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AbstractRetrial queues have been widely used to model the problems in telephone switching systems, 
telecommunications networks, etc., wherein a job receiving incomplete service may seek service repeatedly, until served 
successfully. This paper deals with MX/G/1 bulk retrial queue with Bernoulli service schedule. The server is being subjected 
to active breakdowns. The investigation is made by taking the concept of  the impatient customers under both classical and 
constant retrial policy. Chapman-Kolmogrov equations are constructed by using supplementary variable technique and the 
queue size distribution by using the probability generating method has been obtained. We also analyze the stochastic 
decomposition property for retrial queue under consideration. Some performance characteristics and special cases are 
established. 
KeywordsMX/G/1, Retrial, Bernoulli feedback, Supplementary variable, Stochastic decomposition, Generating function, 
Queue size 
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1. INTRODUCTION 

Retrial queue is characterized by the feature that a 
customer arriving when all servers accessible to him are 
busy, then it leaves the service area and after some random 
times repeats its demand. This feature plays a special role 
in several computer and communication networks. Other 
applications include stacked aircraft waiting to land, a 
message in a packet network switching, etc. Thus the area 
of possible applications of such queues is wide. At present 
the theory of retrial queues is recognized as an important 
part of queueing theory. A comprehensive survey on the 
retrial queues was done by Yang and Templeton (1987), 
Falin (1990). Atenica et al. (2003) studied a retrial queue 
with starting failures, feedback and general retrial policy. 
Atenica and Moreno (2006) considered a discrete time 
Geo/G/1 retrial queue with second optional service and 
obtained the distributions for orbit size and the system size. 
A single server infinite capacity retrial queue with Poisson 
input and deterministic bulk service rule was analyzed by 
Chang (2006).  

In the present paper, we are concerned with the bulk 
retrial MX/G/1 queue with Bernoulli service schedule, 
wherein the server is subjected to the active breakdowns. 
Queueing problems with batch retrial queue are common 
in a number of real situations as its applicability is 
connected with the performance evaluation of many real 
time systems; to illustrate we refer a local area network 
operating under transmission protocols like CSMA/CD (cf. 
Choi et al. (1992), Artalejo et al. (2005)). A detail study on 

the bulk arrival queue and their applicability was done by 
Choudhary and Templeton (1983). Kumar and Madheswari 
(2003) discussed some more complicated queueing 
situations with retrials and batch arrivals. Yechiali (2004) 
investigated the batch arrival queue with server vacations. 
Dudin et al. (2004) gave the analysis of BMAP/G/1 retrial 
system in which the customers arrive according to a batch 
markovian arrival process and on finding the server busy, 
enters into the orbit. Choudhary et al. (2007) suggested the 
steady state analysis of a batch arrival queueing problem 
with two-phase service along with the Bernoulli schedule 
and vacation. Furthermore, Choudhary and Madan (2007) 
addressed a batch arrival queue with Bernoulli vacation 
schedule and a random setup time under a restricted 
admissibility policy.  

In the practical situations the service interruptions due 
to server breakdown is quite common. Wang et al. (2001) 
gave the reliability analysis of retrial queues with server 
breakdowns. Wu et al. (2005) considered the M/G/1 retrial 
queues with general retrial times in which the customers 
may balk or renege at particular times. By using the 
probability generating function method they obtained the 
queue length. Recently, Ke (2006) have analyzed the retrial 
queues with server breakdowns under the concepts of 
GSPN analyzer and NT policies, respectively.  

In the present investigation, we analyze the two types of 
retrial policies, i.e. the classical retrial policy and the 
constant retrial policy. In the classical retrial policy, the 
probability of a repeated attempt during a given time 

International Journal of 
Operations Research 

1813-713X Copyright © 2008 ORSTW 



Jain, Sharma, and Chakrawarti: MX/G/1 Queue with Bernoulli Service Schedule under Both Classical and Constant Retrial policies 
IJOR Vol. 5, No. 3, 169-179 (2008) 
 

170 

interval is ( )n dt O dtθ +  (cf. Falin and Templeton (1997)) 
when ‘n’ customers are in the orbit and in case of constant 
retrial policy it is independent of the number of customers 
and is given as ( )dt O dtθ + . The constant retrial policy 
was first introduced by Fayolle (1986) who modeled a 
telephone exchange system.  

Stochastic decomposition is a major result for the 
vacation models; the pioneer work in this direction was 
due to Furhamann and Cooper (1985). Artalejo and Falin 
(1994) applied this property for the retrial queues. Further, 
Natalia (2006) suggested the stochastic decomposition 
property for the retrial queues with breakdown by taking 
an exponential assumption for the retrial times as an 
approximation in the non-exponential case. In this context, 
recently the stochastic decomposition structures of the 
queue length and the waiting times in an M/M/1 queue 
have been demonstrated by Liu et al. (2007).  

