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AbstractWe use the Akers-Friedman geometric approach to solve the two jobs job-shop problem when there is an 
earliness cost on the first operation and a tardiness cost on the last operation of each job. We then generalize the problem 
by imposing earliness and tardiness costs on each operation and finally, we solve it using a dynamic programming algorithm. 
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1. INTRODUCTION 

We consider the two jobs job-shop problem where the 
goal is to minimize earliness and tardiness costs and more 
generally the costs incurred by irregular criteria. A unique 
characteristic of the two jobs job-shop problem is that it 
can be represented by a grid (proposed by Akers and 
Friedman (1955)), that highlights the valid schedules. Based 
on this geometric representation, Brucker (1988) proposed 
a polynomial algorithm when the optimization criterion is 
the minimizing of the completion time of the last job. 
Sotskov (1991) generalized this algorithm in the case where 
the optimization criterion is the minimization of regular 
cost functions assigned to each job. In this case, a regular 
function is a non decreasing function whose parameter is 
the completion time of the last operation. In a just-in-time 
environment, Agnetis et al. (2001) proposed to put a 
quasi-convex cost function whose parameter is the 
completion time of the last operation of each job (a 
function f is said to be quasi-convex, if 

( (1 ) )  ( ( ), ( )),f x y Max f x f yλ λ+ − ≤  [0,1]).λ∀ ∈ This 
function is a generalization of the usual earliness-tardiness 
cost function. Agnetis et al. (2001) solve this problem using 
a polynomial time algorithm.  

In the first part of this paper, we propose a different 
cost function than that used by Agnetis et al. (2001): in our 
model, the earliness costs are functions of each job’s first 
operation starting time, whereas the tardiness costs are still 
tied to the completion of the last operation of each job. In 
fact, we observe that in a production environment, once a 
job is started, the goal is to complete it as soon as possible 
so that it can be taken off the production chain: if we place 
earliness and tardiness costs only on the last operation, we 
can obtain results in which most of the operations of the 
two jobs are carried out as early as possible, whereas the 
only scheduled operations that are optimized are the last 
ones (see Figure 1). This issue is especially relevant for 
shop problems since the jobs are divided into operations 
which may be very different from each other and therefore 

must all be executed just-in-time. Thus, the model we 
propose penalizes the idle times between job operations. 

In order to solve this first problem (referred to as 
JS2JET) we consider earliness and tardiness costs 
independently. As we will demonstrate in Section 3, when 
the starting times of the two jobs are set, we can adapt 
Sotskov’s algorithm to minimize the tardiness costs of the 
two jobs. We will see in Section 4 that we can extract a 
dominant set of starting times of the two jobs. Finally, we 
propose a polynomial algorithm to solve JS2JET. 

In the second part of this paper (Section 5) , we address 
a more general case in which there is a general cost 
function whose parameter is the completion time of each 
operation (the time scale is discretized and the cost is given 
for each step). We solve this second problem, JS2JG, using 
dynamic programming. We obtain a pseudopolynomial 
complexity directly related to the horizon of the schedule. 

 
2. DEFINITION AND NOTATIONS OF JS2JET 

We consider two jobs, A and B, whose sets of 
operations are: 1 2{ , ,  ..., }

AnA A A  and 1 2{ , ,  ..., }.
BnB B B  

The operations of each job have to be executed according 
to their index on a set of machines. Let us call the 
processing times of operation Ai and Bi, A

ip  and ,B
ip  

their completion times A
iC  and ,B

iC  their starting times 
A
iS  and .B

iS  Total processing times for jobs A and B are 

1
A

i

nA A
i

P p
=

= ∑  and 
1

.BnB B
ii

P p
=

= ∑  

Let dA and dB be the due dates of jobs A and B, 
respectively. The weighted tardiness cost TA of job A is 

* ( ) if   ,
A A

A A A A
A n nC d C dβ − ≥  0 otherwise. The weighted 

tardiness cost TB of job B is * ( )
B

B B
B nC dβ −  if   ,

B

B B
nC d≥  

0 otherwise. We now introduce the ideal starting time of 
A1 and B1: 0

Ad = .A Ad P−  The earliness cost EA of job 
A is 0 1* ( ) A A

A d Sα −  if 0
Ad  ≥  1 ,AS  0 otherwise. The 
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earliness cost EB of job B is 0 1* ( ) B B
B d Sα −  if 0 1 ,B Bd S≥ 0 

otherwise. We want to minimize the weighted sum of 
earliness and tardiness costs of the two jobs, i.e., 

 .A B A BMin E E T T+ + +  This can be noted J|n = 2|EA 

+ EB + TA + TB. 
 
