
International Journal of Operations Research Vol. 5, No. 1, 61−67 (2008)

Job-Shop with Two Jobs and Irregular Criteria
Yann Hendel∗, and Francis Sourd

Laboratoire d’Informatique de Paris 6 - UMR7606, 4, place Jussieu - 75005 Paris

Received August 2006; Revised February 2007; Accepted March 2007

AbstractWe use the Akers-Friedman geometric approach to solve the two jobs job-shop problem when there is an
earliness cost on the first operation and a tardiness cost on the last operation of each job. We then generalize the problem
by imposing earliness and tardiness costs on each operation and finally, we solve it using a dynamic programming algorithm.
KeywordsEarliness-tardiness scheduling, Polynomial algorithm, Two-job job-shop

∗ Corresponding author’s email: yann.hendel@gmail.com

1. INTRODUCTION

We consider the two jobs job-shop problem where the
goal is to minimize earliness and tardiness costs and more
generally the costs incurred by irregular criteria. A unique
characteristic of the two jobs job-shop problem is that it
can be represented by a grid (proposed by Akers and
Friedman (1955)), that highlights the valid schedules. Based
on this geometric representation, Brucker (1988) proposed
a polynomial algorithm when the optimization criterion is
the minimizing of the completion time of the last job.
Sotskov (1991) generalized this algorithm in the case where
the optimization criterion is the minimization of regular
cost functions assigned to each job. In this case, a regular
function is a non decreasing function whose parameter is
the completion time of the last operation. In a just-in-time
environment, Agnetis et al. (2001) proposed to put a
quasi-convex cost function whose parameter is the
completion time of the last operation of each job (a
function f is said to be quasi-convex, if

((1)) ((), ()),f x y Max f x f yλ λ+ − ≤ [0,1]).λ∀ ∈ This
function is a generalization of the usual earliness-tardiness
cost function. Agnetis et al. (2001) solve this problem using
a polynomial time algorithm.

In the first part of this paper, we propose a different
cost function than that used by Agnetis et al. (2001): in our
model, the earliness costs are functions of each job’s first
operation starting time, whereas the tardiness costs are still
tied to the completion of the last operation of each job. In
fact, we observe that in a production environment, once a
job is started, the goal is to complete it as soon as possible
so that it can be taken off the production chain: if we place
earliness and tardiness costs only on the last operation, we
can obtain results in which most of the operations of the
two jobs are carried out as early as possible, whereas the
only scheduled operations that are optimized are the last
ones (see Figure 1). This issue is especially relevant for
shop problems since the jobs are divided into operations
which may be very different from each other and therefore

must all be executed just-in-time. Thus, the model we
propose penalizes the idle times between job operations.

In order to solve this first problem (referred to as
JS2JET) we consider earliness and tardiness costs
independently. As we will demonstrate in Section 3, when
the starting times of the two jobs are set, we can adapt
Sotskov’s algorithm to minimize the tardiness costs of the
two jobs. We will see in Section 4 that we can extract a
dominant set of starting times of the two jobs. Finally, we
propose a polynomial algorithm to solve JS2JET.

In the second part of this paper (Section 5) , we address
a more general case in which there is a general cost
function whose parameter is the completion time of each
operation (the time scale is discretized and the cost is given
for each step). We solve this second problem, JS2JG, using
dynamic programming. We obtain a pseudopolynomial
complexity directly related to the horizon of the schedule.

2. DEFINITION AND NOTATIONS OF JS2JET

We consider two jobs, A and B, whose sets of
operations are: 1 2{ , , ..., }

AnA A A and 1 2{ , , ..., }.
BnB B B

The operations of each job have to be executed according
to their index on a set of machines. Let us call the
processing times of operation Ai and Bi, A

ip and ,B
ip

their completion times A
iC and ,B

iC their starting times
A
iS and .B

iS Total processing times for jobs A and B are

1
A

i

nA A
i

P p
=

= ∑ and
1

.BnB B
ii

P p
=

= ∑

Let dA and dB be the due dates of jobs A and B,
respectively. The weighted tardiness cost TA of job A is

* () if ,
A A

A A A A
A n nC d C dβ − ≥ 0 otherwise. The weighted

tardiness cost TB of job B is * ()
B

B B
B nC dβ − if ,

B

B B
nC d≥

0 otherwise. We now introduce the ideal starting time of
A1 and B1: 0

Ad = .A Ad P− The earliness cost EA of job
A is 0 1* () A A

A d Sα − if 0
Ad ≥ 1 ,AS 0 otherwise. The

International Journal of
Operations Research

1813-713X Copyright © 2008 ORSTW

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

62

earliness cost EB of job B is 0 1* () B B
B d Sα − if 0 1 ,B Bd S≥ 0

otherwise. We want to minimize the weighted sum of
earliness and tardiness costs of the two jobs, i.e.,

 .A B A BMin E E T T+ + + This can be noted J|n = 2|EA

+ EB + TA + TB.

