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AbstractThe aim of  the present paper is to obtain a number of  Kuhn-Tucker type sufficient optimality conditions for a 
feasible solution to be an efficient solution under the assumptions of  the new notions of  weak strictly pseudo quasi 
α-univex, strong pseudo quasi α-univex, and weak strictly pseudo α-univex vector valued functions. We also derive the 
duality theorems for Mond-Weir and general Mond-Weir type duality under the aforesaid assumptions. 
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1. INTRODUCTION 

In optimization theory, convexity plays a vital role in 
many aspects of nonlinear programming (see Mangasarian 
(1969)) including sufficient optimality conditions and 
duality theorems. In order to study the optimization 
problems in a wider context various useful generalizations 
of the notion of convexity have been introduced. Hanson 
(1981) introduced the class of invex functions. Later 
Hanson and Mond (1987) defined two new classes of 
functions called type-І and type-ІІ functions, and sufficient 
optimality conditions were established by using these 
concepts. This concept was extended by Rueda and 
Hanson (1988) to pseudo-type-І and quasi-type-І functions. 
Kaul et al. (1994) have considered a multiobjective 
nonlinear programming problem involving type-I functions 
to obtain some duality results. In the sequel of 
development of convexity theory Marusciac (1982) 
introduced constrained qualifications. Weir (1987) 
introduced the concept of converse duality theorem in 
multiple objective programming. Giorgi and Guerraggio 
(1998) have generalized the notion of invexity to 
vector-valued functions and they provided some duality 
results. Bector et al. (1992) introduced the concept of 
univex functions. Aghezzaf and Hachimi (1998) introduced 
the concept strong pseudo convex function. Later 
Aghezzaf and Hachimi (2000) introduced new class of 
generalized type-І vector valued functions and derived 
various duality results for a nonlinear 
multiobjective-programming problem. Mishra et al. (2004) 

extended the concept of type-I functions to the setting of 
Banach Spaces. Mishra et al. (2004b, 2005a) employed the 
new class of generalized d-type-I and generalized d-univex 
type-I functions and applied the notion of generalized 
convexity to complex minimax programming (see Mishra 
et al. (2004a)). Mishra et al. (2005b) extended the concept 
of generalized type-І vector valued functions to generalized 
univex type-І vector valued functions and used the notion 
of type-I preinvex functions to multiple objective fractional 
programming (see Mishra et al. (2005c)). Noor (2004) and 
Mishra and Noor (2005) have studied some properties of 
the α-preinvex functions and their differentials. Recently 
Mishra et al. (2007), Pant and Rautela (2006) introduced the 
various classes of α-invex functions.  

Motivated by the work of Noor (2004), in the present 
paper, we consider a multiobjective programming problem 
and establish some sufficient optimality results. We also 
derive duality theorems for Mond-Weir and general 
Mond-Weir type duality under the generalized α-univex 
assumptions. 

To compare vectors along the lines of Mangasarian 
(1969), we will distinguish between ≤ and ≤  or between ≥ 
and .≥  Specifically, 

 
∈ ,nx R ∈ ,ny R ,i ix y x y≤ ⇔ ≤ 1,  ...,  .i n=  
∈ ,nx R ∈ ,ny R ,i ix y x y≤ ⇔ ≤ 1,  ...,  i n=  and 
≠ .x y  

 
2. PRELIMINARIES 

International Journal of 
Operations Research 

1813-713X Copyright © 2008 ORSTW 



Mishra, Rautela, and Pant: Optimality and Duality for Multiple-Objective Optimization with Generalized α-Univex Functions 
IJOR Vol. 5, No. 3, 180-186 (2008) 
 

181 

In this section we introduce the notions of α-univex, 
weak strictly pseudo quasi α-univex, strong pseudo quasi 
α-univex, weak quasi strictly-pseudo α-univex and weak 
strictly pseudo α-univex functions by unifying the notion 
of α-invex and univex functions for (MOP).  

