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AbstractGovernment agencies and commercial organizations that report data face the task of  representing the data 
meaningfully while simultaneously protecting the confidentiality of  critical data components. The challenge is to organize 
and disseminate data in a form that prevents these components from being unmasked by corporate espionage, or falling 
prey to efforts to penetrate the security of  the information underlying the data. Unscrupulous data investigators could use 
unprotected data sources to infer sensitive, personal data about individuals. Besides harming individuals, these types of  
disclosures can drastically affect the willingness of  future respondents to provide valuable data. Controlled tabular 
adjustment is a recently developed approach for protecting sensitive information by imposing a special form of  statistical 
disclosure limitation on tabular data. The underlying model gives rise to a mixed integer linear programming problem 
involving both continuous and discrete (zero-one) variables. In this paper we develop new hybrid heuristics and a new 
meta-heuristic learning approach for solving this model, and compare their performance to previous heuristics and to an 
exact algorithm in the ILOG-CPLEX software. Our new approaches are based on partitioning the problem into its discrete 
and continuous components, and first creating a hybrid that reduces the number of  binary variables through a grouping 
procedure that combines an exact mathematical programming model with constructive heuristics. Finally, we introduce a 
new metaheuristic learning method that significantly improves the quality of  solutions obtained. 
KeywordsConfidentiality, Mixed integer, Optimization, Metaheuristics, Adaptive learning, Mathematical programming, 
Evolutionary computation 
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1. INTRODUCTION 

Data confidentiality is an essential component of  
statistical surveys, for three reasons. The first reason 
applies primarily to surveys conducted by government and 
can be described as regulatory. In particular, laws and 
government regulations pertaining to a particular survey or 
to the agency collecting the data require that responses 
provided to the survey be held confidential by the agency. 

The second reason is that confidentiality protection is 
regarded as ethical statistical practice and appears specifically 
in the Codes of  Ethical Conduct of  the International 
Statistical Institute, the American Statistical Association, 
and other statistical organizations. 

The third reason is practical. Respondents would not 
respond, or at least not as completely and truthfully as they 
might otherwise, if  they did not have faith in the intent and 
ability of  the data collector to preserve confidentiality.  

The need to safeguard the confidentiality of  statistical 
data presents a monumental task, and government agencies 
such as the U.S. Bureau of  the Census and the U.S. 

National Center for Health Statistics that regularly report 
data must wrestle with this problem on a continuing basis. 
Inadvertent disclosure of  sensitive corporate information 
could cost a large commercial enterprise financially and in 
other ways. At the same time government reporting 
agencies are duty-bound to provide figures that convey 
meaningful, accurate information about the state of  our 
national economy and its component industries and sectors. 
Consequently, the confidentiality problem looms as a major 
challenge with far-reaching consequences.  

The purpose of  this paper is to propose a new method 
for solving controlled tabular adjustment problems 
computationally. To understand the nature and impact of  
our contribution, some background terminology is 
necessary. In tabular data, a cell is considered sensitive if  the 
publication of  the true cell value is likely to disclose a 
contributor’s data to the public or a competitor. For 
example, in an economic survey, if  a cell contains data 
from one respondent, then publication of  the cell value 
would disclose confidential data pertaining to a single 
respondent. As identities of  companies in individual cells 
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are publicly available, this would breach the pledge of  
confidentiality made to the company by the statistical 
office collecting the data. Similarly, if  the cell contains data 
from two respondents, or if  the cell total is dominated by 
the contributions of  two respondents, then either 
respondent could subtract its own contribution from the 
cell value to obtain a narrow estimate of  the other’s 
contribution.  

Confidentiality protection for tabular data is based on 
assuring that all released tabular cells satisfy an appropriate 
disclosure rule (see JSPI (1981), Doyle et al. (2001), 
Willenborg and de Waal (1996), Willenborg and de Waal 
(2001)). Cells failing to satisfy the rule (sensitive cells) are 
assigned protection ranges defined by lower and upper 
bounds on the true cell value computed from the 
disclosure rule. Published or derived estimates of  the 
original values of  sensitive cells that lie within the 
protection range are considered unacceptable.  

Different procedures have been used by statistical 
offices to protect confidentiality of  sensitive cells in tabular 
data. The most often used method is complementary cell 
suppression (see Cox (1980), Kelly et al. (1992), Fischetti 
and Salazar (1999), Fischetti and Salazar, (2000)). The 
complementary cell suppression method suppresses both 
primary (sensitive) and secondary (nonsensitive) cells to 
protect the confidentiality of  the sensitive cells. Although 
suppression is widely used, it has serious limitations. 
Complementary cell suppression is an NP hard problem 
(Kelly et al., 1992), typically involving extremely large 
numbers of  binary variables. An even more significant 
limitation of  this commonly used approach is that it 
produces tables that are generally difficult to analyze by 
standard methods and even, in some cases, by advanced 
methods. 

