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Abstract—There have been many studies on two-stage supply models. Because supply chains are increasingly more
complicated, this study considers the three-stage supply chain configurations which involve multiple companies at each stage
and each company at the upstream stages can supply two or more customers. The coordination mechanisms for the
members along the chain are achieved in the following two aspects: (i) each company takes general-integer (GI), stationary
and nested inventory replenishment policies; (ii) two differential transportation costs are incorporated into the ordering and
inventory costs. This paper analyzes the cost properties such that we can develop an efficient heuristic method to deal with
the three-stage inventory-distribution problems (TSIDP). The relative outcomes between our proposed heuristic approach
and LINGO® software indicate that the former outperforms the latter.

Keywords—Three-stage inventory/production/distribution supply chains, General-Integer policies, Heuristics.

1. INTRODUCTION

Transportation costs are often neglected in the literature, as mentioned in the review by Drexl and Kimms (1997), and the
issue of incorporating transportation costs into lot-sizing models is gradually growing, For instance, Swenseth and Godfrey
(2002) pointed out that transportation costs can be almost 50% of the total logistics costs of a product. Furthermore,
Burwell et al. (1997), Bertazzi and Speranza (1999) and Vroblefski et al. (2000) also emphasized the consideration of
transportation costs in inventory decisions. To achieve efficient supply chain management, Sarmiento and Nagi (1999)
claimed that much research is needed on the issues of integrating inventory and distribution, as well as the integration of
inventory and production. However, there have been studies on the integration of inventory, production and distribution.
Some researchers have focused on proposing coordination mechanisms among members of the supply chain. For example,
Chen et al. (2001) addressed the coordination mechanisms on the franchise fees, quantity discounts, volume discounts, and
frequency discounts in a system with one supplier and multiple retailers. Klastorin et al. (2002) evaluated the two-echelon
decentralized supply chains and applied price discounts to coordinate the orders. Maxwell and Muckstadt (1985) and Jackson
et al. (1988) assumed the general integers or the power-of-two integers multiple of the basic period of time as shipping
frequencies for products. Many recent papers relating to a central warchouse and N retailers network have been
concentrated on power-of-two and general-integer policies. For example, Roundy (1985), and Abdul-Jalbar et al. (2005)
further developed a new heutistic to compare with that proposed by Roundy (1985). Khouja (2003) utilized three
coordination mechanisms of equal cycle time, integer multipliers and integer power-of-two, for a three-stage supply chain
configuration. However, Khouja (2003) did not consider transportation costs. The model in this study considers key ideas
from two research streams of literature: (1) the multi-echelon production-inventory systems, and (2) the distribution systems.
The key findings in this paper include: (i) total cost structure for all members in the chain comprises of piece-wise convex
but discontinuous curve at some transportation-cost breakpoints; (ii) the theoretical results derived in this study can become
the foundation for carrying on further investigations of the TSIDP.

The structure of this study is as follows. In Section 2, we define the problem scope of this study. Section 3 discusses the
insights of the model so that we can develop the solution method in Section 4. In Section 5, we present an example to
illustrate our solution procedure for the TSIDP. The computational and comparative results are shown in Section 6. Finally,
we present conclusions in Section 7.

2. PROBLEM STATEMENT
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1813-713X Copyright © 2008 ORSTW
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This study refers to Khouja (2003) in assuming that the distribution system has arborescence, i.e. a tree-like structure, as

shown in Figure 1. The area circled by dashed lines in Figure 1 is our research scope. In addition to the original inventory
and production concerns in Khouja (2003), we also consider the transportation factor in this decentralized network. We
adopt the inventory and production elements considered in Khouja (2003) and then add other notations used in the aspect
of the transportation cost such that notations we use are shown in Table 1.
-- Insert Figure 1 here --
-- Insert Table 1 here--
The assumptions in the TSTDP include:
(i) companies in the same stage share the same reorder interval,
(i) the replenishment interval at each stage is an integer multiple of the basic reorder interval at the immediate and
consecutive downstream stage,
(iii) the annual demand of firm ; at stages 1 and 2 is calculated by A,,=A,; 4,4, A, =A;+A5,1A5, A, =4 +45,, and 4,
=35t Az,
(iv) each firm’s replenishment order is in the amount of A4, T, units (please refer to Table 1, and this assumption can be

transformed into ¢, =4, B, ¢,, =4, K,Band ¢,, =4, ,K,K,B) because we assume that the inventory level is down

to zero when the next replenishment epoch begins,
(v) two differential transportation costs Cyand Cj, i.e. one price breakpoint, are considered in this problem,
(vi) the supplier’s and manufacturers’ production capacity are not overloaded.
The decision variables in the TSIDP are B, K,, and K,. Upon a general-integer-ratio policy, the ratio of T/ Tj; or that of
T,/ T, needs to be a positive integer such that K; and K, are restricted to be positive integers.
The annual total costs in the model TSIDP are the summation of the cost elements described below:
Problem TSIDP:

