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AbstractIn this paper, we construct a pair of  Mond-Weir type second order symmetric dual problems, in which the 
objective function contains support function and is, therefore, nondifferentiable. For this pair of  problems, we validate weak, 
strong and converse duality theorems under pseudobonvexity – pseudoboncavity assumption on the kernel function that 
appears in the problems. A second order self  duality theorem is also proved under additional appropriate conditions. 
Discussion on some particular cases shows that our results generalize earlier results in the related domain. 
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1. INTRODUCTION 

Duality theory has played an important role in 
development of  optimization theory. Inception of  duality 
theory in linear programming may be traced to classical 
minmax theory of  Von Neumann (1959) and was first 
explicitly given by Gale et al. (1951). Duality results have 
proved to be useful in the growth of  numerical algorithms 
for solving certain classes of  optimization problems. For 
linear programming problems, this fact is well established. 
Duality in linear programming has applications in 
economics, for example, a linear programming problem 
dealing a production plan for the maximization of  profit 
within limitations on the availability of  resources, then the 
dual problem enables to offload some available resources 
so as to minimize the expected cost from each of  the 
resources. This is known as shadow price of  resources in 
economics. For non-linear programming problem, the 
existence of  duality theory helps to develop numerical 
algorithms, as it provides suitable stopping rule for primal 
and dual problems. Applications of  duality are prominent 
in physics, management science, economics and 
engineering. 

Following Dorn (1960), first order symmetric and self  
duality results in mathematical programming has been 
derived by a number of  authors, notably, Dantzig et al. 
(1965), Mond (1965), Bazaraa and Goode (1973), Mond 
and Weir (1981). Later Weir and Mond (1989) discussed 
symmetric duality in multiobjective programming by using 
the concept proper efficiency. Chandra and Prasad (1993) 
presented a pair of  multiobjective programming problem 

by associating a vector valued infinite game to this pair. 
Gulati et al. (1997) also established duality results for 
multiobjective symmetric dual problem without 
non-negativity constraints. 

The study of  second order dual is significant because it 
has computational advantage over first order duality, for it 
provides tighter bound for the value of  the objective 
function when approximations are used (Mangasarin 
(1975)). Motivated with Mangasarian (1975), Mond (1974) 
was the first to study Wolfe type second order symmetric 
duality bonvexity – boncavity. Subsequently, Bector and 
Chandra (1986) established second order symmetric and 
self  duality results for a pair of  non-linear programs under 
pseudobonvexity – pseudoboncavity condition. Devi (1998) 
formulate a pair of  second order symmetric dual programs 
and established corresponding duality results involving 
η-bonvex functions and Mishra (2000) extended the results 
of  Devi (1998) to multiobjective non-linear programming. 
Recently, Sunjeja et al. (2003) presented a pair of  
Mond-Weir type multiobjective second order symmetric 
and self  dual program without non negativity constraint 
and proved vairous duality results under bonvexity and 
pseudobonvexity. 

In this paper, we construct in the spirit of  Mond and 
Schechtor (1996) a pair of  Mond-Weir type multiobjective 
second order symmetric dual programs in which objective 
a support function occurred in the objective function and 
hence non-differentiable. We validate various duality results 
under pseudobonvexity – pseudoboncavity assumption. A 
self  duality theorem is also proved. Some special cases are 
also derived form our results. The importance of  this kind 
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of  programs containing Tx Bx  or a support function 
lies in the fact that even though objective function and/or 
constraint functions are nonsmooth, a simple 
representation for the dual may be found. 