3. MINIMIZING THE TRADINESS WHEN THE 

STARTING TIMES OF BOTH JOBS ARE SET 

3.1 Geometric approach and Brucker’s algorithm 

The geometric approach, shown in Figure 2 is based on 
a grid of length PA and width PB. The x-axis represents the 
operations of job A and the y-axis represents the 
operations of job B. Obstacles are put on the grid: each 
obstacle is composed of 2 operations, 1 from A and 1 
from B, that need to be executed on the same machine. If 
Ai and Bj need to be executed on the same machine, we 
call ij∆ the obstacle whose southwest coordinate is 

1 1

1 1
( ,  )i jA B

k kk k
p p− −

= =∑ ∑ and whose northeast coordinate 

is
1 1

( ,  ).i jA B
k kk k

p p
= =∑ ∑ The northeast, northwest, 

southwest and southeast corners of ij∆ are denoted by 

,  ,    .NE NW SW SE
ij ij ij ijand∆ ∆ ∆ ∆  We denote by r the number of 

obstacles in the grid. 

A valid schedule Σ is a path composed of vertical, 
horizontal or diagonal (with angle π/4) segments, starts 
from the southwest corner O and ends at the northeast 
corner F. At time t = 0, no operation has been executed, so 
the path starts at point O in the grid. If a path reaches a 
point with coordinates (x, y) at time t, it means that job A 
has been executed during x units of time and job B during 
y since t = 0. A vertical segment [(x, y), (x + k, y)] (resp. 
horizontal segment [(x, y), (x, y + k)]) means that only job 
A (resp. B) is executed between times t and t + k. A 
diagonal segment [(x, y), (x + k, y + k)] means that both 
jobs A and B are executed in parallel between times t and t 
+ k. Finally, the path has to avoid the interior of any 
obstacle. 

Brucker (1988) has shown that solving the problem J|n 
= 2|Cmax corresponds to finding the shortest path in a 
network N = (V, A) where V is the set of northwest and 
southeast corners of obstacles augmented by O and F. In 
order to build an arc from a vertex k, we go diagonally 
through the grid until we hit an obstacle. If the obstacle is 
the grid’s edge, then F is the only successor of i, otherwise, 
we meet an obstacle ∆ij and then k has two successors: 

NE
ij∆  and .SE

ij∆  

 

  
Figure 1. Two different just-in-time functions. 

 

 
Figure 2. A valid path in the grid with its corresponding Gantt diagram. 

di 

di 

di − Σ pi 
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Figure 3. A valid path in a grid with starting dates 0

AP and 0 .BP  
 

The crux of the algorithm is to execute the two jobs in 
parallel until an obstacle is found, at which point the 
algorithm “chooses” to go through the northwest corner 
or the southeast corner. Sotskov (1991) adapted this 
algorithm in order to minimize a regular function. Here the 
regular function is the minimizing of the sum of the two 
jobs tardiness. From now on, we call this algorithm the 
Brucker-Sotskov algorithm and use it as a “black box” 
when designing of our algorithm. 

3.2 Adapting the Brucker-Sotskov algorithm when the 
starting times of both jobs are set 

In this section, we suppose that the starting times of the 
jobs are set (as are the earliness costs). We now show that 
we can minimize the weighted tardiness by adapting the 
Brucker-Sotskov algorithm. In the following section, we 
show that we can extract a dominant set ε of pairs of 
starting times of jobs A and B, that allows for an optimal 
solution of JS2JET. 

