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Abstract⎯There have been many studies on two-stage supply models. Because supply chains are increasingly more 
complicated, this study considers the three-stage supply chain configurations which involve multiple companies at each stage 
and each company at the upstream stages can supply two or more customers. The coordination mechanisms for the 
members along the chain are achieved in the following two aspects: (i) each company takes general-integer (GI), stationary 
and nested inventory replenishment policies; (ii) two differential transportation costs are incorporated into the ordering and 
inventory costs. This paper analyzes the cost properties such that we can develop an efficient heuristic method to deal with 
the three-stage inventory-distribution problems (TSIDP). The relative outcomes between our proposed heuristic approach 
and LINGO® software indicate that the former outperforms the latter. 
Keywords⎯Three-stage inventory/production/distribution supply chains, General-Integer policies, Heuristics. 
 
 
1. INTRODUCTION 

Transportation costs are often neglected in the literature, as mentioned in the review by Drexl and Kimms (1997), and the 
issue of  incorporating transportation costs into lot-sizing models is gradually growing. For instance, Swenseth and Godfrey 
(2002) pointed out that transportation costs can be almost 50% of  the total logistics costs of  a product. Furthermore, 
Burwell et al. (1997), Bertazzi and Speranza (1999) and Vroblefski et al. (2000) also emphasized the consideration of  
transportation costs in inventory decisions. To achieve efficient supply chain management, Sarmiento and Nagi (1999) 
claimed that much research is needed on the issues of  integrating inventory and distribution, as well as the integration of  
inventory and production. However, there have been studies on the integration of  inventory, production and distribution. 
Some researchers have focused on proposing coordination mechanisms among members of  the supply chain. For example, 
Chen et al. (2001) addressed the coordination mechanisms on the franchise fees, quantity discounts, volume discounts, and 
frequency discounts in a system with one supplier and multiple retailers. Klastorin et al. (2002) evaluated the two-echelon 
decentralized supply chains and applied price discounts to coordinate the orders. Maxwell and Muckstadt (1985) and Jackson 
et al. (1988) assumed the general integers or the power-of-two integers multiple of  the basic period of  time as shipping 
frequencies for products. Many recent papers relating to a central warehouse and N retailers network have been 
concentrated on power-of-two and general-integer policies. For example, Roundy (1985), and Abdul-Jalbar et al. (2005) 
further developed a new heuristic to compare with that proposed by Roundy (1985). Khouja (2003) utilized three 
coordination mechanisms of  equal cycle time, integer multipliers and integer power-of-two, for a three-stage supply chain 
configuration. However, Khouja (2003) did not consider transportation costs. The model in this study considers key ideas 
from two research streams of  literature: (1) the multi-echelon production-inventory systems, and (2) the distribution systems. 
The key findings in this paper include: (i) total cost structure for all members in the chain comprises of  piece-wise convex 
but discontinuous curve at some transportation-cost breakpoints; (ii) the theoretical results derived in this study can become 
the foundation for carrying on further investigations of  the TSIDP. 

The structure of  this study is as follows. In Section 2, we define the problem scope of  this study. Section 3 discusses the 
insights of  the model so that we can develop the solution method in Section 4. In Section 5, we present an example to 
illustrate our solution procedure for the TSIDP. The computational and comparative results are shown in Section 6. Finally, 
we present conclusions in Section 7. 

 
2. PROBLEM STATEMENT 
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This study refers to Khouja (2003) in assuming that the distribution system has arborescence, i.e. a tree-like structure, as 

shown in Figure 1. The area circled by dashed lines in Figure 1 is our research scope. In addition to the original inventory 
and production concerns in Khouja (2003), we also consider the transportation factor in this decentralized network. We 
adopt the inventory and production elements considered in Khouja (2003) and then add other notations used in the aspect 
of  the transportation cost such that notations we use are shown in Table 1.  