We consider the following multiobjective programming 
problem: 

 
(MOP) Minimize ( )f x  

Subject to ≤( ) 0,g x  ( ),nx X R∈ ⊆  
X an α-invex set. 

 
where : pf X R→  and : mg X R→  are differentiable 
functions on a set nX R⊆  and minimization means 
obtaining efficient solutions for the problem (MOP). Let A 
= {x ∈ X: g(x) ≤  0} be the set of all the feasible 
solutions for (MOP) and denote P = {1, ..., p}, M = {1, ..., 
m } and { : ( ) 0}.jI j g y= =  

In the following definitions : nX X Rη × →  is an 
n-dimensional vector valued function and 

( , ) : \{0}x y X X Rα +× →  be a bifunction. Assume that 
φ φ→ →0 1: ,   :p p m mR R R R  satisfy φ≤ ⇒ ≤00 ( ) 0u u  
and 10 ( ) 0,u uφ≤ ⇒ ≤  +× →0 1, : .b b X X R  

 
Definition 2.1. (f, g) is said to be α-univex at y X∈  if 
there exist functions 0 ,b  1 ,b  φ0 ,  φ1 ,  α  and η  such 
that 
 

( ) ( )0 0( , ) ( ) ( ) ( , ) ( ) ( , ),b x y f x f y x y f y x yφ α η− ≥ ∇  

( ) ( )1 1( , ) ( ) ( , ) ( ) ( , ).b x y g y x y g y x yφ α η− ≥ ∇  
 

Remark 2.1. Note that any α-invex pair (f, g) is α-univex if 
we define φ →: R R  with φ =( )V V  and =( , ) 1.b x a  
But the converse does not necessarily hold. It can be seen 
from the following example. 

 
Example 2.1. Let , :f g R R→  are defined by 

= 3( ) ,f x x  3( ) 5g x x= +  where ( , ) 1,x aα =  
 

2 ( ),
( , )

0,
a x a

b x a
 −

= 


   
,
,

x a
x a

>
≤

 

 
and 
 

2 2 ,
( , )

,
x a xa

x a
x a

η
 + +

= 
−

 
,
.

x a
x a

>
≤

 

 
Let : R Rφ →  be defined by φ =( ) 3 .V V  The 

function f  is α-univex but not α-invex, because for 
 

3,x = −  1,a =  ( ) ( )f x f a− < ( , ) ( ), ( , )x a f a x aα η〈 ∇ 〉  
 

and 
 

( )g a− < α η〈 ∇ 〉( , ) ( ), ( , ) .x a g a x a  
 
Definition 2.2. (f, g) is said to be weak strictly pseudo quasi 
α-univex at y X∈ if there exist functions 0 ,b  1 ,b  φ0 ,  
φ1 ,  α  and η  such that 
 

( )0 0( , ) ( ) ( ) 0b x y f x f yφ − ≤

( )( , ) ( ) ( , ) 0,x y f y x yα η⇒ ∇ <  

( )1 1( , ) ( ) 0b x y g yφ− ≤  

( )( , ) ( ) ( , )  0.x y g y x yα η⇒ ∇ ≤  
 

If (MOP) is weak strictly pseudo quasi α-univex at each 
,y X∈  (MOP) is said to be weak strictly pseudo quasi 

α-univex on X. 
 

Definition 2.3. (f, g) is said to be strong pseudo quasi 
α-univex at y ∈ X if there exist functions 0 ,b  1 ,b  φ0 ,  
φ1 ,  α  and η  such that 
 

( )0 0( , ) ( ) ( ) 0b x y f x f yφ − ≤  

⇒ ( )( , ) ( ) ( , ) 0,x y f y x yα η∇ ≤  

( )1 1( , ) ( ) 0b x y g yφ− ≤  

( )( , ) ( ) ( , )  0.x y g y x yα η⇒ ∇ ≤  
 

If (MOP) is strong pseudo quasi α-univex at each y ∈ X 
(MOP) is said to be strong pseudo quasi α-univex on X. 
Instead of the class of weak strictly pseudo quasi α-univex, 
the class of strong pseudo quasi α-univex functions does 
contain the class of α-univex. 