L Is I Is '
ATC = Mmzmzze{z P / B+ Z . b3(813>/ /2)+ Z . /13/ (C‘,)lx}»/ +C,)
I J2 I
+D L a /KB YT h(KBAS /2R, )+ 3T (0B, [ 2)[K, A, /R, +(K, = 1)]
P '
+ z/:1 2/’<C21f2/’ +Cy) M

s 3" 0 JKEBEY b (KKBAL /2R )+ 3" (5K, BA, /DK A, R, + (K, ~1)]

h '
+ZF111/(C11I1/ +C)}

subject to

5, €401, =1, 2, .., ], @
s,b=q,,<0,7=1,2, .., ], €)
g9, =24,B,j=1,2, ., ], @
5, €{0,1, /=1, 2, .. ], ©)
s,b—q,,<0,7=1,2, .., ], ©)
0, =4 KB, j=1,2, ., ], )
5, €401}, 7=1,2, ., ], ®
sb=q,,<0,7=1,2, .., ], ©)
0, =A4,KKB, j=1,2,..,] (10)
K, 21, integer (11)
K, 21, integer (12)

The objective function of the TSIDP is to minimize the summation of the ordering, the inventory holding, and the
transportation costs of all firms. Under GI policy, the inventory replenishment multipliers K, and K, must be the positive
integers as the constraints (11) and (12) demonstrate. The constraints (4), (7), and (10) represent that the firms need to meet
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the constraints of the GI ordering period policy and their ordering quantities are their own yearly demand multiple of the

ordering period. After deciding how many quantities need to be replenished, each firm is limited to applying two different
transportation costs. The constraints (3), (6), and (9) are used to judge the relationship between ordering quantities and
transportation discount quantities. If our given transportation discount quantities are greater than ordering quantities, the
vatiable J; is restricted to be 0 as shown in the Eq. (2), (5), and (8) such that the transportation cost Cj, is adopted. On the
other hand, the transportation cost Cjis to be adopted when s5;=7.

3. THE COST-CURVE STRUCTURE ANALYSIS

In this section, we illustrate the cost-curve properties for the TSIDP. In order to solve the mathematical model, we plot
curves to investigate cost functions. We denote those curves as “cost curves.” The solution procedure has two steps: (i) to
analyze the cost curves on mathematical models and (i) to develop heuristic approaches from the findings in (i). Lee and
Yao (2003) studied cost curves of zhe joint replenishment problem, and Lee and Wen (2007) discussed cost curves of zbe serially
distributed storage depots problem. First of all, this study focuses on the cost structure for each stage before applying suitable
methods for the problems. Cost curves are generated by referring to the parameters in parentheses demonstrated in Figure 1.
The values with transportation costs are given by this study, while others are the same as those mentioned in Khouja (2003).
Taking the transportation cost into account, we discover that cost functions separately reveal the convexity but discontinuity,
the piece-wise convexity but discontinuity, and the piece-wise convexity but discontinuity and with some truncation points
on the minimal cost curve, as shown in Figures 2, 3, and 4. Finally, we find that the cost structure of the model TSIDP is the
piece-wise convexity but discontinuity and with some truncation points as Figure 5 demonstrates.

-- Insert Figure 2 here--
-- Insert Figure 3 here--
--Insert Figure 4 here--
--Insert Figure 5 here--

By means of our foregoing discussion, it is clear that the model TSIDP has some features on its cost structure. In the
next section, we develop the appropriate heuristic approach using the interesting findings on cost curves of the model
TSIDP. The following theoretical analysis is used to indicate our observations on the cost curve properties. It is convenient
to interpret that we place cost function equations into lemmas and properties.

Lemma 1. The cost function PTCy(B) is convex with respect fo B.
PTC, ,(B) = Minimize{a, | B+hy(BA;, /2)} . (13)

Proof. The cost function PI'C;(B) is a function that is differentiable, its second derivative PTC ; J(B)=a,/ 2B’ >0 if B>

0. Because the graph of PTCy(B) is above all of its tangent lines, the graph is convex at all of its positive values of B.
PTC;(B) is convex with respect to B for each firm / (forj =1, 2, ..., J;) at stage 3. [

Lemma 2. The cost function ATC;(B) is convex but discontinuous at a breakpoint with respect to B.