-- Insert Figure 1 here -- 
-- Insert Table 1 here-- 

The assumptions in the TSIDP include:  
(i) companies in the same stage share the same reorder interval,  
(ii) the replenishment interval at each stage is an integer multiple of  the basic reorder interval at the immediate and 

consecutive downstream stage,  
(iii) the annual demand of  firm j at stages 1 and 2 is calculated by λ11=λ21+λ22+λ23, λ21 =λ31+λ32+λ33, λ22 =λ34+λ35, and λ23 

=λ36+λ37, 
(iv) each firm’s replenishment order is in the amount of  ij ijTλ  units (please refer to Table 1, and this assumption can be 

transformed into 3 3j jq Bλ= , B2 2 2j jq Kλ= and 1 2B1 1j jq K Kλ= ) because we assume that the inventory level is down 
to zero when the next replenishment epoch begins,  

(v) two differential transportation costs Ci0 and Ci1, i.e. one price breakpoint, are considered in this problem, 
(vi) the supplier’s and manufacturers’ production capacity are not overloaded. 

The decision variables in the TSIDP are B, K2, and K1. Upon a general-integer-ratio policy, the ratio of  T2j/T3j or that of  
T1j/ T2j needs to be a positive integer such that K1 and K2 are restricted to be positive integers. 

The annual total costs in the model TSIDP are the summation of  the cost elements described below: 
Problem TSIDP:  
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The objective function of  the TSIDP is to minimize the summation of  the ordering, the inventory holding, and the 
transportation costs of  all firms. Under GI policy, the inventory replenishment multipliers K2 and K1 must be the positive 
integers as the constraints (11) and (12) demonstrate. The constraints (4), (7), and (10) represent that the firms need to meet 
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the constraints of  the GI ordering period policy and their ordering quantities are their own yearly demand multiple of  the 
ordering period. After deciding how many quantities need to be replenished, each firm is limited to applying two different 
transportation costs. The constraints (3), (6), and (9) are used to judge the relationship between ordering quantities and 
transportation discount quantities. If  our given transportation discount quantities are greater than ordering quantities, the 
variable sij is restricted to be 0 as shown in the Eq. (2), (5), and (8) such that the transportation cost Ci0 is adopted. On the 
other hand, the transportation cost Ci1 is to be adopted when sij=1. 

 
3. THE COST-CURVE STRUCTURE ANALYSIS 

In this section, we illustrate the cost-curve properties for the TSIDP. In order to solve the mathematical model, we plot 
curves to investigate cost functions. We denote those curves as “cost curves.” The solution procedure has two steps: (i) to 
analyze the cost curves on mathematical models and (ii) to develop heuristic approaches from the findings in (i). Lee and 
Yao (2003) studied cost curves of  the joint replenishment problem, and Lee and Wen (2007) discussed cost curves of  the serially 
distributed storage depots problem. First of  all, this study focuses on the cost structure for each stage before applying suitable 
methods for the problems. Cost curves are generated by referring to the parameters in parentheses demonstrated in Figure 1. 
The values with transportation costs are given by this study, while others are the same as those mentioned in Khouja (2003). 
Taking the transportation cost into account, we discover that cost functions separately reveal the convexity but discontinuity, 
the piece-wise convexity but discontinuity, and the piece-wise convexity but discontinuity and with some truncation points 
on the minimal cost curve, as shown in Figures 2, 3, and 4. Finally, we find that the cost structure of  the model TSIDP is the 
piece-wise convexity but discontinuity and with some truncation points as Figure 5 demonstrates.  

-- Insert Figure 2 here-- 
-- Insert Figure 3 here-- 
--Insert Figure 4 here-- 
--Insert Figure 5 here-- 

By means of  our foregoing discussion, it is clear that the model TSIDP has some features on its cost structure. In the 
next section, we develop the appropriate heuristic approach using the interesting findings on cost curves of  the model 
TSIDP. The following theoretical analysis is used to indicate our observations on the cost curve properties. It is convenient 
to interpret that we place cost function equations into lemmas and properties. 

 
Lemma 1. The cost function PTC3j(B) is convex with respect to B. 
 

.              (13) 
 

Proof. The cost function PTC3j(B) is a function that is differentiable, its second derivative  if  B > 
0. Because the graph of  PTC3j(B) is above all of  its tangent lines, the graph is convex at all of  its positive values of  B. 
PTC3j(B) is convex with respect to B for each firm j (for j = 1, 2, …, J3) at stage 3.  

'' 3
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Lemma 2. The cost function ATC3j(B) is convex but discontinuous at a breakpoint with respect to B. 
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subject to  the constraints (2), (3), and (4). 
 
Proof. By Lemma 1, the function PTC3j(B) is convex with respect to B. Therefore, ATC3j(B) is convex but discontinuous at a 
breakpoint with respect to B after considering the constraints of  transportation-cost discounts into the convex function 
PTC3j(B).  
 
