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AbstractIn this paper we develop a search procedure for redundancy optimization of  reliability models. We consider 
those systems where the reliability cannot be evaluated exactly but must be estimated through Monte Carlo simulation. At 
each iteration, two neighboring configurations are compared and the one that appears to be better is passed on to the next 
iteration. The search procedure uses an increasing sequence of  observation at each iteration. The acceptance of  a new 
configuration depends on the iteration number, therefore the search process turns out to be time-inhomogeneous Markov 
chain. We show that if  the increase occurs slower than a certain rate, the search process will converge to the optimal set with 
probability one. The proposed procedure is illustrated through numerical examples of  redundancy optimization for 
reliability systems subject to imperfect fault coverage. 
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1. INTRODUCTION 

The redundancy allocation problem involves the 
determination of  system level configuration to maximize 
system reliability or some other system performance 
characteristic. This problem is known to be NP-hard even 
with the assumption that component failures are 
s-independent. Many researchers have proposed a variety 
of  approaches to solve the redundancy allocation problem 
using, for example, genetic algorithm (Coit and 
Smith(1996)), dynamic programming (Nakagawa and 
Miyazaki (1981)) and integer programming (Gen et al. 
(1990)). Their optimization methods require the 
assumption that system reliability could be found 
analytically. There are two major drawbacks in the analytical 
solution of  system reliability. The first is that the individual 
component reliabilities are assumed to be known, and the 
second is that the component lifetimes are judged to be 
conditionally independent. Therefore, Monte Carlo 
simulation has become the most effective tool for 
performing realistic reliability analysis, because it allows 
accounting for realistic operating aspects such as, 
multi-state systems subject to imperfect fault coverage and 
allowing behavior that precludes analytical solutions. 
Further, simulation may be a more efficient approach for 
high-redundancy situations. 

Consider a network of  n components 1{ ,  ...,  }nC c c=  
with an arbitrary structure function .φ  The indicator 
random variable ( ),    1,  ...,  ,tI i i n=  represents the state 
of  component ci at time t, i.e.,  

 

1   if component  is functioning at time ,
( )

0  if component  is not functioning at time .  
i

t
i

c t
I i

c t


= 


 

 
Let us assume that the lifetime of  the ith component, Ti, is 
a continuous random variable. Then,   ( ) 1,i tT t I i> ⇔ =  
and the reliability of  the ith component at time t is, 

( ) Pr{ ( ) 1}.t tr i I i= =  The state of  the system, or the 
network, at time t is represented by the vector 

{ (1),  ..., ( )}t t tI I I n=  of  component states. The structure 
function φ  is a deterministic binary function of  the 
vector tI  as follows: 
 

1   if the network is functioning at time ,
( )

0  if the network is not functioning at time .  t

t
I

t
φ


= 


 

 
Let τ  be the random variable representing the lifetime of  
the system, then τ φ> ⇔ =  ( ) 1.tt I  For a system with 
configuration s, the reliability at time t is the probability 
that τ > t and can be expressed as, ( ) Pr{ ( ) 1}.t s tR s Iφ= =  

Reliability optimization can be described as the process 
of  determining the optimal design configuration that 
maximizes network reliability. Let {1,  2,  ...,  } S s=  be a 
finite set of  system configurations, then we want to find 
the optimal configurations *s  with maximum values of  

( ) .tR s s S∀ ∈  We will assume that S has multiple optima 
and *S  is the set containing them, i.e., *S  

{ ( ) ( ),  }.t ts S R s R s s S′ ′= ∈ ≥ ∀ ∈  If  there is a unique 

optimum then * *{ },S i=  where *( ) ( )t tR i R j>   ,j S∀ ∈  
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* .j i≠  
A general problem formulation of  redundancy 

optimization of  a system is defined as follows. 
 

max  ( )ts S
R s

∈
                                  (1) 

 
where ( ) Pr{ ( ) 1}t s tR s Iφ= = = Pr{system is functioning at 
time t | configuration s}. 