In this investigation, an attempt has been made to 
analyze Bernoulli service schedule for a bulk retrial queue 
with impatience customers. Using the supplementary 
variable technique, the steady state equations are 
constructed. Employing the probability generating function 
and Laplace transform, the steady state distributions of the 
server state and orbit length are derived. We establish a 
general stochastic decomposition law for MX/G/1 retrial 
queueing system under consideration. The rest of the paper 
is structured as follows. The model description is given in 
section 2. The probability generating functions of queue 
size distributions for both classical and constant types of 
the retrial policies are obtained in section 3. Further, the 
performance measures are given in section 4. In section 5, 
the special cases are deduced. Section 6 provides the 
stochastic decomposition property. In section 7, we 
facilitate the numerical results. Section 8 concludes the 
paper by highlighting the noble features of the study done. 

 
2. MODEL DISCRIPTION 

Consider a single unreliable server retrial batch arrival 
queue where the customers arrive according to a Poisson 
process with rate λ. The server is subjected to failure and is 
sent for an immediate repair. Let ‘X’ be the random 
variable denoting the batch size and ( ) kP X k c= = , k = 1, 

2, 3, ... with 
∞

=

=∑
1

1k
k

c . Let L(t) be the number of repeated 

customers and S(t) is the number of customers present in 
the system at time t. Also let ( )tξ  be the server’s state 
such that ( )tξ  = 0, 1, 2 or 3, according as server is idle, 
busy, broken-down with a customer waiting and 
broken-down state without a customer waiting with the 
server, respectively. 

We assume that the successive attempts made by the 
same customer are exponentially distributed with rate θn, 
given that there are ‘n’ customers in the orbit. Upon return 
from the retrial group if the customer finds the server busy, 
then it always rejoins the retrial orbit and continues till it is 
completely served. We have taken into consideration the 

two policies of retrial, i.e. classical retrial policy in which 
the repeated customers reattempt for the service at a fixed 
rate ,nθ θ=  whereas in the constant retrial policy the 
repeated customers become discouraged and rejoin at the 

reduced rate ,n n
θ

θ =  due to the more number of 

customers present in the orbit. The customer who was 
under service during the server breakdown gets lost with 
probability (0,1],q ∈  and thus regarded as the impatient 
customer. On the contrary, the customer who waits for the 
server with probability p (p = 1 − q) till its repair is over is 
regarded as the patient customer.  

The underlying process is defined by X(t) = [ξ(t), N(t), 
θ1(t), θ2(t)], which is Markov. We introduce a 
supplementary variable θ1(t) as the elapsed time variable of 
the customer when ξ(t) ∈{1, 2}; and if ξ(t) ∈{2, 3}, then 
θ2(t) represents the elapsed repair time. The service time of 
the customer is independent random variable with 
common distribution function B1(x), density function b1(x). 
Laplace-Stieltjes transform of density function and n-th 
moments of service time are denoted by as β1(s) and β1,n, 
respectively. Moreover, the repair time distribution 
function is β2(y) with its density function b2(y). Also β2(s) 
and β2,n denote its Laplace-Stieltjes transform and n-th 
moments, respectively. Then the conditional completion 
rates b1(x) and b2(y) for the service and repair respectively, 
are  

 
1

1
1

( )
( )

1 ( )
B x

b x
B x
′

=
−

 and 
′

=
−

2
2

2

( )
( )

1 ( )
B y

b y
B y

 

 
Now, we define the limiting probabilities as: 
 

[ ]0, lim ( ) 0, ( ) ; 0n t
P P t N t n nξ

→∞
= = = ≥  

 
Also the limiting probability densities are defined as 

given below: 
 

[ ]
1,

1

( )

lim ( ) 1, ( ) , < ( ) ; 0, 0
n

t

P x

P t N t n x t x dx n xξ θ
→∞

= = = ≤ + ≥ ≥
 

[ ]2, 1 2( , ) lim ( ) 2, ( ) , ( ) , ( )n t
P x y P t N t n t x y tξ θ θ

→∞
= = = = ≤  

[ ]
3,

2

( )

lim ( ) 3, ( ) , ( ) ; 1, 0
n

t

P y

P t N t n y t y dy n yξ θ
→∞

= = = < ≤ + > ≥
 

 
Using the supplementary variable technique, we obtain 

the following equations at equilibrium: 
 

0,0 ( )n nn Pλ θ= − +          

1, 1 0, 3, 1
0 0

( ) ( ) (1 ) ( ) ( ) ,  0n n np x b x dx p y b y dy nδ
∞ ∞

+ + − ≥∫ ∫            (1) 

( )1, 1 1,( ) ( ) ( )n n
d p x b x p x
dx

λ α= − + +  
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0, 1,
1

(1 ) ( )n k n k
k

c p xδ λ
∞

−
=

+ − ∑  

2, 2
0

( , ) ( ) ,  0np x y b y dxdy n
∞

+ ≥∫                        (2) 

( )2, 2 2,( , ) ( ) ( , )n np x y b y p x y
y

λ
∂

= − +
∂

 

0, 2,
1

(1 ) ( , ),  0n k n k
k

c p x y nδ
∞

−
=

+ − ≥∑                   (3) 

( )3, 2 3,( ) ( ) ( )n n
d p y b y p y
dy

λ= − +  

1, 3,
1

(1 ) ( ),  1
n

n k n k
k

c p y nδ λ −
=

+ − ≥∑                     (4) 

 
Boundary conditions are given as: 
 

