
computation time indicated in Liao and Juan (2007). Then, 
Test 1 seems to highlight the good quality of  ACOAP with 
respect to ACOLJ, since the ACOAP configurations with 
the RLPU feature improved on the average the best 
known results of  ACOLJ; in addition, note that with such 
configurations ACOAP was also able to find one zero cost 
solution more than ACOLJ.
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Figure 5. The average percentage deviations of  the different configurations in Table 1 with the 95% confidence intervals. 
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Figure 6. The average percentage deviations of  the different configurations in Table 2 with the 95% confidence intervals. 
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Table 1. Comparison of  the different configurations of  the ACOAP tested (Test 1) 
Configuration Comparison with ACOLJ 

βdec CBS RLPU Avg % Deviation 
Avg % Number of 
Improved Instances 

1 1 1 −3.75% 67.5% (19.2%, 13.3%) 
0 1 1 −3.54% 70.0% (16.7%, 13.3%) 
0 0 1 −3.50% 65.8% (20.8%, 13.3%) 
1 0 1 −3.34% 63.3% (23.3%, 13.3%) 
1 0 0 2.51% 28.3% (58.3%, 13.3%) 
0 1 0 2.71% 34.2% (52.5%, 13.3%) 
0 0 0 3.52% 26.7% (59.2%, 14.2%) 
1 1 0 3.74% 34.2% (52.5%, 13.3%) 

 
Table 2. Comparison of  the different configurations of  the ACOAP tested without the (−40%, 40%) outliers (Test 1) 

Configuration Comparison with ACOLJ 

βdec CBS RLPU Avg % Deviation Avg % Number of 
Improved Instances 

1 1 1 −3.57% 63.3% (23.3%, 13.3%) 
0 0 1 −3.55% 61.7% (25.0%, 13.3%) 
0 1 1 −3.44% 65.8% (20.8%, 13.3%) 
1 0 1 −2.67% 58.3% (28.3%, 13.3%) 
0 1 0 0.75% 31.7% (55.0%, 13.3%) 
1 1 0 1.06% 31.7% (55.0%, 13.3%) 
0 0 0 1.20% 24.2% (61.7%, 14.2%) 
1 0 0 1.31% 25.8% (60.8%, 13.3%) 

 
4.2 Evaluation of  the ACOAP average results (Test 2) 

In spite of  the encouraging results from Test 1, it was 
considered sensible analysing the ACOAP performance 
with a different experimental scheme. In fact, according to 
Birattari and Dorigo (2005), it seems questionable to 
evaluate the performance of  a stochastic algorithm on the 
basis of  its best result over M runs, but an average result is 
instead considered a more appropriate performance index. 
As pointed out in Birattari and Dorigo (2005), taking the 
best result over M runs corresponds to a sort of  trivial 
“null-metaheuristic” which is based on the random restart of  
the algorithm; in addition, the actual computation time of  
such null-metaheuristic is M times greater than the computed 
average CPU time for a single run. Test 2 was then 
designed in order to evaluate the average performance 
over 10 runs of  the proposed algorithm with a different 
LS timing rule, the BI one, which usually showed longer 
computation times. This choice seemed appropriate 
because the resulting CPU times were approximately M 
times greater than the ones for Test 1. On the other hand, 
the use of  the LS with BI rule appeared a suitable way to 
exploit the extended time that in this test becomes 
available for each run, making the average results 
comparable with the best ACOLJ ones. Test 2 was 
performed for only one ACOAP configuration selected on 
the basis of  the outcome of  Test 1, i.e., (βdec, CBS, RLPU) 
= (1, 1, 1). The results obtained are shown in Table 3, 
which reports in the columns the average percentage 
deviation and the average number of  improved (worse and 
equal) instances of  both the average and the worst ACOAP 
results over 10 runs with respect to BKC, ACOLJ, and 
ACOLJ without the (−40%, 40%) outliers. Again, the 