We focus on the case where the objective function is 
evaluated through simulation. In such a situation, all the 
function evaluations will include noise, so conventional 
(deterministic) optimization methods cannot be used to 
solve this problem. 

Yan and Mukai (1992) present a method for simulation 
optimization. In their approach they compare the 
observations of  the system performance with the 
observations of  a fixed random variable (called a stochastic 
ruler (SR)) whose range covers all possible values of  the 
objective function samples. They show that under fairly 
general conditions the SR algorithm will converge with 
probability one to the global optima. 

Andradottir (1995, 1996) proposes two methods for 
solving discrete simulation optimization. These two 
methods involve generating Markov chains. The state that 
is visited most often by these Markov chains is used as an 
estimate of  the solution. She has shown that these two 
methods converge to an optimal solution almost surely. 

Ahmed et al. (1997) present a heuristic integrated 
approach of  simulated annealing with simulation to 
determine the design parameters of  multi-echelon 
repairable-item inventory system. Ahmed and Alkhamis 
(2002) integrate the method of  simulated annealing with 
ranking and selection  for simulation optimization. 

In this paper we consider the problem of  optimal 
allocation of  components to the various positions in 
systems subjected to imperfect fault coverage where 
uncovered component failures cause immediate system 
failure, even in the presence of  adequate redundancy. Many 
emergency application of  digital systems, especially safety 
oriented systems, that are used in life critical applications 
are often designed with sufficient redundancy to be fault 
tolerant: they are able to detect and locate failures and then 
reconfigure the system in order to minimize the effects of  
faults on the service. However, if  the system cannot 
adequately detect, locate, and recover from a fault, then 
system failure can result even when there exists adequate 
redundancy. Such an uncovered failure, that is, a fault 
which is not covered by the automatic recovery 
mechanisms, leads to global system failure, regardless of  
the state of  the system. As an example, in computing 
systems, an undetected fault may affect the subsequent 
calculations and operations, and then operate on incorrect 
data, possibly leading to overall system failure (Amari et al. 
(1999)). Therefore, an accurate analysis must account for 
not only the complex system-structure, but the system fault 
and error recovery behavior as well. An accurate analysis is 
needed in fixing the optimal level of  redundancy, otherwise, 
an increase in redundancy could decrease the system 

reliability due to imperfect fault coverage (Amari et al. 
(1999, 2004)). 

Amari et al. (2004) study the optimal allocation of  
components to maximize the reliability of  special classes 
of  systems subjected to imperfect fault coverage such as 
parallel, k-out-of-n series-parallel systems. They show that 
the reliability of  systems subjected to imperfect fault 
coverage decreases after a certain level of  redundancy. 
Therefore, there exists an optimal level of  redundancy that 
maximizes the system reliability. 

This paper is organized as follows: Section 2 presents 
problem structure. In section 3, we present our search 
strategy using increasing sample size and prove that it 
converges to the optimal set with probability one. Then in 
section 4, we present computational experience for two test 
cases. Finally, section 5 contains some concluding remarks. 

 
2. PROBLEM STRUCTURE 

In this section we propose a stochastic algorithm for 
solving the discrete optimization problem discussed in 
section 1. Our goal is to find the configuration that has 
maximum reliability  ( ).tR s  Assume = {1,  2,  ...,  }S s  is a 
non-empty discrete finite set of  configurations and the 
search is conducted by picking an initial point in S and then 
comparing a neighboring point according to the following 
definition. 

 
Definition 2.1. For each s S∈  there exists a subset 

( )N s  of  S − {s} which is called the set of  neighbors of  s, 
such that each point in ( )N s  can be reached from s in a 
single transition. 
 