 
2. NOTATIONS AND PRE-REQUISITES 

The following conventions for vectors x and y in 
n-dimensional Euclidian space nR  will be used: 
 

,  1, 2, ..., ,
     ,  1, 2, ..., ,

,  1, 2, ..., ,  but ,

i i

i i

i i

x y x y i n
x y x y i n
x y x y i n x y

< ⇔ < =
≤ ⇔ ≤ =
≤ ⇔ ≤ = ≠

 

x ≤ y  is the negation of  .x y≤  
 

For , ,x y R∈ x y≤ and x y< have the usual meaning. 
Let φ be a twice differentiable from .n mR R R× →  

Then 1φ∇  and 2φ∇  denote gradient vectors with 
respect to x and y, respectively; 2

1φ∇  and 2
2φ∇  are 

respectively, the n × n and m × m symmetric Hessian 

matrices. 2
2( )

iy
φ

∂
∇

∂
 is the m × m matrix obtained by 

differentiating the elements of  2
2φ∇  with respect to iy  

and 2
2 1( ( , ) )x y qφ∇ ∇  denotes the matrix whose (i, j)th 

element is 2
1( ( , ) ) ,j

i

x y q
y

φ
∂

∇
∂

 where .nq R∈  

 
Definition 1. Let C be compact convex set in nR  The 
support function of  C is defined by 

 
( ) { : }Ts x C Max x y y C= ∈ . 
 

Definition 2. Let Q be a nonempty convex set in ,nR  
and let : Q Rψ →  be convex. Then z is called a 
subgradient of  ψ at x Q∈  if 

 
( ) ( ) ( ),Tx x z x xψ ψ ′≥ + −  for all .x Q∈  
 
A support function, being convex and every where finite, 

has a subdifferential, i.e.; there exists z such that  
 

( ) ( ) ( ),Ts y C s x C z y x≥ + −  for all .x C∈  
 
The set of  all subdifferential of  ( )s y C  is given by 

 
( ) { : ( )}.Ts x C z C z x s x C∂ = ∈ =  
 
For a set Γ, the normal cone to Γ at a point x ∈ Γ is 

defined by 
 

( ) { | ( ) 0, for all }.TN x y y z x zΓ = − ≤ ∈ Γ  
 

When C is a compact convex set, y is in ( )CN x  if  and 
only if  ( ) ,Ts y C x y= i.e., x is the subdifferentiable of  s at 
y. 

Consider the following multiobjective program: 
 

(VP) Minimize ( )xφ  
Subject to 0x X∈  

 
where : n nf R R→  and 0 .nX R⊆  

 
Definition 3. A feasible point x  is said to be a weak 
minimum of  (VP), if  there does not exist any 0x X∈  
such that ( ) ( )f x f x<  
 
Definition 4. A feasible point x  is said to be efficient 
solution of  (VP), if  there does not exist any feasible x such 
that ( ) ( ).f x f x≤  

An efficient solution of  (VP) is obviously a weak 
minimum to (VP). 
 
Definition 5. A feasible point x  is said to be properly 
efficient solution of  (VP), if  it is an efficient solution of  
(VP) and if  there exists a scalar 0M >  such that for each 
i and 0x X∈  satisfying ( ) ( ),i x xψ ψ<  we have 
 

( ) ( ) ( ( ) ( )),i i j jx x M x xψ ψ ψ ψ− ≤ −  
for some j, satisfying ( ) ( )j jx xψ ψ> . 
 
Definition 6. A twice differentiable real function φ  
defined on n mR R×  is said to be any my R∈  
(i) Pseudobonvex in x, if  for all ,  nx q R∈  and 

,ny R∈ and for fixed y, 
 

2
1 2( ) [ ( , ) ( , ) ] 0Tx u u y u y qφ φ− ∇ + ∇ ≥  

1
1

( , ) ( , ) ( , )
2

Tx y u y q u y qφ φ φ⇒ ≥ − ∇  

 
(ii) Pseudoboncave in y, if  for all ,  nx q R∈  and y and 

,mv R∈  
 

2
2 2( ) [ ( , ) ( , ) ] 0Tv y x y x y pφ φ− ∇ + ∇ ≤  

2
1

( , ) ( , ) ( , )
2

Tx v x y p x y pφ φ φ⇒ ≤ − ∇
 

 
(iii) Skew symmetric, when both x and ,ny R∈ and 

( , ) ( , ),x y y xφ φ= − for all in the domain of .φ  
 
3. SECOND ORDER MULTIOBJECTIVE 

SYMMETRIC DUALITY 

Consider the following pair of  nondifferentiable second 
order symmetric dual programs: 
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(SVP): 
Minimize 1 1( , , , ) ( ( , , , ), ..., ( , , , ))k kF x y z p F x y z p F x y z p=  