To overcome the limitations of  complementary cell 
suppression we propose new methods that are designed to 
exploit the model called Controlled Tabular Adjustment 
(CTA) which affords an opportunity to overcome many of  
the problems associated with traditional cell suppression 
and perturbation methods. CTA introduces controlled 
perturbations (adjustments) into tabular data that satisfy the 
protection ranges and tabular constraints (additivity) while 
minimizing data loss as measured by one of  several linear 
measures of  overall data distortion, such as the sum of  the 
absolute values of  the individual cell value adjustments. 
CTA replaces each sensitive cell by either of  the two 
endpoints of  its protection range. These values are the 
minimally safe values. Selected nonsensitive cell values are 
then adjusted from their true values by small amounts to 
restore additivity. Additionally, nonsensitive cell 
perturbations are constrained to be small or insignificant, 
such as limiting them to be within sampling variability, and 
cell values for which adjustment is deemed undesirable can 
be held fixed. Cox (ASA, 2000) provides a mixed integer 
programming formulation for CTA; Danderkar and Cox 
(2002) consider elementary heuristics. 

The empirical evaluations of  methods for CTA 
conducted in this paper begin by comparing heuristic 
procedures proposed by Danderkar and Cox (2002) to the 

commercial CPLEX solver. These analyses disclose both 
useful features and significant limitations of  these 
approaches (including severe limitations to CPLEX as 
problem size increases to dimensions often encountered in 
practice). This leads to our development and analysis of  
two new alternative methods embodying strategies of  
grouping and evolutionary scatter search, which prove 
more powerful than the previous heuristic approaches. 
Scatter search offers particular advantages by running far 
more efficiently than CPLEX, and significantly extending 
the size of  problems that can be addressed, yet still 
encounters limitations shared with its predecessors in 
generating solutions of  high quality. Finally, we develop a 
new metaheuristic learning method that performs far more 
effectively than all of  the other methods and provides a 
reliable and efficient approach for producing high quality 
solutions for problems of  practical size. 

Our development is organized as follows. Section 2 
presents the mixed integer/continuous optimization model 
for CTA. Section 3 describes numerical tests using the 
heuristic approaches suggested by Danderkar and Cox 
(2002), including an examination of  multiple objective 
functions and an evaluation of  their impact on the CTA 
process. Section 4 describes a new hybrid heuristic, based 
on reducing the number of  binary variables through 
grouping and combining the exact CPLEX solution 
approach with principles embodied in the heuristics.  

Section 5 introduces the metaheuristic learning 
algorithm that produces additional improvement by 
dramatically enhancing the quality of  solutions obtained. 
Section 6 summarizes our findings. 
 
2. MATHEMATICAL FORMULATION FOR 

OPTIMAL CONTROLLED TABULAR 
ADJUSTMENT 

The objective of  synthetic tabular data is to closely 
mimic the original data, subject to obscuring sensitive cell 
values to a sufficient extent. By setting sensitive values to 
minimally safe values and constraining adjustments both 
locally (individual cells) and globally (overall measure of  
distortion), controlled tabular adjustment is aimed at 
replacing original data by data that are comparable from a 
data analysis perspective. Cox and Danderkar (2004) 
provide approaches for preserving data accuracy and ease 
of  use. Extensions that address statistical data analytic 
issues directly are presented in Cox and Kelly (2004) and 
Cox et al. (2004).  

The underlying concept of  CTA is simple: The value of  
each sensitive cell is replaced by an adjusted value selected to 
be at a safe distance from the original value. Danderkar and 
Cox (2002) suggest minimal adjustment, viz., to either the 
sensitive cell’s lower or upper protection limit. Some or all 
nonsensitive cell values are then adjusted from their true 
values by small amounts to restore additivity to totals 
within the tabular system. 

Within this framework, adjustments to nonsensitive cell 
values can be controlled in various ways. Selected 
nonsensitive cells, e.g., certain zero cells or totals, can be 
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exempt from change through imposition of  capacity 
constraints. Capacities are also used to confine nonsensitive 
adjustments to within meaningful limits such as sampling 
variability or total measurement error. One of  several 
linear objective functions can be used to measure and 
assure minimum deviation. Some approaches, not 
discussed here, do not strictly adhere to the use of  
minimally safe values, replacing sensitive values by “safer” 
values (Cox and Kelly (2004)) or by “less safe” values based 
on enhanced protective capabilities of  CTA (Cox and 
Danderkar (2004)). 

Tabular data systems can be represented by their system 
of  linear equations in matrix form: Ax = 0. Column vector 
x represents the tabulation cells of  the system; x* 
represents the original data. Matrix A is the aggregation 
matrix representing the tabular structure among the cells. 
The entries of  A are −1, 0 or +1; each row of  A 
corresponds to one aggregation (tabular equation) in which 
“+1” denotes a contributing internal cell and “−1” a total 
(marginal) cell. Hence, there is precisely one “−1” per row. 
The mathematical structure of  optimal synthetic tabular 
data is specified below by a mixed integer linear 
programming (MILP) formulation, containing binary and 
continuous variables, analogous to that introduced in ASA 
(2000). 

Notation: i = 1, ..., p: denotes the p sensitive cells; i = p + 
1, ..., n: denotes the n−p nonsensitive cells; bi = a binary 
(zero/one) variable denoting selection of  the lower/upper 
limit for sensitive cell i = 1, ..., p; li = lower deviation 
required to protect sensitive cell i = 1, ..., p; ui = upper 
deviation required to protect sensitive cell i = 1, ..., p; +

iy  
= a nonnegative continuous variable identifying a “positive 
adjustment” for the gap to cell value i; −

iy  = a 
nonnegative continuous variable identifying a “negative 
adjustment” for the gap to cell value i; UBi, LBi = 
upper/lower cell bounds on change to cell i; ci = cost per 
unit change in cell i. 