Proposition 1. All the breakpoints of  the function ATC3j(B) will be inherited by the ATC3(B). The cost function ATC3(B) is convex but 
discontinuous at some breakpoints with respect to B. 
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subject to the constraints (2), (3), and (4). 
 
Proof. Since PTC3j(B) is a convex function, so is PTC3(B). Because PTC3(B) is the summation of  J3 convex functions, PTC3(B) 
is another convex function. ATC3(B) is a convex but discontinuous function at some breakpoints after imposing the 
constraints of  transportation-cost discounts into the convex function PTC3(B).  
 
Lemma 3. For a given value of  K2, the cost function ATC2j(K2, B) is convex but discontinuous at a breakpoint with respect to B. 
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subject to the constraints (5), (6), (7) and (11). 
 
Proof. For a given value of  K2, the cost function PTC2j(K2, B) is a convex function with respect to B. Transportation-cost 
constraints are added into the convex function PTC2j(K2, B) so that ATC2j(K2, B) is a convex but discontinuous at a 
breakpoint with respect to B.  
 
Proposition 2. For a given value of  K2, all the breakpoints of  the function ATC2j(K2, B) will be inherited by the ATC2(K2, B) and 
ATC2(K2, B) is convex but discontinuous at some breakpoints with respect to B. 
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subject to the constraints (5), (6), (7) and (11). 
 
Proof. By Lemma 3, for a given value of  K2, ATC2(K2, B) is a convex but discontinuous function with respect to B because 
ATC2(K2, B) is the summation of  J2 convex but discontinuous functions ATC2j(K2, B).  
 
Proposition 3. The minimal cost function of  the function ATC2(K2, B) is piece-wise convex but discontinuous at some breakpoints with 
respect to B. 

We define 2 ( )ATC B  as the minimal cost function of  the function with respect to B, where 2 2( ,ATC K B)
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breakpoints of  the function ATC1j(K1, B) will be inherited by the ATC1(K1, B) and ATC1(K1, B) is convex but discontinuous at some 
breakpoints with respect to B. 
 

Proof. The multiplier and its corresponding JP are already given. For a given value of  K1, ATC1(K1, B) is a convex but 
discontinuous function with respect to B because ATC1(K1, B) is the summation of  J1 convex but discontinuous functions 
ATC1j(K1, B).  
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Lemma 5. Let and its corresponding JP also be decided while we are analyzing the function min
2K 2 ( )ATC B . The minimal cost function of  

the function  is piece-wise convex but discontinuous with respect to B. 1 1( , )ATC K B

Let 1( )ATC B  be the minimal cost function of  the function with respect to B, where 1 1( , )ATC K B
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discontinuous at some breakpoints with respect to B.  
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Proposition 4. The junction points (JPs) and breakpoints (BPs) appearing on curves of  ATC3(B), 2 ( )ATC B , and 1( )ATC B will be 
inherited by the function ATC. 
 
Proof. Because the function ATC is the summation of  ATC3(B), 2 ( )ATC B , and 1( )ATC B , ATC is another piece-wise 
convex but discontinuous curve with respect to B. That means JPs and BPs on curves of  ATC3(B), 2 ( )ATC B , and 

1( )ATC B  will be inherited by the function ATC.  
 
4. A PROPOSED HEURISTIC METHOD 

In this section, we introduce the proposed search method to solve the TSIDP. Observing the cost curve structure 
disscussed in the previous section, we conclude that there are two kinds of points, called breakpoints (BPs) and junction 
points (JPs), shown on cost curves. By some insights into the cost-curve structure, this study develops the following search 
mechanisms.  

 
4.1 Starting and termination conditions  

Before introducing the proposed search method, we derive a lower bound and an upper bound to reduce the searched 
region. At first, we consider a relaxed problem of the TSIDP, defined by RP, as shown in Eq. (21): 

Problem RP:  
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* B  and BRP are denoted as the value of  B for the problems TSIDP and RP, respectively. The closed form for BRP is given as 
follows: 
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Let ATC(BRP) be the objective function value of  the TSIDP at BRP. We will demonstrate that a lower bound and an upper 

bound on are given by values of  B where the objective function value of  the problem RP equals ATC(BRP). The 
derivation of  the bounds is presented by the following proposition.  