Finally, the algorithm we propose consists of the 
minimized weighted tardiness sum of jobs A and B when 
their starting times are pairs of E. In the remainder of this 
section, the starting times of jobs A and B are fixed and 
respectively equal to 1

AS  and 1
BS  and we want to 

minimize the weighted tardiness sum, that is J|n = 2, 1 ,AS  

1
BS |TA + TB. In order to achieve this, we add two extra 

dummy operations, A0 and B0, that are to be executed 
before A1 and B1, respectively. They are to be executed on 
two dummy machines. When using the Brucker-Sotskov 
geometric algorithm, those two operations represent 
periods of inactivity before the start of jobs A and B. Since 
those operations are executed on dummy machines, they 
do not have to compete with other operations of A and B: 
B0 is executed in parallel with operations of B and A0 with 
operations of A. In Akers and Friedman’s representation, it 
comes down to introducing a point O′ with coordinates 

0 0(  ,  ).A BP P− −  According to the Brucker-Sotskov 
algorithm, we have a diagonal segment from O′ which 

length is 0 0(  ,  ) * 2A BMin P P  (see Figure 3). 0 0
A BP P−  

represents the time lag between the starting times of the 
two jobs. If we use the Brucker-Sotskov algorithm from 

,O′  the operations A1 and B1 start respectively at 0
AP  

and 0 ,BP   and we obtain a minimum cost for the sum of 
the tardiness cost. 
 
4. DETERMINING THE JOBS STARTING 

TIMES AND SOLVING JS2JET 

4.1 Dominance properties 

Let P be a set of pairs of starting times for jobs A and B. 
In this section, we establish properties of optimal 
schedules. These properties are used to reduce P to set ε: 

 
Property 1.  
l Either, there exists an optimal schedule and two 

integers  and A Bi n j n≤ ≤  such that the i first 
operations of A and the j first operations of B are 
executed without idle times and such there exists an 
obstacle ij∆  and we then have: 

 
－ either A B

i jC S=  

－ or A B
i jS C=  

 
l or for each job, there is no idle time at all between the 

executions of all its operations. 
 
Proof. We provide a constructive demonstration: we 
consider a feasible schedule σ. We consider the first block 
of operations of job A, i.e. operations A1, ..., Ak such that 
there is no idle time between these operations. We right 
shift this block on the time scale. We denote by σ∗  the 
modified current schedule obtained from σ. Three kinds of 
event may happen: 
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Figure 4. The first two cases of property 1. 

 
1. Either the current block merge with another block of 

operation of job A. We proceed with the right shifting 
of this new block. 

2. Or, for one Ai of the block, there is an operation Bj 
such that A B

i jC S=  and ij∆  exists. The shifting is 
then stopped (this is the left case in Figure 4. The path 
in the grid corresponding to σ* goes through SE

ij∆ ). 
3. Or

AnA  is in the current block and the shifting is 
stopped. 

 
We do the same with the leftmost block of operations of 

job B. The current block is rigth-shifted. the second event 
is replaced by A B

i jS C=  (it is the right case in Figure 4, 
the path in the grid corresponding to σ* goes through 

NE
ij∆ ). Among the events A B

i jC S=  and A B
i jS C= , we 

choose the one that happened earlier in the time scale. If 
these two events do not happen, it means that A and B are 
executed in unique blocks. 

For the newly obtained schedule σ*, the earliness costs 
of the jobs A and B may only decrease. Therefore, the cost 
of σ* is lower than the one of σ. 

 
From now on, let Σ1 be the set of schedules verifying 

property 1, we establish a symmetric property for the 
rightmost operations of A and B. 
 
Property 2.  
l Either, there exists an optimal schedule which belong 

to Σ1 and two integers   A Bi n and i n≤ ≤  such that the 
i last operations of A and the j last operations of B are 
executed without idle times and such there exists an 
obstacle ij∆  and we then have: 

 

－ either A B
i jC S=  

－ or A B
i jS C=  

 
l or for each job, there is no idle time at all between the 

executions of all its operations. 

Proof. The proof is similar to the one of property 1 except 
that instead of right-shifting the leftmost operations of A 
and B, it is the rightmost operations of A and B that are 
left-shifted and we choose the event that happened later on 
the time scale. 
 

From now on, let Σ2 be the set of schedules verifying 
property 2. The following is an example illustrating how to 
go from any schedule to one that verifies Σ2. We consider 
the 2 jobs of Tables 1 and 2. On Figure 5, the steps 
involved in the transformation are represented: 