Subject to 2
2 2

1

( ( , ) ( , ) ) 0,
k

i i i i
i

f x y z f x y pλ
=

∇ − + ∇ ≤∑   (1) 

2
2 2

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

y f x y z f x y pλ
=

∇ − + ∇ ≥∑      (2) 

0,λ >                                          (3) 
0,  , 1, 2, ...,i ix z D i k≥ ∈ =                 (4) 

 
and 
 
(SVD):  
Maximize 1 1( , , , ) ( ( , , , ), ..., ( , , , ))k kG u v w q G u v w q G u v w q=  

Subject to 2
1 1

1

( ( , ) ( , ) ) 0,
k

i i i i
i

f u v w f u v qλ
=

∇ + + ∇ ≥∑                   (5) 

2
1 1

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

u f u v w f u v qλ
=

∇ + + ∇ ≤∑       (6) 

0,λ >                                           (7) 
0,  , 1, 2, ..., ,i iv w C i k≥ ∈ =                 (8) 

 
where  
 
(i) ( , , , )i iF x y z p  

2
2

1( , ) ( | ) ( , )
2

T T
i i i if x y s x C y z p f x y p= + + − ∇  

2
1

( , , , )
1( , ) ( | ) ( , )
2

i i

T T
i i i i

G u v w q

f u v s v D u w q f u v q= + + − ∇
 

(ii) 1( , ..., )kw w w=  with i iw C∈  for i ∈{1, 2, ..., k}, 

1( , ..., )kz z z=  with i iz D∈  for i ∈{1, 2, ..., k}, and 

1( , ..., )T
kλ λ λ=  with i Rλ ∈  for i ∈{1, 2, ..., k}; 

and  
(iii) for each i ∈{1, 2, ..., k}, ( | )is x C  and ( | )is y D  

represent support functions of  compact convex set 
iC  in nR  and compact convex set iD  in ,mR  

respectively. 
 

It is to be remarked here that unlike the formulation of  
the Mond-Weir type second order symmetric dual 
programs in Suneja et al. (2003), here we have chosen for 
each i ∈ {1, 2, ..., k}, m

ip p R= ∈  and n
iq q R= ∈  as 

this choice seems to be in conformity with the analysis for 
identification of  second order dual in nonlinear 
programming by Mangasarian (1975). 

 
Theorem 1. (Weak Duality): For feasible solutions 
( , , , , )x y z pλ  and ( , , , , )u v w qλ  for the programs (SVP) 

and (SVD), let 
1

( ( , ) ( ) ),
k

T
i i i

i

f y wλ
=

⋅ + ⋅∑  for each ,i iw C∈  

i ∈{1, 2, ..., k} be pseudobonvex at u for fixed y and 

1

( ( , ) ( ) ),
k

T
i i i

i

f x zλ
=

⋅ + ⋅∑  for each ,i iz D∈  i ∈{1, 2, ..., k} 

be pseudoboncave at y. Then 

( , , , , ) ( , , , , ).F x y z p G u v w qλ λ≤/  
 
Proof. By multiplying (5) by Tx  and subtracting (6), we 
have 
 

( )2
1 1

1

( ) ( , ) ( , ) 0.
k

T
i i i i

i

x u f u v w f u v qλ
=

− ∇ + + ∇ ≥∑  

 

This, because of  pseudobonvexity of  
1

( ( , )
k

i i
i

f yλ
=

⋅∑  

( ) ),T
iw+ ⋅  implies 

 