*B

 
Proposition 5. Let BLB be the smallest and BUB be the largest B for which the objective function value of  the problem RP equals ATC(BRP). 
Then, . *

LB UBB B B≤ ≤
 
Proof. We have the range  shown on the B-axis because the objective function of  the problem RP is 
strictly convex. For , the objective function value of  the problem RP is definitely larger than ATC(BRP). The 
objective function value of  the TSIDP is also larger than ATC(BRP) for since the problem RP is a relaxation of  the 
TSIDP. Consequently,  is an upper bound on . It is analogous that the proof  is used for .  

LB RP UBB B B≤ ≤

UBB B>

UBB B>

UBB *B *
LBB B≤

By Proposition 5, we show how to place the bounds BLB and BUB on in Figure 6. The Bisection Method is applied to 
find BLB and BUB. We set the approximation, denoted as mn, which converges to ATC(BRP) at step n with an error En, where 

*B

 
       (23) 

 
4( ) 10n RP nE ATC B m −= − ≤

Therefore, we need to determine the objective function value of BLB or BUB to accuracy within 10-4. The following search 
method is implemented in the interval [BLB, BUB]. 

--Insert Figure 6 here— 
 

4.2 A search mechanism for finding bps 

For stage 3, the breakpoint, denoted as 3 jρ  for j= 1, 2, …, J3, appears at the point of  
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The 2 gδ appearance represents that the K2 curve changes from (K2= v) to (K2= v+1) and results in the truncation point 
generation for the K1 curve. Each of  K1 curves is divided into (J1+1) segments by J1 different BPs. 

And for each K1 curve at stage 1, its cost function is  
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                      (30) 

 
The JP of  stage 1 is defined as 1 gδ , where g= 1, 2, … is a counter for JPs at stage 1 and is obtained by The JP-Stage 1 

Finding Procedure, as illustrated in Figure 9. 
-- Insert Figure 9 here -- 

 

Remark 3 Assume that min
2K v= . Unit transportation costs of  all firms at stage 1 on the curve (K1= x) are the same as 

those of  all firms at the stage 1 on the curve (K1= x+1) in the interval 1E
nτ

Ψ , where 1, 2,3, ...τ = . This means that at stage 1, 
we number the interval which divided by BPs appearing on the curves (K1= x) and (K1= x+1). JPs of curves (K1= x) and 
(K1= x+1) in the interval 1E

nτ
Ψ  can be computed using the following equation: 
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Remark 4 Assume that min

2K = . Find the firm which has unit transportation costs 10  and 11C  on curves (K1= x) and 
(K1= x+1), respectively. The numerator of  Eq. (32) consists of  the firm whose unit transportation costs are not the same on 
curves (K1= x) and (K1= x+1). JPs of curves (K1= x) and (K1= x+1) in the interval 

C

1
τ

E
nΨ  can be calculated as follows: 
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where the firms . 1,  , , ..., {1, 2, 3, ..., }t r u w J∈
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4.4 A search mechanism for solving the tsidp 

We have discussed the cost structure of  the TSIDP in the previous sections. Our search procedure for finding the 
searched points at stage 3 as depicted in Figure 10 is based on JPs and BPs. Following the same search mechanism, we can 
obtain searched points at stages 1 and 2. 

-- Insert Figure 10 here -- 
 

5. AN ILLUSTRATIVE EXAMPLE 

This study adopts the data for the inventory and production field in Khouja (2003) and adds new data for the 
transportation aspect, as revealed in parentheses in Figure 1. We introduce the proposed search mechanism in Section 4.4 to 
solve the demonstrated example. The computational tool we utilize to implement our proposed method is MATLAB® 6.5 
with a computer P4-1.8 GHz, 512MB RAM. The search method starts at the point BUB= 0.1666 years and terminates at the 
point BLB= 0.0063 years. The search results are generated as shown in Table 2. 

-- Insert Table 2 here -- 
For the TSIDP, we set the results obtained from our search method by the following equations: 
 

,          (33) * arg min( )m
m

ATC ATC=
 

,      (34) 
 

* * * *
2 1 2 1( ,  ,  ) arg min( (( ) ,( ) , )m m m

m
K K B ATC K K B=

where m is a counter for the searched points. 
Observe that the minimal cost of  ATC is , such that , and it takes 

0.05 seconds instead of  3 seconds to find the same results by LINGO® 8.0. Recall that in Figure 5, we used small-step search 
method to enumerate a wide range of  B using a small step size of  

* $104,818ATC = * * *
2 1( ,  ,  ) (1,  2,  0.0625)K K B =

0.0001BΔ = . This near-exhaustive search procedure is 
used to solve the TSIDP and the result is , . The comparison of  cost 
deviation between our proposed search method and the small-step search method is [(104,818－103,613)/103,613]×100%= 
1.16%. This example demonstrates that our proposed search method could be an efficient method to obtain the solution to 
the TSIDP. 