comparison with ACOLJ puts into evidence the quality of  
the proposed algorithm; the relevant role of  the outliers 
(in this case favouring ACOAP) can be observed 
considering the difference in the comparison with ACOLJ 
including or excluding them in the computation of  the 
averages. In addition, even for this test the ACOAP was 
able to find one zero cost solution more than ACOLJ. It 
seems quite important to underline the robustness of  the 
proposed algorithm with the BI timing rule by observing 
that even the ACOAP worst results over 10 runs 
outperformed on the average the BKC and ACOLJ best 
known ones; this suggests that the results obtained in each 
single run in Test 2 were quite stable and the average 
ACOAP performance could be considered a representative 
index of  the algorithm behaviour in each run. The 
observed average CPU time for Test 2 was 65.90s (with a 
minimum of  1.00s and a maximum of  265.59s). Such a 
greater computation time is due to the different behaviour 
of  the BI timing rule, which executes one LS per iteration, 
compared to the ISWLS one. To better understand the 
difference between the two LS timing rules, both the best 
and average results obtained for the (βdec, CBS, RLPU) = 
(1, 1, 1) configuration with the ISWLS rule and with the 
BI one were compared, as well as the relevant 
computation times. It was first observed that the best and 
average results with the ISWLS rule were respectively 
9.84% and 40.25% worse than the ones produced with the 
BI rule; on the other hand, the superiority of  the BI rule 
seems compensated by the longer average CPU time, 
65.90s, compared to 4.30s of  the ISWLS. The reason of  
such a large difference can be understood by observing 
that the ratio between the number of  LSs and the number 
of  iterations executed by the ACOAP with the BI rule is 
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obviously 100%, whereas with the ISWLS is on the 
average only 8.2% (note that in the worst, but very unlikely, 
case the ISWLS could execute a LS for all the ants in every 
iteration). Besides, in Test 2 with the BI rule the average 
percentage of  the total CPU time spent by the ACOAP 
algorithm in executing LSs was 92.8% with an average 
number of  LSs equal to 127.4, whereas in Test 1 with the 
ISWLS rule it was 53.6% with an average of  9.5 LSs. 

However, in accordance with the mentioned observation 
of  Birattari and Dorigo (2005), the fair average CPU time 
for the algorithm with the ISWLS rule should be about 
43.0s since its best results were obtained with 10 restarts; 
this fact reduces the gap between the average times to the 
same order of  magnitude, so that the BI rule can be again 
considered superior.  

 
Table 3. Comparison of  the results of  ACOAP over 10 runs (Test 2) 

  Comparison with 
  

BKC ACOLJ 
ACOLJ 

 without outliers 
Avg % Deviation −7.01% −6.58% −3.65% 

Average results 
over 10 runs Avg % Number 

of  Improved Instances 
74.2% 

(11.7%, 14.2%) 
65.0% 

(21.7%, 13.3%) 
63.2% 

(22.8%, 14.0%) 
Avg % Deviation −2.80% −2.15% −1.64% 

Worst results 
over 10 runs Avg % Number 

of  Improved Instances 
48.3% 

(35.5%, 14.2%) 
45.0% 

(41.7%, 13.3%) 
42.1% 

(43.9%, 14.0%) 
 

Table 4. The performance of  ACOAP with the ACOLJ LS algorithm (Test 3) 
 Comparison with 
 

BKC ACOLJ 
ACOLJ 

without outliers 
Avg % 

Deviation 
−4.96% −4.16% [−3.75%] −3.14% [−3.57%] 

Avg % Number 
of  Improved 

Instances 

65.0% 
(20.0%, 15.0%) 

62.5% [67.5%] 
(24.2%, 13.3%) 

61.9% [63.3%] 
(24.6%, 13.6%) 

 
Table 5. The performance of  ACOAP without learning mechanism (Test 4) 

 Comparison with 
 BKC ACOLJ 

ACOLJ 
 without outliers 

Avg % 
Deviation 0.76% [−7.01%] 1.28% [−6.58%] 0.60% [−3.65%] 

Avg % Number 
of  Improved 

Instances 

38.3% [74.2%] 
(45.5%, 14.2%) 

35.0% [65.0%] 
(51.7%, 13.3%) 

35.0% [63.2%] 
(51.3%, 13.7%) 