1

( ( , ) ( , )
k

T
i i i i

i

f x v x w f u vλ
=

+ −∑
2
1

1
        ( , ) )  0

2
T T

i iu w q f u v q− + ∇ ≥                         (9) 

 
From (1), (2) and 0,v ≥ we have 

 
2

2 2
1

( ) ( ( , ) ( , ) ) 0.
k

T
i i

i

v y f x y z f x y pλ
=

− ∇ − + ∇ ≤∑  

 

By pseudoboncavity of  
1

( ( , ) ( ) ),
k

T
i i i

i

f x zλ
=

⋅ + ⋅∑  from this 

we get, 
 

1

( ( , ) ( , )
k

T
i i i i

i

f x v v z f x yλ
=

− + +∑  

2
2

1
         ( , ) )  0

2
T T

i iy z p f x y p+ − ∇ ≥                        (10) 

 
On adding (9) and (10), we have 
 

2
2

1

2
1

1

1( , ) ( , )
2

1   ( , ) ( , ) 0.
2

k
T T T

i i i i i
i

k
T T T

i i i i i
i

f x y x w y z p f x y p

f u v u w v z q f u v q

λ

λ

=

=

 + + − ∇ 
 

 − + − − ∇ ≥ 
 

∑

∑
 

 
Since for each ,i iw C∈ ( | )T

i ix w s x C≤  and each 
,i iz D∈ ( | ),T

i iv z s v D≤ the above inequality gives 
 

2
2

1

1( , ) ( | ) ( , )
2

k
T T

i i i i i
i

f x y s x C y z p f x y pλ
=

 + + − ∇ 
 

∑  

2
1

1

1 ( , ) ( | ) ( , ) .
2

k
T T

i i i i i
i

f u v s v D u w q f u v qλ
=

 > − + − ∇ 
 

∑  

 
or 
 

1 1

( , , , ) ( , , , ).
k k

i i i i i i
i i

F x y z p G u v w qλ λ
= =

≥∑ ∑  

 
That is, 
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( , , , ) ( , , , ).F x y z p G u v w q>  

 
This implies 
 

( , , , ) ( , , , )F x y z p G u v w q≤/  
 
Theorem 2. (Strong Duality): Let ,if  i ∈ (1, 2, ..., k) be 
thrice differentiable on .n mR R×  Let ( , , , , )x y z pλ  be a 
properly efficient solution of  (SVP); fix λ λ=  in (SVD) 
and assume that (H1): The set 2 2

2 1 2{ ,  ...,  }kf f∇ ∇  is 
linearly independent, (H2): 2

2 2( ( ) )T f pλ∇ ∇  is positive or 
negative definite, and (H3): The set 2 1{ f z∇ − +  

2 2
2 1 2 2,  ...,  }k k kf p f z f p∇ ∇ − + ∇ is linearly independent. 

Then ( , , , , 0)x y w qλ =  is feasible for (SVD) and 
( , , , , )F x y z pλ = ( , , , , )G x y w qλ . 
Moreover, if  the hypotheses of  Theorem 1 are satisfied 

for all feasible solutions of  (SVP) and (SVD), then 
( , , , , )x y w qλ  is a properly efficient solution of  (SVD). 
 
Proof. Since ( , , , , )x y z pλ  is a properly efficient solution 
of  (SVP), it is weak minimum of  (SVP). Hence there exists 

,nRα ∈ ,mRβ ∈ ,kRµ ∈ ,kRη ∈ kRγ ∈ and ,n
i Rθ ∈  (i 

= 1, 2, ..., k) such that the following Fritz John optimality 
condition (Mangasarian and Fromovitz (1967)) are satisfied 
at ( , , , , ),x y z pλ (suppressing the arguments): 
 

2
1 1 2

1 1

( ) ( )
k k

T
i i i i i

i i

f y fα θ λ β γ
= =

∇ + + − ∇ ∇∑ ∑  

2
1 1

1

   ( ) ( ) ,
2

Tk
i

i i
i

py f pα
β γ λ η

=

 + − − ∇ ∇ = 
 

∑        (11) 