 
1. A random valid schedule. 
2. A1 and A2 are right-shifted until A2 encounters B3. 
3. B1 is right-shifted until it encounters B2. At this point, 

the schedule verifies property 1 and the schedule goes 
through 2,3 .SE∆  

4. A6 and A7 are left-shifted until A6 encounters B5. 
5. B7 is left-shifted until it encounters A6. At this point, 

the schedule verifies property 2 and the schedule goes 
through 6,7 .SE∆  

 
The properties 1 and 2 ensure that the time lags between 

the starting times of the two jobs (and respectively the 
completion times of the two jobs) of an optimal schedule 
can be known. Indeed, if we consider that ij∆  is the first 

obstacle and that A B
i jC S=  (so the path goes through SE

ij∆ ), 

then we have 1 1
A BS S− =

1

i A
kk

p
=

−∑ 1

1

j B
ll

p−

=∑  assuming 

that both jobs are executed at the same time starting from 
O′ (which is the case when the Brucker-Sotskov algorithm 
is applied). Similarly, if A B

i jS C= (the path goes through 

),NE
ij∆  we then have 1

1 1 1 1
.i jA B A B

k lk l
S S p p−

= =
− = −∑ ∑  

There are r obstacles, then let ω = (ω1, ..., ω2r) be the list of 
these constants. However, we can notice that some 
obstacles may never be the first obstacle, therefore, for 
some i, ωi are not useful to obtain optimal schedules (in 
the algorithm presented in the next section, they lead to 
valid schedules, so they may remain in the list).   

Ai Ai 

Bj Bj 

∆i,j ∆i,j 
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Table 1. Job A 

- Processing time Machine Incompatibility 
A1 5 M1 B2 
A2 4 M2 B3 
A3 1 M3 B1 
A4 4 M4 B6 
A5 2 M5 B4 
A6 2 M6 B5,B7 
A7 1 M7 - 

 

Table 2. Job B 
- Processing time Machine Incompatibility 

B1 2 M3 A3 
B2 3 M1 A1 
B3 2 M2 A2 
B4 5 M5 A5 
B5 1 M6 A6 
B6 2 M4 A4 
B7 3 M6 A6 

 
Figure 5. The different steps to transform any schedule. In each rectangle, job A is represented on top. 

 
We proceed in the same manner for the last obstacles: if 

we consider that ij∆  is the last obstacle and that 
A B
i jC S=  (so the path go through SE

ij∆ ), then, we have 

1
( ) ( )A B

A B

n nA B A A B B
n n k lk i l j

C C P p P p
= + =

− = − − −∑ ∑  assuming 

that both jobs are executed at the same time starting from 
SE
ij∆  (which is the case when the Brucker-Sotskov 

algorithm is applied). Similarly, if A B
i jS C=  (the path goes 

through ),NE
ij∆  we then have 

A

A
nC  −  

B

B
nC =  ( AP −  

)An A
kk i

p
=∑  − 

1
( ).BnB B

ll j
P p

= +
− ∑ Let 1 2( ,  ..., )rω ω ω′ ′ ′=  be 

the other constant list. Again, some obstacle may never be 
the last ones. 

We now know the possible time lags between the 
starting times of the two jobs (and respectively between the 
completion times of the two jobs). We need another 
property to fix the starting time or completion time of 
either one of the two jobs: 

 
Property 3. There is an optimal schedule which belongs to 
Σ2 where at least one of the six following conditions is 
met : 

1. 1 1 1(or 0)A A AS d S= =  
2. 1 1 1(or 0)B B BS d S= =  
3. 

A

A A
nC d=  

4. 
B

B B
nC d=  

 
Proof. Let σ be a schedule which belongs to Σ2, we can 
either push backward or postpone the execution of all the 
two jobs’ operations so as to diminish the scheduling cost. 
Cost variation is linear except when one of the operations 
draws to its completion time or when one of the 
operations A1 or B1 finds itself scheduled at t = 0. 

 
4.2 Algorithm 

We first consider the cases 1 and 2 of property 3. In the 
grid we apply the Brucker-Sotskov sub-routine with 
tardiness factor βA and βB and due dates dA and dB for the 
following pairs of starting times: 

 
l 1 1 1 1if ,  then ( , ( , 0)) ;A A A A

iS d d Max d iω= − ∀  
l 1if 0,  then (0, ( , 0)) ;A

iS Max iω= ∀  
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l 1 1 1 1if ,  then ( ( , 0), ) ;B B B B
iS d Max d d iω= + ∀  

l 1if 0,  then ( ( , 0), 0) .B
iS Max iω= ∀  

 
For the last two cases of property 3, we need to reverse 

the time scale and consider the symmetric problem : we 
consider the grid where the x-axis represents the 
operations of job B and the y-axis represents the operations 
of job A. The operations of job B are given in the order 
{ ,