1

1, 0, 1 1 0, 1
1

(0) ( 1) ,  0
n

n k n k n n
k

p c p n p nλ θ
+

− + + +
=

= + + ≥∑                (5) 

2, 1,( , 0) ( ),  0n np x p p x nα= ≥                                     (6) 

3, 1, 1
0

(0) ( ) ,  1n np q p x dx nα
∞

−= ≥∫                                       (7) 

 
The normalization condition is given as:  
 

0, 1, 2,
0 0 00 0 0

( ) ( , )n n n
n n n

p p x dx p x y dxdy
∞ ∞ ∞∞ ∞ ∞

= = =

+ +∑ ∑ ∑∫ ∫ ∫  

3,
0 0

( ) 1n
n

p y dy
∞∞

=

+ =∑∫  

 
To solve the Eq. (1)-(4), we define the following 

generating functions: 
 

0 0,
0

( ) ,n
n

n

P z p z
∞

=

= ∑  1 1,
0

( , ) ( ) ,n
n

n

P x z p x z
∞

=

= ∑  

2 2,
0

( , , ) ( , ) ,n
n

n

P x y z p x y z
∞

=

= ∑ 3 3,
0

( , ) ( ) ,n
n

n

P y z p y z
∞

=

= ∑   

0

( ) ,  | | 1n
n

n

c z c z z
∞

=

= ≤∑  

 
3. QUEUE SIZE DISTRIBUTION 

The performance of queueing system can be quantified 
by predicting performance indices of interest; to derive 
various measures of performance, the probability 
generating function approach can be employed. In this 
section, the probability generating functions and marginal 
generating functions of the queue size distributions are 
established. For this purpose, Eq. (1)-(4) and (6)-(7) are 
solved along with the boundary conditions for both 
classical and constant retrial case as follows.  

Multiplying Eq. (2)-(4) and (6)-(7) by appropriate powers 
of z and summing over ‘n’, we get 

 

( )1 1 1( , ) ( ) ( , )P x z b x P x z
x

λ α
∂

= − + +
∂

 

1 2 2
0

( ) ( , ) ( , , ) ( )c z P x z P x y z b y dxdyλ
∞

+ + ∫                  (8) 

( )2 2 2 2( , , ) ( ) ( , , ) ( ) ( , , )P x y z b y P x y z c z P x y z
y

λ λ
∂

= − + +
∂

 

   (9) 

( )3 2 3 3( , ) ( ) ( , ) ( ) ( , )P y z b y P y z c z P y z
y

λ λ
∂

= − + +
∂

                         (10) 

α=2 1( , 0, ) ( , )P x z p P x z                                                                        (11) 

α
∞

= ∫3 1
0

(0, ) ( , )P z q z P x z dx                                           (12) 

 
On solving Eq. (9) and (10), we have 
 

[ ] [ ](1 ( ))
2 2 2( , , ) ( , 0, ) 1 ( ) . c z yP x y z P x z B y e λ− −= −                              (13) 

[ ] [ ](1 ( ))
3 3 2( , ) (0, ) 1 ( ) . c z yP y z P z B y e λ− −= −                   (14) 

 
Using Eq. (11) and (13) in (8), we obtain 
 

( )1 1 1( , ) 1 ( ) ( ) ( , )P x z c z b x P x z
x

λ α
∂

= − − + +  ∂
  

( )( )2 11 ( ) ( , )p c z P x zαβ λ+ −                              (15) 

 
which yields 
 

[ ]( )
1 1 1( , ) (0, ). . 1 ( )a z xP x z P z e B x−= −                           (16) 

 
where 
 

( ) ( )( )
( )

2

2,1

( ) 1 ( ) 1 1 ( ) ,

with (1) and (1) 1

a z c z p c z

a q a p

λ α β λ

α λ αβ

 = − + − − 
′= = − +

 

 
3.1 Classical retrial policy 

In the classical retrial policy, the probability of a 
repeated attempt during a given time interval is dependent 
on the number of customers present in the system and is 
given by ( ),n dt O dtθ + as such .nθ θ=  

Multiplying Eq. (1) and (5) by appropriate powers of z 
and summing over n, we get 

 

0 0 1 1 3 1
0 0

( ) ( ) ( , ) ( ) ( , ) ( )nP z P z z P x z b x dx P y z b y dyλ θ
∞ ∞

′+ = +∫ ∫  

                             (17) 
 
and 
 

1 0 0 1(0, ) ( ) ( ) ( ) nP z c z P z P zλ θ +
′= +                       (18) 

 
Thus using Eq. (14) and (16) in (17) and solving, we 
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obtain 
 

0 0( ) ( ).P z P z zλ θ′+   

( )1 1 2 3( ( )) (0, ) 1 ( ) (0, )a z P z c z P zβ β λ= + −    

 
Also from Eq. (12), we have 

 
β

α
−

= 1
3 1

1 ( ( ))
(0, ) (0, )

( )
a z

P z q z P z
a z

                      (19) 

 
Now using Eq. (16), (18) and (19), we have  

 

( ) ( )( )
0

2 2

( )

( ) 1 ( ) 1 ( )