2
2 2

1 1

( )( ) ( )
k k

i i i i i
i i

f z y p fα γλ β γ γ λ
= =

− ∇ − + − − ∇∑ ∑  

2
2 2

1

   ( ) ( ) 0,
2

Tk
i

i i
i

py f pα
β γ λ

=

 + − − ∇ ∇ = 
 

∑        (12) 

2
2

1

{( ) } 0,
k

T
i i i

i

y p fβ γ λ α
=

− − ∇ =∑                     (13) 

2
2 2( ) { } 0,T

i i i iy f z f pβ γ µ− ∇ − + ∇ − =                       (14) 

11 1( ) ( ), 1, 2, ..., ,D iy y N z i kα β γ λ+ − ∈ =                 (15) 

, ( | ), 1, 2, ..., ,T
i i i iC x s x C i kθ θ∈ = =                           (16) 

2
1 2 2

1

( ) 0,
k

T
i i i

k
f z f pβ λ

=

∇ − + ∇ =∑                       (17) 

2
1 2 2

1

( ) 0,
k

T
i i i

k

y f z f pγ λ
=

∇ − + ∇ =∑                   (18) 

0,Tµ λ =                                                   (19) 

0,T xη =                                                       (20) 
( , , , , ) 0,α β γ µ η ≥                             (21) 
( , , , , ) 0.α β γ µ η ≠                                      (22) 
 

Since 0,λ >  from (19), it follows that 0.µ =  
Consequently, from (14), we obtain 

 
2

2 2( ) ( ) 0T
i i iy f z f pβ γ− ∇ − + ∇ =                             (23) 

 
In view of  (H1), (13) yields 
 
( ) , 1, 2, ..., .i iy p i kβ γ λ α− = =                                                           (24) 
 
Using (24) in (12), we have 
 

{ }2
2 2

1

( ) ( )
k

i i i i i
i

f z f pα γλ
=

− ∇ − + ∇∑  

2
2 2

1

1   ( )( ) 0
2

k

i i
i

f p yλ β γ
=

+ ∇ ∇ − =∑                                              (25) 

 
Pre-multiplying (25) by ( )Tyβ γ−  and then using (23), 
we get 
 

2 2( ) ( ( ) ( ) 0.T Ty f p yβ γ λ β γ− ∇ ∇ − =  
 
In view of  (H3), this yields 
 

0.yβ γ− =                                                      (26) 
 
Using (26) in (25), we obtain 
 

2
1 2 2

1

( )( ) 0.
k

i i i i
i

f z f pα γλ
=

− ∇ − + ∇ =∑  

 
This, because of  (H3), implies 
 

0, 1, 2, ..., .i i i kα γλ− = =                                    (27) 
 
If  γ  = 0, from (11), (26) and (27), we have η  = 0, β  

= 0 and α  = 0 respectively. Hence ( , , , , )α β γ µ η = 0, 
contradicting (22). Thus 0γ >  and from (27), it implies 

0iα >  (i = 1, 2, ..., k). From (24) along with (26), we have 
p  = 0. Consequently from (11) together with (26) and 

(21), we obtain 
 

1
1

( ( , ) ) .
k

i i i
i

f x yα θ η
=

∇ + =∑  

 
By (27) it implies 
 

1
1

( ( , ) )
k

i i i
i

f x yγ λ θ η
=

∇ + =∑  

 
which from (20) and (21) along implies 
 

1
1

( ( , ) ) 0
k

i i i
i

f x yλ θ
=

∇ + ≥∑                                        (28) 
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and 1
1

( ( , ) ) 0.
k

T
i i i

i

x f x yλ θ
=

∇ + =∑                       (29) 

 
From (16) and (26) respectively we have 
 

, 1, 2, ..., , 0.i iw C i k y∈ = ≥                     (30) 
 

From (29) and (30), it follows that ( ,x ,y ,λ ,w q  = 0) = 
( ,x ,y ,λ ,θ q  = 0) where 1( ,  ..., )kθ θ θ=  is feasible 
for (SVD). 