ATC, (B) = Minimize{a, | B+h,(BAy, [ 2)+ 4, (Cyys,, +Cy)} (14)
subject to  the constraints (2), (3), and (4).

Proof. By LLemma 1, the function PTC;(B) is convex with respect to B. Therefore, ATC;(B) is convex but discontinuous at a
breakpoint with respect to B after considering the constraints of transportation-cost discounts into the convex function

PTC,(B). O

Proposition 1. A/ the breakpoints of the function ATC;(B) will be inherited by the ATCy(B). The cost function ATCy(B) is convex: but
discontinunous at some breakpoints with respect to B.

ATC,(B) = Mz'm'wz'ze{Zf: a,/ B+ Zf: y(BA,, /2)+ Zf: A (Coysy, +Cy)) (15)
subject to the constraints (2), (3), and (4).

Proof. Since PTC;(B) is a convex function, so is PTCy(B). Because PTCy(B) is the summation of [;convex functions, PTC;(B)
is another convex function. ATC;(B) is a convex but discontinuous function at some breakpoints after imposing the
constraints of transportation-cost discounts into the convex function PTCy(B).[]

Lemma 3. For a given value of K,, the cost function ATC,(K,, B) is convex: but discontinuons at a breakpoint with respect to B.
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ATC2j (K,, B) = Minimizela, | K,B+ b, (KZBﬂZZ/ /2R2/)
+(/72B/12;/ /2)[Kzlz_/ /Rz/ + (Kz - 1) (16)
+/12/(C'21§21 +Cy)}

subject to the constraints (5), (6), (7) and (11).

Proof. For a given value of K,, the cost function PTC,(K,, B) is a convex function with respect to B. Transportation-cost
constraints are added into the convex function PTC,(K,, B) so that ATC,(K,, B) is a convex but discontinuous at a
breakpoint with respect to B. [1

Proposition 2. For a given value of K, all the breakpoints of the function ATC,(K,, B) will be inherited by the ATC,K,, B) and
ATCLK,, B) is convex: but discontinnons at some breakpoints with respect to B.
ATC,(K,, B) = Minimize(Y " a, | K,B+ Y., h(K,BA;, /2R, )
2
+2 (0B, /2K, A, /Ry, +(K, = 1)) 17

+ Zi; /12/ (C;1I2/ +Co)}
subject to the constraints (5), (6), (7) and (11).

Proof. By Lemma 3, for a given value of K,, ATC,(K,, B) is a convex but discontinuous function with respect to B because
ATCLK,, B) is the summation of [, convex but discontinuous functions ATC,(K,, B). O

Proposition 3. The minimal cost function of the function ATCY(K,, B) is piece-wise convex but discontinnous at some breakpoints with
respect to B.
We define ATC,(B) as the minimal cost function of the function ATC,(K,, B) with respect to B, where

ATC,(B) = min{ ATC, (K,, B)} . (18)

Proof. Choosing one K, that results in the minimal cost of ATC,(K,,B) for each positive value of B. For B> 0,

ATC»(B) s piece-wise convex but discontinuous at some breakpoints with respect to B. [J

Definition 1. Let a junction point, a particular value of B where two consecutive curves concatenate, on the curve of
ATC,(B) be the truncation point for the curve of ATC,(K,, B). Suppose that K" (L) and K5 (R) , respectively, are the

K, multipliers that result in the minimal cost function ATC,(B)of the left-side and right-side curves with regard to a

junction point, where
K™ =argmin{ ATC,(K,, B)} . (19)
K,

Lemma 4. Ler K™ and its corresponding [P also be decided while we are analyzing on the function ATC»(B). For a given value of K, all

breakpoints of the function ATC,(K,, B) will be inherited by the ATC,(K,, B) and ATC,(K,, B) is convex but discontinsous at some
breakpoints with respect to B.

Proof. The multiplier K;"" and its corresponding JP are already given. For a given value of K,, ATC,(K,, B) is a convex but

discontinuous function with respect to B because ATC,(K;, B) is the summation of |, convex but discontinuous functions

ATC,(K,, B). O

Lemma 5. Let K™ and its corresponding JP also be decided while we are analyzing the function ATC »(B). The minimal cost function of
the function ATC (K, B) s piece-wise convex but discontinuons with respect to B.