3. MINIMIZING THE TRADINESS WHEN THE

STARTING TIMES OF BOTH JOBS ARE SET

3.1 Geometric approach and Brucker’s algorithm

The geometric approach, shown in Figure 2 is based on
a grid of length PA and width PB. The x-axis represents the
operations of job A and the y-axis represents the
operations of job B. Obstacles are put on the grid: each
obstacle is composed of 2 operations, 1 from A and 1
from B, that need to be executed on the same machine. If
Ai and Bj need to be executed on the same machine, we
call ij∆ the obstacle whose southwest coordinate is

1 1

1 1
(,)i jA B

k kk k
p p− −

= =∑ ∑ and whose northeast coordinate

is
1 1

(,).i jA B
k kk k

p p
= =∑ ∑ The northeast, northwest,

southwest and southeast corners of ij∆ are denoted by

, , .NE NW SW SE
ij ij ij ijand∆ ∆ ∆ ∆ We denote by r the number of

obstacles in the grid.

A valid schedule Σ is a path composed of vertical,
horizontal or diagonal (with angle π/4) segments, starts
from the southwest corner O and ends at the northeast
corner F. At time t = 0, no operation has been executed, so
the path starts at point O in the grid. If a path reaches a
point with coordinates (x, y) at time t, it means that job A
has been executed during x units of time and job B during
y since t = 0. A vertical segment [(x, y), (x + k, y)] (resp.
horizontal segment [(x, y), (x, y + k)]) means that only job
A (resp. B) is executed between times t and t + k. A
diagonal segment [(x, y), (x + k, y + k)] means that both
jobs A and B are executed in parallel between times t and t
+ k. Finally, the path has to avoid the interior of any
obstacle.

Brucker (1988) has shown that solving the problem J|n
= 2|Cmax corresponds to finding the shortest path in a
network N = (V, A) where V is the set of northwest and
southeast corners of obstacles augmented by O and F. In
order to build an arc from a vertex k, we go diagonally
through the grid until we hit an obstacle. If the obstacle is
the grid’s edge, then F is the only successor of i, otherwise,
we meet an obstacle ∆ij and then k has two successors:

NE
ij∆ and .SE

ij∆

Figure 1. Two different just-in-time functions.

Figure 2. A valid path in the grid with its corresponding Gantt diagram.

di

di

di − Σ pi

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

63

Figure 3. A valid path in a grid with starting dates 0

AP and 0 .BP

The crux of the algorithm is to execute the two jobs in
parallel until an obstacle is found, at which point the
algorithm “chooses” to go through the northwest corner
or the southeast corner. Sotskov (1991) adapted this
algorithm in order to minimize a regular function. Here the
regular function is the minimizing of the sum of the two
jobs tardiness. From now on, we call this algorithm the
Brucker-Sotskov algorithm and use it as a “black box”
when designing of our algorithm.

3.2 Adapting the Brucker-Sotskov algorithm when the
starting times of both jobs are set

In this section, we suppose that the starting times of the
jobs are set (as are the earliness costs). We now show that
we can minimize the weighted tardiness by adapting the
Brucker-Sotskov algorithm. In the following section, we
show that we can extract a dominant set ε of pairs of
starting times of jobs A and B, that allows for an optimal
solution of JS2JET.

