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Abstract⎯This paper is concerned with the analysis of unreliable server bulk arrival retrial queue with two class 
non-preemptive priority subscribers. The two types of subscribers arrive according to Poisson flow in which priority is 
assigned to class one, and class two subscribers are of non-priority type. The subscribers in each class arrive to the system in 
batches; the batch sizes follow the geometric process. If the server is free at the time of any batch arrivals, the subscriber of this 
batch begins to be served immediately and leave the system forever. The priority subscribers that find the server busy are 
queued and then are served in accordance with FCFS discipline. The arriving non-priority subscribers on finding the server 
busy cannot be queued and leave the service area and try their chance after some random time. If a subscriber is being served 
at the instant of the server failure, the service is interrupted and restarted after repair. The life time of the server is assumed to 
be exponentially distributed. The repair time and service time are also assumed to be i.i.d. general distributed. We obtain the 
condition of Ergodicity for such a queueing system. The analytical results for queue size distribution as well as some 
performance characteristics under steady state conditions by applying supplementary variable technique are derived. The 
waiting time distribution is also discussed for priority and non-priority subscribers. By taking illustration, computational results 
are provided to facilitate the sensitivity analysis. 
Keywords⎯Bulk arrival, Retrial queue, Non-preemptive priority, Unreliable server, Supplementary variables, Queue size, 
Waiting time. 
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1. INTRODUCTION 

The FCFS discipline is a fair procedure in determining the order in which the subscribers are to be served in a service system. 
However, this is not the case in many real life situations where the jobs are classified according to different priorities. For this 
reason the priority queue has received considerable attention in the queueing literature. Queueing systems with two classes of 
subscribers have broad applications in the manufacturing and production systems, distribution and service systems, 
transportation systems, telecommunication industry, computer and communication systems, etc.. Two well-known priority 
disciplines in queueing literature are non-preemptive and preemptive discipline. Under non-preemptive discipline if 
non-priority (class two) subscriber enters service, it cannot be preempted by an arrival of a priority (class one) subscriber, as 
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such the priority subscriber has to wait until the non-priority subscriber completes its service. This discipline is known as 
non-preemptive priority and was introduced by Cobham (1954).  

In the existing literature, a few papers appear on bulk arrival priority queueing system. An early overview of some bulk 
priority queues can be found in Hawkes (1965). Takahashi and Takagi (1990) considered the joint time-dependent processes of 
the queue size and the elapsed service time in the non-preemptive and preemptive resume priority systems with structured 
priority batch arrivals. Langaris and Moutzoukis (1995) suggested batch arrival retrial queueing model with priority. Pekoz 
(2002) used linear programming approach to find an optimal policy for multi server non-preemptive priority queues. 
Non-preemptive priority queueing model with bulk arrivals was analyzed by Soo and Chung (2003). A queueing system with 
two-arrival stream was considered by Pla and Giner (2005), where they suggested a number of schemes assigning different 
priorities to each of the two arrival streams. One of the streams was considered to require a higher priority to access the server 
than the other. Hassin and Haviv (2006) considered a memoryless single server queue with two classes of customers. Discrete 
time preemptive priority queueing system was studied by Walraevens et al. (2008). Multiclass non Markovian queueing model 
with non-preemptive scheme was discussed by Iftikhar et al. (2008). 

In computer and communication systems, the arriving subscribers to a busy system are forced to leave and they try back 
after a random amount of time. In literature such systems are referred as queue with retrials and have been extensively studied 
under a variety of scenarios for single server case. Falin et al. (1993) considered retrial queueing model with priority customers 
and obtained the joint distribution in terms of generating function of the queue length of priority and non-priority calls in 
steady state. Choi et al. (1999) discussed more complicated queueing situations with batch arrivals under retrial attempts. 
Corral (2002) has developed a model for single server retrial queue with quasi-random input and two priority classes. Dudin et 
al. (2004) considered single server retrial queueing model with batch Markovian arrival process and general distributed service 
time. Wu el al. (2005) discussed M/G/1 retrial queue with customer’s discouragement. Atencia and Moreno (2006) have given 
discrete time retrial queueing model with optional service. Roszik et al. (2007) concerned with the performance analysis of 
finite-source retrial queues with heterogeneous sources operating in random environments. , Aguir et al. (2008) modeled a call 
centre as a continuous time Markov chain with retrial phenomenon.  