 
Table 6. Analysis of  the statistical significance of  the results of  Test 2 (Test 5) 

  
Avg % deviation 

from ACOLJ 
Statistical 

significance 

0.3 −14.73% yes 

0.6 −5.38% yes δ 

0.9 0.18% no 

0.75 −6.25% yes R 
0.25 −6.90% yes 

0.25 −5.55% yes 
ξ 

0.75 −7.58% yes 

Global  −6.58% yes 
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4.3 Evaluation of  the importance of  the LS algorithm 

(Test 3) 

Test 1 and Test 2 could raise the doubt about how 
much the role of  the LS is critical. Test 3 and the 
successive Test 4 try to make this aspect clearer. Test 3 was 
not performed using the LS described in Figure 2, but 
with an alternative LS algorithm similar to the one 
adopted in Liao and Juan (2007) with the ISWLS timing 
rule; in addition, as for Test 2, only the (βdec, CBS, RLPU) 
= (1, 1, 1) configuration was analysed for the ACOAP and, 
as for Test 1, the best result over 10 runs was taken. Hence, 
the purpose of  this test was to evaluate if  the goodness of  
ACOAP compared to the ACOLJ results was only due to a 
better effectiveness of  the LS algorithm utilized in the 
previous tests. The outcomes from Test 3 are presented in 
Table 4 that reports the average percentage deviations and 
the average number of  improved (worse and equal) 
instances with respect to the BKC, ACOLJ, and ACOLJ 
without the (−40%, 40%) outliers, including for the two 
latter cases in square brackets the associated results 
previously shown for Test 1. The required average CPU 
time for this test was 16.16s (with a minimum of  0.59s and 
a maximum of  38.95s), whose 62.9% was devoted to LS 
explorations with an average number of  LS executions 
equal to 75.7. Table 4 underlines the good behaviour of  
the ACOAP algorithm even with a simpler LS procedure; in 
particular, the column excluding the outliers puts into 
evidence the overall robustness of  the ACOAP results for 
the considered benchmark. Finally, note that in this test, 
based on the best result over 10 runs, the ACOAP 
produced an average percentage deviation from the ACOLJ 
better than the corresponding one in Test 1 and was also 
able to find two zero cost solutions more than ACOLJ: this 
fact seems to suggest further the appropriateness of  an 
average performance index for stochastic algorithm, as 
this better percentage deviation was due to particularly 
good results in some of  the runs for a few instances which 
belong also to the outliers. 
 
4.4 Evaluation of  the importance of  the ACO 

learning mechanism (Test 4) 

As a counterpart of  the previous Test 3, Test 4 aims at 
evaluating how important is the ACO core algorithm 
implemented in the ACOAP, i.e., the pheromone trail based 
learning mechanism. Thus, a no-learning configuration 
was forced for the ACOAP, imposing no pheromone 
update (α = ρ = 0) and (βdec, CBS, RLPU) = (0, 0, 0). On 
the other hand, as for Test 2, the more powerful LS with 
the BI rule was used, and the average result over 10 runs 
was considered. The percentages in Table 5 clearly show a 
worsening with respect to the previous results for Test 2, 
which are here reported in square brackets. As for Test 1 
and Test 2, even in this case the algorithm was able to find 
one zero cost solution more than ACOLJ. The average 
CPU time for this test was 41.74s (with a minimum of  
0.98s and a maximum of  135.43s), devoted for 91.5% to 
LS executions whose average number, corresponding to 

the average number of  iterations, was 79.5.  
 