P z

a z q z c z a zλ
α β λ β

θ

′

= × − − −     
 

( ) ( )( 2 11 ( ) 1 ( )q z c z a zα β λ β÷ − −       

( ) )1( ) ( )a z z a zβ− −    

0 ( )P z×                                                (20) 
 

The solution of the above equation is given by 
 

0

0
1

( )

(1). exp
z

P z

P λ
θ

= 

∫

 

( ) ( )2 1( ) 1 ( ) 1 ( )a u q u c u a uα β λ β× − − −       

( ) ( )( 2 11 ( ) 1 ( )q u c u a uα β λ β÷ − −       

            ( ) ) }1( ) ( )a u u a u duβ− −                                                                                               (21) 

 

On substituting values of 0 ( ),P z  from Eq. (18) and 
(20), we get 

 

( )
( ) ( ) ( )

1

2 1 1

(0, )
1 ( ) ( )

1 ( ) 1 ( ) ( ) ( )

P z
c z a z

q z c z a z a z z a z
λ

α β λ β β

−
=

− − − −         

 

0 ( )P z×                                                                                               (22) 

 

Also, using Eqs. (19) and (22), we find  
 

( ) ( )
( ) ( ) ( )

3

1

2 1 1

(0, )

1 ( ) 1 ( ) ( )

1 ( ) 1 ( ) ( ) ( )

P z

q z c z a z a z

q z c z a z a z z a z

λ α β

α β λ β β

− −  =
− − − −         

 

0 ( )P z×                                    (23) 
 
Using the normalizing condition, the value of the 

unknown constant 0 (1)P  can be found as 
 

( )[ ]2,1 1
0

1

1 1 ( )
(1) 1

( )
q q

P
q q

λ α β β α

αβ α

+ −
= −  

3.2 Constant retrial policy 

The constant retrial policy can be treated by considering 
queue dependent reduced retrial rate of the repeated 
customers. According to this policy, the repeated 
customers are discouraged when more number of 
customers join the orbit as such the retrial rate nθ  is taken 

to be ,
n
θ  when there are n repeated customers in the 

system.  
Multiplying Eq. (1) and (5) by appropriate powers of z 

and summing over n, we get 
 

0 0,0( ) ( )P z Pλ θ θ+ −

1 1 3 1
0 0

( , ) ( ) ( , ) ( )P x z b x dx P y z b y dy
∞ ∞

= +∫ ∫                     (24) 

1 0 0,0(0, ) ( ) ( )P z P z c z p
z z
θ θ

λ
 

= + + 
 

                             (25) 

 
where 0,0p  denotes the probability of system being 
empty. 

On solving Eq. (12), (14) and (16) and making use of Eq. 
(24), we get  

 
( )

[ ]

0 0,0

( )
1 1 1

0

( ) ( )

(0, ). . 1 ( ) ( )a z x

c z P z p

P z e B x b x dx

λ θ θ
∞

−

+ −

= −∫
 

[ ] ( )1 ( )
3 2 1

0

(0, ) 1 ( ) . ( )c z yP z B y e b y dyλ
∞

− −  + −∫  

( ) ( )1 1 2 3( ) (0, ) 1 ( ) (0, )a z P z c z P zβ β λ= + −                                      (26) 

 
Also from Eq. (19) and (24)-(26), we get 
 

( ) ( )(
0

2 1

( )

1 ( ) 1 ( )

P z

q z c z a zα β λ β= − −     
 

( ) ( ) )1( ) ( ) 1 ( ) ( )a z z a z c z a zβ λ− − −    

( ) ( )( 2/ 1 ( ) ( )z z q c z a zλ θ αβ λ+ − −    

( ) ( ) )1 11 ( ) ( ) ( )a z a z z a zβ θ β× − − −        

0,0pθ×                                                 (27) 
 
where 0,0p  is determined by using the normalizing 
condition as 
 

( )[ ]2,1 1
0,0

1

( ) 1 1 ( )
1

( )
q q q

p
q q

α λ θ α β β α
λ

θ αβ α

+ + + −
= −  

 
Above Eq. (27) together with (25) give 
 

1(0, )P z  
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( )
( ) ( ) ( )2 1 1

1 ( ) ( )
1 ( ) 1 ( ) ( ) ( )

c z a z
q z c z a z a z z a z

λ
α β λ β β

−
=

− − − −         
 

0 ( )P z×                                    (28) 
 
Using Eq. (28) and (19), we have 
 

3(0, )P z  

( ) ( )
( ) ( ) ( )

1

2 1 1

1 ( ) 1 ( ) ( )

1 ( ) 1 ( ) ( ) ( )

q z c z a z a z
q z c z a z a z z a z

λ α β

α β λ β β

− −  =
− − − −         

 

0 ( )P z×                                                (29) 
 
3.3 Probability generating functions 

The stationary distribution of the queue size distribution 
can be established in terms of the generating functions, 
which are obtained as follows: 
 Using Eq. (16) and (22), we obtain 
 

1( , )P x z  

( ) [ ]
( ) ( ) ( )