Assumption 2.1. For any pair (i, j) ∈ S × S, j is reachable 
from i, i.e. there exists a finite sequence, 0{ }l

m mn =  for 
some l, such that 

0
,  n ni i i j= =

l
 and 

1
( ),

m mn ni N i
+

∈  
= −l0,  1,  2,  ...,  1.m  
Our search is organized in such a way that the next 

solution candidate is found among the neighbors of  the 
present candidate. Now we impose a stochastic structure to 
the selection of  a candidate among the neighbors by the 
following function Q. Given ∈ ,s S  a candidate is selected 
from ( )N s  such that the probability of  selecting a 
neighbor ( )s N i′∈  is equal to ( , )Q s s ′  which is defined 
as follows. 

 
Definition 2.2. A function Q: S S× → [0, 1] is said to be 
a generating probability function for S and N if   
 
1. ( , ) 0 ( )  andQ s s s N s′ ′> ⇔ ∈  
2. ( , ) 1

s S

Q s s
′∈

′ =∑  for all .s S∈  

 
′( ,  )Q s s  is the probability of  generating solution point 

s ′  as a candidate for the next solution point, when the 
system is in solution point s . We will consider ′( ,  )Q s s  
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such that the probability is distributed uniformly over 
( ).N s  Given ∈ ,s S  a candidate solution is selected 

among ( )N s  such that the probability of  selecting a 
neighbor ( )s N s′∈  is equal to ′( ,  ),Q s s  given by 

 
1/ ( )        for  ( ),

( ,  )
0                   otherwise,

N s s N s
Q s s

′ ∈′ = 


            (2) 

 
where ( )N s  represents the cardinality of  ( ).N s  
 
3. STOCHASTIC ALGORITHM FOR OPTIMAL 

SYSTEM RELIABILITY 

Our goal is to find the solution point that has maximum 
reliability  ( ).tR s  Given we start our search at solution 
point ,i S∈  a candidate j is selected from ( )N i  with 
probability ( , )Q i j  and a move is performed from i to j 
if  φ φ>( ) ( ),j t i tI I  where 

 
1   with probability ( ),

( )
0  with probability 1 ( ),   

t
t

t

 R
I

 R
φ


=  −

l

l
l

for all ∈l S   (3) 

 
At each iteration k a sample of  nk pairs of  observations 

is taken from i and j, φ φ φ φ φ φ1 1 2 2( , ),  ( , ),  ...,  ( , ).i j i j in jn  A 
candidate neighbor  ( )j N i∈  is accepted and a move is 
performed from i to j if  the observations from j dominates 
the observations from i in each pair, i.e. if  

1
( )kn

im jmm
φ φ

=
<∩  occurs, where φ φ

=
<∩ 1

{ }kn
im jmm

 

φ φ φ φ φ φ≡ < ∩ < ∩ ∩ <1 1 2 2( ) ( ) ... ( ).
k ki j i j in jn  Accordingly 

the acceptance probability, ( ),ijA k  the probability of  
accepting solution point j once it is generated from 
solution point i, is defined as follows: 
 

( ) [Pr{ ( ) ( )]

[Pr( ( ) 0,   ( ) 1)]

[(1 ( )) ( )]

k

k

k

n
ij i t j t

n
i t j t

n
t t

A k I I

I I

R i R j

φ φ

φ φ

= <

= = =

= −

              (4) 

 
Define { ,  0,  1,  2,  ...}kX k =  to be the states of  the 

search process at each iteration k where Xk is the current 
state of  the search process at iteration k. The details of  the 
algorithm, Rel-Opt, for finding the configuration with 
optimal ( )tR s  are given below. 