In most queueing models, it is not possible to keep the server operational at all times, and service can thus be interrupted. 
The main reason for this is the breakdown of the server. There can also be scheduled service interruptions such as during 
weekends or holidays. White and Chrisite (1958) were the first who considered the breakdown events in priority queueing 
models. Sandhu and Posner (1989) discussed priority model for integrated voice/data transmission where the service medium 
is subject to breakdowns. Gurukajan and Srinivasan (1995) described a complex two-unit system in which the repair facility is 
subject to random breakdown. Almasi et al. (2005) studied single server retrial queue with a finite number of homogenous 
sources of calls and a single nonreliable server. Classical and constant retrial policies in M/G/1 queueing model with active 
breakdowns of the server were discussed by Atencia et al. (2006). M/G/1 retrial queueing system with unreliable server and 
setup was given by Jain et al. (2007). Markovian flow of breakdown in which all busy servers are subject to breakdown and 
repair was considered by Kim et al. (2008) for retrial queueing model with batch arrivals. 

In many communication systems, a priority is given to certain classes jobs or calls to improve the grade of service (GoS) 
over other classes. In wireless communication system which delivers a wide variety of services, priority rule is often followed, 
e.g. being delay sensitive voice calls are required to have a higher priority than data calls. Our model can be easily implemented 
in a cellular mobile system; wherein there may be two types of attempts that customers make, one through messages (text or 
picture or multimedia etc.) and other through voice calls are considered as non priority and priority subscribers, respectively. 
On finding server busy in some (another call receiving or message reading) work or brokendown the messages are stored in a 
buffer, form a queue there and retry for service again and again till their service is completed successfully. This is referred as 
retrial queue in our model while the voice calls do not form any retrial queue and have to wait for their service in the normal 
queue.  

In this investigation, we consider MX/G/1 retrial queueing model with priority subscribers and unreliable server. The 
generating function method and supplementary variable technique are employed for the analysis of our model. The 
organization of the paper is as follows. The model is described along with requisite assumptions and notations in section 2. 
Ergodicity condition for stability of Embedded Markov chain has been obtained in section 3. The queue size distribution is 
established in section 4. In section 5, some performance characteristics are derived using queue size distribution. Section 6 
contains the analysis of waiting time distribution. Computational results and sensitivity analysis are presented in section 7. At 
last, the conclusion has been drawn in section 8. 

 
2. MODEL DESCRIPTION 

For the mathematical formulation of the MX/G/1 retrial queue with unreliable server and two classes of subscribers, we use 
the following notations: 

 
1( )N t ,      Number of subscribers in  priority (class one) and non-priority (class two); queue at time t 2 ( )N t

 
λ 1(λ 2)            Batch arrival rate for priority (non-priority) subscribers 
θ              　   Retrial rate for the repeated subscribers of class two 

http://www.inderscience.com/search/index.php?action=basic&wf=author&year1=1995&year2=2007&o=2&q=Ivan%20Atencia
http://www.inderscience.com/search/index.php?action=basic&wf=author&year1=1995&year2=2007&o=2&q=%20Pilar%20Moreno
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X l             Random variable denoting the batch size for the l th ( l  = 1,2) class of subscribers  
 

,kC l           Pr( X k ), ;    =l 1, 2=l 1k ≥
   
( )C z l            Probability generating function of the batch size X l  for  the l th ( l  = 1,2) class of subscribers 

 
al              Mean batch size for the l th ( l  = 1,2) class of subscribers 

      
( 2 )al               Second factorial moment of batch size for the l th ( l  = 1,2) class of subscribers 

 
α            Failure rate of the server 
 

( )B xl              Service time distribution function for  the l th ( l  = 1,2) class of subscribers  
 

( )G yl              Repair time distribution function of the server when rendering service to the l th ( l  = 1,2) class of  
 subscribers 

 
( )b xl               Instantaneous service rate for the l th ( l  = 1,2) class of subscribers  

 
(g yl )             Instantaneous repair rate of the server when rendering service to l th ( l  = 1,2) class of subscribers 

 
* *(.), (.)b gl l         Laplace-Stieltjes transform of (.) (.)B and Gl l   

 
( )tξ               Elapsed service time of the subscribers at time t 

 
( )tψ          Elapsed repair time of  the server at time t 

 
dτ               Time instant of the dth departure 

 
, ( )dN N dτ=l l

     Number of subscribers in the l th ( l  = 1,2) class just before the time epoch dτ  