( )
1

2 1 1

1 ( ) ( ) 1 ( ) .
1 ( ) 1 ( ) ( ) ( )

a z xc z a z B x e
q z c z a z a z z a z

λ
α β λ β β

−− −
=

− − − −         
 

0 ( )P z×                                                  (30) 
 
Making use of Eq. (16) and (22) in Eq. (11), we have 
 

2 ( , , )P x y z  

( ) [ ]( 11 ( ) ( ) 1 ( )p c z a z B xλ α= − −  

[ ] [ ] )(1 ( ))( )
21 ( ) . c z ya z xe B y e λ− −−× −  

( ) ( )( 2 11 ( ) 1 ( )q z c z a zα β λ β÷ − −       

( ) )1( ) ( )a z z a zβ− −    

0 ( )P z×                                                  (31) 
 
Again using Eq. (12) and (23), we obtain 
 

3( , )P y z  

( ) ( )( 11 ( ) 1 ( )q z c z a zλ α β= − −    

[ ] [ ] )(1 ( ))( )
21 ( ) . c z ya z xe B y e λ− −−× −  

( ) ( )( 2 11 ( ) 1 ( )q z c z a zα β λ β÷ − −       

( ) )1( ) ( )a z z a zβ− −    

0 ( )P z×                                    (32) 
 

For both the classical and constant retrial cases, we have 
already determined 0 ( )P z as given in Eq. (21).  

Now, we obtain the marginal generating functions in 
different states of the server as follows: 
 
(i) When the server is busy then 
 

( ) ( )
( ) ( ) ( )

1 1
0

1

2 1 1

( ) ( , )

1 ( ) ( ) 1 ( )

1 ( ) 1 ( ) ( ) ( )

P z P x z dx

c z a z a z
q z c z a z a z z a z

λ β

α β λ β β

∞

=

− −  =
− − − −         

∫
 

0 ( )P z×                                         (33) 
 
(ii) When the server is broken-down with a customer 

waiting in the system, we obtain 
 

2 2
0

( ) ( , , )P z P x y z dx dy
∞

= ∫  

( ) ( )( )
( ) ( ) ( )

1 2

2 1 1

1 ( ) 1 1 ( )

1 ( ) 1 ( ) ( ) ( )

p a z c z

q z c z a z a z z a z

α β β λ

α β λ β β

 − − −    =
− − − −         

 

0( )P z×                                     (34) 
 
(iii) When the server is in broken-down state without a 

customer waiting in the system, then 
 

3 3
0

( ) ( , )P z P y z dy
∞

= ∫  

( ) ( )( )
( ) ( ) ( )

1 2

2 1 1

1 ( ) 1 1 ( )

1 ( ) 1 ( ) ( ) ( )

q z a z c z

q z c z a z a z z a z

α β β λ

α β λ β β

 − − −    =
− − − −         

 

0 ( )P z×                                         (35) 
 
In order to derive average orbit size and the average system 
size, we obtain the corresponding generating functions as 
follows: 
 
(a) The probability generating function of the orbit size is 

given by 
 

( ) ( )( ) ( )
( ) ( ) ( )

0 1 2 3

2 1

2 1 1

( )
( ) ( ) ( ) ( )

1 ( ) 1 1 ( ) ( )

1 ( ) 1 ( ) ( ) ( )

G z
P z P z P z P z

c z p c z q a z

q z c z a z a z z a z

λ α β λ αβ

α β λ β β

= + + +

 − + − − + =
− − − −         

 

( ) 01 ( ) ( )c z P z× −                                (36) 
 
(b) The probability generating function of the system size 

is obtained as 
 

( )
( ) ( ) ( )

0 1 2 3

1

2 1 1

( ) ( ) ( ) ( ) ( )
( ) ( )

1 ( ) 1 ( ) ( ) ( )

Q z P z zP z zP z P z
a z a z

q z c z a z a z z a z
β

α β λ β β

= + + +

=
− − − −         

 

( ) 01 ( ) ( )c z P z× −                                         (37) 
 

The availability of the server is an important index for 
any queueing system. The server is available when it is 
either idle or in working state. Thus, the marginal 
generating functions corresponding to the availability of 
the server in different states are given as below: 
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(a) The marginal generating function of the orbit size 
when the server is available, is 

 

( ) ( )((
0 1

2

( )
( ) ( )

1 ( ) 1 ( )

AG z
P z P z

c z q z c zλ α β λ

= +

= − + −

 

( ) ( ) )1 11 ( ) ( ) ( )a z a z z a zβ β× − − −        

( ) ( )( 2 11 ( ) 1 ( )q z c z a zα β λ β÷ − −       

                  ( ) )1( ) ( )a z z a zβ− −    

0 ( )P z×                                         (38) 
 
(b) The marginal generating function of the system size 

when the server is available 
 

0 1( ) ( ) ( )AQ z P z zP z= +  

( ) ( )( 11 ( ) ( ) ( )c z a z a zβ= −  

( ) ( )( ) )1 21 ( ) 1 1 ( )z a z c zα β β λ − − − −      

( ) ( )( 2 11 ( ) 1 ( )q z c z a zα β λ β÷ − −       

( ) )1( ) ( )a z z a zβ− −    

0 ( )P z×                                         (39) 
 
