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Abstract⎯In the Dynamic and Stochastic Traveling Salesman Problem (DSTSP) a vehicle has to service a number of requests which 
are disclosed in a dynamic fashion over a planning horizon. When the vehicle is temporarily idle, one option is to reposition it 
in anticipation of future demand. The aim of this paper is to study waiting strategies for the DSTSP under a probabilistic 
characterization of customer requests. We determine an optimal policy through a Markov decision process and we develop 
both lower and upper bounds (analytically and heuristically, respectively) on the optimal policy cost. The behavior of these 
procedures is illustrated on a numerical example and tested on a set of random instances. 
Keywords⎯Traveling Salesman, Real-time fleet management, Markov decision processes, Transportation. 
 
 
1. INTRODUCTION 

The purpose of this article is to introduce the Dynamic and Stochastic Traveling Salesman Problem (DSTSP), as well as to study 
exact and heuristic waiting policies for it. The DSTSP is defined on a graph G = (V, A), where V is a vertex set and A is an arc 
set. A single vehicle based at a depot i0 has to service a number of pick-up requests, or delivery requests, but not both. The 
choice to use an uncapacitated vehicle reflects, for instance, the situation in the courier and package-express industries, where 
the size of parcels is small enough, so that vehicle capacity is not a crucial aspect. Request ik ∈ V' ⊆ V (k = 1, ..., n) may arise 
at time instant Tk with probability pk. A customer ik may not require service if pk < 1. Time instants Tk (k = 0, ..., n), with T0 = 
0, are assumed to be integer and the requests are supposed to be statistically independent. The vehicle may wait at any vertex 
(both a customer or a non-customer vertex) in order to anticipate future demand. It is worth noting that, unlike what happens 
in the classical (static) Traveling Salesman Problem, in which the vehicle follows a shortest path between two consecutive 
customers, in the DSTSP the vehicle may wait for some time at some vertices outside the current route. This may be useful, for 
example, to promptly collect enough demand in an area before moving in another part of the service territory. Let tij be the 
shortest travel time from vertex i ∈ V to vertex j ∈ V. As is common in dynamic vehicle routing problems, the aim is to 
maximize overall customer service level rather than minimize the total travelled distance. Let τk be the service time of a 
customer ik requiring service. To each customer is associated a non-decreasing and convex function fk(τk) expressing the 
penalty associated with customer ik. This definition includes the case where fk(τk) represents customer waiting time (i.e., fk(τk) = 
τk − Tk, τk ≥ Tk) or a more involved penalty function (e.g., fk(τk) = 0, Tk ≤ τk  ≤ Dk and fk(τk) = τk Dk, τk ≥ Dk, where Dk is 
a soft deadline associated with customer ik). Decision epochs occur at time instants Tk (k = 1, ..., n). The DSTSP consists of 
determining a policy such that at any epoch a decision is made: a) on the order in which pending customers have to be visited; 
b) on how to reposition the vehicle in anticipation of future demand. The latter issue includes deciding how long the vehicle 
has to wait at various locations along its route as well as whether to relocate the vehicle to some vertices outside the current 
route. The objective function to be minimized is the expected total penalty: 
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where E[f k (τk)|k] is the expected penalty associated to customer ik requiring service.  
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Assume that the order in which customers are serviced is given (i1 ≤ i2 ≤ ... ≤ in without any loss of generality) and we develop 

exact and heuristic waiting policies for the DSTSP. 
In Section 2 we discuss related literature, while in Section 3 we propose a lower bound on the expected penalty of an optimal 
policy, and in Section 4 we assess the expected penalty associated to two heuristic policies introduced by Mitrović-Minić and 
Laporte (2004) in a dynamic PDPTW setting. In Section 5 we determine the optimal waiting policy through a Markov decision 
process. Section 6 illustrates these procedures through a numerical example, while Section 7 presents some results on 
randomly generated instances. Finally, conclusions follow in Section 8. 
 