BnB  ..., B2, B1} and operations of job A, { ,
AnA  ..., A2, 

A1}. In this new grid, we apply the Brucker-Sotskov 
sub-routine with tardiness factor αB and αA and due dates 
dB and dA for the following pairs of starting times: 

 
l 1 1if ,  then ( ( , 0), ) ;

A

A A A A
n iC d Max d d iω′= − ∀  

l 1 1if ,  then ( , ( , 0) ;
B

B B B B
n iC d d Max d iω′= + ∀  

 
We refer to Brucker (2004) for the multiple 

constructions of the grid and the associated networks. It 
can be done in time O(rlogr). For every couple of starting 
times provided below, a Brucker-Sotskov sub-routine has 
to be executed. It is done in time O(r). There are 6r pairs of 
starting times. Therefore, the overall complexity of the 
algorithm is O(r2). 

 
5. GENERAL END-TIME-DEPENDENT COSTS 

In this section, the cost of each operation X is c(X, t) 
when X completes at t. Each job must be completed 
before a time horizon T — the value T is assumed to be 
greater that the earliest completion time (or makespan) of 
the schedule. These costs are given in input as an array of 
T values c(X, 1), c(X, 2), ..., c(X, T) for each operation X so 
that the size of the input is in O(nAnBT). The problem is to 
compute a schedule whose total cost 

 

1 1

( , ) ( , )
A Bn n

A B
i i i i

i i

c A C c B C
= =

+∑ ∑  

 
is minimal. 

For any value of p ∈ [0, pB], we will say that job B is 
p-processed if the sum of the lengths of the time intervals 
during which B is processed is equal to p. For some i ∈ 
{1, ..., nB}, we have 

1 1
,B B

j jj i j i
p p p

≤ < ≤ ≤
< ≤∑ ∑  then 

operation Bi is said to be in process or complete at p. This 
operation is denoted by B(p) and the index i is denoted by 
i(p). If operation B(p) is in process at t, ( )H p =  

1 ( )
B
jj i p

p p
≤ <

− ∑  denotes the length of the part of B(p) 

which has already been executed and, respectively, 

1 ( )
( ) B

jj i p
T p p p

≤ <
= −∑  is the amount of processing 

before the end of B(p). We use the variable :  1p pδ δ =  if 

1
B
jj i

p p
≤ <

= ∑ (in this case, operation Bi is complete and 

( ) B
iH p p=  and ( ) 0;T p =  otherwise 0.pδ =  

In order to introduce the dynamic programming scheme 

to solve the problem, we define, for any (t, k, p) ∈ [0, T] × 
[0, nA] × [0, pB], the subproblem P(t, k, p) in which 

 
l job A is restricted to its first k operations which must 

be processed before t, 
l job B has to be p-processed at time t. The costs of 

operations that complete after t are ignored. To put it 
precisely, if operation Bi is in process at t, then Bi must 
start at t − H(p). 

 
We now analyze the properties of an optimal solution 

for P(t, k, p). Let us first assume that A
kC t<  so that 

1A
kC t< − . If an operation of B is in process in (t − 1, t) 

then job B must be p − 1-processed at time t − 1. We have 
P(t, k, p) = P(t − 1, k, p − 1) + δpC(B(p), t) (abusing 
notation, P(k, t, p) denotes both the problem and its 
optimal value). If an operation of B is not in process in (t − 
1, t) we clearly have P(t, k, p) = P(t − 1, k, p). So, if 

A
kC t< , the cost for P(t, k, p) is 
 

( ( 1, , 1) ( ( ), ), ( 1, , ))pMin P t k p C B p t P t k pδ− − + −      (1) 
 
Let us now assume that .A

kC t=  If B is in process at t, 
the machine on which B(p, t) is processed must be different 
from the machine of Ak; otherwise the schedule is not 
feasible. If ( ) ,A

kH p p≥  the cost for P(t, k, p) is 
 

( , 1, ) ( , ) ( ( ), )A A
k k k pP t p k p p C A t C B p tδ− − − + +    ( 2 ) 

 
We now consider that ( ) A

kH p p<  (see Figure 6). Let 
p p<  be such that B is p -processed at the start time of 