The following examples show that weak strictly pseudo 
quasi α-univex and strong pseudo quasi α-univex functions 
exist. Weak strictly pseudo quasi α-univex functions need 
not to be strictly pseudo quasi α-univex for the same α ,  

0 ,b  1 ,b  φ0 ,  φ1  and η  as can be seen from the 
following example. 

 
Example 2.2. The functions 2 2:f R R→  defined by f(x) 
= (x1exp(sinx2), 2 2 1( 1)exp(cos ))x x x− and 2:g R R→  
defined by 1 2( ) (2 2)g x x x= + −  are weak strictly pseudo 
quasi α-univex with respect to ( , ) 1,x yα =  0 1 1b b= = , 
φ φ0 1 and  are the identity functions on R  and 

1 2 2 1( , ) ( 1,  )x y x x x xη = + − −  at (0, 0).y =  
 

Example 2.3. The functions 2 2:f R R→  defined by 
( )f x = 2

1 1( ( 1) ,x x −  2 2
2 2 2( 1) ( 2))x x x− +  and 

2:g R R→  defined by 2 2
1 2( ) ( 9)g x x x= + −  are strong 

pseudo quasi α-univex with respect to α =( , ) 1,x y  
= =0 1 1,b b  φ φ0 1 and  are the identity functions on R  
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and 1 2( , ) ( 1,  1)x y x xη = − −  at (0, 0)y =  but (f, g) is 
not weak strictly pseudo quasi α-univex with respect to 
same α( , ),x y  0 ,b  1 ,b  φ0 ,  φ1  and η( , )x y  at y as 
can be seen by taking (1, 1)x = − . 

 
Definition 2.4. (f, g) is said to be weak strictly pseudo 
α-univex at y ∈ X if there exist functions 0 ,b  1 ,b  φ0 ,  
φ1 ,  α  and η  such that 
 

( )0 0( , ) ( ) ( ) 0b x y f x f yφ − ≤  

⇒ ( )( , ) ( ) ( , ) 0,x y f y x yα η∇ <  

1 1( , ) ( ( )) 0b x y g yφ− ≤  

( )( , ) ( ) ( , ) 0.x y g y x yα η⇒ ∇ <  
 

If (MOP) is weak strictly pseudo α-univex at each y ∈ X, 
(MOP) is said to be weak strictly pseudo α-univex on X. 

 
Remark 2.2. In the above definitions if we take 
φ →: R R  with φ =( )V V  and ( , ) 1,b x a =  

( , ) 1,x aα =  the above definitions reduce to the definitions 
given in Aghezzaf and Hachimi (2000).  

 
Remark 2.3. If we take ( , ) 1,x aα =  the above 
definitions reduces to the definitions given in Mishra et al. 
(2005a). 

 
Remark 2.4. If we take φ →: R R  with φ =( )V V  and 

( , ) 1,x aα =  the above definitions reduce to the case of 
B-vex functions discussed in Bector et al. (1992).  

 
Remark 2.5. If we take φ →: R R  with φ =( ) ,V V  

( , )x a x aη = −  and ( , ) 1,x aα =  the above definitions 
reduce to the well known classes of generalized convexity.  

 
Definition 2.5. A point y ∈ A is an efficient solution for 
(MOP) if and only if there exist no x ∈ A such that  
 

≤( ) ( ).f x f y  
 

Definition 2.6. A point y ∈ A is a weak efficient solution 
for (MOP) if and only if there exist no x ∈ A such that  
 

( ) ( ).f x f y<   
 

Definition 2.7. (f, g) is said to satisfy the Maeda’s 
constraint qualification at y ∈ A such that 
 

( )f y h∇  ≤  0 and ( )jg y h∇  ≤  0, ∈ ,j I  
 
where ∈ .nh R  

 
3. OPTIMALITY CONDITIONS 

In this section, we establish Karush-Kuhn-Tucker type 

sufficient optimality conditions for y ∈ X to be an efficient 
solution of problem (MOP) under various generalized 
α-univex functions defined in the previous section. 