2. LITERATURE REVIEW 

The DSTSP falls under the broad category of real-time fleet management in which vehicle routes are built in an on-going 
fashion as customer requests, vehicle locations and travel times are revealed over the planning horizon. Early work on dynamic 
and stochastic routing problems is mainly focused on the Dynamic Routing and Dispatching Problem (DRDP). In DRDPs, 
the dynamic nature of the problem is not usually considered in the solution approach, because stochastic information about 
future requests is typically ignored. Rather, the research presented in these papers is characterized by algorithms reacting to 
new requests only once they have occurred, without any effort to anticipate future requests. Overviews of these problems can 
be found in Powell et al. (1995), Psaraftis (1988, 1995), Gendreau and Potvin (1998), and Ghiani et al. (2003). 

Even the work that follows the DRDP work does not exploit stochastic information, although it implicitly accounts for 
future arrivals. By waiting at the last advanced request customer, Kilby et al. (1998) demonstrate the advantage achievable by 
implicitly anticipating future service requests. Larsen et al. (2002) consider a problem in which some service requests are 
known at the beginning of the planning horizon, but the locations of dynamic customers are unknown. Their objective is to 
minimize expected travel time.  

Recent work aims at incorporating explicit waiting strategies. Particularly relevant to our paper is the article by 
Mitrović-Minić and Laporte (2004) in which four waiting strategies are examined for the dynamic Pickup and Delivery Problem 
with Time Windows (PDPTW). In the dynamic PDPTW, the presence of time windows allows the vehicles to wait at various 
locations along their routes. The authors show that an adequate distribution of this waiting time may affect the planner's ability 
to make good decisions at a later stage. Research in Mitrović-Minić et al. (2004) extends the earlier DPDPTW work by 
introducing a double- horizon heuristic, which has different objectives for the short-term and the long-term, minimizing route 
length and preserving flexibility so that future service requests can more easily be accommodated, respectively. Branke et al. 
(2005) considers waiting strategies in dynamic vehicle routing problems without time windows in contexts where the objective 
is to maximize the probability that an additional customer can be integrated into a fixed tour without violating time constraints. 
The authors propose several waiting strategies as well as an evolutionary algorithm to optimize the selected waiting strategy. 

Another line of research examines dispatching and routing policies whose performance can be determined analytically if 
specific assumptions are satisfied. See, e.g., Bertsimas and van Ryzin (1991, 1993), where demands are distributed in a bounded 
area in the plane and arrival times are modeled as a Poisson process. The authors identify optimal policies both in light and 
heavy traffic cases. Papastavrou (1996) describes a routing policy that performs well both in light and heavy traffic, while 
Swihart and Papastavrou (1999) examine a dynamic pickup and delivery extension. 

In a vehicle dispatching context, Powell et al. (1988) introduce a truckload dispatching problem, and Powell (1996) provides 
formulations, solution methods, and numerical results. In these papers, the authors use forecasts of future demand to 
determine which loads should be assigned to what vehicles in a truckload environment to account for forecasted capacity 
needs in the next period.  

Ichoua et al. (2006) extend the work presented in Gendreau et al. (1999) to exploit probabilistic information about future 
arrivals. The heuristic allows a vehicle to wait in its current zone if the probability of a future request reaches a particular 
threshold. In Thomas and White (2004) a vehicle may serve several requests at a time and may wait for future demand both at 
a customer and non-customer locations. Not all requests have to be serviced and the objective function to be minimized is the 
expected value of a combination of travel costs, terminal costs, and revenue generated from a pickup. Bent and Van 
Hentenryck (2004) consider a vehicle routing problem where customer locations and service times are random variables which 
are realized dynamically during planned execution. They develop a  multiple scenario approach which continuously generates 
plans consistent with past decisions and anticipating future requests. Similarly exploiting probabilistic information about future 
requests, van Hemert and La Poutré (2004) introduce the concept of fruitful regions. Fruitful regions represent clusters of 
known customer locations that are likely to require service in the near future. In the fashion of Bent and Van Hentenryck 
(2004), potential schedules are created by sampling fruitful regions. The authors then provide an evolutionary algorithm for 
determining when to move to one of the fruitful regions in anticipation of future service requests, whit the objective to 
maximize the number of customers served. The paper does not discuss about waiting. More recent is the work presented in 
Thomas (2007). Thomas extrapolates the structure for the optimal policy for one late-requesting customer to develop a 
real-time heuristic that performs well when the percentage of late-request customer is 25% or less. The author shows that a 
strategy that distributes waiting time across advance request customer locations works well as the percentage of late-request 
customers increases. The objective in this problem is to maximize the expected number of late-request customers served. 
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This paper makes the following contributions to the literature. First, we develop a lower bound on the expected penalty of 