MILP for Optimal Controlled Tabular Adjustment  
 

1

( )
n

i i i
i

Min c y y+ −

=

+∑                             (1) 

Subject to: 
For i = 1, ..., n:  

( ) 0A y y+ −− =                               (2) 
0 i iy UB+≤ ≤                                  (3) 
0 i iy LB−≤ ≤                                  (4) 
For i = 1, ..., p:  

i i iy u b+ =                                     (5) 
(1 )i i iy l b− = −                                 (6) 

 
After solving the MILP, the synthetic tabular data t = (ti) 

is: ∗ + −= + − .i i i it x y y  Eq. (1) is the objective function, 
which minimizes the cost due to cell deviations. Two linear 
cost functions are commonly used, usually defined over 
deviation variables + −+ .i iy y  The first involves coefficients 

ci = 1 corresponding to minimizing the distortion measure 
“total absolute adjustment,” and the other ∗= 1/ ,i ic x  
corresponding to minimizing total percent absolute 
adjustment. CTA perturbs the sensitive cells until they are 
safe, i.e. sensitive cell values are sufficiently far from their 
original values. This creates inconsistency in the tabular 
system, as sums are no longer maintained. Eq. (2) 
maintains tabular consistency. Eqs. (3) and (4) are used to 
constrain the non-sensitive cell deviations. Usually, the 
upper bounds are computed using the estimated 
measurement errors for non-sensitive cells. Eqs. (5) and (6) 
ensure that the sensitive cells are set at their safe values. 
This is achieved by setting these cells at either their lower 
or upper protection limits. The protection limits for the 
cell include the minimum amount, which must be added or 
subtracted from the true value to make the sensitive cells 
“safe”. Cox (1980) (and in Doyle et al. (2001)) discusses 
protection limits theory in detail. It can be noted that CTA 
offers increased protection from disclosure attack because 
in CTA the sensitive cells are not highlighted and are 
replaced with a value. More importantly, sensitive cells are 
set at either their lower or upper limits. The intruder has no 
idea about the direction of  perturbation.  

It is possible that the CTA gives rise to an infeasible 
problem if  the number of  sensitive cells in a particular row 
or column is large. The sensitive cell constraints in the 
model can be relaxed in the following manner to virtually 
eliminate these types of  problems. 
 

i i iy u b+ ≥                                        (7) 
_ (1 )i i iy l b≥ −                                  (8) 

 
Consider the following example, which illustrates how 

the mathematical programming formulation can be used to 
protect the sensitive cells in a 2-dimensional table as shown 
in Table 1. Cells (3, 1), (1, 2), and (3, 2) shown in bold have 
been identified as sensitive cells and the associated 
protection limits are shown in the brackets. The upper and 
lower bounds for the non-sensitive cells are set at 20% of  
the original cell value. Table 2 shows the tabular data after 
solving the mathematical program. Cells with ∗ indicate 
that they have been adjusted. 

The foregoing MILP formulation can only be solved to 
optimality for very small problems. As we show, the 
CPLEX solver for MILP problems requires an excessive 
amount of  time to solve a problem of  size no larger than 
10 × 10 × 20. 
 
 

Table 1. Tabular data before CTA 
74 17[0, 37] 85 176 
71 51 30 152 

1[0, 21] 9[0, 29] 36 46 
146 77 151 374 
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Table 2. Tabular data after CTA 
75* 0* 85 160* 
71 51 30 152 
0* 29* 36 65* 

146 80* 151 377* 
 
3. EARLIER PROPOSED HEURISTICS AND 

PRELIMINARY NUMERICAL TESTING 

We first examine the simple heuristic methods proposed 
earlier for the CTA problem and evaluate their 
effectiveness relative to a set of  2- and 3-dimensional test 
tables. The test problems include tables with varying 
attributes. Forty-four 2-dimensional and six 3-dimensional 
tables are randomly generated using the following 
specifications: 
 

2-dimensional tables range in size from 4 × 4 to 25 × 25. 
3-dimensional tables range in size from 5 × 5 × 2 to 5 × 
5 × 7. Data values for internal tabular entries range from 
0 to 1000 and are selected from a uniform distribution. 
10% of  the internal entries are selected randomly 
(uniformly distributed) and are assigned a value of  0. For 
the 2-dimensional tables, two sets of  tables are generated. 
The first set has 10% of  the internal entries defined as 
sensitive. The second set has 30% of  the internal entries 
defined as sensitive. The sensitive cells are distributed 
randomly (uniform) throughout the table. Marginal or 
sum cells are not defined as sensitive. For the 
3-dimensional tables, 30% of  the internal entries are 
defined as sensitive. The sensitive cells are distributed 
randomly (uniform) throughout the table. Marginal cells 
are not defined as sensitive. Sensitive entries must be 
assigned a value 20% greater than the original value or 
20% smaller than the original value. All nonsensitive cells 
modified to values within 20% of  their original values. 