Let ATC(B) be the minimal cost function of the function ATC,(K,, B) with respect to B, where

ATC\(B) = min{ ATC,(K,,K, = K", B)} : (20)

Proof. The multiplier K;'""and its corresponding JP are already given. For B>0, ATC(B) is piece-wise convex but

discontinuous at some breakpoints with respect to B. [
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Proposition 4. The junction points (JPs) and breakpoints (BPs) appearing on curves of ATCy(B), ATC2(B), and ATC(B) will be
inberited by the function ATC.

Proof. Because the function ATC is the summation of ATCy(B), ATC:(B), and ATC:(B), ATC is another piece-wise
convex but discontinuous curve with respect to B. That means JPs and BPs on curves of ATCy(B), ATC,(B), and

ATC(B) will be inherited by the function ATC. [1

4. APROPOSED HEURISTIC METHOD

In this section, we introduce the proposed search method to solve the TSIDP. Observing the cost cutve structure
disscussed in the previous section, we conclude that there are two kinds of points, called breakpoints (BPs) and junction
points (JPs), shown on cost curves. By some insights into the cost-curve structure, this study develops the following search
mechanisms.

4.1 Starting and termination conditions

Before introducing the proposed search method, we derive a lower bound and an upper bound to reduce the searched
region. At first, we consider a relaxed problem of the TSIDP, defined by RP, as shown in Eq. (21):
Problem RP:

L Is J5 Is I I
Minimize{ Y ay ) B+ 2" b(BA,/2)+ 2" A, Co + 220 2, Cut D A Cud @)

B" and By, are denoted as the value of B for the problems TSIDP and RP, respectively. The closed form for By, is given as
follows:

22;:1 a,

by A,

Let ATC(Bgy) be the objective function value of the TSIDP at By, We will demonstrate that a lower bound and an upper

(22)

bound on B’ are given by values of B where the objective function value of the problem RP equals ATC(Byy). The
derivation of the bounds is presented by the following proposition.

Proposition 5. Lez By be the smallest and By be the largest B for which the objective function value of the problem RP equals ATC(Byy).
Then, B,, <B <B,.

Proof. We have the range B, < B,, < B; shown on the B-axis because the objective function of the problem RP is
strictly convex. For B> B, , the objective function value of the problem RP is definitely larger than ATC(Bgy). The
objective function value of the TSIDP is also larger than ATC(Bg,) for B> B, since the problem RP is a relaxation of the
TSIDP. Consequently, B, is an upper bound on B'. It is analogous that the proof is used for B, , < B".[J

By Proposition 5, we show how to place the bounds B, ; and By, on B'in Figure 6. The Bisection Method is applied to
find B, 3 and By We set the approximation, denoted as #,, which converges to ATC(Byy) at step # with an error E,, where

<10™ (23)

Eﬂ

= |ATC(BRP) =7,

Therefore, we need to determine the objective function value of B yor By, to accuracy within 104 The following search
method is implemented in the interval [B, 5, Byl
--Insert Figure 6 here—

4.2 A search mechanism for finding bps

For stage 3, the breakpoint, denoted as  p; y for /=1, 2, ..., J;, appears at the point of

Ry : 24)
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Define the breakpoint at stage 2 as pZKj where K,= 1,2, ... and /=7, 2, ..., ], and it is located on the point of

Pl =b/(K,2,). (25)

The breakpoint pf/‘ at stage 1 we can obtain by using the equation below:

pl=b/(KK™A, ), (26)

where K| is a positive integer and /= 7, 2, ..., J,.
4.3 A search mechanism for finding jps

Before introducing JPs of cost curves at stages 1 and 2, we need to know that each K, curve has the following properties:
Each K, curve, for instance (K,= »), was divided into (J,+7) segments by J,different BPs, and segments of each K, curve
can be shown as

ATC,(K,, B)
PTC,(K,, B)+ (A, + A, + Ay +..+ 4, )C,,, forBe (oo 00),2€dl, 2, .., ],}
PTC,(K,, B)+ 4,C,, +Zm;tz]cm, for Be[piz, pa2 )t ell, 2, ., ]}

KoK @7
=PIC,(K,, B)+(4, +4,)Cy +Z/¢w¢t ﬂ“z/Czw for Be[p,;, ) )su,r €41, 2, .., [}