 
Theorem 3.1. (Sufficiency). Suppose that  
(i) y ∈ X; 
(ii) there exist τ ∈0 ,pR  τ >0 0,  λ ∈0 mR  and λ ≥0  0  

such that 
(a) τ λ∇ + ∇ =0 0( ) ( ) 0,f y g y  
(b) λ =0 ( ) 0,g y  
(c) τ =0 1,e  where (1,  1,  ...,1) ;t pe R= ∈  

(iii) problem (MOP) is strong pseudo quasi α-univex at y 
∈ X with respect to some α ,  0 ,b  1 ,b  φ0 ,  φ1  and 
η  for all feasible x. 

Then y is an efficient solution to (MOP). 
 

Proof. Suppose contrary to the result that y is not an 
efficient solution to (MOP). Then there exist a feasible 
solution x to (MOP) such that 
 

≤( ) ( ).f x f y  
 

Since >0 ( , ) 0b x y  and φ≤ ⇒ ≤0(.) 0 (.) 0,  from the 
above inequality, we get 

 
[ ]0 0( , ) ( ) ( ) 0.b x y f x f yφ − ≤                                         (1) 

 
By the feasibility of y, we have 

 
0 ( ) 0.g yλ− ≤  

 
Since 1( , )  0b x y ≥  and 0(.)  0 (.)  0,φ≤ ⇒ ≤  from the 

above inequality, we get 
 

0
1 1( , ) ( ) 0b x y g yφ λ − ≤                         (2) 

 
By inequalities (1), (2) and condition (iii), we have 
 

[ ]( , ) ( ) ( , ) 0x y f y x yα η∇ ≤ and 
0( , ) ( ) ( , ) 0.x y g y x yα λ η ∇ ≤   

 
By the positivity of ,α the above inequalities reduce to  
 

[ ]( ) ( , ) 0f y x yη∇ ≤  and 0 ( ) ( , ) 0.g y x yλ η ∇ ≤   

 
Since τ >0 0,  the above inequalities give 

 
0 0( ) ( ) ( , ) 0,f y g y x yτ λ η ∇ + ∇ <                                  (3) 

 
which contradicts (iii). This completes the proof. 

 
Example 3.1. Consider function 1 2( , )f f f=  defined on 
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,X R=  by 2
1( ) ,f x x=  3

2 ( )f x x=  and function g 
defined on = ,X R  by 1 2( , )g g g=  defined on = ,X R  
by 2

1( ) 2 ,g x x= −  = − 3
2 ( ) .g x x  

Clearly the feasible region is nonempty. Let 
( , ) 1,x xα =  =( , ) 1,b x x  ( , ) ( )/ 2x x x xη = −  and 
= 0.x  
 

(i) ( ) 0,g x− =  implies that α η∇ =( , ) ( ) ( , ) 0.x x g x x x  
(ii) [ ]( , ) ( ) ( )   0b x x f x f x− ≤

( , ) ( , ) ( , ) 0,x x f x x x xα η⇒ ∇ =  for all x. 
 

Thus (f, g) is strong pseudo-quasi α-univex at x = 0. But 
(f, g) is not α-univex functions at x = 0 with respect to 
α =( , ) 1,x x  ( , ) 1b x x =  and η = −( , ) ( )/ 2.x x x x  
Then, by Theorem 3.1, x  is a weak Pareto efficient 
solution for the given multiobjective programming 
problem. 

The proofs of the following theorems follow along the 
lines of Theorem 3.1; therefore we state the theorems but 
omit the proofs. 

 
Theorem 3.2. (Sufficiency). Suppose that  
(i) y ∈ X; 
(ii) there exist τ ∈0 ,pR  0 0,τ ≥  λ ∈0 mR  and λ ≥0 0  

such that 
(a) τ λ∇ + ∇ =0 0( ) ( ) 0,f y g y  
(b) λ =0 ( ) 0,g y  
(c) τ =0 1,e  where (1,  1,  ...,  1) ;t pe R= ∈  

(iii) problem (MOP) is weak strictly pseudo quasi α-univex 
at y ∈ X with respect to some α and η for all feasible 
x. 

Then y is an efficient solution to (MOP). 
 