Finally, the algorithm we propose consists of the
minimized weighted tardiness sum of jobs A and B when
their starting times are pairs of E. In the remainder of this
section, the starting times of jobs A and B are fixed and
respectively equal to 1

AS and 1
BS and we want to

minimize the weighted tardiness sum, that is J|n = 2, 1 ,AS

1
BS |TA + TB. In order to achieve this, we add two extra

dummy operations, A0 and B0, that are to be executed
before A1 and B1, respectively. They are to be executed on
two dummy machines. When using the Brucker-Sotskov
geometric algorithm, those two operations represent
periods of inactivity before the start of jobs A and B. Since
those operations are executed on dummy machines, they
do not have to compete with other operations of A and B:
B0 is executed in parallel with operations of B and A0 with
operations of A. In Akers and Friedman’s representation, it
comes down to introducing a point O′ with coordinates

0 0(,).A BP P− − According to the Brucker-Sotskov
algorithm, we have a diagonal segment from O′ which

length is 0 0(,) * 2A BMin P P (see Figure 3). 0 0
A BP P−

represents the time lag between the starting times of the
two jobs. If we use the Brucker-Sotskov algorithm from

,O′ the operations A1 and B1 start respectively at 0
AP

and 0 ,BP and we obtain a minimum cost for the sum of
the tardiness cost.

4. DETERMINING THE JOBS STARTING

TIMES AND SOLVING JS2JET

4.1 Dominance properties

Let P be a set of pairs of starting times for jobs A and B.
In this section, we establish properties of optimal
schedules. These properties are used to reduce P to set ε:

Property 1.
l Either, there exists an optimal schedule and two

integers and A Bi n j n≤ ≤ such that the i first
operations of A and the j first operations of B are
executed without idle times and such there exists an
obstacle ij∆ and we then have:

－ either A B

i jC S=

－ or A B
i jS C=

l or for each job, there is no idle time at all between the

executions of all its operations.

Proof. We provide a constructive demonstration: we
consider a feasible schedule σ. We consider the first block
of operations of job A, i.e. operations A1, ..., Ak such that
there is no idle time between these operations. We right
shift this block on the time scale. We denote by σ∗ the
modified current schedule obtained from σ. Three kinds of
event may happen:

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

64

Figure 4. The first two cases of property 1.

1. Either the current block merge with another block of

operation of job A. We proceed with the right shifting
of this new block.

2. Or, for one Ai of the block, there is an operation Bj
such that A B

i jC S= and ij∆ exists. The shifting is
then stopped (this is the left case in Figure 4. The path
in the grid corresponding to σ* goes through SE

ij∆).
3. Or

AnA is in the current block and the shifting is
stopped.

We do the same with the leftmost block of operations of

job B. The current block is rigth-shifted. the second event
is replaced by A B

i jS C= (it is the right case in Figure 4,
the path in the grid corresponding to σ* goes through

NE
ij∆). Among the events A B

i jC S= and A B
i jS C= , we

choose the one that happened earlier in the time scale. If
these two events do not happen, it means that A and B are
executed in unique blocks.

For the newly obtained schedule σ*, the earliness costs
of the jobs A and B may only decrease. Therefore, the cost
of σ* is lower than the one of σ.

From now on, let Σ1 be the set of schedules verifying

property 1, we establish a symmetric property for the
rightmost operations of A and B.

Property 2.
l Either, there exists an optimal schedule which belong

to Σ1 and two integers A Bi n and i n≤ ≤ such that the
i last operations of A and the j last operations of B are
executed without idle times and such there exists an
obstacle ij∆ and we then have:

－ either A B
i jC S=

－ or A B
i jS C=

l or for each job, there is no idle time at all between the

executions of all its operations.

Proof. The proof is similar to the one of property 1 except
that instead of right-shifting the leftmost operations of A
and B, it is the rightmost operations of A and B that are
left-shifted and we choose the event that happened later on
the time scale.

From now on, let Σ2 be the set of schedules verifying
property 2. The following is an example illustrating how to
go from any schedule to one that verifies Σ2. We consider
the 2 jobs of Tables 1 and 2. On Figure 5, the steps
involved in the transformation are represented:

1. A random valid schedule.
2. A1 and A2 are right-shifted until A2 encounters B3.
3. B1 is right-shifted until it encounters B2. At this point,

the schedule verifies property 1 and the schedule goes
through 2,3 .SE∆

4. A6 and A7 are left-shifted until A6 encounters B5.
5. B7 is left-shifted until it encounters A6. At this point,

the schedule verifies property 2 and the schedule goes
through 6,7 .SE∆

The properties 1 and 2 ensure that the time lags between

the starting times of the two jobs (and respectively the
completion times of the two jobs) of an optimal schedule
can be known. Indeed, if we consider that ij∆ is the first

obstacle and that A B
i jC S= (so the path goes through SE

ij∆),

then we have 1 1
A BS S− =

1

i A
kk

p
=

−∑ 1

1

j B
ll

p−

=∑ assuming

that both jobs are executed at the same time starting from
O′ (which is the case when the Brucker-Sotskov algorithm
is applied). Similarly, if A B

i jS C= (the path goes through

),NE
ij∆ we then have 1

1 1 1 1
.i jA B A B

k lk l
S S p p−

= =
− = −∑ ∑

There are r obstacles, then let ω = (ω1, ..., ω2r) be the list of
these constants. However, we can notice that some
obstacles may never be the first obstacle, therefore, for
some i, ωi are not useful to obtain optimal schedules (in
the algorithm presented in the next section, they lead to
valid schedules, so they may remain in the list).

Ai Ai

Bj Bj

∆i,j ∆i,j

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

65

Table 1. Job A

- Processing time Machine Incompatibility
A1 5 M1 B2
A2 4 M2 B3
A3 1 M3 B1
A4 4 M4 B6
A5 2 M5 B4
A6 2 M6 B5,B7
A7 1 M7 -

Table 2. Job B
- Processing time Machine Incompatibility

B1 2 M3 A3
B2 3 M1 A1
B3 2 M2 A2
B4 5 M5 A5
B5 1 M6 A6
B6 2 M4 A4
B7 3 M6 A6

Figure 5. The different steps to transform any schedule. In each rectangle, job A is represented on top.

We proceed in the same manner for the last obstacles: if

we consider that ij∆ is the last obstacle and that
A B
i jC S= (so the path go through SE

ij∆), then, we have

1
() ()A B

A B

n nA B A A B B
n n k lk i l j

C C P p P p
= + =

− = − − −∑ ∑ assuming

that both jobs are executed at the same time starting from
SE
ij∆ (which is the case when the Brucker-Sotskov

algorithm is applied). Similarly, if A B
i jS C= (the path goes

through),NE
ij∆ we then have

A

A
nC −

B

B
nC = (AP −

)An A
kk i

p
=∑ −

1
().BnB B

ll j
P p

= +
− ∑ Let 1 2(, ...,)rω ω ω′ ′ ′= be

the other constant list. Again, some obstacle may never be
the last ones.

We now know the possible time lags between the
starting times of the two jobs (and respectively between the
completion times of the two jobs). We need another
property to fix the starting time or completion time of
either one of the two jobs:

Property 3. There is an optimal schedule which belongs to
Σ2 where at least one of the six following conditions is
met :

1. 1 1 1(or 0)A A AS d S= =
2. 1 1 1(or 0)B B BS d S= =
3.

A

A A
nC d=

4.
B

B B
nC d=

Proof. Let σ be a schedule which belongs to Σ2, we can
either push backward or postpone the execution of all the
two jobs’ operations so as to diminish the scheduling cost.
Cost variation is linear except when one of the operations
draws to its completion time or when one of the
operations A1 or B1 finds itself scheduled at t = 0.

4.2 Algorithm

We first consider the cases 1 and 2 of property 3. In the
grid we apply the Brucker-Sotskov sub-routine with
tardiness factor βA and βB and due dates dA and dB for the
following pairs of starting times:

l 1 1 1 1if , then (, (, 0)) ;A A A A

iS d d Max d iω= − ∀
l 1if 0, then (0, (, 0)) ;A

iS Max iω= ∀

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

66

l 1 1 1 1if , then ((, 0),) ;B B B B
iS d Max d d iω= + ∀

l 1if 0, then ((, 0), 0) .B
iS Max iω= ∀

For the last two cases of property 3, we need to reverse

the time scale and consider the symmetric problem : we
consider the grid where the x-axis represents the
operations of job B and the y-axis represents the operations
of job A. The operations of job B are given in the order
{ ,

BnB ..., B2, B1} and operations of job A, { ,
AnA ..., A2,

A1}. In this new grid, we apply the Brucker-Sotskov
sub-routine with tardiness factor αB and αA and due dates
dB and dA for the following pairs of starting times:

l 1 1if , then ((, 0),) ;

A

A A A A
n iC d Max d d iω′= − ∀

l 1 1if , then (, (, 0) ;
B

B B B B
n iC d d Max d iω′= + ∀

We refer to Brucker (2004) for the multiple

constructions of the grid and the associated networks. It
can be done in time O(rlogr). For every couple of starting
times provided below, a Brucker-Sotskov sub-routine has
to be executed. It is done in time O(r). There are 6r pairs of
starting times. Therefore, the overall complexity of the
algorithm is O(r2).