PTC,(K,, B)+(Ay + Ay + A+t Ay, )Cy, for Be (0,050 ), wel, 2, .., ]}

Taking (K,=1) for an example, we illustrate the meaning of the above equation in Figure 7.
-- Insert Figure 7 here --
Two K, curves, say (K,= 7) and (K,= »+1), intersect such that the junction points are generated. The JP of stage 2 is
defined as 0,,, where g= 1, 2, ... is a counter for /Psand is obtained by the following procedure, called The JP-Stage 2

Finding Procedure. Figure 8 demonstrates this procedure.
-- Insert Figure 8 here --

Remark 1 The unit transportation costs of all firms at stage 2 on the curve (K,= #) are the same as those of all firms at
stage 2 on the curve (K,= »+7) in the interval ‘sz , where 7=1,23,... means that at stage 2, we number the intervals

which are divided by BPs appearing on the curves (K,= ») and (K,= »+7). We summarize that [Ps of curves (K,= ») and (K,=

»+1) in the interval W' can be computed using the following equation:

/2
a,

5, = = . 28)

v(v+1 A L
LGOIV JIIYR
2 =1 RZ/ =1

Remark 2 Find the firm which has unit transportation costs C, and C,, on the curves (K,= 2) and (K= »+7),

respectively. The numerator of Eq. (21) consists of the firm whose unit transportation costs are not the same on curves
(Ky= ») and (K,= »+7). The JPs of curves (K,= ») and (K,= »+7) in the interval ‘Ijiz can be calculated as follows:
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(ﬂz; + )“zr + /12,4 + ot ﬂ’zw)(czo _C21)

L A2 /2
(2 +0)2 52 0
J=1 D2 J=1
5 = 2/j +/j > ﬂvz /j > 1 /> 5 (29)
. \/(j'Zf +/12r+/12u + ..,+12W)2(C20—C21)2+4[(1722)2Ri472 ;Lz/][”(y_*_l)zﬂz]
J=1 %2 j=1 j=1
* /> ,122 />
(@b +0,)2 40,3 2
j=1 Rz‘/ j=1

where the firms ¢, 7, #, .., we€{1,2,3,..,],}.
The 8, , appearance represents that the K, curve changes from (K,= 2) to (K,= »+1) and results in the truncation point

generation for the K, curve. Each of K, curves is divided into (J;+7) segments by J, different BPs.
And for each K, curve at stage 1, its cost function is

ATC,(K,, B)= ATC,(K,,K}™, B)
PTCl(Kl,K;‘“i“, B+ (A, + A, +4; +---+/11/\ )C,,, forBe [pff‘ ,o),7e€{l, 2, .., ]}
PTC,(K,, Ki™,B)+ 4,C,, +Z/¢fﬂ.1/C“, for Be[p, pi),rorefl, 2, . ]}

| , (30)
= PTC (K, K;™, B)+ (4, + 4,)C,, +Z>/¢,,L/¢,/11/Cn> forBe [pﬁl :p{fl yuredl, 2, ., ]}

PTC,(K,, K" ,B)+ (A, + Ay + Ay +..+ 4, )C,, for Be(0,p)) ), we{l, 2, .., ],}
The JP of stage 1 is defined as 0, , where g= 1, 2, ... is a counter for Ps at stage 1 and is obtained by The JP-Stage 1

Finding Procedure, as illustrated in Figure 9.
-- Insert Figure 9 here --

Remark 3 Assume that K" = . Unit transportation costs of all firms at stage 1 on the curve (K,= x) are the same as

those of all firms at the stage 1 on the curve (K;= x+7) in the interval ‘ij;l ,where 7=1,23, ... This means that at stage 1,

we number the interval which divided by BPs appearing on the curves (K,= x) and (K,= x+7). JPs of curves (K;= x) and

(K,= x+T7) in the interval ‘P,’: can be computed using the following equation:

2> 4, (31)

YL 2
x (o + D)o’ [(by + b, )ZR—“ME/@/]

J=1 M j=1

Remark 4 Assume that K™ =7 . Find the firm which has unit transportation costs C, and C, on curves (K;= x) and
(K= x+T7), respectively. The numerator of Eq. (32) consists of the firm whose unit transportation costs are not the same on
curves (K,= x) and (K,= x+7). JPs of curves (K,= x) and (K,= x+7) in the interval ‘I”il can be calculated as follows:

(/1“ +/11,, +;L1” + "'+ﬂ'1y‘)(C1() _Cn)
i ,112/ i
[(by + )0 . +hoY A ]
=1

J=1 J J

e J 1 (32)
¢ \/(ﬂ,“ +/11r +;L1” + "'+;L1u»)2(C1o _Cn)z +4[wjzﬁ"ﬁ/zil/][¥jz”1]

J=L M 2 /=1 x(x+1) /=1
=+

Ji j_]z Ji
[(hy +h)0 D =L+ bhoD 4]

J=1 J

where the firms ¢, 7, #, .., w€{1,2,3,..,],}.
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4.4 A search mechanism for solving the tsidp

We have discussed the cost structure of the TSIDP in the previous sections. Our search procedure for finding the
searched points at stage 3 as depicted in Figure 10 is based on JPs and BPs. Following the same search mechanism, we can
obtain searched points at stages 1 and 2.

-- Insert Figure 10 here --

5. AN ILLUSTRATIVE EXAMPLE

This study adopts the data for the inventory and production field in Khouja (2003) and adds new data for the
transportation aspect, as revealed in parentheses in Figure 1. We introduce the proposed search mechanism in Section 4.4 to
solve the demonstrated example. The computational tool we utilize to implement our proposed method is MATI.AB® 6.5
with a computer P4-1.8 GHz, 512MB RAM. The search method starts at the point B;z= 0.1666 years and terminates at the
point B, ;= 0.0063 years. The search results are generated as shown in Table 2.

-- Insert Table 2 here --
For the TSIDP, we set the results obtained from our search method by the following equations:

ATC" = argmin( ATC,) ; (33)

m

(K,, K;, B")=argmin(ATC"((K,),.(K,),,B,) ) (34)

where  is a counter for the searched points.
Observe that the minimal cost of ATC is ATC =$104,818, such that (K,, K, B")=(1, 2, 0.0625), and it takes

0.05 seconds instead of 3 seconds to find the same results by LINGO™8.0. Recall that in Figure 5, we used small-step search
method to enumerate a wide range of B using a small step size of AB=0.0001. This near-exhaustive search procedure is

used to solve the TSIDP and the result is ATC  =$103,613, (K;, K:, B*) =(1, 2, 0.0556) . The comparison of cost

deviation between our proposed seatrch method and the small-step search method is [(104,818 —103,613)/103,613]X100%=
1.16%. This example demonstrates that our proposed search method could be an efficient method to obtain the solution to
the TSIDP.

6. THE COMPUTATIONAL AND COMPARATIVE RESULTS

We will further test the performance of the proposed search method by the experiments shown in this section. First, we
randomly generate parameters of solved problems from five settings, PS1, PS2, PS3, PS4, and PS5. For each setting, the
data range for each parameter is defined in Table 3. There are 30 experimental problems in each setting. Therefore, we have
a total of 150 experimental problems. We coded our search method in MATILAB® 6.5 and ran experiments on a computer
with P4-1.8 GHz, 512MB RAM. Comparisons between our proposed search method and LINGO" software in the aspect of
average run times and cost deviations are summarized in Table 4 and Table 5, respectively. Because some experiments ran
over an hour using LINGO® software, we limited the longest run time to 3,600 seconds in LINGO® software. On average,
the run time is within 0.057 sec. and the cost deviation is within 0.50%. These results demonstrate that our proposed
heuristic method outperforms LINGO® software in solving the TSIDP.

- Insert Table 3 here --
- Insert Table 4 here --
- Insert Table 5 here —

7. CONCLUSIONS

In this study, we focus on a three-stage inventory/production/distribution supply chain system with 11 members,
including 1 supplier, 3 manufacturers and 7 retailers. This model was originally presented in Khouja (2003), who discussed
only inventory and production activities in this system, without considering transportation costs. Therefore, applications
could meet practical needs, we added the transportation cost into the inventory and production system. The objective of
our research is to find the minimal cost of those activities conducted by members along the supply chain.

By analyzing the cost curve structure of the model TSIDP, we provide useful insights into the model TSTDP and develop
a search method based on JPs and BPs appearing on the cost curve at each firm. The outcomes demonstrate that our search
method outperforms LLINGO® software by testing randomly generated experiments.
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Table 1. A glossary of notations.

Notations

Definition

97

PTC;

ij
PTC,
PTC

ATC;;

i
ATC;
ATC

I

CiU

an index of the echelon in the supply chain, /= 1, 2, 3.

the total number of firms at each stage 7.

an index represents each firm. For each stage 7, each firm is numbered from 1 to /.
setup/ordering cost of each company at each stage 7 (dollars/per year)
the inventory carrying cost of incoming raw material at stage 4
(dollars/per unit/pert year)

the inventory carrying cost of outgoing finished goods at stage 7.
(dollars/per unit/per year)

annual demand of each firm ; at stage 7.