* $103,613ATC = * * *
2 1( ,  ,  ) (1,  2,  0.0556)K K B =

 
6. THE COMPUTATIONAL AND COMPARATIVE RESULTS 

We will further test the performance of  the proposed search method by the experiments shown in this section. First, we 
randomly generate parameters of  solved problems from five settings, PS1, PS2, PS3, PS4, and PS5. For each setting, the 
data range for each parameter is defined in Table 3. There are 30 experimental problems in each setting. Therefore, we have 
a total of  150 experimental problems. We coded our search method in MATLAB® 6.5 and ran experiments on a computer 
with P4-1.8 GHz, 512MB RAM. Comparisons between our proposed search method and LINGO® software in the aspect of  
average run times and cost deviations are summarized in Table 4 and Table 5, respectively. Because some experiments ran 
over an hour using LINGO® software, we limited the longest run time to 3,600 seconds in LINGO® software. On average, 
the run time is within 0.057 sec. and the cost deviation is within 0.50%. These results demonstrate that our proposed 
heuristic method outperforms LINGO® software in solving the TSIDP. 

-- Insert Table 3 here -- 
-- Insert Table 4 here -- 
-- Insert Table 5 here – 

 
7. CONCLUSIONS 

In this study, we focus on a three-stage inventory/production/distribution supply chain system with 11 members, 
including 1 supplier, 3 manufacturers and 7 retailers. This model was originally presented in Khouja (2003), who discussed 
only inventory and production activities in this system, without considering transportation costs. Therefore, applications 
could meet practical needs, we added the transportation cost into the inventory and production system. The objective of  
our research is to find the minimal cost of  those activities conducted by members along the supply chain. 

By analyzing the cost curve structure of  the model TSIDP, we provide useful insights into the model TSIDP and develop 
a search method based on JPs and BPs appearing on the cost curve at each firm. The outcomes demonstrate that our search 
method outperforms LINGO® software by testing randomly generated experiments.  

 
REFERENCES 

1. Abdul-Jalbar, B., Gutiérrez, J., and Sicilia, J. (2005). Integer-ratio policies for distribution/inventory systems. International 



 
 
Lee and Wen: Coordinating Replenishment Cycles in Three-Stage Inventory-Distribution Supply Chains 

201

IJOR Vol. 5, No. 4, 193−212 (2008) 
Journal of  Production Economics, 93-94, 407-415. 

2. Bertazzi, L. and Speranza, M.G. (1999). Models and algorithms for the minimization of  inventory and transportation 
costs: A survey. In: Speranza, M.G., and Stähly, P., New Trends in Distribution Logistics, Springer-Verlag, Amsterdam. 

3. Burwell, T.H., Dave, D.S., Fitzpatrick, K.E., and Roy, M.R., (1997). Economic lot size model for price-dependent 
demand under quantity and freight discounts. International Journal of  Production Economics, 48(2): 141-155. 

4. Chen, F., Federgruen, A., and Zheng, Y.S., (2001). Coordination mechanisms for a distribution system with one supplier 
and multiple retailers. Management Science, 47(5): 693-708. 

5. Drexl, A. and Kimms, A., (1997). Lot sizing and scheduling--- survey and extensions. European Journal of  Operational 
Research, 99: 221-235. 

6. Khouja, M., (2003). Optimizing inventory decisions in a multi-stage multi-customer supply chain. Transportation Research 
Part E: Logistics and Transportation Review, 39: 193-208. 

7. Klastorin, T.D., Moinzadeh, K., and Son, J. (2002). Coordinating orders in supply chains through price discounts. IIE 
Transactions, 34(8): 679-689. 

8. Lee, F.C. and Wen, U.P. (2007). A heuristic approach for solving serially distributed storage depots under general-integer 
policy. Asia-Pacific Journal of  Operational Research.  