5. GENERAL END-TIME-DEPENDENT COSTS

In this section, the cost of each operation X is c(X, t)
when X completes at t. Each job must be completed
before a time horizon T — the value T is assumed to be
greater that the earliest completion time (or makespan) of
the schedule. These costs are given in input as an array of
T values c(X, 1), c(X, 2), ..., c(X, T) for each operation X so
that the size of the input is in O(nAnBT). The problem is to
compute a schedule whose total cost

1 1

(,) (,)
A Bn n

A B
i i i i

i i

c A C c B C
= =

+∑ ∑

is minimal.

For any value of p ∈ [0, pB], we will say that job B is
p-processed if the sum of the lengths of the time intervals
during which B is processed is equal to p. For some i ∈
{1, ..., nB}, we have

1 1
,B B

j jj i j i
p p p

≤ < ≤ ≤
< ≤∑ ∑ then

operation Bi is said to be in process or complete at p. This
operation is denoted by B(p) and the index i is denoted by
i(p). If operation B(p) is in process at t, ()H p =

1 ()
B
jj i p

p p
≤ <

− ∑ denotes the length of the part of B(p)

which has already been executed and, respectively,

1 ()
() B

jj i p
T p p p

≤ <
= −∑ is the amount of processing

before the end of B(p). We use the variable : 1p pδ δ = if

1
B
jj i

p p
≤ <

= ∑ (in this case, operation Bi is complete and

() B
iH p p= and () 0;T p = otherwise 0.pδ =

In order to introduce the dynamic programming scheme

to solve the problem, we define, for any (t, k, p) ∈ [0, T] ×
[0, nA] × [0, pB], the subproblem P(t, k, p) in which

l job A is restricted to its first k operations which must

be processed before t,
l job B has to be p-processed at time t. The costs of

operations that complete after t are ignored. To put it
precisely, if operation Bi is in process at t, then Bi must
start at t − H(p).

We now analyze the properties of an optimal solution

for P(t, k, p). Let us first assume that A
kC t< so that

1A
kC t< − . If an operation of B is in process in (t − 1, t)

then job B must be p − 1-processed at time t − 1. We have
P(t, k, p) = P(t − 1, k, p − 1) + δpC(B(p), t) (abusing
notation, P(k, t, p) denotes both the problem and its
optimal value). If an operation of B is not in process in (t −
1, t) we clearly have P(t, k, p) = P(t − 1, k, p). So, if

A
kC t< , the cost for P(t, k, p) is

((1, , 1) ((),), (1, ,))pMin P t k p C B p t P t k pδ− − + − (1)

Let us now assume that .A

kC t= If B is in process at t,
the machine on which B(p, t) is processed must be different
from the machine of Ak; otherwise the schedule is not
feasible. If () ,A

kH p p≥ the cost for P(t, k, p) is

(, 1,) (,) ((),)A A
k k k pP t p k p p C A t C B p tδ− − − + + (2)

We now consider that () A

kH p p< (see Figure 6). Let
p p< be such that B is p -processed at the start time of

Ak. For any [,],p pπ ∈ operation B(π) cannot be
processed on the same machine as Ak. We have of course
() ()i p i p≤ and () () .A

kT p H p p+ ≤ We have two
possibilities: either δp = 1, and so, in an optimal schedule,
the activity () ()1 , ...,i p i pB B+ must be optimally scheduled

in the time interval [(),];A
kt p T p t− + or δp = 0 and

() 1 () 1, ...,i p i pB B+ − must be optimally scheduled in the time

interval [(), ()].A
kt p T p t H p− + − Since none of these

operations have resource conflict with Ak, this subproblem
is independent from the rest of the problem and it can be
solved by dynamic programming. We define (, , ,)Q i j t t ′
as the minimum cost (necessary) to schedule the sequence
of operations (Bi, ..., Bj) in the time interval [,].t t ′ If δp =
1, the cost for P(t, k, p) is:

(,)

(,) (1) ((), ())

(, 1,)