Ak. For any [ , ],p pπ ∈  operation B(π) cannot be 
processed on the same machine as Ak. We have of course 
( ) ( )i p i p≤  and ( ) ( ) .A

kT p H p p+ ≤  We have two 
possibilities: either δp = 1, and so, in an optimal schedule, 
the activity ( ) ( )1 ,  ...,i p i pB B+  must be optimally scheduled 

in the time interval [ ( ), ];A
kt p T p t− + or δp = 0 and 

( ) 1 ( ) 1,  ...,i p i pB B+ −  must be optimally scheduled in the time 

interval [ ( ), ( )].A
kt p T p t H p− + −  Since none of these 

operations have resource conflict with Ak, this subproblem 
is independent from the rest of the problem and it can be 
solved by dynamic programming. We define ( , , , )Q i j t t ′  
as the minimum cost (necessary) to schedule the sequence 
of operations (Bi, ..., Bj) in the time interval [ , ].t t ′  If δp = 
1, the cost for P(t, k, p) is: 

 

( , )

( , ) (1 ) ( ( ), ( ))

( , 1, )

( ( ) 1, ( ), ( ), )
k

A
k p k

A
kp V p A

A
k

C A t C B p t p T p

Min P t p k p

Q i p i p t p T p t

δ

∈

 + − − +
 

+ − − 
  + + − + 

  (3) 

 
If δp = 0, the cost for P(t, k, p) is:         
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Figure 6. Decomposition of the problem with ( ) .A

kH p p<  
 

( , )

( , ) (1 ) ( ( ), ( ))

( , 1, )

( ( ) 1, ( ) 1, ( ), ( ))
k

A
k p k

A
kp V p A

A
k

C A t C B p t p T p

Min P t p k p

Q i p i p t p T p t H p

δ

∈

 + − − +
 

+ − − 
  + + − − + − 

(4) 

 
where V(p, Ak) is the set of possible values for p : namely 
it is the largest interval [ , ( )]p p H p∗ −  such that 

A
kp p p∗ ≥ −  and, for all π in the interval, operation B(π) 

is not to be executed by the machine that runs operation 
Ak. 

The cost for P(t, k, p) when A
kt C=  is then given either 

by (2), (3) or (4) according to how H(p) compares to A
kp  

and if p corresponds to the completion of an operation. 
Therefore, we can conclude that P(t, k, p) is equal to the 

minimum between (1) and one of the three equations (2), 
(3) or (4). 

We finally present the dynamic programming scheme to 
compute all the values ( , , , ).Q i j t t ′  For any fixed (i, t), 
the problem is to find the minimum cost of a sequence of 
tasks so that we can use the dynamic program proposed by 
Sourd (2005). For our problem, the recurrence equation 
becomes: 

 
( , , , )

                                                          if 

( ( , , , 1), ( , ))                if 

( ( , 1, , ) ( , ))  otherwise
B
j

B
j

j

B
j j

t p t

Q i j t t

t p t
Min Q i i t t C B t i j

Min Q i j t p c B
θ

θ θ
′+ ≤ ≤

′


′∞ + >

 ′ ′= − =


− − +

 

 
The costs ( , , , )Q i j t t ′  must be calculated for any i < j 

and A
Maxt t t p′≤ ≤ +  where 1 A

A A
Max i n ip Max p≤ ≤= is the 

maximal processing time of  an operation of  job A. 
Therefore, 2( )A

B MaxO n p T  values are calculated in 
2(( ) )A

B MaxO n p T  time since the computation of  a cost 
requires ( )A

MaxO p  time. 
Similarly, the time complexity to calculate the 
( )B

AO n Tp  values P(t, k, p) is in ( ).A B
A MaxO n p p T  So the 

algorithm runs in 2(( ) )A A B
B Max A MaxO n p T n p p T+  time, 

which is in 2 2( )O n p T  with ( , )A Bn Max n n= and 
( , ).A B

Max Maxp Max p p=  
 
 
 

6. CONCLUSION 

In this paper, we have proposed a new objective 
criterion to model earliness-tardiness for the 2-jobs 
Job-shop problem. We have solved the problem in 
polynomial time. Then, we have proposed a model where 
each operation incurs a cost which is given in a table. We 
have also solved this more general problem in polynomial 
time. However, the complexity of the latter algorithm 
depends of the size of the table, that is the horizon of the 
schedule. In particular, if the cost functions c(X, t) are 
more compactly encoded, for example if c(X, t) represents 
an earliness-tardiness function, the algorithm is no more 
polynomial since the size of the input is in O(n). The 
existence of a polynomial-time algorithm for this problem 
is an open question. 
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