 
Rel-Opt Algorithm: 
1. Select a starting point X0 ∈  S. Let k = 0. Go to 

Step 2. 
2. Given  kX i= , choose a candidate Zk from 

 ( )N i  with probability distribution; 
Pr[ | ]k kZ j X i= = = , ( ).ijQ j N i∈  

3. Given ,kZ j=  generate nk pairs of  independent 
observations from i and j 1 1 i2 2( , ),  ( , ),  ...,i j jφ φ φ φ  

kin( , ).
kjnφ φ  

4. Given ,kZ j=  set               

Xk+1 = 1
    if  { },

  otherwise.

kn
k im jmm

k

Z

X  

φ φ
=

 <



∩  

5. Set k = k +1, update nk as defined in Theorem 3.1. 
Go to Step 2. 

 
The Stochastic process { ,  0,  1,  2,  ...}kX k =  

produced by the above algorithm is a discrete-time 
inhomogenous Markov chain with transition matrices P1, 
P2, ..., where 
 

( )( , 1) ,  ,   k k
k ijP p i j S+= ∈  

1 [(1 ( )) ( )]
| ( )|

kn
t tR i R j

N i
 

= − 
 

, i, j ∈ S.                 (5) 

 
Here ( , 1)k k

ijp +  is the probability of  going from state i at 
time k to state j at time k+1 which depends on k, where 
 

( , 1)
1Pr[ ] ( , ) ( )k k

ij k k ijp X j X i Q i j A k+
+= = = =  

=
( )

1 [(1 ( )) ( )]                  if ( ),
| ( )|

11 [(1 ( )) ( )]      if ,
| ( )|

0                                                        otherwise.

k

k

n
t t

n
t t

l N i

R i  R j j N i
N i

R i  R l j  i
N l∈

 − ∈

 − − =





∑    (6) 

 
3.1 Convergence analysis of  Rel-Opt algorithm 

Convergence analysis for { ,  1,  2,  ...}kX k =  to the 
limit probability vector ,π ∞  where iπ ∞  = 
lim Pr( ),kk

X i
→∞

=  ( i.e., 
*

i
i S

π ∞

∈
∑  = 1 and iπ ∞  = 0 for i ∉ 

* )S  can be proved using the strong ergodicity theory of  
inhomogeneous Markov chains (Isaacson and Madsen 
(1976), Iosifescu (1980)). To prove ergodicity we need the 
following definitions: 

 
Definition 3.1. Let P be a stochastic matrix. The ergodic 
coefficient of  P, denoted by α(P), is defined by α(P) 

, 1

min  min  ( , ).ij kji k j

p p
∞

=

= ∑  

 
Definition 3.2. A finite inhomogeneous Markov chain is 
weakly ergodic if  ,  ,  ,  0,i j S m∀ ∈ ∀ >l  

( , ) ( , )lim( ) 0,m k m k
il jlk

p p
→∞

− =  where ( , )m k
ijp  is the (i, j)th 

element of  .
k

r
r m

P
=

∏  

 
Definition 3.3. A finite inhomogeneous Markov chain is 
strongly ergodic if  there exists a stochastic vector * ,q  
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such that ( , ) *, ,  0 :  lim .m k
il jk

i j S m p q
→∞

∀ ∈ ∀ > =  

It is usually difficult to show that an inhomogeneous 
Markov chain is strongly ergodic directly from the 
definition. In the next  section, we first show that the 
search process { ,  0,  1,  ...}kX k =  is weakly ergodic. 
 
3.2 Weak ergodicity of  Rel-Opt algorithm 

If  0 < ( )tR i  < 1, then 0 < Aij(k) < 1; therefore all 
states will communicate if  they are connected by 
neighborhoods. Assume for any i, j ∈ S = {1, 2, ..., s} there 
exists a path say, {i = i0 → i1 → i2 → ... → il−1 → il = j}  
such that 1  ( ),m mi N i+ ∈  m = 0, 1, ..., .l  Let L = 

,,
max{ }i ji j

l where ,i jl  = minimum length path from i to j. 

For fixed sample size n, the transition probability pij is given 

by 
1

[(1 ( )) ( )]
| ( )|

n
ij t tp R i R j

N i
= −  for j ∈ ( ).N i  Let 

LP denotes the L-step transition matrix. Now we find a 
bound on all the off-diagonal elements of  .LP  

 
Lemma 3.1. For PL based on sample size n, all the 
off-diagonal elements are ≥ nξ and ( ) ,L nP Sα ξ≥  

where ξ = 
( )

−

=

−∏
1

0

1 [(1 ( ))].
l

t m
m m

R i
N i

 

 
Proof.  