(units/pet year)

the annual production rate of firms at stages 1 and 2.

(units/pet year)

the basic reorder interval. (years)

the ordering frequency multiplier at stage 2.

the ordering frequency multiplier at stage 1.

the ordering frequency of each firm j at stage . (years)

T5 =B, forj=1,2,... [s.

sz =K B, forj: 1, 2, ]2

Tjj =K KQB, forj: 1, 2, ]7

the ordering quantity of firm j at stage 7 (units)

The annual setup/otdering cost and inventory holding cost of each firm ; at stage 7. (dollars/per year)

The annual setup/otdering cost and inventory holding cost of all firms at stage 7. (dollars/per year)

The annual setup/ordeting cost and inventory holding cost of all firms at all stages. (dollars/per year)
the total annual cost of each firm ; at stage 7 (dollars/pet year)

the total annual cost of all firms at stage 7 (dollars/per yeat)

the total annual cost of all firms at all stages. (dollars/per year)
the transportation cost breakpoint. (units)
the 0/1 variable to judge the relationship between gzand &.
the unit transportation cost for dispatching a single resource from the firm at the stage 7 (/—1) to that
in the next successive stage / while the reorder or shipped quantity g; is less than a certain
transportation volume, . (dollars/per unit/per year)
the unit transportation cost when g is greater than or equal to 4. Cjy and C;y would result in 5= 0 and
57 = 1, respectively. (dollars/per unit/per year)
=(C1=C;)<0
and denote it as the transportation cost difference.
(dollars/per unit/per year)
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Table 2. The results of the illustrative example.

The searched

8

$34

535

536

537

521

$22

523

K>

K;

ATC

points, B
0.1500 1 1 1 1 1 0 1 1 1 1 1 1 125,325
0.1250 0 1 1 1 1 0 1 1 1 1 1 1 117,377
0.0833 0 1 1 0 1 0 1 1 1 1 1 1 107,055
0.0750 0 1 1 0 1 0 0 1 1 1 1 1 106,548
0.0625 0 0 1 0 1 0 0 1 1 1 1 2 104,818"
0.0375 0 0 1 0 0 0 0 1 1 1 2 1 105,493
0.0556 0 0 1 0 0 0 0 1 1 1 1 2 105,006
0.0417 0 0 1 0 0 0 0 1 1 0 1 1 113,137
0.0383 0 0 1 0 0 0 0 1 0 0 1 1 115,969
0.0278 0 0 0 0 0 0 0 1 1 1 2 1 110,525
0.0218 0 0 0 0 0 0 0 1 1 0 2 1 117,437
0.0185 0 0 0 0 0 0 0 1 1 1 3 1 114,978
0.0157 0 0 0 0 0 0 0 1 1 0 3 1 120,909
0.0139 0 0 0 0 0 0 0 1 1 1 4 1 120,354
0.0123 0 0 0 0 0 0 0 1 1 0 4 1 125,357
0.0111 0 0 0 0 0 0 0 1 1 1 5 1 126,100
0.0103 0 0 0 0 0 0 0 1 1 0 5 1 130,102
0.0093 0 0 0 0 0 0 0 1 1 1 6 1 132,030
0.0088 0 0 0 0 0 0 0 1 1 0 6 1 134,909
0.0079 0 0 0 0 0 0 0 1 1 1 7 1 138,066
0.0078 0 0 0 0 0 0 0 1 1 0 7 1 139,680
0.0742 0 0 1 0 1 0 0 1 1 1 1 1 107,254
0.0428 0 0 1 0 0 0 0 1 1 0 1 2 106,270
0.0371 0 0 0 0 0 0 0 1 1 1 2 1 107,134
0.0247 0 0 0 0 0 0 0 1 1 0 2 1 113,598
0.0185 0 0 0 0 0 0 0 1 1 1 3 1 114,941
0.0148 0 0 0 0 0 0 0 1 1 1 4 1 118,191
0.0124 0 0 0 0 0 0 0 1 1 0 4 1 125,288
0.0106 0 0 0 0 0 0 0 1 1 0 5 1 128,572
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Table 3. The parameter settings for the random experiments.
(C,, ~U[0.05, 0.1]) (C,, ~ U[0.05, 0.1])(6~U[900, 3000)) (4, ~ U[0.05, 0.2]) (b, ~U[0.6, 0.9])(a~U[600, 1000])
) (Ry7~U[460000,480000))(C,, ~ U[0.12, 0.16])(C,, ~ U[0.12, 0.16])(h, ~ U[1.5, 2.5])(a, ~ U[100, 300])