Theorem 3.3. (Sufficiency). Suppose that  
(i) y ∈ X; 
(ii) there exist 0 ,pRτ ∈  τ ≥0   0,  λ ∈0 mR  and 0 0λ ≥  

such that 
(a) τ λ∇ + ∇ =0 0( ) ( ) 0,f y g y  
(b) λ =0 ( ) 0,g y  
(c) τ =0 1,e  where (1,  1,  ...,  1) ;t pe R= ∈  

(iii) problem (MOP) is weak strictly pseudo α-univex at y 
∈ X with respect to some α and η for all feasible x. 

Then y is an efficient solution to (MOP).  
 

4. MOND-WEIR TYPE DUALITY 

In this section, to establish a connection between (MOP) 
and (DMOP) we present some weak and strong duality 
relations under various generalized α-univex functions 
defined in the previous section. 

We consider the following Mond-Weir dual problem 
(DMOP) in Egudo (1989) type format for (MOP).  
 
(DMOP) Maximize ( )f y  

Subject to τ λ∇ + ∇ =( ) ( ) 0,f y g y   
( )  0,g yλ ≥  

  0,λ ≥  0τ ≥  and 1,eτ =  
 

where (1,  1,  ...,  1) .t pe R= ∈  
 

We denote the set of all feasible solutions of problem 
(DMOP) by Y0 i.e. 
 

{0 ( , , ) : ( ) ( ) 0,Y y f y g yτ λ τ λ= ∇ + ∇ =  

     }( ) 0, , , 0p mg y R Rλ τ λ λ≥ ∈ ∈ ≥  

 
Theorem 4.1. (Weak Duality). Suppose that  
(i) x ∈ X; 
(ii) 0( , , )y Yτ λ ∈  and 0;τ >  
(iii) problem (DMOP) is strong pseudo quasi α-univex at y 

with respect to some α ,  0 ,b  1 ,b  φ0 ,  φ1  and .η  
Then 
 

>( ) ( ).f x f y  
 

Proof. By contradiction, suppose that  
 

≤( ) ( ).f x f y  
 

Since 0 ( , ) 0b x y >  and ϕ≤ ⇒ ≤0(.) 0 (.) 0,  from the 
above inequality, we get 

 
[ ]0 0( , ) ( ) ( ) 0.b x y f x f yφ − ≤                    (4) 

 
Since ( , , )y τ λ  is feasible for (DMOP). It follows that  

λ− ≤( )  0.g y  
Since 1( , )  0b x y ≥  and φ≤ ⇒ ≤0(.)  0 (.)  0,  from the 

above inequality, we get 
 

[ ]1 1( , ) ( ) 0.b x y g yφ λ− ≤                        (5) 
 
By inequalities (4), (5) and condition (iii), we have 

 
[ ]( , ) ( ) ( , ) 0x y f y x yα η∇ ≤ and 

[ ]( , ) ( ) ( , )  0.x y g y x yα λ η∇ ≤  
 
But 0,α > so above inequalities reduce to 

 
[ ]( ) ( , ) 0,f y x yη∇ ≤                                              (6) 

[ ]( ) ( , )  0.g y x yλ η∇ ≤                                  (7) 
 
But τ > 0,  the above two inequalities give  
 
[ ]( ) ( ) ( , ) 0,f y g y x yτ λ η∇ + ∇ <  
 
which contradicts (iii). This completes the proof. 
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The proofs of the following theorems follow along the 
lines of Theorem 4.1; therefore we state the theorems but 
omit the proofs. 

 
Theorem 4.2. (Weak Duality). Suppose that  
(i) x ∈ X; 
(ii) 0( , , )y Yτ λ ∈  and 0;τ ≥  
(iii) problem (DMOP) is weak strictly pseudo quasi 

α-univex at y with respect to some α ,  0 ,b  1 ,b  φ0 ,  
φ1  and .η  

Then 
 

>( ) ( ).f x f y  
 

Theorem 4.3. (Weak Duality). Suppose that  
(i) x ∈ X; 
(ii) 0( , , )y Yτ λ ∈  and τ ≥  0;  
(iii) problem (DMOP) is weak strictly pseudo α-univex at y 

with respect to some α ,  0 ,b  1 ,b  φ0 ,  φ1  and .η  
Then 
 

>( ) ( ).f x f y  
 

Theorem 4.4. (Strong Duality). Let x  be an efficient 
solution for (MOP) and x  satisfies a constraint 
qualification for (MOP) in Maeda (1994). Then, there exist 

pRτ ∈  and mRλ ∈  such that ( , , )x τ λ  is feasible for 
(DMOP). If any of the weak duality in Theorems 4.1, 4.2 
and 4.3 also holds, then ( , , )x τ λ  is efficient solution for 
(DMOP). 