From (15) along with (26) and 0,iα >  it implies 
( ),

iD iy N z∈  i ∈ {1, 2, ..., k} and this gives 
 

( | ), {1, 2, ..., }.T
i iy z s y D i k≤ ∈                        (31) 

 
Now, using (17), (29) and (31) along with p w q= = , 

we have 
 

2
2

2
1

1
( , ) ( | ) ( , )

2
1( , ) ( | ) ( , )
2

T T
i i i i

T T
i i i i

f x y s x C y z p f x y p

f x y s y D x w q f x y q

+ − − ∇

= + − − ∇
 

for i ∈ {1, 2, ..., k}, 
 
or 
 

( , , , ) ( , , , )i i i iF x y z p G x y w q=  for each {1, 2, ..., }i k∈ . 
 
This implies  
 
( , , , ) ( , , , )F x y z p G x y w q=  for each {1, 2, ..., }.i k∈               (32) 

 
We claim that ( , , , )x y w q  is efficient for (SVD). If  this 

would not be the case, then there would exist a feasible 
solution ( , , , , )u v w qλ  of  (SVD) such that 
 

( , , , ) ( , , , )G x y w q G u v w q≤ , 
 
which by (32) gives 
 

( , , , ) ( , , , )F x y z p G u v w q≤ . 
 
This is a contradiction to Theorem 1. If  ( , , , )x y w q  

were improperly efficient for (SVD), then for some feasible 
( , , , , )u v w qλ  of  (SVD) and some i 
 

2
1

2
1

1
( , ) ( | ) ( , )

2
1( , ) ( | ) ( , ) ,
2

T T
i i i i

T T
i i i i

f u v s v D u w q f x y q

f x y s y D x w q f x y q M

 − + − ∇ 
 

 − − + − ∇ > 
 

 

 
for any 0M > . Using (32), we have 
 

2
1

1( , ) ( | ) ( , )
2

T T
i i i if u v s v D u w q f u v q − + − ∇  

 

2
2

1( , ) ( | ) ( , ) ,
2

T T
i i i if x y s x C y z p f x y p M − + − − ∇ >  

 

 
i.e. 
 

( , , , ) ( , , , )i i i iG u v w q F x y z p M− >  
 
and for any 0λ > , this yields 
 

1 1

( , , , ) ( , , , ),
k k

i i i i i i
i i

G u v w q F x y z pλ λ
= =

>∑ ∑  

 
i.e., 

 
( , , , ) ( , , , ).T T

i iG u v w q F x y z pλ λ>  
 
This again contradicts Theorem 1. 

 
Theorem 3. (Converse Duality): Let if  for i ∈ {1, 2, ..., k} 
be thrice differentiable on .n nR R×  Let ( , , , , )x y w qλ  
be properly efficient of  (SVD); fix λ λ=  in (SVP) and 
assume that  
 
(C1): the set 2 2

1 1 1{ ,  ...,  }kf f∇ ∇  is linearly independent 
(C2): the set 2 2 2 2

1 1 1 1 1 1{ ,  ...,  }i k k kf w f q f w f q∇ + + ∇ ∇ + + ∇  
is linearly independent, and 

(C3): 2
1 1( ( ) )T f qλ∇ ∇  is positive or negative definite. 

 
Then ( , , , , 0)x y z pλ =  is feasible of  (SVP), and 

( , , , , ) ( , , , , ).F x y z p G x y w qλ λ=  
Moreover, if  the hypotheses of  Theorem 1 are satisfied 

for all feasible solution of  (SVP) and (SVD), then 
( , , , , )x y z pλ  is a properly efficient of  (SVP). 
 
Proof. It follows on the lines of  Theorem 2. 
 