 
For 2-dimensional tables, the coefficient matrix is 

unimodular when the sensitive entries are integer and 
consequently nonsensitive entries are automatically 
assigned to integer values. Solutions for 3-dimensional and 
other tables can exhibit fractional entries in nonsensitive 
cells. Integer values are often preferred for cosmetic 
purposes, and a typical and simple way to deal with this is 
to round fractional internal entries to their nearest integer 
and recompute totals. 

For each method tested, an objective function that 
minimizes the sum of  the absolute changes is used. The 
methods are summarized below: 

 
l The ILOG CPLEX 8.1 Optimizing (Exact) Solver 
l Random Heuristic: Sensitive entries are set to either their 

low value or high value with 0.5 probability. The 
nonsensitive entries are computed using a linear 
programming formulation. The simulation is run 100 
times and the results are analyzed for worst, mean 
(average), and best case performance. In practice, the 
Best Random case is selected. 

l Ordered Heuristic: Sensitive entries are ordered from 
smallest to largest value. Adjusted sensitive data values 
are assigned by alternating between the low value and 
the high value of  the sensitive cell while moving 
through the ordered list. The one exception is when a 
cell value equals one or more of  its corresponding 
totals, in which case both are assigned the same 
direction. The nonsensitive entries are computed using 
a linear programming formulation to evaluate the 
nonsensitive cells. 

 
To evaluate the performance of  the Random and 

Ordered heuristics, the results are compared to the optimal 
solutions found using the Branch & Bound procedure. 
Percent Error equals: 100% × (Heuristic Objective − 
Optimal Objective)/Optimal Objective 

Figure 1 displays the results obtained for 2-dimensional 
tables that contain 10% sensitive entries. The figure shows 
results for tables ranging in size from 4 × 4 to 25 × 25. 
There is a single curve for the Ordered heuristic and three 
curves for the Random heuristic. The curves for the 
Random heuristic provide mean, worst, and best solutions 
found during the 100 simulations. 

Figure 1 shows that Best Random performed best 
among the heuristics, but produces solutions that are far 
from optimal. It is interesting to note that the Ordered 
heuristic method produces solutions of  similar quality to 
the mean Random result. Finally, it appears that error 
increases slightly with table size. 

Next, 2-dimensional tables with 30% sensitive entries 
were processed. Except for the errors being larger, the 
results are analogous to those found for the tables with 
10% sensitive entries. The relative changes for the 30% 
sensitive cell tables are also very similar to those found for 
the 10% sensitive cell tables, and thus are not included. 

Figure 2 shows results for 3-dimensional tables ranging 
in size from 5 × 5 × 2 to 5 × 5 × 7 and containing 30% 
sensitive entries. The results that are obtained are very 
similar to the results obtained for 2-dimensional tables. 

The results of  evaluating previously proposed heuristics 
for controlled tabular adjustment support the following 
observations: 

 
l The Best Random solution obtained over 100 

Random executions was shown to be superior to the 
best solution from the Ordered Heuristic in most 
cases; 

l When objective function values were considered, the 
performance of  all of  the heuristics was poor, having 
errors in excess of  50%; 

l As would be expected, for these problems of  
significantly limited size, the CPLEX solver produces 
optimal solutions in reasonable amounts of  time. 

 
These results confirm that the exact solution approach 

works better than the heuristic approaches for small 
problems, but unfortunately CPLEX cannot be used to 
solve large problems due to consuming excessive amounts           
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Figure 1. Comparison of  heuristics on 2-dimensional tables based on percent error. 
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Figure 2. Comparison of  heuristics on 3-dimensional tables based on average percent error. 

 
of  computation time. We hypothesize that the earlier 
heuristic methods evaluated here suffer because finding a 
feasible set of  binary variables may be very hard, 
particularly for problems that have large numbers of  
sensitive cells. 
 
4. NEW HYBRID HEURISTIC 

The principle that underlies the two heuristics tested in 
the previous section is that in a good solution to the CTA 
problem approximately half  of  the sensitive cells will be 
set to their high value values and the remainder will be set 
to their low values. Ordering the sensitive cells and 
alternatively setting them to their minimally low or high 
protection value tends to produce a solution whose grand 
total, and hence the overall mean, remains nearly 
unchanged. These are sound principles for generating 
solutions and in this section we endeavor to embed these 
principles within the mathematical model previously 
described in Section 2. 

Because computational requirements for our MILP 
roughly double with the addition of  each binary variable, a 
sensible approach towards a computationally efficient, 
near-optimal algorithm is to group the sensitive cells and 
assign a unique binary variable to the entire group, with the 

result that all cells in a group are adjusted in the same 
direction. We first tried random grouping, which 
performed poorly. We suggest using a modified Order 
heuristic, viz., sensitive cells ordered from largest to 
smallest, and creating the groups by “skipping” through 
the ordering. This ensures greater group-to group 
homogeneity so that large cells are less likely to be adjusted 
predominantly in the same direction, which as we expected 
results in improvement in the optimal value of  the 
objective function. As before, the exception is when a 
sensitive cell value equals one of  its totals, in which case 
both are assigned to the same group. 

More precisely, let m ≥ 2 be the number of  groups. We 
add the following constraints to the original mathematical 
program. 
 