4. PERFORMANCE MEASURES 

By using generating functions obtained in previous 
section, various performance measures can be derived as 
follows: 

 
(a) Long run probabilities of the system states: 
 
l The probability that the server being idle is given by 

 
01

lim ( )I z
P P z

→
=  

( )[ ]2,1 1

1

1 1 ( )
1

( )
q q

q q
λ α β β α

αβ α

+ −
= −                  (40) 

 
l The probability that the server is in busy state is 

given as 
 

[ ]1
11

1

1 ( )
lim ( )

( )B z

q
P P z

q q
λ β α

αβ α→

−
= =                                                                                                      (41) 

 
l The probability that the server is in broken-down 

state with a customer waiting in the system, is given 
by 

 
[ ]1

21
1

1 ( )
lim ( )

( )D z

p q
P P z

q q
λ β α

β α→

−
= =                                                           (42) 

 
l The probability that the server is in broken-down 

state without a customer waiting in the system, is 

obtained as 
 

[ ]2,1 1
31

1

1 ( )
lim ( )

( )W z

q
P P z

q
λβ β α

β α→

−
= =                                                             (43) 

 
l The probability of server being available is given by  

 
[ ]2,1 1

1

1 ( )
1

( )A I B

q
P P P

q q
λβ β α

β α
−

= + = −                                 (44) 

 
(b) Average queue length: 
 
l The number of customers in the orbit is obtained as  
 

1
[ ] lim ( )

z
E L G z

→
′=  

{ }1 1 1(1 ) ( 2 ( ))h p q a qλ αν α γ β α ψ= − − −                                        (45) 
 
l The number of customers in the system is given by  

 
11

[ ] lim ( ) 2 ( )
z

E S Q z q q hα β α ψ
→

′= =                                (46) 

 
The value of ψ for both classical and constant retrial 

policy is given below: 
 

(i) For classical retrial case 
 

( )( )
( )( ){ }

1

1

1

1 1

a q h

q h a

λ α λ ν
ψ

θ α λ ν

− −
=

− − −
                             (47) 

 
(ii) For constant retrial case 
 

2 1 2 1
2

12( )
N D D N

D
ψ

−
=                                                  (48) 

 
where  
 

( )( ) ( )( ){ }1 1 1 1 0,01 1N q h a a q a pα δ λ ν γ δ α γ θ= − − − + −  

( ) ( )( ){ }1 1 11 ( )D q a hq aθ α δ γ λ α λ θ ν λ δ= − + − + −  

( )( )111a q aθ δ α γ− + −  

( )({ ( )( )2 2
2 1 1 1 1 22N q h a h hα λ ν γ δ λ δ ν λ ν= − − −  

( )) ( )( )}2
1 1 12 2(1 ) 1b a a a a bγ γ γ δ− + − − − + − +  

0,0. pθ×  

( )( ){2 1 1D hq h hq a q aδ λ α λ θ λ αν λ θ αγ= − + − −  

( )}1 1 1 2(1 ) ( ) ( )a q a bηγ η η δ θ α γ γ+ + + + − + +  

( ){ }1 1 22(1 )a a a q bθ γ γ γ α δ− − − − +  

 
with 
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( )2,1(1) (1 ) ,  (1)a a p b aλ αβ′ ′′= = − + =  

1 1 2 1( ), ( )q qγ β α γ β α′′′= =  

1 2 1 2 2 2(1),  (1),  (1),  (0),  (0)h c h c h c ν β ν β′ ′′ ′′′ ′ ′′= = = = =  

( )1 11 ( ),  1 ( )q h q aδ β α η λ α λ θ ν λ= − = − + −  

( ){ }2 2
1 1 2 1 1 12 ( )q h h h h aη λ α λ ν λ θ λ ν ν λ= − + + − + −  

 
5. SPECIAL CASES 

In this section, we deduce some special cases by 
assigning appropriate parameter values to the system 
performance metrics in order to verify our results with the 
existing results. 
 
Case I: M/G/1 retrial queue with active breakdowns 
and Bernoulli schedule  

In this case when customers arrive singly, i.e. when c (z) 
= z, and h  = 1, 1 2 0,h h= =  then Eq. (36) and (37) 
reduce to  
 

( ) ( )
[ ] ( ) ( )

2 1

2 1 1

( )

(1 ) 1 (1 ) ( )
(1 ) 1 ( ) ( ) ( )

G z

z p z q a z
q z z a z a z z a z

λ α β λ αβ

α β λ β β

− + − − +  =
− − − −      

 

0(1 ) ( )z P z× −                                                                         (49) 
 
and 
 

( )
[ ] ( ) ( )

1

2 1 1

( )
( ) ( )

(1 ) 1 ( ) ( ) ( )

Q z
a z a z

q z z a z a z z a z
β

α β λ β β
=

− − − −      

 

0(1 ) ( )z P z× −                                        (50) 
 
respectively, which coincide with the results given by 
Atenica et al. (2006) with both types of retrial policies.  
 