(() 1, (), (),)
k

A
k p k

A
kp V p A

A
k

C A t C B p t p T p

Min P t p k p

Q i p i p t p T p t

δ

∈

 + − − +

+ − −
 + + − +

 (3)

If δp = 0, the cost for P(t, k, p) is:

Hendel and Sourd: Job-Shop with Two Jobs and Irregular Criteria
IJOR Vol. 5, No. 1, 61−67 (2008)

67

Figure 6. Decomposition of the problem with () .A

kH p p<

(,)

(,) (1) ((), ())

(, 1,)

(() 1, () 1, (), ())
k

A
k p k

A
kp V p A

A
k

C A t C B p t p T p

Min P t p k p

Q i p i p t p T p t H p

δ

∈

 + − − +

+ − −
 + + − − + −

(4)

where V(p, Ak) is the set of possible values for p : namely
it is the largest interval [, ()]p p H p∗ − such that

A
kp p p∗ ≥ − and, for all π in the interval, operation B(π)

is not to be executed by the machine that runs operation
Ak.

The cost for P(t, k, p) when A
kt C= is then given either

by (2), (3) or (4) according to how H(p) compares to A
kp

and if p corresponds to the completion of an operation.
Therefore, we can conclude that P(t, k, p) is equal to the

minimum between (1) and one of the three equations (2),
(3) or (4).

We finally present the dynamic programming scheme to
compute all the values (, , ,).Q i j t t ′ For any fixed (i, t),
the problem is to find the minimum cost of a sequence of
tasks so that we can use the dynamic program proposed by
Sourd (2005). For our problem, the recurrence equation
becomes:

(, , ,)

 if

((, , , 1), (,)) if

((, 1, ,) (,)) otherwise
B
j

B
j

j

B
j j

t p t

Q i j t t

t p t
Min Q i i t t C B t i j

Min Q i j t p c B
θ

θ θ
′+ ≤ ≤

′

′∞ + >

 ′ ′= − =

− − +

The costs (, , ,)Q i j t t ′ must be calculated for any i < j

and A
Maxt t t p′≤ ≤ + where 1 A

A A
Max i n ip Max p≤ ≤= is the

maximal processing time of an operation of job A.
Therefore, 2()A

B MaxO n p T values are calculated in
2(())A

B MaxO n p T time since the computation of a cost
requires ()A

MaxO p time.
Similarly, the time complexity to calculate the
()B

AO n Tp values P(t, k, p) is in ().A B
A MaxO n p p T So the

algorithm runs in 2(())A A B
B Max A MaxO n p T n p p T+ time,

which is in 2 2()O n p T with (,)A Bn Max n n= and
(,).A B

Max Maxp Max p p=

6. CONCLUSION

In this paper, we have proposed a new objective
criterion to model earliness-tardiness for the 2-jobs
Job-shop problem. We have solved the problem in
polynomial time. Then, we have proposed a model where
each operation incurs a cost which is given in a table. We
have also solved this more general problem in polynomial
time. However, the complexity of the latter algorithm
depends of the size of the table, that is the horizon of the
schedule. In particular, if the cost functions c(X, t) are
more compactly encoded, for example if c(X, t) represents
an earliness-tardiness function, the algorithm is no more
polynomial since the size of the input is in O(n). The
existence of a polynomial-time algorithm for this problem
is an open question.

ACKNOWLEDGMENTS

The authors are indebted to an anonymous referee for
helpful suggestions and comments.

REFERENCES

1. Agnetis, A., Mirchandani, P., Pacciarelli, D., and Pacifici,
A. (2001). Job-shop scheduling with two jobs and
nonregular objectives functions. INFOR: Information
Systems and Operational Research, 39: 227-244.

2. Akers, S.B. and Friedman, J. (1955). A non numerical
approach to production scheduling problems.
Operations Research, 3: 429-442.

3. Brucker, P. (1988). An efficient algorithm for the
job-shop problem with two jobs. Computing, 40: 353-
359.

4. Brucker, P. (2004). Scheduling Algorithms, 4th ed.,
Springer-Verlag, Berlin.

5. Sourd, F. (2005). Optimal timing of a sequence of
tasks with general completion costs. European Journal of
Operational Research, 165: 82-96.

6. Sotskov, Y.N. (1991). The complexity of shop
scheduling problems with two or tree jobs. European
Journal of Operational Research, 53: 322-336.