2For 1 to :  ...
where ( )

i i m i m i kmi m B B B B
i km p

+ + += = = = =
+ ≤

 

 
The addition of  these constraints to the original 

mathematical model reduces the number of  binary 
variables to m. If  m = p then the solution is optimal and if  
m < p then the solution may or may not be optimal but if  m 
≤ 20 the mathematical program can be solved in a 
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reasonable amount of  computer time. This set of  
constraints combines the power of  the mathematical 
program with logical principles embodied in the heuristics.  

Furthermore, the mathematical program can be 
enhanced with additional constraints (Cox and Kelly (2004), 
Cox et al. (2004)) to improve the statistical characteristics 
of  the solution. The Hybrid heuristic is run multiple times 
and the best solution selected. In particular, we use groups 
of  size, m, m − 1, m − 2, ... to produce a range of  results 
from which to choose a superior solution. The Hybrid 
overcomes a weakness of  the Order heuristic by not 
predefining the direction of  change for each group. 
Whereas the Order heuristic only evaluates one possible set 
of  assignments, the Hybrid implicitly evaluates m2 possible 
assignments. 

To evaluate the effectiveness of  the Hybrid heuristic, 
sets of  2- and 3-dimensional test tables are randomly 
generated using the following specifications: 
 

2-dimensional tables ranging in size from 4 × 4 to 25 × 
25; 3-dimensional tables having sizes: n × n × n for n = 5, 
6, …, 11, 12, ..., 20; 3-dimensional tables having sizes: 10 
× 10 × n for n = 3, 4, ..., 19, 20; Data values for internal 
tabular entries range from 0 to 1000 and are selected 
from a uniform distribution; 10% of  the internal entries 
are selected randomly (uniformly distributed) and are 
assigned a value of  0; For all tables, 30% of  the internal 
entries are defined as sensitive. The sensitive cells are 
distributed randomly (uniform) throughout the table. 
Marginal cells are not defined as sensitive. Sensitive 
entries must be assigned a value 20% greater than the 
original value or 20% smaller than the original value. All 
nonsensitive cells can be modified to values within 20% 
of  their original values.  
 
Figure 3 shows the performance of  the heuristics 

compared to the optimal solution for moderately sized 
2-dimensional tables. The optimal solution curve is not 
displayed because its information is embodied in the report 
of  the percent error of  heuristic solutions with respect to 
optimal. The Random-100 and Random-1000 results are 
obtained using one hundred random assignments and one 
thousand random assignments, respectively. The Group 16 
Binary results are obtained using the Hybrid approach with 
m = 16. m = 16 was chosen to provide solutions in 
approximately the same time as required by Random-1000. 
The results indicate that the Hybrid is superior. 

Figure 4 shows results for 3-dimensional tables. In these 
cases, optimal solutions could not be obtained for the 
larger tables. Thus, the results are compared to the best 
heuristic solution, which, in almost every case, is achieved 
by the Hybrid heuristic. 

These results indicate that creating groupings of  
sensitive cells can significantly extend the applicability of  
the integer programming model. By using an ordering 
defined by cell value, reasonable solutions are produced. 

 
 

5. META-HEURISTIC LEARNING ALGORITHM 
FOR FORECASTING BINARY VARIABLES 

5.1 Learning algorithm 

The grouping heuristics proposed in the previous 
section significantly reduced the problem size and thereby 
quickly solved the resulting integer program. However, 
these methods failed to produce satisfactory solutions for 
problems beyond a relatively limited size. The best 
heuristic solution was at least 50% inferior to the optimal 
solution for all moderately large 2 dimensional tables. 
Moreover, the heuristics exhibited considerable variation in 
the solution quality produced. These experiments however, 
demonstrate the importance of  reducing the size of  the 
integer programs for gaining computational efficiency. The 
inferior performance of  these methods is attributed to 
their inability to predict and set appropriate values for a 
subset of  variables. In this section we show that a 
metaheuristic learning strategy for fixing a subset of  
variables to appropriate values can be exceedingly useful 
for generating high quality solutions without confronting 
the typical drawback of  consuming vast amounts of  
computer time to discover such solutions.  
 
5.2 Parametric image process 

Our approach creates a strategic image of  part of  the 
problem to generate information about problem 
characteristics. Such processes have been used successfully 
in the fixed charge context (Glover et al. (2004)), and are 
the basis for a class of  metaheuristics procedures for mixed 
integer programming proposed in Glover (2004). Adapted 
to the present setting, the basic idea is to introduce 
parameters that penalize a variable’s violation of  integer 
feasibility, and to drive selected subsets of  variables in 
preferred directions, e.g., toward 0 or 1.  

In the CTA problem, we are interested in identifying 
appropriate directions for selected subsets of  binary 
variables, which are then tentatively fixed at their preferred 
values. The resulting reduced problem is then solved much 
more readily than the original problem providing an 
iterative process that results in high quality (optimal or near 
optimal) solutions while expending only a small fraction of  
the computational effort required by a more traditional 
integer programming approach. We utilize this strategy to 
develop a parametric objective function approach to 
generate information about behavior of  binary variables in 
the following manner. 