4. SECOND ORDER MULTIOBJECTIVE SELF 

DUALITY 

In this section, we now prove the following self  duality 
theorem for the primal (SVP) and the dual (SVD). We 
describe (SVP) and (SVD) as the dual programs if  the 
conclusions of  Theorem 2 hold. 

 
Theorem 4. (Self  Duality): Let for i ∈ {1, 2, ..., k}, fi be 
skew symmetric and i iC D= . Then (SVP) is self  dual. If  
also (SVP) and (SVD) are dual programs, and 
( , , , , )x y z pλ  is a joint optimal solution, then so is 
( , , , , )y x z pλ  and ( , , , ) 0.F x y z p =  
 
Proof. Recasting the dual (SVD) as a minimization 
program, we have 
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Minimize 
2

1 1 1 1

2
1

1
( , ) ( | ) ( , )

2
1 ( , ) ( | ) ( , )
2

T T
i

T T
k k k k

f x y s y D x w q f x y

f x y s y D x w q f x y q

 − + − − ∇


− + − − ∇ 


 

Subject to  
2

1 1
1

( ( , ) ( , ) ) 0,
k

i i i i
i

f x y w f x y qλ
=

− ∇ + + ∇ ≤∑  

2
1 1

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

x f x y w f x y qλ
=

− ∇ + + ∇ ≥∑  

0, , 1, 2, ..., ,i iw C i kλ > ∈ =  
0.y ≥  

 
Since if  is skew symmetric, therefore, for each i ∈ {1, 

2, ..., k}, 1 2( , ) ( , ), ( , ) ( , )i i i if x y f y x f x y f y x= − ∇ = −∇  
and 2 2

1 2( , ) ( , )i if x y f y x∇ = −∇ . 
Therefore, the above program becomes, 
 

Minimize          
2

1 1 1 1

2
1

1
( , ) ( | ) ( , )

2
1 ( , ) ( | ) ( , )
2

T T
i

T T
k k k k

f y x s y C x w q f y x

f y x s y C x w q f y x q

 + − − ∇


− + − − ∇ 


 

Subject to  
2

2 2
1

( ( , ) ( , ) ) 0,
k

i i i i
i

f y x w f y x qλ
=

∇ − + ∇ ≤∑  

2
2 2

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

x f y x w f y x qλ
=

∇ − + ∇ ≥∑  

0, , 1, 2, ..., ,i iw D i kλ > ∈ =  
0.y ≥  

 
This is just (SVP). Thus ( , , , , )x y z qλ  optimal for 

(SVP) implies ( , , , , )y x z qλ  optimal for (SVD). By a 
similar argument, ( , , , , )x y z pλ  optimal for (SVP) 
implies ( , , , , )y x z pλ  optimal for (SVD). 

If  (SVP) and (SVD) are dual programs and 
( , , , , )x y z pλ  is jointly optimal, then by Theorem 2, we 
have for each i ∈ {1, 2, ..., k}, 

 
( | ) ( | )  and  0T T

i i i is x C y z s y D x w p q− = − + = =             (33) 
 
For joint optimal solution ( , , , , )x y z pλ , we have for 

each i ∈ {1, 2, ..., k} 
 

2
2

2
1

( , , , , )
1

( , ) ( | ) ( , )
2
1( , ) ( | ) ( , )
2

( , , , , )

i i

T T
i i i i

T T
i i i i

i i

F x y z p

f x y s x C y z p f x y p

f x y s y D x w q f x y q

G x y w q

λ

λ

= + − − ∇

= − + − ∇

=

 

This, in view of  (33) yields, 
 

( , , , , ) ( , , , , ) ( , ) i i i i iF x y z p G x y w q f x yλ λ= =  
for {1, 2, ..., }i k∈                                        (34) 
 
Since ( , , , , )iy x z pλ  is also a joint optimal solution, 

one can show, in a similar manner, that 
 
( , , , , ) ( , ) ( , , , , )i i i i iF x y z p f y x G y x w qλ λ= =  
for {1, 2, ..., }i k∈                               (35) 
 

From (34) and (35), we have 
 

( , , , , ) ( , ) ( , ) ( , )i i i i iF x y z p f x y f y x f x yλ = = = −  
for {1, 2, ..., }i k∈  
 

Therefore, for each i ∈ {1, 2, ..., k} 
 

( , , , , ) 0i iF x y z pλ =  for each i ∈ {1, 2, ..., k}. 
 