9. Lee, F.C. and Yao, M.J. (2003). A global optimum search algorithm for the joint replenishment problem under 
power-of-two policy. Computers and Operations Research, 30(9): 1319-1333. 

10. Maxwell, W.L. and Muckstadt, J.A. (1985). Establishing consistent and realistic reorder intervals in 
production-distribution systems. Operations Research, 33(6): 1316-1341. 

11. Muckstadt, J. and Roundy, R.O. (1993). Analysis of  multi-stage production systems. In: Graves, S.C. (Ed.), Handbook in 
Operations Research and Management Science, Logistics of  Production and Inventory, 4, Elsevier Science Publishers, Amsterdam, 
59-31. 

12. Roundy, R.O. (1985). 98% Effective integer-ratio lot sizing for one-warehouse multi-retailer systems. Management Science, 
31: 1416-1430. 

13. Sarmiento, A.M. and Nagi, R., (1999). A review of  integrated analysis of  production-distribution systems. IIE 
Transactions, 31 (11): 1061-1074. 

14. Swenseth, S.R. and Godfrey, M.R. (2002). Incorporating transportation costs into inventory replenishment decision. 
International Journal of  Production Economics, 77(2): 113-130. 

15. Vroblefski M., Ramesh, R., and Zionts, S, (2000). Efficient lot sizing under a differential transportation cost structure 
for serially distributed warehouses. European Journal of  Operational Research, 127: 574-593. 



 
 
Lee and Wen: Coordinating Replenishment Cycles in Three-Stage Inventory-Distribution Supply Chains 

202

IJOR Vol. 5, No. 4, 193−212 (2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transportation 

Outside 
vendor

Supplier 
(j=1)(a1=800)

 

 

Figure 1. A three-stage inventory/production/distribution supply chain configuration. 

 

 
Figure 2. The total annual costs of  all firms at stage 3. 
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Figure 3. The total annual costs of  all firms at stage 2. 

 
 
 
 
 
 

 
 

Figure 4. The total annual costs of  all firms at stage 1. 
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Figure 5. The total annual costs of  all firms at all stages. 
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Figure 6. Starting and termination conditions on B*. 

  
 
 

Figure 7. To illustrate the cost properties of  each K2 curve (Take K2=1 for an example).  
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Figure 8. The JP-Stage 2 Finding Procedure.
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Figure 10. A search mechanism for solving searched points at stage 3 (Continued). 
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Table 1. A glossary of  notations. 
Notations Definition 

i an index of  the echelon in the supply chain, i= 1, 2, 3. 
Ji the total number of  firms at each stage i. 
j an index represents each firm. For each stage i, each firm is numbered from 1 to Ji. 
ai setup/ordering cost of  each company at each stage i. (dollars/per year) 
hi-1 the inventory carrying cost of  incoming raw material at stage i.  

(dollars/per unit/per year) 
hi the inventory carrying cost of  outgoing finished goods at stage i. 

(dollars/per unit/per year) 
λij annual demand of  each firm j at stage i.  

(units/per year) 
Rij  the annual production rate of  firms at stages 1 and 2. 

(units/per year) 
B the basic reorder interval. (years) 
K2 the ordering frequency multiplier at stage 2. 
K1 the ordering frequency multiplier at stage 1. 
Tij the ordering frequency of  each firm j at stage i. (years) 

T3j = B, for j= 1, 2, … J3. 
T2j = K2 B, for j= 1, 2, … J2. 
T1j = K1 K2B, for j= 1, 2, … J1. 

qij the ordering quantity of  firm j at stage i. (units) 
The annual setup/ordering cost and inventory holding cost of  each firm j at stage i. (dollars/per year)

ijPTC  

The annual setup/ordering cost and inventory holding cost of  all firms at stage i. (dollars/per year) 
iPTC  

PTC  The annual setup/ordering cost and inventory holding cost of  all firms at all stages. (dollars/per year)
the total annual cost of  each firm j at stage i. (dollars/per year) 

ijATC  

the total annual cost of  all firms at stage i. (dollars/per year) 
iATC  

ATC  the total annual cost of  all firms at all stages. (dollars/per year) 
b the transportation cost breakpoint. (units) 
sij the 0/1 variable to judge the relationship between qij and b. 