We represent the objective function in the more 
compact form Minimize x0 = cx, where x is a set of  binary 
variables used to protect sensitive cells. We refer to “1” 
direction as (UP) and “0” direction as (DN) direction. 
These are called goal conditions (denoted as jx ′ ) because 
we do not seek to enforce (UP) and (DN) by imposing 
them as constraints in the manner of  customary branch 
and bound method but rather indirectly by incorporating 
them into the objective function of  the linear 
programming relaxation. Let +N  and −N  denote      
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Figure 3. Hybrid heuristic performance on 2-dimensional tables based on percent error. 
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Figure 4. Hybrid heuristic performance on 3-dimensional tables based on percent error. 

 
selected subsets of  N (the set of  sensitive cells) whose 
elements contain UP and DN goal conditions, respectively 
Denote their union by ′.N  Let ′x  denote the 
associated goal imposed solution vector. Let M denote a 
very large positive number used to impose the goal 
conditions.  
 

′( )MinimizeLP  

( ) ( )0
/( )

j j j j j j
j N j N j N N N

x c M x c M x c x
− + + −∈ ∈ ∈ +

′ = + + − +∑ ∑ ∑  

(9) 
 

′( )LP  targets imposed down and up goal conditions by 
using an incentive mechanism driven by the penalty M. 
Binary variables included in subset −N  are induced to go 
in the DN direction and binary variables in subset +N  
are induced to go in UP direction. Remaining variables are 
free to select their own favorable directions. Thus, we are 
solving a continuous linear programming problem with 
penalty coefficients in the objective to gain insight about 
good values for the binary variables. 
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5.3 Goal infeasibility and resistance 

If  a variable indeed favors a particular direction, then it 
will achieve its targeted goal; otherwise it will show some 
resistance to its imposed goal. We say that an optimal LP 
solution x = ′′x  is goal infeasible if   
 
For some ,  j jj N x x+ ′′ ′∈ < (V-UP) 
 
or  
 
For some ,  j jj N x x− ′′ ′∈ > (V-DN) 
 

We call a variable xj associated with violation (V-UP) or 
(V-DN) a goal infeasible variable. We create a measure, 
called an overt resistance (βUP, βDN), based on goal 
conditions to learn about variable predilection for a 
particular direction as follows.  
 
For (V-UP), β ′ ′′= −j j jUP x x                   (10) 
For (V-DN), β ′′ ′= −j j jDN x x                   (11) 

 
No goal violation means zero overt resistance. 

Sometimes, it is possible that even though a variable does 
not violate its goal condition, it may resist that particular 
goal condition. We can compute this effect by making use 
of  reduced costs in the following manner. We call this 
resistance a potential resistance (δUP, δDN). 

 
j j jUP M c RCδ = + +                          (12) 

( )j j jDN M c RCδ = − − + +                     (13) 
 
where RCj is the reduced cost for variable xj.  

The trial solution vector may contain variables without 
penalties. We use their solution values for the problem (LP′) 
to create free resistances (αUP, αDN) in following manner. 
 

1j jUP xα = −                                (14) 

j jDN xα =                                         (15) 
 
5.4 Experimental design to exploit the parametric 

image 

The parametric image of  objective function is generated 
using a goal vector. A diversified sample of  goal vectors is 
generated and subsequently resistance measures are 
recorded to estimate directional effects. Random sampling, 
as used in network design problems (Karger (1999)), is not 
efficient in terms of  the number of  tests required to 
estimate a preferred value for each variable, and is generally 
considered an inferior approach.  

Experimental design methods have been used to identify 
significant factors controlling a performance measure. e.g. 
what machine speed and pressure would make a product 
of  desired quality (Montgomery (1984)). These methods 
are used to estimate main effects and interaction effects of  

binary variables using a smaller number of  unbiased 
samples than random sampling (Lewis (2004)).  

Our approach of  selecting different performance 
measures for finding true main effects is motivated by the 
fact that information about the desirability of  different 
choices is captured in different forms by different rules 
(Glover (1977)). This information can be used more 
effectively by means of  a strategy that combines the rules 
in aggregation rather than by using a strategy of  selecting 
different rules at different times (Glover and Laguna 
(1997)). The learning algorithm used to fix directions for a 
specified subset of  variables can be summarized as below. 
The details for carrying out these steps are elaborated 
subsequently. 
 
5.5 Parametric image learning algorithm 

1. Group p binary variables into LastK subsets of  size n 
such that LASTK = |_p/n_|. 

2. Construct goal vectors for parametric image process 
using fractional factorial design (see Montgomery (1984) 
for further details). 

3. Set an upper bound on the objective function to induce 
trial solutions to come from better regions. 

4. Run fractional factorial experimental design as: 
 
For subsets K = 1 ... LastK 

For test runs T = 1 ... LastT 
Construct the parametric image of  the objective 
function using a partial goal vector. 
Solve the resulting linear programming relaxation. 
Compute overt, potential, free resistances and 
objective function value. 
Record these performance measures into pertinent 
performance recording vectors [PV]. 