0 1 1{  ... }P path i i i i i j−= → → → → =l l  
1

1
0

1
[(1 ( )) ( )]

( )

l
n

t m t m
m m

R i R i
N i

−

+
=

= −∏  

1

11
0

0

1
 (1 ( )) ( )

| ( )| 

n

t m t m
m

m
m

R i R i
N i

−

+−
=

=

 
= − 

 
∏

∏

l

l  

1
0

1 [(1 ( ))(1/4) ( )]
[max| ( )|]

l n
t t ll

i

R i  R i
N i

−≥ −   

(because (1 ( )) ( )t tR i  R i−  > 1/4) 

min(1 ( ))(1/4) min ( )

[max| ( )|]

nL
t ti i

L

i

R i R i

N i

 −
 ≥
  

 = [ ] 0.nξ >  

 
Because 0 < ( )tR i s′  < 1 and |S| < ∞, min ( )tR i  and  
min(1 − ( )tR i ) exist. By definition 3.1 it follows that 

( ) .L nP Sα ξ≥  
 
Theorem 3.1. Let the sample size at iteration k, nk, satisfy 

1

log(1  )
1 ,

log( )

k
L

kn trunc
ξ

 +
≤ + 

  
 for k = 0, 1, … , where trunc 

[x] denotes the greatest integer smaller or equal to x, then 
the Markov chain {Xk} generated by search Rel-Opt 
Algorithm using these nk is weakly ergodic. 
 

Proof. A Markov chain for which 1( , )

0

( )j jn n

j

Pα +
∞

=
∑  diverges 

for some sequence 1 2 1 ...  ...j jn n n n +< < < < <  is weakly 
ergodic (Isaacson and Madsen (1976)). Consider  the 
sequence ni = (i − 1)L, i = 1, 2, 3, ... Let k(n) denote the 
number of  iterates which sample at size n in multiplies of  

L. Then 1( , )

0

( )j jn n

j

Pα +
∞

=
∑  = 

1

( ) (( ) )L

n

k n Pα
∞

=
∑  ≥ 

1

( )| | n

n

k n S ξ
∞

=
∑  = ∞, if  ( )  (1/ ) .nk n ξ≥  

Therefore the series diverges if  ( )  (1/ ) .nk n ξ≥  To 
find the condition on the sample size at each iterate such 
that the series diverges, we proceed as follows. Let Bi, i ≥ 2 
denote the total number of  iterates in multiples of  L 

performed with sample size ≤ (i − 1), i.e., Bi = 
1

1

( ).
i

n

k n
−

=
∑  

Assume that Bi ≥
11

1

1

1 ( )
( ) 1.

1

ii
j

j

ξ
ξ ξ

−

=

−
= −

−∑  Then 1 + Bi ≥ 

1
11

1

1 ( )
( ) ,

1

i
iξ

ξ
ξ

−−
≅

−
 log(1+Bi) ≥ 1( 1) log( ),i ξ−  i ≤ 

1

log(1 )
1 .

log( )
iB

ξ

+
+  Since iterates are measured in units of  L, 

for individual iterates we have nk ≤ 
1

log(1 )
1 ,

log( )

k
L

ξ

+
+  where 

ξ = 
min(1 ( ))(1/ 4) min ( )

.
[max| ( )|]

L
t ti i

L

i

R i R i

N i

 −
 
  

 In words, if  the 

sample size in Rel-Opt Algorithm increases slower than nk 

= trunc 
1

log(1 )
1 ,

log( )

k
L

ξ

 +
+ 

  
 then the search process {Xk} is 

weakly ergodic. 
 