4.5 Statistical significance of  the results (Test 5) 

A final analysis was executed whose purpose was 
twofold: to verify the statistical consistency of  the results 
obtained (i.e., to determine if  the differences in the 
ACOAP results with respect to the ACOLJ ones were 
produced by chance or if  they are sufficient to consider 
the ACOAP better on the average than the ACOLJ for the 
considered benchmark); to deeply analyse the performance 
of  the ACOAP for the different classes of  problem 
instances included in the benchmark set. The results 
previously obtained for Test 2, detailed in Table 4, were 
here considered representative of  behaviour of  the 
ACOAP (note that, for not reducing too much the number 
of  available samples, no outlier was removed); then, two 
well-known non parametric statistical tests, the Friedman’s 
test and the Wilcoxon ranksum test Devore (1991), were used 
to compare the best ACOLJ results with the average 
ACOAP ones. Both statistical tests produced the same 
responses, which are reported in Table 7 in the Statistical 
significance column: here, “yes” denotes that the results 
from ACOAP and ACOLJ are significantly different (i.e., the 
null hypothesis that the differences in the outcomes of  the 
two algorithms are caused by randomness can be rejected), 
“no” otherwise. The column Avg % deviation from ACOLJ 
reports, as in the previous tables, the average percentage 
deviations from ACOLJ. The Global row shows that the 
whole result of  Table 2 is actually representative of  a 
better behaviour of  the ACOAP. The other rows in Table 7 
are grouped according to the due date tightness δ, due 
date range R, and setup time severity ξ factors. According 
to the results in Table 7, the R and ξ parameters do not 
seem to greatly affect the improved effectiveness of  the 
proposed algorithm when it is compare with ACOLJ. 
However, the improvement provided by the ACOAP 
algorithm increases as the factor δ decreases. It can be 
observed that the ACOAP produced better average results 
than ACOLJ, which are also significantly different, for all 
the sub-classes of   benchmark instances but one: for δ = 
0.9, when the due dates are the tightest, the ACOAP was 
not able to improve the results of  the ACOLJ, but for this 
case the two algorithms showed a comparable behaviour. 
 
4.6 An updated set of  best known result for the 

Cicirello’s benchmark 

A final complete report of  the best known results 
produced by the ACOAP during the whole experimental 
campaign on the Cicirello’s benchmark is shown in Table 7, 
where such results are compared with the up-to-date best 
known results available from the literature. In detail, Table 
7 reports the best known results from the proposed 
algorithm in the column ACOAP best, whereas the previous 
up-to-date best known results in the column Previous 
BK. In addition, the type of  algorithm that produced the 
previous best known result is reported in the                  
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Table 7. The best-know results for the Cicirello’s (2003) benchmark including the new ACOAP ones 

Inst. ACOAP Best Previous BK Previous best algorithm Inst. ACOAP Best Previous BK Previous best algorithm 
1 513 684 GA3 61 75916 76396 SA3 
2 5082 5082 TS3 62 44869 44769 TS3 
3 1769 1792 SA3 63 75317 75317 SA3 
4 6286 6526 GA3 64 92572 92572 SA3 
5 4263 4662 GA3 65 126696 127912 SA3 
6 7027 5788 ACOLJ2 66 59685 59832 SA3 
7 3598 3693 GA3 67 29390 29390 GA3 
8 129 142 GA3 68 22120 22148 TS3 
9 6094 6349 GA3 69 71118 64632 ACOLJ2 

10 1931 2021 SA3 70 75102 75102 GA3 
11 3853 3867 GA3 71 145825 150709 GA3 
12 0 0 ALL 72 45810 46903 TS3 
13 4597 5685 GA3 73 28909 29408 SA3 
14 2901 3045 GA3 74 32406 33375 TS3 
15 1245 1458 GA3 75 22728 21863 TS3 
16 4482 4940 GA3 76 55296 55055 SA3 
17 128 204 SA3 77 32742 34732 SA3 
18 1237 1610 GA3 78 20520 21493 TS3 
19 0 208 GA3 79 117908 121118 GA3 
20 2545 2967 GA3 80 18826 20335 GA3 
21 0 0 ALL 81 383485 384996 GA3 
22 0 0 ALL 82 409982 410979 SA3 
23 0 0 ALL 83 458879 460978 TS3 
24 1047 1063 GA3 84 329670 330384 SA3 
25 0 0 ALL 85 554766 555106 SA3 
26 0 0 ALL 86 361685 364381 SA3 
27 0 0 SA3, GA3, TS3 87 398670 399439 GA3 
28 0 0 GA4, SA3, GA3, TS3 88 434410 434948 GA3 
29 0 0 ALL 89 410102 410966 SA3 
30 130 165 SA3 90 401959 402233 GA3 
31 0 0 ALL 91 340030 344988 TS3 
32 0 0 ALL 92 361407 365129 GA3 
33 0 0 ALL 93 408560 410462 VBSS1 