Case II: M/G/1 retrial queue with unreliable server 

When ,nθ θ=  ( ) ,c z z=  1 2 0h h= =  and 0,q →  
then 
 

( )
( )

1 2,1

1 2,1

1
( )

1 1
E S

λβ αβλ
θ λβ αβ

 +
=  

 − + 
 

( )( ) ( )( )
2

2
1 2,2 2 2,1

1 2,1

1
2 1 1

λ
αβ β β αβ

λβ αβ
+ + +

− +
 

         (51) 
 
which agrees with the results obtained by Wang et al. 
(2001), wherein the server is subjected to active 
breakdowns and the customer waits for the server till its 
repair is completed. 
 
Case III: M/G/1 queue with Bernoulli feedback 

Setting 0,θ = ( ) ,c z z=  1 2 0h h= =  and 0,α =  we 

obtain 
 

( ) ( )

2
1 1

1
1 1

( ) (1 )
[ ]

2
q

E S
q q
λ β λβ

λβ
λβ λβ

−
= + +

− −
                    (52) 

 
which matches with the result obtained by Takagi (1996). 
 
Case IV: M/G/1 queue without Bernoulli feedback 

When 0,θ =  ( ) ,c z z=  1 2 0h h= =  and 0,α =  
then Eq. (46) gives 

 

( )

2
1

1
1

( )
[ ]

2 1
E S

λβ
λβ

λβ
= +

−
                                         (53) 

 
The above results tallies with the results for the classical 
M/G/1 model (cf. Takagi (1991), pp. 7). 
 
Case V: MX/G/1 unreliable queue without Bernoulli 
feedback 

In this case, 0,q →  so that Eq. (37) yields the 
following result 

 

( )
( ) ( ) ( )

1

2 1 1

( )
( ) ( )

1 ( ) 1 ( ) ( ) ( )

Q z
a z a z

z c z a z a z z a z
β

α β λ β β
=

− − − −         

 

( ) 01 ( ) ( )c z P z× −                                         (54) 
 

Case VI: MX/G/1 retrial queue without active 
breakdown and no Bernoulli feedback  

On taking 0α =  and 0,q →  Eq. (37) reduces to 
 

( )
( )

( )1
0

1

( ) ( )
( ) 1 ( ) ( )

( ) ( )
a z a z

Q z c z P z
a z a z z

β
β

= −
−  

                      (55) 

 
Case VII: MX/G/1 queue with active breakdown 
without retrial 

On substituting 0θ = and 0q = in Eq. (46), the 
following result corresponding to the bulk arrival queueing 
system under unreliable server is obtained 

 
( )

( )

2 2 2
2 1 2

2

1 ( ) ( )
[ ]

2(1 ) 1
h h h

E S
h

λ αβ λ α β
λ αβ

+ + +
=

− +
                                                           (56) 

 
6. STOCHASTIC DECOMPOSITION 

Retrial queues have been widely applicable in many 
practical problems in computer and communication 
networks. In this section, we are concerned with the 
stochastic decomposition property of the system size 
distribution. Stochastic decomposition property of our 
model shows that the system size distribution in the steady 
state can be decomposed into two random variables; one 
corresponding to the system size of the ordinary queue and 
the other random variable which can be interpreted as the 
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system size of the queueing model under consideration 
when the server is idle.  

In retrial queueing model under consideration, the 
probability generating function of the number of the 
customers in the system can be expressed as 

 
( )P z  

( )( ) ( )[ ]

( ) ( ) ( )

2,1 1
1

1

2 1 1

1 1 ( )
( ) ( ) 1 ( ) 1

( )

( 1 ( ) 1 ( ) ( ) ( )

q q
a z a z c z

q q

q z c z a z a z z a z

λ α β β α
β

αβ α

α β λ β β

 + −
− −  

 =
− − − −         

 

0

0

( )
(1)

P z
P

 
× 

 
                                                  (57) 

 
The fraction in the right hand side of Eq. (57) 

corresponds to the probability generating function of the 
system size when the server is idle. Here we observe that 
the system size distribution of our queueing model 
decomposes into the distributions of the two random 
variables; (i) the system size distribution for the MX/G/1 
retrial queue with batch arrivals under active breakdowns 
and Bernoulli schedule and (ii) the conditional distribution 
of the number of the customers in the orbit, given that the 
server is idle. 

 
7. NUMERICAL RESULTS AND SENSITIVITY 

ANALYSIS 

In order to facilitate the numerical results for the 
performance measures of the retrial queueing system, we 
develop a program in software Matlab and run on Pentium 
IV. By taking illustration, the computational results of the 
system performance measures corresponding to the 

different varying parameters are provided. The distribution 
of the service time is taken as k-Erlangian. Figures 1-4 
depict the graphs corresponding to the system queue size 
and the orbit size by varying various input parameters 
namely retrial rate ( ),θ  the breakdown rate ( ),α  and the 
orbit joining rate (q) and different values of ‘k’. The default 
input parameters chosen are 1,λ =  0.1,α =  3µ =  and 
h = 5.  

Figures 1 (a-c) and 2 (a-c) display the results for the 
classical retrial policy. It is clear from these that the average 
queue size and the average orbit size both first decrease 
and then almost become constant with the increasing 
values of ‘k’. Figure 1 (a) and 2 (a) show the influence of 
the retrial rate on the queue size and the average orbit size, 
respectively; it is observed that the system queue size 
increases sharply while the orbit size decreases with the 
increasing values of retrial rate θ. The patterns so obtained 
illustrate the fact that more retrial attempts give rise to a 
large number of customers in the queue but has reverse 
effect on the orbit size.  