3.3 Strong ergodicity of  Rel-Opt algorithm 

As in the case of  weak ergodicity, it is usually difficult to 
show that an inhomogeneous chain is strongly ergodic 
directly from the definition. In this section, we show that 
the search process generated by Rel-Opt Algorithm is 
strongly ergodic. For a fixed sample size n, the search 
process { ,  0,  1,  ...}kX k =  becomes a time 
homogeneous Markov chain since the state transition 
probability pij becomes independent of  k. In this case the 
equilibrium probabilities are (Ahmed et al. (1998)): 
 

( )i nπ =
| ( )|[ ( )/(1 ( ))]

( ) [ ( )/(1 ( ))]

n
t t

n
t t

j S

N i R i R i
N j R j R j

∈

−
−∑

 i = 1, 2, ..., s              (7) 

 
To prove the strong ergodicity of  the Markov chain 

associated with Rel-Opt Algorithm, we have to prove the 
following two Lemmas. 
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Lemma 3.2. (Monotone property of  the equilibrium 
probabilities). For a sequence of  probability vectors ( ),nπ  
of  the form  
 

( )i nπ = 
| ( )|[ ( )/(1 ( ))]

( ) [ ( )/(1 ( ))]

n
t t

n
t t

j S

N i R i R i
N j R j R j

∈

−
−∑

 i = 1, 2, ..., s.  

 
The following hold, 
 
1. For each * ,i S∉  if  n n′<  then ( ) ( ),i in nπ π ′≤  
2. For each * ,i S∉  there exists an integer ni such that if  

 in n n′≤ <  then ( ) ( ).i in nπ π ′≥  
 
Proof. Our proof  follows the proof  of  Proposition 6.1 in 

Yan and Mukai (1992). Consider 
1

( )
S

n n
i i i j j

j

n a b a bπ
=

= ∑  as 

a function of  a real variable n, where ai = ( )N i , and bi 
= ( )/(1 ( )).t tR i R i−  Then ( )i nπ  is differentiable with 

respect to n. Noting d
d

n

n
α  = lnnα α  then, we have, 

 

1 1

2

1

 

1

2

1

1

2

1

ln ( ln )
d ( )

d

( ln ln )

[ (ln ln )]

s s
n n n n

j j i i i i i j j j
j ji

s
n

j j
j

s
n n n

i i j j i j j j
j

s
n

j j
j

s
n n

i i j j i j
j

s
n

j j
j

j j

a b a b b a b a b b
n

n
a b

a b a b b a b b

a b

a b a b b b

a b

a b

π = =

=

=

=

=

=

   
−   

   =
 
 
 

  − 
  =

 
 
 

  − 
  =

 
 
 

=

∑ ∑

∑

∑

∑

∑

∑

* *

* *

1

2

1

2 2

ln( )

/

ln( ) ln( )

1 1
( ) ( )

ns
i

n
j i i j

s
n n

j j i i
j

n n
j j j ji i

n n
j S j S Si i j i i j

n n
j j j jn n

j S j S Si i i i

b
a b b

a b a b

a b a bb b
a b b a b b

a b a b
a b a b

=

=

∈ ∈ −

∈ ∈ −

 
 
 

+

=
+

∑

∑

∑ ∑

∑ ∑
 

 
Suppose that * .i S∉  Then ( ) ( )t tR i R j>  for all *i S∉  

and * .j S∉  Therefore 
( ) ( )

,
1 ( ) 1 ( )

t t

t t

R i R j
R i R j

>
− −

 i.e., bi > bj, 

so that 
d ( )

 > 0
d

i n
n

π
 for any n > 0. This implies 

conclusion (1). Suppose that * ,i S∉  then ( ) ( )t tR i R j<  
for all * .i S∉  In this case as n goes to infinity the first 
term of  the numerator decreases monotonically to zero, 
while the second term monotonically decreases to .−∞  
On the other hand the first term of  the denominator 
decreases to zero, while the second term increases 
monotonically to +∞ as n goes to infinity. Therefore, there 

exists a real ni such that 
( )

<0id n
dn

π
 for any n ≥ ni. This 

implies conclusion (2). 
 