End T 
End K 
 
5. Compute main effect of  variable for measures except 

free resistance as: 
 
For performance attribute A = 1 ... LastA (except free 
resistance) 

For variables P = 1 ... LastP 
Compute main effect ME[A][P] of  variable ‘p’ in 

attribute ‘a’ as : 
{ 
For Experiment K = 1 ... LastK  

For test runs T = 1 ... LastT 
If  ( ′px = DN)  then 

ME[A][P] = ME[A][P] − PV[A[K][T] 
If  ( ′px = UP)  then 

ME[A][P] = ME[A][P] + PV[A[K][T] 
End T 

End K 
} 

End P 
End A 
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6. Compute main effect of  variable for Free Resistance as: 
 
For variables P = 1 ... LastP  

Compute main effect ME[A][P] as  
{  

For Experiment K = 1 ... LastK  
For test runs T = 1 ... LastT 

If  ( px  < 0.5 ) then 
ME[A][P] = ME[A][P] + 1 

If  ( px  > 0.5 ) then 
ME[A][P] = ME[A][P] − 1 

End T 
End K 

} 
End P 
 
7. Compute final score for each variable using persistent 

voting principle as: 
 
For variables P = 1 ... LastP 

Final Score [P] = 0 
For A = 1 ... LastA (includes free resistance measure) 

If  (ME[A][P] > 0) then 
Final Score [P] = Final Score [P] + 1 

If  (ME[A][P] < 0) then 
Final Score [P] = Final Score [P] − 1 

End A  
End P 
 
8. Rank variables P = 1 ... LastP in descending order of  

the absolute values of  final scores. 
9. Set cutoff  ‘c’ to fix direction for the variables. 
10. Fix directions for binary variables as: 
 
For variables P = 1 ... c 

If  (Final Score [P] > 0) then 
xp = 0 

If  (Final Score [P] < 0) then 
xp = 1 

End P 
 
11. Solve the resulting mixed integer programming 

problem. 
 
5.6 Discussion and elaboration of  the method 

Variables are grouped into K subsets in step 1 in a 
random manner. The rationale for using a random 
assignment is to avoid generating an interaction effect. By 
contrast, a process of  grouping variables from a particular 
row or column together can produce significant interaction 
effects because of  tabular additivity. The Fractional 
Factorial design we employ confounds interaction effects 
with the aim of  reducing the number of  test runs. 
Selecting sensitive cells in a random fashion encourages 
them to exhibit minor interaction effects due to weak 
tabular connectivity.  

The logic of  an ordering heuristic, which assigns up and 
down directions for ordered cells in an alternating fashion, 
is consistent with this finding. Thus, an ordering heuristic 
tries to capitalize on a positive two-factor interaction effect. 
There is one subtle possible disadvantage, which might 
undermine efficiency of  this heuristic. Sometimes, this 
heuristic might assign either plus or minus directions to all 
cells in a row or a column thereby increasing the absolute 
adjustment. For example consider the 4 × 4 table in which 
cells (1, 1), (2, 4), (3, 1), and (4, 4) are sensitive with 
protection limits of  40, 35, 30, 25 respectively. The 
ordering heuristic would cause very large adjustments to 
nonsensitive cells in this case. This might be the reason 
why an ordering heuristic did not perform well in our 
experiments.  

A parametric image of  the objective function is 
generated as follows. A typical test run contains target 
directions for a subset of  variables and free directions for 
remaining variables. We can use these targeted directions to 
generate a parametric image of  the objective function as: 
 

( ) ( )0
/( )

j j j j j j
j N j N j N N N

x c M x c M x c x
− + + −∈ ∈ ∈ +

′ = + + − +∑ ∑ ∑  

(16) 
 

The new model has an effect of  motivating variables 
with a DN goal condition to receive a value of  0 and 
variables with an UP goal condition to receive a value of  1 
while allowing remaining variables to take their optimal 
directions according to the situation.  

Steps 5 and 6 compute the average effect of  a variable 
for a given measure. This basically computes the average 
change in the performance measure when a binary variable 
is changed from zero to one. This method is widely used in 
experimental design to compute average effects 
(Montgomery, 1984) because it groups observations into 
two sets and then checks on average whether there is any 
difference in performance between the two sets. For 
example, if  the DN direction sum is higher than the UP 
direction sum, this signals a negative effect, implying that a 
performance measure would decrease if  a binary variable 
were set to 1 instead of  0.  

Performance measures are recorded in three- 
dimensional vectors for each variable, where the row 
dimension refers to the performance measure, the column 
dimension refers to the experiment and the page 
dimension refers to the test run from the experiment. As 
shown in steps 5 and 6, to calculate the main effect for a 
measure, we sum over performance values computed with 
respect to all test runs from all experiments for that 
measure. We subsequently record the main effects of  
variables in a 2 dimensional vector in which the row 
dimension refers to the performance measure and the 
column dimension refers to a binary variable. 

We rank binary variables in descending order according 
to the absolute values of  their final scores and select a 
subset of  these variables to fix directions. The cutoff  level 
was decided using experimental evaluation. We found 45 % 
and 70% as cutoff levels for “small” and “big” tables   
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Figure 5. Performance of  proposed learning method on optimality gaps. 

 
respectively, in the sense that these levels generated high 
quality solutions in a reasonable amount of  time. The 
results section shows in detail how the percent of  fixed 
variables affected solution quality and time. Use of 0 as 
threshold in the final step is mainly conceptual in nature as 
it means that variables with positive final scores prefer the 
DN direction and those with negative final scores prefers 
the UP direction. The chosen cutoff  level ensures that 
variables chosen to be fixed will be those that have 
sufficiently high absolute final scores, thereby offering 
adequate support for the chosen directions.  
 