an optimal policy for the DSTSP, as well as we assess the expected penalty associated to two heuristic policies. Then, we use a 
Markov decision process in order to determine the optimal waiting policy. 

 
3. A LOWER BOUND ON THE OPTIMAL POLICY EXPECTED PENALTY 

In this section a lower bound on the expected penalty of the optimal policy is computed under the hypothesis of perfect 
information, i.e., when all occurring requests are known at the beginning of the planning horizon.  

Let σ(r) be the r-th occurring request (r = 1, ..., m ≤ n) and σ(0) = 0. Under perfect information an optimal policy can be 
devised straightforwardly. Indeed the vehicle should drive immediately to the first occurring customer, then if tiσ(0)iσ(1) < Tσ(1) 
wait until Tσ(1), service iσ(1), then drive to iσ(2), etc. Let τ'k be the service time of customer ik under an optimal policy in case of 
perfect information. For every realization of the demand (such that request ik occurs), the following inequalities are valid: 
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This relationship holds since τ'k is the right-hand side of Eq. (1), plus the waiting times at the occurring customers iσ(j) (σ(j) 

≤ k). Consequently, assuming request ik is issued, the expected value of the right-hand side of Eq. (2) is a lower bound on the 
expected value E[τk]. The probability associated with tσ(j)σ(j+1) in this expected value computation is the probability that both iσ(j) 
and iσ(j+1) occur and no intermediate customer issues an order: 

 
pσ(j) pσ(j+1) (1 - pσ(j)+1) (1 - pσ(j)+2) … (1 - pσ(j+1)-1), (σ(j + 1) < k) 
 
pσ(j) (1 - pσ(j)+1) (1 - pσ(j)+2) … (1 - pσ(j+1)-1),       (σ(j + 1) = k) 
 
where we have assumed pσ(0) = p0 = 1. Hence, 
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Let Lk be the right-hand side of Eq. (3). Based on the Jensen inequalities (Birge and Louveaux, 1997) and the monotonicity 

of penalty functions fk(), we can write: 
 

E[fk(τk)] ≥  fk(E[τk]) ≥  fk(Lk) 
 
We then obtain the required lower bound: 
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It is worth noting that this lower bound requires O(n3) computations provided that functions fk() (k = 1, ..., n) can be 

evaluated in constant time. 
 

4. HEURISTIC POLICIES 

In this section we assess the expected penalty of two heuristic policies, called Wait-First (WF) and Drive-First (DF), 
introduced by Mitrović-Minić and Laporte (2004) in a purely dynamic setting, and we use such penalties as upper bounds for 
the optimal policy. The WF strategy requires an idle vehicle to wait at its current location until a new customer request arrives, 
while the DF strategy requires an idle vehicle to drive to its next potential customer. Under a WF policy, the time between the 
service of customers ir and is (s > r) is equal to 