Figures 1 (b) and 2 (b) depict the variation of the queue 
size and the orbit size with the increasing failure rate of the 
server; the increasing trends of both the queue size and the 
orbit size with respect to the increasing values of the failure 
rate (α) are noticed. This is due to the fact that more often 
failures of server cause more accumulation of the 
customers in the queue as well as in the orbit. Figures 1 (c) 
and 2 (c) exhibit the effect of the orbit joining probability 
‘q’. In this case also the increasing behavior of both queue 
size and the orbit size for the increasing values of q is 
noticed; however the effect is more prominent for higher 
values of q. 
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Figure 1. (a-c): Expected queue size vs. k for classical retrial case by varying (a)θ (b)α (c)q. 
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Figure 2. (a-c): Expected orbit size vs. k for classical retrial case by varying (a)θ (b)α (c)q. 
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Figure 3. (a-c): Expected queue size vs. k for constant retrial case by varying (a)θ (b)α (c)q. 
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Figure 4. (a-c): Expected orbit size vs. k for constant retrial case by varying (a)θ (b)α (c)q. 
 
Figures 3-4 show the varying trends of the system queue 

size and the orbit size, respectively with the variation in k 
for the constant retrial policy. In Figure 3 (a-c) and 4 (a-c), 
we plot the variation of the system size and the orbit size 
both for different values of k by varying θ, α and q. 
Figures 3 (a) and 4 (a) depict the graphs corresponding to 
the different values of retrial rate θ. It is observed that 
the queue size increases but the orbit size decreases with 
the increased values of θ which is quite obvious as the 
customers are retrying from the orbit to the queue. Figure 
3 (b) and 4 (b) show the effect of failure rate on the system 
size and the orbit size. It is observed that as the failure rate 
goes on increasing, the system size also increases; this 
pattern is in the agreement with the practical situation, as 
the server is more prone to the breakdowns then it in turn 
increases the system size. The effect of the variation of the 
customer’s joining probability q on the system size and the 
orbit size is observed from Figs. 3 (c) and 4 (c), respectively. 
It is noted that as the value of q increases, the queue size 
and the orbit size both increase; this is due to the fact that 
by increasing the joining probability, more customers join 
the system/orbit. 

Based on the numerical illustrations, we overall conclude 
that  
l The average system size and the average orbit size 

decrease with the increasing values of k by varying 
different parameters such as θ, α and q. It is also 
observed that whenever the failure rate of the server 
and the joining probability of the customers increase, 
the average system size and the average orbit size also 

tend to increase. Further, the higher values of retrial 
rate lead to decrease (increase) in the average orbit size 
(average queue size). 

l There are significant higher values of orbit length and 
the system size in case of classical retrial policy case as 
compared to the constant retrial one.  

l It is noted that the queue length initially decreases 
gradually for the increasing values of k and there after 
shows a linear increment on further increase in k. 

The sensitivity analysis based on numerical results is of 
significance as it gives insight to the decision makers and 
industrial engineers to improve the quality of service 
provided based on the performance of the system with the 
variation of different parameters. In addition, the ready 
wrecker of the results can be prepared easily, which may 
also be helpful to the organizers and system analysts to 
examine the alternative ways to reduce congestion. 

 
8. CONCLUSION 

The retrial bulk queueing model with breakdowns under 
Bernoulli service schedule suggested can be widely used to 
model the congestion problems in telephone systems, 
computer and communication systems, etc. We have 
proposed the policy for the retrial queueing systems 
wherein the customers do not know the state of the server 
and thus have to verify the server’s state from time to time. 
The unreliability of the server and the impatience behavior 
are also included while investigating the classical and 
constant retrial policy. The batch input incorporated in 
retrial queue is quite common in a number of real 
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situations, such as in the transmission in the computer 
communication systems, wherein the messages are often 
being transmitted in a random number of packets, the local 
area network (LAN) system, etc. In previous studies 
reported in literature, the authors have not included the 
concept of batch arrivals for both the policies along with 
server breakdowns and Bernoulli schedule into 
consideration for retrial queueing model. This also 
motivated us to develop a realistic model to deal with more 
versatile situations for retrial queueing system along with 
the batch arrivals, unreliable server, Bernoulli schedule and 
discouragement. 

The steady-state distributions of the orbit size and the 
system size when the server is idle failed or busy have been 
established in terms of probability generating functions 
which are further employed to obtain explicit formulae for 
various performance indices of interest. The system 
performances are measured numerically for both the 
policies and it is noticed that the constant retrial policy 
proves to be better than the classical one due to shorter 
queue length. The analytical results derived in explicit form 
are not only beneficial to the queue theorists but may also 
be helpful to the system designers and practitioners to 
implement them in future to design the efficient service 
systems at the reasonable cost. The concept of the set up 
time, heterogeneous arrival rates and working vacations 
can be further incorporated to extend the present study. 
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