5.7 Performance of  the learning algorithm for 

2-dimensional tables 

We implemented the learning algorithm using C++, 
ILOG- Concert Technology 1.2, and ILOG-CPLEX 8.1. 
Figure 5 shows the performance of  our proposed learning 
method compared to other variable fixing heuristics. It was 
extremely time consuming to run larger problem instances 
to optimality using the default version of  CPLEX. For 
example, we ran the 25 × 25 problem using the default 
CPLEX method on a 2GB RAM and 3.2GHz workstation 
for 24 hours. Unfortunately, the best solution found by 
CPLEX (after 19 hours and 35 minutes) still exhibited an 
optimality gap of  9.6%. Real world applications require the 
generation of  hundreds to thousands of  such solutions, 
and require these solutions to have better lower bounds 
and hence smaller optimality gaps. Reliance on CPLEX as 
a solution approach is therefore clearly unsuitable. 

Consequently, we needed a computationally efficient 
alternative to compute a better lower bound, which is 
essential for measuring the optimality gap. Cox et al. (2005) 
proposed a set partitioning relaxation for generating a 
tighter lower bound on the objective in the CTA context. 

We used the lower bound as a proxy for an optimum value 
for computing the optimality gap for larger instances. 
Lower bounds were reliable in the sense that they were 
consistently very close to the optimal values for those 
problems where an optimal solution could be verified (by 
running CPLEX for a period of  time that does not exceed 
practical feasibility). In particular, for these problems 
involving 2-dimensional tables, restricted in size to no 
more than 18 rows and columns to permit them to be 
solved by CPLEX, the optimality gap was verified to be 
approximately 1%. For example, for the 18 × 18 problem, 
the computed lower bound was 9736 compared to the 
optimum value of  9850, representing a gap of  1.15 %. In 
Figure 5, the “Learning Method (optimal)” curve identifies 
the optimality gap with respect to the known optimal value, 
and the “Learning Method (lower bound)” curve identifies 
the optimality gap for the heuristic with respect to the 
lower bound.  

Our learning method yielded significant improvements 
in reducing the optimality gap across the entire 2 
dimensional test set as demonstrated by Figure 5. 
Optimality gap values obtained by the methods described 
in preceding sections degraded considerably for the larger 
problem instances. For example, using these earlier 
methods, the mean gap for the 25 × 25 table was 117.6% 
compared to the overall mean gap of  70% for smaller 
problems. In either case, the results were disappointing in 
relation to what might be hoped for. By contrast, the 
learning method performed dramatically better, 
consistently generating high quality solutions irrespective 
of  the problem size, giving an overall mean gap of  6% and 
a gap of  5.72% for the 25 × 25 problem.  

We define prediction accuracy to be the percentage of  
variables that are correctly assigned their optimal values, 
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from a selected set of  the “top” (highest scoring) variables 
identified .The prediction accuracy of  our method for a 14 
× 14 problem which contains 69 variables, was 85.5% for 
the top 10% of  the problem variables (6 correct decisions 
out of  7 fixed variables). In order to analyze the tradeoff  
between solution quality and time, we fixed only the top 
15% of  the variables for the 17 × 17 problem. We found a 
better solution (objective value = 9206) than our reported 
solution (objective value = 9460) although, at the expense 
of  computational speed efficiency. For this particular 
experiment, the result of  fixing fewer variables caused the 
number of  nodes processed to increase from 2400 to 
72600 and the solution time to increase from 16.38 sec to 
520 sec. We believe this increase in the computation time 
does not warrant reducing the number of  fixed variables in 
order to achieve a modest gain in solution quality.  
 
6. CONCLUSIONS AND REMARKS 

This study has undertaken an extensive set of  
comparative computational tests and analyses to evaluate 
the relative performance of  alternative methods for the 
controlled tabular adjustment (CTA) model. Our 
preliminary tests compared previously proposed heuristics 
to the exact CPLEX method. The outcomes showed that 
the exact procedure yields solutions superior to those of  
earlier heuristic approaches, but is unable to solve 
problems of  modest size within a reasonable amount of  
time.  

To overcome these limitations of  previous approaches, 
we introduced a hybrid heuristic that combines the exact 
mathematical programming approach with constructive 
heuristics suggested by Danderkar and Cox (2002). 
Numeric simulations indicate that the hybrid has the ability 
to produce better solutions than previous heuristics in 
reasonable time, and in addition finds reasonable solutions 
to highly constrained problems, but is limited to problems 
of  modest dimension.  

Finally, we demonstrate that a special metaheuristic 
learning method based on parametric image processes 
leads to significant additional improvements by generating 
solutions of  greatly improved quality. In particular, the 
learning method succeeds in reducing the optimality gap 
for the problems tested from an overall average of  70% to 
an average of  6%. The true distance from a theoretical 
optimum is likely to be somewhat smaller still, since the 
gap is based on an imprecise bound. 
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