(R,, R,,, Ry, ~U[130000, 150000]) (C,, ~U[0.17, 0.25]) (C;, ~ U[0.17, 0.25])(h, ~ U[4.0, 7.0])
(ay ~U[20, 801)( Ay, Ay AssrAays Assr Asg» Ay ~ U[8000, 40000])
(C,, ~U[0.1, 0.16]) (C,, ~ UJ[0.1, 0.16] )(4~U[2000, 4000]) (4, ~U[0.15, 0.3]) (4, ~U[1.2, 1.6])(a;~U[1000, 1500))
(R7~U[600000,700000))(C,, ~ U[0.2, 0.24]) (C,, ~ U[0.2, 0.24])(h, ~ U[3.0, 4.5])(a, ~ U[300, 600])
(R,, R,,, Ry, ~U[160000, 220000])(C,, ~ U[0.25, 0.3]) (C;, ~ U[0.25, 0.3])(4, ~ U[6.5, 8.5])

(ay ~U[70, 1001)(Ayy, Ayyy Ayss sy Asss Angs A5 ~ U[10000, 600000])

(C,, ~U[0.15, 0.2]) (C,, ~ U[0.15, 0.2]) (b~U[2500, 4500]) (4, ~ U[0.3, 0.45]) (b, ~ U[L.5, 3])(ar~U[2000, 2500])
(R;;~U[650000,750000])( C,, ~ U[0.25, 0.3]) (C,, ~ U[0.25, 0.3])(h, ~ U[3.5, 5.5])

(a, ~U[600, 1500]) (R,,, Ry, R,y ~U[250000, 300000])(C,, ~ U[0.35, 0.45])

(Cy, ~UL0.35, 0.45])(hy ~ U[6, 7.5])(a5 ~ U[40, 150]1)(As;, Asp AsssAsys Asss Asgs Ay ~ U[15000, 80000])
(C,, ~U[0.25, 0.3]) (C,, ~ U[0.25, 0.3])(b~U[3500, 4500]) (4, ~ U[0.3, 0.75]) (b, ~ U[2.0, 3.0] )(a~U[2000, 4500])
(R;,~U[650000,750000])( C,, ~ U[0.35, 0.45]) (C,, ~ U[0.35, 0.45])(h, ~ U[3.5, 5.5])(a, ~ U[800, 1500])

(R,, R,,, R,y ~U[250000, 300000])(C, ~ U[0.55, 0.65]) (C,, ~ U[0.55, 0.65])

(hy ~U[7.0, 8.5])(as ~ U150, 450])( Ay, Ay AsssAsys Asss Asgs Ay ~ U[55000, 80000])

36> 7737

(C,, ~U[0.15, 0.35]) (C,, ~ U[0.15, 0.35])(6~U[2500, 5500]) (4, ~ U[0.5, 0.95]) (4, ~ U[2.5, 3.5])(ar~U[1300, 2000])
(R;,~U[500000, 550000])(C,, ~ U[0.45, 0.50]) (C,, ~ U[0.45, 0.50])(5, ~ U[4.5, 6.5])(a, ~ U[600, 1200])

(R,, Ry, R,y ~U150000, 300000])(C, ~ U[0.65, 0.75]) (C5, ~ U[0.65, 0.75]) (b, ~ U[7.0, 8.5])

(a5 ~ U200, 5001)( Ay, Asys AsssAsss Ausy Asgy As ~ U[25000, 90000])

35>

Table 4. Average run time between our proposed method and LLINGO" software.
Average Run Time

Parameter Settings

(Heuristic) (LINGO®)
PS1 0.056 sec. 2.462 sec.
PS2 0.052 sec. 3343 sec.
PS3 0.057 sec. 3480 sec.
PS4 0.051 sec. 3000 sec.
PS5 0.055 sec. 3600 sec.

Table 5. Average cost deviation between our proposed method and LIt GO® software.

Average Cost Deviation
(AT Chteurisiic- ATCrincowr) / ATCrincow

Parameter Settings

PS1 0.50%
PS2 0.33%
PS3 0.06%
PS4 0.02%

PS5 0.01%
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