 
( ) max{ , 0}τ τ= − +s  
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provided that customer ir is serviced at time τr and no intermediate request is issued. Indeed, max{Ts  – τr, 0} represents the 
waiting time at vertex ir, whereas  is the travel time between the two vertices. The probability that the service time τk is 

equal to t under a WF policy can be computed through the iterative formula: 
ir sit
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with the initialization Pr(τ0 = 0) = 1. Once these probabilities have been computed we can calculate the expected value of the 
total penalty associated to the WF policy by applying the definition: 
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Under a DF policy, the previous procedure still applies, except that the computation of Akm(τk) is more elaborate. If the 

vehicle services customer ik at time τk, then it moves along a shortest path from ik to ik+1. Let i'r be the vertex where the vehicle 
is located at time instant Tr (r = 1, ..., n). If τk + tikik+1 ≤ Tk+1, then i'k+1 = ik+1, where the vehicle waits for max{Tk+1 – τk – tikik+1, 
0} time instants. Otherwise, i'k+1 is a vertex along a shortest path from ik to ik+1, where the vehicle is diverted to ik+2. In any case 
the vehicle then follows a shortest path from i'k+1 to ik+2. By iteratively applying these procedures, vertices i'k+1, ..., i'm are 
identified and Ars(τr) is computed as 
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Formula (7) can be used to compute the expected penalty associated with the DF policy through relations Eq. (5) and Eq. 

(6). 
 

5. A MARKOV DECISION PROCESS 

We determine the optimal policy through a Markov decision process (MDP) which is a well-known approach for modeling 
and solving dynamic and stochastic decision problems. Much has been written about dynamic programming. Some recent 
books in this area are Puterman (1994), Bertsekas (1995), and Sennot (1999). 

In our MDP, decisions are made at time instants Tk (k = 1, ..., n) (decision epochs) at which it becomes known whether or not 
customers need service. In particular, at time Tk we have to decide, in case the vehicle becomes idle before Tk+1, to which 
vertex the vehicle should be repositioned at time Tk+1.  

A fundamental concept in MDPs is that of a state, denoted by s. The set S of all possible states is called the state space. The 
decision problem is often described as a controlled stochastic process that occupies a state at each point in time. The state 
should be a sufficient and efficient summary of the available information affecting the future of the stochastic process. In our 
problem, at every time instant Tk (stage) the state is represented by the triple (Tk, ik*, tk*), where ik* and tk* are, respectively, the 
vertex and time where the vehicle will become idle (i.e., with no pending requests) at the next epoch. Let Sk be the set of 
possible states at stage Tk. Obviously, S = ∪k=0,…,n Sk. The set S0 contains a single state s = (T0, i0, T0) since the vehicle is idle at 
the depot at time T0 = 0.  

At any stage Tk, we first know whether customer ik requires service, and we may then decide how to reposition the vehicle. 
Let s = (Tk, ik', tk') ∈ Sk be the state before information about ik becomes known (chance state). If this request occurs, ik is 
appended to the route so that the state becomes (Tk, ik'', tk'') with ik'' = ik and tk'' = tk' + tik'ik. Otherwise, the state remains 
unchanged (ik'' = ik' and tk'' = tk'). These two states (Tk, ik'', tk'') are called the decision states associated with chance state s. Let 
V+(i,Δt) be the set of vertices that can be reached from i ∈ V within no more than Δt ( > 0) time units, and let V+(i,Δt) = {i} 
if Δt ≤ 0. Hence, once it is known whether request ik has occurred, we can reposition the vehicle to a vertex i'k +1 ∈ V+( ik'', 
Tk+1 – tk'') where the vehicle will arrive at time t'k +1 = tk''+ ti''ki'k+1. Consequently, at stage Tk+1, the state may be chosen from the 
subset {(Tk+1, i'k +1, t'k +1): i'k +1 ∈ V+( ik'' Tk+1 – tk''), t'k +1 = tk''+ ti''k i'k+1} ⊆ Sk+1. It is worth noting that, if the k-th request ik 
occurs, the service time τk of customer ik is then equal to tk'' = tk' + tik'ik. Let zs be the expected penalty pk fk(τk) associated with 
the service of customer ik if the vehicle is in state s ∈ Sk and let Zs be the total expected penalty associated to an optimal policy 
servicing customers {ik, ik+1, ..., in} starting from state s ∈ Sk. Moreover, let Σ(s) be the set of successors of a state s, i.e., those 
states s reachable through a single transition from s. We can now outline our Markov decision process. 
 