 
Proof. Since x  is efficient solution for (MOP) and 
satisfies a generalized constraint qualification (Maeda 
(1994)), by Kuhn-Tucker necessary conditions (Maeda 
(1994)) there exist 0τ >  and   0λ ≥  such that 
 
τ λ∇ + ∇ =( ) ( ) 0,f x g x  

( ) 0.i ig xλ =  
 

The vector τ  may be normalized according to τ = 1,e  
0,τ >  which gives that the triplet ( , , )x τ λ  is feasible 

for (DMOP). The efficiency follows from the weak duality 
in Theorems 4.1, 4.2 and 4.3. This completes the proof. 
 

5. GENERALIZED MOND-WEIR TYPE 
DUALITY 

We shall continue our discussion on duality for (MOP) 
in the present section by considering a general Mond-Weir 
type dual problem (GMOP) and proving weak and strong 
duality theorem under some mild assumption of 
α-univexity introduced in section 2. The results given in 
this section may help to develop numerical algorithms as it 
provides suitable stopping rules for primal problem (MOP) 
and dual problem (GMOP). 

We consider the following general Mond-Weir (1981) 
type dual to (MOP) 

 
(GMOP) Maximize ( ) ( ) ,Jo Jof y g y eλ+  
Subject to τ λ∇ + ∇ =( ) ( ) 0,f y g y                  (8) 

( )  0,Jt Jtg yλ ≥  1    ,t r≤ ≤              (9) 

       ,0  ≥λ                             (10) 

       ,0  ≥τ                              (11) 
       1,eτ =                            (12) 
 

where (1,  1,  ...,  1)t pe R= ∈  and ,tJ  0    t r≤ ≤  are 
partitions of set M. 

 
Theorem 5.1. (Weak Duality). Let x and ( ,  ,  )y τ λ  be 
feasible solutions for (MOP) and (GMOP) respectively. 
Assume that one of the following conditions holds: 
 
(a) 0τ >  and ( (.) , (.))Jo Jo Jt Jtf g e gλ λ+  is strong pseudo 

quasi α-univex at y  with respect to some α ,  0 ,b  

1 ,b  φ0 ,  φ1  and η  for any t, 1    ,t r≤ ≤  
(b) ( (.) , (.))Jo Jo Jt Jtf g e gλ λ+ is weak strictly pseudo quasi 

α-univex at y with respect to some α ,  0 ,b  1 ,b  φ0 ,  
φ1  and η  for any t, 1    ,t r≤ ≤  

(c) ( (.) , (.))Jo Jo Jt Jtf g e gλ λ+  is weak strictly pseudo 
α-univex at y with respect to some α ,  0 ,b  1 ,b  φ0 ,  
φ1  and η  for any t, 1    .t r≤ ≤  

 
Then the following condition can not hold: 

 
( ) ( ) ( ) .Jo Jof x f y g y eλ≤ +                       (13) 
 

Proof. Suppose contrary to the result. Thus, we have  
 

( ) ( ) ( ) .Jo Jof x f y g y eλ≤ +  
 
Since x is feasible for (MOP) and λ ≥  0, the above 
inequality implies that  

 
( ) ( ) ( ) ( ) .Jo Jo Jo Jof x g x e f y g y eλ λ+ ≤ +  

 
By the feasibility of ( , , )y τ λ  inequality (9) gives  

 
( )  0,Jt Jtg yλ− ≤  for all ≤ ≤1    .t r  

 
Since φ φ0 1 and  are increasing, the above two inequalities 
give 

 