34 0 0 ALL 94 333047 335550 ACOLJ2 

35 0 0 ALL 95 517170 521512 GA3 
36 0 0 ALL 96 461479 461484 ACOLJ2 

37 400 755 SA3 97 411291 413109 TS3 
38 0 0 ALL 98 526856 532519 VBSS1 

39 0 0 ALL 99 368415 370080 ACOLJ2 
40 0 0 ALL 100 436933 439944 GA3 

41 70253 71186 TS3 101 352990 353408 TS3 
42 57847 58199 TS3 102 493936 493889 TS3 
43 146697 147211 SA3 103 378602 379913 ACOLJ2 
44 35331 35648 SA3 104 358033 358222 TS3 
45 58935 59307 GA3 105 450806 450808 SA3 
46 35317 35320 TS3 106 455093 455849 GA3 
47 73787 73984 SA3 107 353368 353371 SA3 
48 65261 65164 SA3 108 461452 462737 TS3 
49 78424 79055 TS3 109 413408 413205 SA3 
50 31826 32797 TS3 110 418769 419481 TS3 
51 50770 52639 GA3 111 346763 347233 ACOLJ2 
52 95951 99200 GA3 112 373140 373238 ACOLJ2 
53 87317 91302 SA3 113 260400 261239 GA3 
54 120782 123558 VBSS1 114 464734 470327 ACOLJ2 
55 68843 69776 GA3 115 457782 459194 ACOLJ2 
56 76503 78960 GA3 116 532840 527459 ACOLJ2 
57 66534 67447 ACOLJ2 117 506724 512286 ACOLJ2 
58 47038 48081 TS3 118 355922 352118 ACOLJ2 
59 54037 55396 SA3 119 573910 579462 TS3 
60 62828 68851 GA3 120 397520 398590 ACOLJ2      
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Previous best algorithm column; in such column the 
superscript to the algorithm acronym denotes the 
reference where the associated result was presented, i.e., (1) 
Cicirello and Smith (2005), (2) Liao and Juan (2007), (3) 
Lin and Ying (2006), and (4) Cicirello (2006). Note that in 
that column “ALL” is used to denote the zero cost 
instances for which all the referred algorithms produced 
the same zero cost result. The results reported in bold are 
a new set of  best known results for the Cicirello’s 
benchmark. From Table 7 it can be observed that the best 
results provided by the ACOAP are able to improve the 
previous best known ones for 72.50% of  the instances, 
whereas they are worse for 8.33% and equal for 19.17% of  
the instances. 

4.7 A comparison with the ORLIB benchmark 

To further evaluate its effectiveness and robustness, the 
ACOAP algorithm was tested on a slightly modified 
problem disregarding the setup times, i.e., the single 
machine total weighted tardiness (STWT) scheduling. A 
benchmark for the STWT problem available via ORLIB 
(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.ht
ml), consisting of  three sets of  125 randomly generated 
instances with 40, 50, and 100 jobs, has been considered. 
This benchmark was used to analyse the performance of  
the ACS algorithm proposed for the STWT problem by 
den Besten et al. (2000). Optimal solutions are known for 
the 40 and 50 job instances, whereas for the 100 job 
instances only the best known ones are available; note that 
these latter best known solutions have been presented in 
Crauwels et al. (1998) and in Congram et al. (2002) and 
not modified anymore since then. This final test was 
performed by executing 10 runs of  the ACOAP algorithm 
with the same setting used for Test 2 (i.e., α = 0.1, β0 = 1, 
ρ = 0.05, q0 = 0.7, ϕ = 0.9, and with the configuration 
(βdec, CBS, RLPU) = (1, 1, 1)), without performing any 
kind of  tuning specific for this different benchmark and 
considering only the most challenging set of  100 job 
instances. The results obtained showed that the ACOAP 
algorithm was able to find the best known solutions for all 
the 100 job instances on every run of  the algorithm in 
acceptable computation times (9.60s on the average, with 
0.046s minimum and 112.70s maximum) that could be 
considered comparable with the ones reported in den 
Besten et al. (2000). 
 