Step 0 (Initialization). 

 
S0 = {(T0, i0, T0)}. 

 
zs = 0 for s ∈ S0. 

 
Step 1 (Forward Computation).  
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for k = 1 to n  
 Determine the set of feasible states Sk.  
 for any state s = (Tk, ik', tk') ∈ Sk do begin 
Determine the state transition associated with the occurrence of customer ik and compute the associated ik'' and tk''. 
 If the k-th request ik occurs, compute τk. 
 Compute zs = pkfk(τk). 
 end 
Set Zs = zs for any state s ∈ Sn. 

 
Step 2 (Backward Computation).  

for k = n – 1 to 0  
 for any state s = (Tk, ik'', tk'') ∈ Sk do begin 
  Determine the decision associated to state s as the transition from s to state:  
 
  (*)

'
' ( )

' arg min
∈Σ

= s
s s

s Z . 

 
  Then, set Zs = Zs' (*). 
 
 end 
for any state s = (Tk, ik', tk') ∈ Sk do begin  
Determine Zs = zs + pk(Zs') + (1–pk)Zs'', where s' and s'' are the two decision states associated to the occurrence or non-occurrence of the k-th 

request provided the vehicle is in state s; 
end 
ZT0, i0, T0 represents the expected cost of an optimal waiting policy. 
The number of states is bounded above by O(n|V| T ), where T  is an upper bound on the service time of customer in in an 

optimal policy (e.g., 
1

1

0
+

−

=

=∑ r r

n

i i
r

T t ). Hence, the above MDP requires O(n|V| 2T ) time since O( T ) operations are required 

for every state. 
 

6. A NUMERICAL EXAMPLE 

We now illustrate the above procedures on a numerical example. Let G(V,A) be the graph represented in Figure 1, where V' 
= {1,2,3} and V = {0}∪V'∪{a,b,c,d,e}. With each vertex in V' are associated the corresponding arrival time and probability, 
and with each arc is associated its traversal time. Penalties fk(τk) (k = 1,2,3) are constituted by customers' waiting times, i.e., fk(τk) 
= τk − Tk, τk ≥ Tk. 
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Figure 1. Sample network. 
 

Firstly, we compute a lower bound on the expected penalty of an optimal policy. The right-hand side of inequalities (3) are: 
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Hence, formula (4) provides a lower bound equal to: 
 

1 2 30 (2) 0.4 (5.4) 0.9 (7.86) 0.7
0 0 0.4 2.4 0.9 2.86 0.7 4.16

= + ⋅ + ⋅ + ⋅
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LB f f f
      .

 

 
Secondly, we determine an optimal policy through a Markov decision process. In Figure 2 are reported, for each stage, the 

associated chance and decision states (represented by circles and squares, respectively). Labels zs and Zs are shown in Figure 3 
separated by a semi-colon. The expected cost of an optimal policy is equal to ZT0, i0, T0= 6.32. Figure 4 illustrates the optimal 
policy. Figures 5 and 6 depict the Wait-First and Drive-First policies which yield a total expected penalty equal to 9.23 and 9.95, 
respectively. 

 
7. COMPUTATIONAL RESULTS 

In addition, we have solved a number of randomly generated instances on a PC with a Pentium IV processor clocked at 2.8 
GHz. Two sets of 50 instances were generated as follows. First, a graph G(V,A) was generated by randomly choosing points 
in a 100×100 square. Then n ( ≤ |V|) customers were chosen at random and an order of visit was determined in a random 
fashion. In our experiments, we choose |V|=50 and n=20, 25, 30, 35, 40. Hence, request occurrence times were chosen as 
realizations of a Poisson process with λ = 1 in the first set and λ = 2 in the second set. Request probabilities were chosen as 
uniform random numbers in [0, 1]. Computational results reported in Table 1 indicate that the average lower bound gap is 
12.33% for λ = 1 and 2.42% for λ = 2. The Markov Decision Process was able to determine the optimal policy always within 
1500 seconds for the first set and within 3000 seconds for the second set, while the number of states was always less than 
40000 and 60000 for λ = 1 and λ = 2, respectively. 