Lemma 3.3. The probability vector ( )nπ consisting of  

( )i nπ  in (7) satisfies 1
1

( ) ( )  ,k k
k

n nπ π
∞

+
=

− < ∞∑  where 

v  represents the l1- norm of  vector v, i.e., 
1

s

i
i

v v
=

= ∑ . 

 
Proof. (Yan and Mukai (1992)). It follows from the 
monotone property of  πi that there exists an integer *k  
such that, for any * ,k k>  
 

1( ) ( )i k i kn nπ π ′+ ≥ *i S∀ ∈  

1( ) ( )i k i kn nπ π ′+ ≤ *i S∀ ∉  

 
Hence, for any * ,k k>  
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* *

1

1 1
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( ) ( ) ( ) ( ) .
k k

i k i k i k i k
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π π

π π π π
+

+ +
∈ ∉

−

= − − −∑ ∑  

 
Note that from 

* *

( ) ( ) ( ) 1i k i k k
i S i S

n n nπ π π
∈ ∉

+ = =∑ ∑ , we 

conclude that, for any * ,k k>  
 

1( ) ( )k kn nπ π+ −  = 
*

12 ( ) ( ) .i k i k
i S

n nπ π+
∈

 − ∑  

 
Therefore, we have, for any * ,k≥l  
 

*

*
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1

1 1
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π π π

+
=
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Theorem 3.2. Let nk be as defined in Theorem 3.1. Then 
the Markov chain {Xk} generated by Rel-Opt Algorithm is 
strongly ergodic. Furthermore, *lim Pr( ) 1.kk

X S
→∞

∈ =  

 
Proof. It follows from Theorem 3.1 that the Markov chain 
{Xk} is weakly ergodic. Then, using Theorem V.4.3. of  
(Isaacson and Madsen (1976)) the Markov chain {Xk} is 
strongly ergodic. 
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4. EXPERIMENTAL RESULTS 

As stated before, Monte Carlo simulation allows 
accounting for realistic systems without simplified 
assumptions i.e., allowing behavior that preclude analytical 
solutions. In this section we implement Rel-Opt Algorithm 
for two test cases to find the optimal redundancy levels 
that maximize system reliability subject to imperfect fault 
coverage. We choose test case 1 where analytical solutions 
exist, so that we can easily compare the simulation 
optimization results with the analytical results. These test 
cases have been adapted from examples provided by Amari 
et al. (1999, 2004). 

It is well known that for the precise Monte Carlo 
evaluation of  a highly reliable system, the crude Monte 
Carlo requires a very large number of  simulations. 
Therefore, in order to reduce the number of  Monte Carlo 
runs, a variance reduction technique should be used. In this 
paper, we implement the geometric sampling technique 
developed by Konak et al. (2004). This is a new 
event-driven sampling technique for network reliability 
estimation. It provides variance reduction with minimum 
overheads and is most effective for highly reliable network. 
 
4.1 Test case 1 

4.1.1 R-out-of-m systems 

Consider an r-out-of-m system with m i.i.d components 
where the system functions if  and only if  at least r of  the 
m components function. Let p denote component reliability 
and cp  denote the probability that the system can recover 
given a fault has occurred. Furthermore, assume that p and 

cp  are given as fixed probabilities. We apply the 
simulation optimization procedure for two systems with r 
= 1, 2. 

Table 1 presents the parameters used for the above 
systems with the optimal solutions obtained by Rel-Opt 
Algorithm and the analytical solutions. On the kth iteration 
with configuration i, and a candidate configuration j, we 
simulate the system for t units of  time and let ( ),l tIφ  l = i, 
j, be the indicator random variable that takes the value 1 if  
the system is functioning at time t and zero otherwise. For 
our search strategy, we let nk grows at a slow rate. Figure 1 
shows the performance of  our algorithm when it is applied 
to solve the above systems. The x-axis shows the number 
of  iterations that were used in our simulation, while the 
y-axis shows the average estimated optimal reliability value 
at the estimated optimal solution based on 100 replications. 
The optimal redundancy levels that maximize system 1 and 
2 reliabilities are 3 and 7 with corresponding system 

reliabilities equal to 0.984 and 0.989, respectively. The 
convergence trajectories shown in Figure 1 indicate that 
our algorithm converges to the optimal values. 