5. CONCLUSIONS  

In this paper the NP-hard single machine total weighted 
tardiness scheduling problem with sequence-dependent 
setups has been faced by means of  a new ACO approach. 
This problem is particularly relevant since it aims at 
minimizing the costs caused by violations of  due dates and 
it takes into account the time possibly wasted for changing 
the type of  production, which are both important aspects 
in modern manufacturing. Therefore, such problem 
represents also a challenging combinatorial optimization 
problem to experiment the effectiveness of  the proposed 
ACO approach.  

The algorithm presented in the paper includes several 
new features: the most relevant one corresponds to the 
pheromone learning model based on a new type of  
asymptotic pheromone trails and a new global pheromone 
update mechanism (UPU).  

The main novelties in ACOAP algorithm are to make the 
pheromone trails, which can be thought of  as a sort of  
proxy attributes measuring the utility of  including a 
component in high quality solutions, independent of  the 
objective (or quality) function of  the specific problem or 
instance considered, and the introduction of  a new UPU 
rule for the global pheromone update step, which makes 
the pheromone trails smoothly range between a lower and 
an upper bound only asymptotically reached. Differently 
from previous GPU rules, the UPU one does not increase 
the pheromone values of  components on the basis of  the 
absolute or relative objective function values associated 
with the (best) explored solutions, but on the basis of  the 
persistence, iteration after iteration, of  such components 
in the best solutions. In addition, ACOAP includes an 
intra-iteration diversification mechanism based on a 
stronger LPU rule than in standard ACS approaches, and a 
RLPU feature allowing to reset the perturbation in 
pheromone trails induced by the LPU. Other ACOAP 
additional features that seemed sensible to experiment in 
order to face the STWTSDS problem were (a) the 
progressive decrease of  the importance of  the heuristic 
value β already introduced in Merkle et al. (2002) to reduce 
a possible bias in the system learning mechanism, and (b) 
the use of  the UPU rule with a CBS component solution 
set, since in a weighted tardiness scheduling context, if  the 
algorithm learns that a certain sequence position could be 
the right one for a job (due to its urgency), it appears 
appropriate to reinforce its attitude to consider that job 
even more urgent for successive positions.  

The effectiveness of  the new ACO approach has been 
analysed through an extended experimental campaign on 
the benchmark instance set generated by Cicirello (2003), 
and it has been highlighted by the comparison with the 
recent ACO algorithm presented in Liao and Juan (2007) 
as well as the set of  up-to-date best known results. In 
addition, the robustness of  the proposed algorithm has 
been verified even testing it on a different STWT problem 
benchmark available from ORLIB. However, the results 
collected showed that the RLPU feature appears 
fundamental, whereas the progressive reduction of  β as 
well as the use of  CBS component solution set did not 
appreciably affect the algorithm performance for the 
considered benchmark. Particular attention has been paid 
to the importance of  the algorithm intensification phase, 
implemented by a LS procedure, with respect to the ACO 
learning mechanism. A comparison of  the results 
produced in Test 4 with the ones of  Test 2, even taking 
into account the outcomes of  Test 3, can suggest some 
remarks. LS or iterated LS algorithms certainly have an 
important role as intensification mechanisms in 
metaheuristics like ACO for combinatorial optimization, 
but they must be considered only a component of   these 
ones. From an opposite standpoint, learning mechanisms, 
as the one present in ACO, can drive powerful LS 
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algorithms to deeply explore particular promising areas in 
the solution space. The cooperation between learning and 
intensification finally appears a decisive factor to design 
algorithms able to provide high quality results in an 
acceptable computation time. The improvement of  such 
cooperation, as well as the study of  more effective 
pheromone models to reduce the need of  extended 
intensification phases, should represent possible future 
theoretical developments of  the proposed approach. 
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