Ci0 the unit transportation cost for dispatching a single resource from the firm at the stage i (i－1) to that 
in the next successive stage i while the reorder or shipped quantity qij is less than a certain 
transportation volume, b. (dollars/per unit/per year) 

Ci1 the unit transportation cost when qij is greater than or equal to b. Ci0 and Ci1 would result in sij= 0 and 
sij = 1, respectively. (dollars/per unit/per year) 

'
1iC  1 0( )i iC C= − < 0

and denote it as the transportation cost difference.  
(dollars/per unit/per year) 
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Table 2. The results of  the illustrative example. 

The searched 
points, B s31 s32 s33 s34 s35 s36 s37 s21 s22 s23 s11 K2 K1 ATC 

0.1500 1 1 1 1 1 0 1 1 1 1 1 1 1 125,325 

0.1250 0 1 1 1 1 0 1 1 1 1 1 1 1 117,377 

0.0833 0 1 1 0 1 0 1 1 1 1 1 1 1 107,055 

0.0750 0 1 1 0 1 0 0 1 1 1 1 1 1 106,548 

0.0625 0 0 1 0 1 0 0 1 1 1 1 1 2 104,818* 

0.0375 0 0 1 0 0 0 0 1 1 1 1 2 1 105,493 

0.0556 0 0 1 0 0 0 0 1 1 1 1 1 2 105,006 

0.0417 0 0 1 0 0 0 0 1 1 0 1 1 1 113,137 

0.0383 0 0 1 0 0 0 0 1 0 0 1 1 1 115,969 

0.0278 0 0 0 0 0 0 0 1 1 1 1 2 1 110,525 

0.0218 0 0 0 0 0 0 0 1 1 0 1 2 1 117,437 

0.0185 0 0 0 0 0 0 0 1 1 1 1 3 1 114,978 

0.0157 0 0 0 0 0 0 0 1 1 0 1 3 1 120,909 

0.0139 0 0 0 0 0 0 0 1 1 1 1 4 1 120,354 

0.0123 0 0 0 0 0 0 0 1 1 0 1 4 1 125,357 

0.0111 0 0 0 0 0 0 0 1 1 1 1 5 1 126,100 

0.0103 0 0 0 0 0 0 0 1 1 0 1 5 1 130,102 

0.0093 0 0 0 0 0 0 0 1 1 1 1 6 1 132,030 

0.0088 0 0 0 0 0 0 0 1 1 0 1 6 1 134,909 

0.0079 0 0 0 0 0 0 0 1 1 1 1 7 1 138,066 

0.0078 0 0 0 0 0 0 0 1 1 0 1 7 1 139,680 

0.0742 0 0 1 0 1 0 0 1 1 1 1 1 1 107,254 

0.0428 0 0 1 0 0 0 0 1 1 0 1 1 2 106,270 

0.0371 0 0 0 0 0 0 0 1 1 1 1 2 1 107,134 

0.0247 0 0 0 0 0 0 0 1 1 0 1 2 1 113,598 

0.0185 0 0 0 0 0 0 0 1 1 1 1 3 1 114,941 

0.0148 0 0 0 0 0 0 0 1 1 1 1 4 1 118,191 

0.0124 0 0 0 0 0 0 0 1 1 0 1 4 1 125,288 

0.0106 0 0 0 0 0 0 0 1 1 0 1 5 1 128,572 
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Table 3. The parameter settings for the random experiments. 

PS1 

( ) ( )(b~U[900, 3000]) ( ) ( )(a1~U[600, 1000])  10 ~ [0.05,  0.1]C U 11 ~ [0.05,  0.1]C U 0 ~ [0.05,  0.2]h U 1 ~ [0.6,  0.9]h U
(R11~U[460000,480000])( )( )( )( ) 20 ~ [0.12,  0.16]C U 21 ~ [0.12,  0.16]C U 2 ~ [1.5,  2.5]h U 2 ~ [100,  300]a U
( ) ( ) ( )( )  21 22 23,  ,  ~ [130000,  150000]R R R U 30 ~ [0.17,  0.25]C U 31 ~ [0.17,  0.25]C U 3 ~ [4.0,  7.0]h U
( )(3 ~ [20,  80]a U 31 32 33 34 35 36 37,  ,  , ,  ,  ,  ~ [8000,  40000]Uλ λ λ λ λ λ λ ) 