That is, 
 

( , , , , ) 0.F x y z pλ =  
 
5. SPECIAL CASES 

If  we choose {0}iC =  and {0}iD =  for each i ∈ {1, 
2, ..., k} and ip  corresponding to each if  instead of  
having ip p= , for each i ∈ {1, 2, ..., k} in the primal 
(SVP) and iq  corresponding to each if  in the dual 
(SVD) instead of  having iq q=  for each i ∈ {1, 2, ..., k}, 
then these programs reduce to the following programs 
without non-negativity constraints, studied by Suneja et al. 
(2003): 

 
Primal (SVP)0:  
 
Minimize 1( , , ) ( ( , , ), ..., ( , , ))k kF x y p F x y p F x y p=  
Subject to  

2
2 2

1

( ( , ) ( , ) ) 0,
k

i i i i
i

f x y f x y pλ
=

∇ + ∇ ≤∑  

2
2 2

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

y f x y f x y pλ
=

∇ + ∇ ≥∑  

0,λ >  
 
and 

 
Dual (SVD): 
 
Maximize 1 1( , , ) ( ( , , ), ..., ( , , ))k kG u v q G u v q G u v q=  
Subject to 

2
1 1

1

( ( , ) ( , ) ) 0,
k

i i i i
i

f u v f u v qλ
=

∇ + ∇ ≥∑  
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2
1 1

1

( ( , ) ( , ) ) 0,
k

T
i i i i

i

u f u v f u v qλ
=

∇ + ∇ ≤∑  

0,λ >   
 
where for each i ∈ {1, 2, ..., k} 
 

2
1

( , , ) ( , ) ( , ) ,
2

T
i i i i i iF x y p f x y p f x y p= − ∇  

1
1

( , , ) ( , ) ( , ) ,
2

T
i i i i i iG u v q f u v q f u v q= − ∇  

 
where 1( ,  ...,  ),kp p p= m

ip R∈  and 1( ,  ...,  )kq q q=  
with ,n

iq R∈ 1( ,  ...,  )T
kλ λ λ=  with .i Rλ ∈  

If  only 0p q= = , then our programs reduce to the 
following pair of  first order Mond-Weir type symmetric 
dual programs. 

 
Primal (VP):  
 
Minimize 1 1( , , ) ( ( , , ), ..., ( , , ))k kF x y z F x y z F x y z=  
Subject to  

2
2

1

( ( , ) ) 0,
k

i i i
i

f x y zλ
=

∇ − ≤∑  

2
2

1

( ( , ) ) 0,
k

T
i i i

i

y f x y zλ
=

∇ − ≥∑  

0, 0,x λ≥ >  
, 1, 2, ..., ,i iz D i k∈ =  

 
and 
 
Dual (VD): 
 
Maximize 1 1( , , ) ( ( , , ), ..., ( , , ))k kG u v w G u v w G u v w=  
Subject to  

2
1

1

( ( , ) ) 0,
k

i i i
i

f u v wλ
=

∇ + ≥∑  

2
1

1

( ( , ) ) 0,
k

T
i i i

i

u f u v wλ
=

∇ + ≥∑  

0, 0,y λ≥ >  
, 1, 2, ..., ,i iw C i k∈ =  

 
where 
 

( , , ) ( , ) ( | ) z
i i i i iF x y z f x y s x C y z= + −  

 
and 
 

( , , ) ( , ) ( | ) .T
i i i i iG u v w f u v s v C u w= − +  

 
For these programs, the duality and self  duality results 

can be proved analogously to those of  the preceding 
sections. 
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