 
4.1.2 Series-Parallel system with non s-identical 

components 

The redundancy allocation problem considered here 
pertains to a series-parallel system with non s-identical 
components subjected to imperfect fault-coverage. It is 
assumed that there exists m parallel subsystems connected 
in series. For each subsystem, the reliability of  each 
component and the fault coverage are denoted by pi and pc,i, 
respectively. The objective is to find the optimal number of  
components in each subsystem simultaneously which 
maximize the overall system reliability. 

We implement Rel-Opt Algorithm to this optimization 
problem with the following parameters: m = 2, p1= 0.9, p2 
= 0.75, pc,1 = 0.9, and pc,2 = 0.95. Using Rel-Opt Algorithm, 
the optimal number of  components in subsystem 1 and 2 
are 2 and 3, respectively with system reliability equal to 
0.923 which are the same as the analytical solution. 
 
4.2 Test case 2: Bridge network 

Suppose we have a bridge network consisting of  5 
subsystems where the subsystems are not identical. All 
subsystems are designed with components in a r-out-of-m 
configuration. The objective is to select the level of  
redundancy in each subsystem simultaneously to maximize 
the overall system reliability. Figure 2 presents a typical 
example of  the system configuration being considered. 

Table 2 shows the input parameters of  the problem. 
Note that mmin is the lower bound for the level of  
redundancy in each subsystem. Finding the set of  optimal 
number of  components in each subsystem is an NP-hard 
problem. With exhaustive searching, the optimal vector for 
maximizing system reliability is (3, 5, 2, 5, 2) and the 
corresponding system reliability is 0.999. We let nk grows at 
a slow rate and applying our search algorithm, the optimal 
redundancy levels that maximize system reliability are (3, 5, 
2, 5, 2) with corresponding system reliability equal to 0.999 
which are the same as the exhaustive search results. 

Figure 3 shows the performance of  Rel-Opt Algorithm 
when it is applied to solve the above systems. The x-axis 
shows the number of  iterations that were used in our 
simulation, while the y-axis shows the average estimated 
optimal reliability value at the estimated optimal solution 
based on 100 replications. The convergence trajectories 
shown in Figure 3 indicate that our algorithm converges to 
the optimal value after about 700 iterations. 

 
Table 1. System parameters and optimal solution for test case 1 

System p pc r m 
( analytical solution) 

m  
(Rel-Opt algorithm) 

1 0.90 0.950 1 3 3 
2 0.75 0.995 2 7 7 
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Table 2. System parameters 
Subsystem r mmin p pc 

S1 2 3 .95 .9999 
S2 3 3 .995 .9999 
S3 2 2 .99 .9995 
S4 3 4 .995 .9999 
S5 2 2 .99 .999995 
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Figure 1. Performance of Rel-Opt algorithm for test case 1 (r-out-of m systems). 

 

 
Figure 2. A bridge structure. 
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Figure 3. Performance of  Rel-Opt Algorithm for test case 2. 
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5. CONCLUSION 

We have presented an efficient search method for 
finding the optimal allocation of  system components that 
maximize system reliability subject to imperfect fault 
coverage. We considered systems where reliability cannot 
be obtained analytically and has to be estimated through 
Monte Carlo simulation. In each iteration, two neighboring 
configurations are compared and the one that appears to 
be better is passed on to the next iteration. The search 
procedure uses an increaseing sequence of  observation at 
each iteration. We show that if  the increase occurs slower 
than a certain rate, the Markov chain is strongly ergodic 
and that the search process converges to the optimal set 
with probability one. Computational experience shows the 
efficiency of  the proposed search method. 
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