Moreover, in order to compare the results of the heuristic policies with the optimal policy, we have evaluated the average 
performance ratio computed as the heuristic solution value divided by the optimal policy value. We have observed an average 
performance ratio of the WF heuristic equal to 1.22 for λ = 1 and to 1.13 for λ = 2. Similarly, the average performance ratio of 
the DF heuristic was 1.02 for λ = 1 and 1.01 for λ = 2. These values indicate that the DP policy performs better than the WF 
policy, thus empirically showing that moving towards the next customer in anticipation of its possible demand may give some 
benefit. 

In addition, results reported in Table 1 show that the instances with λ = 1 were more difficult to solve, resulting in larger 
gaps for both the lower and upper bounding techniques and in larger computing times. This can be explained by the fact that 
larger arrival rates give rise to a busier vehicle. For every test set, the DF policy outperformed the WF policy both in terms of 
solution quality and computing time. 
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Figure 2. State space of the sample problem. 
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Figure 3. Expected penalties in the sample problem. 
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Figure 4. Optimal policy. 
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Figure 5. Drive-First policy. 
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Figure 6. Wait-First policy. 
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Table 1. Computational results. 

λ  Customers 
LB gap 

(%) 
MDP 
States 

MDP time 
(sec) 

WF  
gap (%) 

WF time 
(sec) 

DF gap 
(%) 

DF time 
(sec) 

20 13.12 8923 120.7 27.41 61.8 2.01 13.5 
25 19.80 12527 193.4 26.48 156.8 2.41 77 
30 7.62 28267 753 20.13 463.8 0.95 169 
35 2.88 33524 1075.5 15.04 807.8 1.19 457.6 

1 

40 18.22 38901 1383 21.47 1135.6 2.07 858.9 
20 1.67 9430 118.5 14.90 58.4 0.39 17.9 
25 1.17 14740 222.8 13.11 171.4 0.29 78.7 
30 3.96 22930 431 12.34 337.4 0.28 189.9 
35 3.83 30211 777.5 15.97 741.5 1.50 543.4 

2 

40 1.47 58968 2361.1 10.18 2262.3 0.51 1910.1 
 
8. CONCLUSIONS 

In this article we have introduced the Dynamic and Stochastic Traveling Salesman Problem (DSTSP), and we have examined exact 
and heuristic waiting policies for it under the hypothesis that a probabilistic characterization of the customer requests is 
available. We have developed a Markov Decision Process (MDP) in order to determine the optimal policy, as well as a lower 
bound based on the availability of perfect information. We have assessed the value of two heuristic waiting strategies 
(previously introduced in a purely dynamic setting) against this lower bound. We have tested both the MDP and the heuristic 
policies on two different sets of randomly generated instances, and we have compared the results of the heuristic policies with 
the optimal policy, by means of the average performance ratio. The experiments have shown that a heuristic waiting strategy 
requiring an idle vehicle to drive to its next potential customer outperforms a waiting strategy in which an idle vehicle is 
requested to wait at its current location until a new customer request arrives. 

Our results are based on a number of assumptions that should gradually be removed: a) the hypothesis that request 
occurrence times T1 ≤ T2 ≤ ... ≤ Tn are sorted in non-decreasing order; b) the assumption that the order of service is given; c) the 
hypothesis that a customer request may arise at a single time instant. These extensions are left as a future research. In addition, 
when removing the over mentioned hypothesis, the MDP will not be able to handle instances with many customers. Thus, a 
heuristic will be needed to account for this aspect. 
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