( ) ( )φ λ λ + − + ≤ 0 0( , ) ( ) ( ) ( ) ( ) 0,Jo Jo Jo Job x y f x g x e f y g y e  

(14) 

1 1( , ) ( ) 0Jt Jtb x y g yφ λ − ≤                                      (15) 
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By condition (a), from (14) and (15), we have  

 
( )( , ) ( ) ( ) ( , ) 0Jo Jox y f y g y e x yα λ η∇ + ∇ ≤  

 
and  
 

( )( , ) ( )Jt Jtx y g yα λ ∇ ( , )) 0,x yη ≤  ∀ ≤ ≤1    .t r  

 
But 0,α >  we get 

 
( )( ) ( ) ( , ) 0Jo Jof y g y e x yλ η∇ + ∇ ≤  

 
and  

 
( )( )Jt Jtg yλ ∇ ( , ))  0,x yη ≤  ∀ ≤ ≤1    .t r  

 
Since 0,τ >  the above two inequalities yield 

 

0

( ) ( ) ( , ) 0.
r

Jt Jt
t

f y g y x yτ λ η
=

 
∇ + ∇ < 

 
∑             (16) 

 
Since ,tJ  0    ,t r≤ ≤  are partition of set M, (16) is 
equivalent to  

 
[ ]( ) ( ) ( , ) 0.f y g y x yτ λ η∇ + ∇ <                           (17) 
 
This contradicts (8). 

Using hypothesis (b), we see that (14) and (15) together 
give 

 
( )( , ) ( ) ( ) ( , ) 0Jo Jox y f y g y e x yα λ η∇ + ∇ <  

 
and  

 
( )( , ) ( ) ( , ) 0,Jt Jtx y g y x yα λ η∇ ≤  ∀ ≤ ≤1    .t r  

 
But α > 0,  we get 

 
( )( ) ( ) ( , ) 0Jo Jof y g y e x yλ η∇ + ∇ <  

 
and 

 
( )( ) ( , )  0,Jt Jtg y x yλ η∇ ≤  ∀ ≤ ≤1    .t r  

 
Since τ ≥ 0,  the above two inequalities yield 

 

0

( ) ( ) ( , ) 0.
r

Jt Jt
t

f y g y x yτ λ η
=

 
∇ + ∇ < 

 
∑  

 
The above inequality leads to (5.10), which contradicts 

(8). 

By condition (c), from (14) and (15), we have 
 

( )( , ) ( ) ( ) ( , ) 0Jo Jox y f y g y e x yα λ η∇ + ∇ <  

 
and  

 
( )( , ) ( ) ( , )) 0,Jt Jtx y g y x yα λ η∇ <  ∀ ≤ ≤1    .t r  

 
But α > 0,  we get 

 
( )( ) ( ) ( , ) 0Jo Jof y g y e x yλ η∇ + ∇ <  

 
and  

 
( )( ) ( , )) 0,Jt Jtg y x yλ η∇ <  ∀ ≤ ≤1    .t r  

 
Since 0,τ ≥  the above two inequalities give (16), which 

leads to (17). This is a contradiction to (8). This completes 
the proof. 

 
Theorem 5.2. (Strong Duality). Let x  be an efficient 
solution for (MOP) at which the generalized constraint 
qualification is satisfied (Maeda (1994)). Then, there exist 

pRτ ∈  and mRλ ∈  such that ( , , )x τ λ  is feasible for 
(GMOP). If also weak duality (Theorem 5.1) holds, then 
( , , )x τ λ  is efficient solution for (GMOP). 

 
Proof. Since x  is efficient solution for (MOP) and 
satisfies a generalized constraint qualification (Maeda 
(1994)), by Kuhn-Tucker necessary conditions (Maeda 
(1994)) there exist 0τ >  and   0λ ≥  such that 
 
τ λ∇ + ∇ =( ) ( ) 0,f x g x  

( ) 0,i ig xλ = ∀ ≤ ≤1    .t r  
 

The vector τ  may be normalized according to τ = 1,e  
τ > 0,  which gives that the triplet ( , , )x τ λ  is feasible 
for (GMOP). The efficiency follows from the weak duality 
in Theorem 5.1. 
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