PS2 

( ) ( )(b~U[2000, 4000]) ( ) ( )(a1~U[1000, 1500])  10 ~ [0.1,  0.16]C U 11 ~ [0.1,  0.16]C U 0 ~ [0.15,  0.3]h U 1 ~ [1.2,  1.6]h U
(R11~U[600000,700000])( ) ( )( )( )  20 ~ [0.2,  0.24]C U 21 ~ [0.2,  0.24]C U 2 ~ [3.0,  4.5]h U 2 ~ [300,  600]a U
( )( ) ( )( )  21 22 23,  ,  ~ [160000,  220000]R R R U 30 ~ [0.25,  0.3]C U 31 ~ [0.25,  0.3]C U 3 ~ [6.5,  8.5]h U
( )(3 ~ [70,  100]a U 31 32 33 34 35 36 37,  ,  , ,  ,  ,  ~ [10000,  600000]Uλ λ λ λ λ λ λ ) 

PS3 

( ) ( ) (b~U[2500, 4500]) ( ) ( )(a1~U[2000, 2500])  10 ~ [0.15,  0.2]C U 11 ~ [0.15,  0.2]C U 0 ~ [0.3,  0.45]h U 1 ~ [1.5,  3]h U
(R11~U[650000,750000])( ) ( )( ) 20 ~ [0.25,  0.3]C U 21 ~ [0.25,  0.3]C U 2 ~ [3.5,  5.5]h U
( ) ( )( ) 

( )( )( )(
2 ~ [600,  1500]a U 21 22 23,  ,  ~ [250000,  300000]R R R U 30 ~ [0.35,  0.45]C U

31 ~ [0.35,  0.45]C U 3 ~ [6,  7.5]h U 3 ~ [40,  150]a U 31 32 33 34 35 36 37,  ,  , ,  ,  ,  ~ [15000,  80000]Uλ λ λ λ λ λ λ ) 

PS4 

( ) ( )(b~U[3500, 4500]) ( ) ( )(a1~U[2000, 4500])  10 ~ [0.25,  0.3]C U 11 ~ [0.25,  0.3]C U 0 ~ [0.3,  0.75]h U 1 ~ [2.0,  3.0]h U
(R11~U[650000,750000])( ) ( )( )( )  20 ~ [0.35,  0.45]C U 21 ~ [0.35,  0.45]C U 2 ~ [3.5,  5.5]h U 2 ~ [800,  1500]a U
( )( ) ( )  21 22 23,  ,  ~ [250000,  300000]R R R U 30 ~ [0.55,  0.65]C U 31 ~ [0.55,  0.65]C U
( )( )(3 ~ [7.0,  8.5]h U 3 ~ [150,  450]a U 31 32 33 34 35 36 37,  ,  , ,  ,  ,  ~ [55000,  80000]Uλ λ λ λ λ λ λ ) 

PS5 

( ) ( )(b~U[2500, 5500]) ( ) ( )(a1~U[1300, 2000]) 10 ~ [0.15,  0.35]C U 11 ~ [0.15,  0.35]C U 0 ~ [0.5,  0.95]h U 1 ~ [2.5,  3.5]h U
(R11~U[500000, 550000])( ) ( )( )( )  20 ~ [0.45,  0.50]C U 21 ~ [0.45,  0.50]C U 2 ~ [4.5,  6.5]h U 2 ~ [600,  1200]a U
( )( ) ( ) ( ) 21 22 23,  ,  ~ [150000,  300000]R R R U 30 ~ [0.65,  0.75]C U 31 ~ [0.65,  0.75]C U 3 ~ [7.0,  8.5]h U
( )(3 ~ [200,  500]a U 31 32 33 34 35 36 37,  ,  , ,  ,  ,  ~ [25000,  90000]Uλ λ λ λ λ λ λ ) 

 
 
 
 
 
 

Table 4. Average run time between our proposed method and LINGO® software. 
Average Run Time Parameter Settings (Heuristic) (LINGO®) 

PS1 0.056 sec. 2.462 sec. 
PS2 0.052 sec. 3343 sec. 
PS3 0.057 sec. 3480 sec. 
PS4 0.051 sec. 3000 sec. 
PS5 0.055 sec. 3600 sec. 

 
 
 
 
 
 

Table 5. Average cost deviation between our proposed method and LINGO® software. 
Average Cost Deviation Parameter Settings 

(ATCHeuristic- ATCLINGO®)/ ATCLINGO® 
PS1 0.50% 
PS2 0.33% 
PS3 0.06% 
PS4 0.02% 
PS5 0.01% 
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