 

dY                 Random variable denoting the type of the dth served subscriber 
 

dξ , dψ          Elapsed service time and elapsed repair time of the dth served subscriber  
 

,dvl                Number of subscribers, who arrive in the system during the service time (which also includes the down  
time of the server ) of the dth subscriber. 

 
dB                        Number of subscribers, who enter for service from the non-priority queue at time dξ  

 

, ,,r rβ γl l          rth moment of ( )B xl  and ( )G yl  respectively about origin; *( )
, ( 1) (0),r r
r bβ = −l l

*( )
, ( 1) (0)r r
r gγ = −l l  

 
ρl                Traffic intensity due to the l th ( l  = 1,2) class of subscribers 1aρ λ β=l l l l  

 

Here 
( ) ( )

( ) , ( )
( ) ( )

B x G yb x g y
B x G y
′ ′

= =l l
l l

l l

( ) 1 ( ), ( ) 1 ( )B x B x G y G y⎡ ⎤= − = −⎣ ⎦l ll l  

 
The state of the server at time t is given by 
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0,
1,

( ) 2,
3,

if the server is in idle state
if the server is rendering service to priority subscriber

Y t if the server is rendering service to nonpriority subscriber
if the server is broken down and under repair while rendering service to pr

=

4,
iority subscriber

if the server is broken down and under repair while rendering service to nonpriority subscriber

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

 There is an interruption in the service due to server failure when rendering service to the l th ( l  = 1,2) class of 
subscribers and after repair the characteristic of the server is same as before failure. The life time of the server is exponential 
distributed. When the server fails, it is repaired immediately. The repair time and service time are assumed to be independent 
and general distributed. The priority as well as non-priority subscribers arrive in batches with sizes X1 and X2, respectively such 
that Pr{X1 = k} = C1 k  and Pr{X2 = k} = C2 k, k  1. If the server is free at the time of any group arrivals, the subscriber 
begins to be served immediately and leave the system forever after service completion. On arrival if priority subscriber finds 
the server busy or brokendown, he queues up and are served according to FCFS rule. The arriving non-priority subscribers on 
finding server busy or broken, leave the service area and move to a group of blocked subscribers called “orbit”, these blocked 
subscribers are called repeated subscribers and try their chance for service after some random time until they find the server 
free. The retrial time of any subscriber is independent and exponentially distributed. The priority subscriber is always served 
before a non-priority subscriber. If a non-priority subscriber enters service, it cannot be preempted by an arrival of a priority 
subscriber, so that the priority subscriber has to wait until the non-priority subscriber completes its service.  

≥

 
3. ERGODICITY CONDITION  

Embedded Markov Chain: The sequence of random vectors 1, 2,{ , , }d d d dX Y N N=  forms a Markov chain with 
2{1, 2, 3, 4} Z+×  as state space, which is the Embedded Markov chain corresponding to concerned queueing system. It is easy to 

see that Xd is irreducible and aperiodic. Now 
 
For priority subscribers: 1, 1, 1 1,1d dN N dν−= − +                     (1.1) 

 
For non priority subscribers: 2, 2, 1 2,d d dN N B dν−= − +                    (1.2) 

 
where Bd = 1 if the dth departure is a repeated subscriber and Bd = 0 if the dth departure is a priority subscriber. 

 
Ergodicity: For the ergodic condition a Markov chain should be irreducible, aperiodic and positive recurrent. Now to 

prove ergodicity (Gross and Harris;1985) we use Foster’s criterion (cf. Pakes, 1969) due to recursive structure of the Eq. (1.1) 
and (1.2). 

 
Foster’s criterion: An irreducible and aperiodic Markov chain Xd with state space S is ergodic if there exist a nonnegative 

f(s), s S∈  called test function and ε > 0 such that the mean drift 1 1{ ( ) ( )/ }s d d dx E f X f X X s− −≡ − =  is finite for all the  
states and sx ε≤ −  for all S except for a finite number. [cf. statement 1, pp. 20, Falin and Templeton (1997)]  
 
Theorem 1: The Embedded Markov chain is ergodic iff 1 11 2 21(1 ) (1 ) 1ρ αγ ρ αγ+ + + <  
 
Proof:  In our case, we consider the following test function:   
 

2 2 11 11 2 21 1 1 21 21 1 11( , , ) [ (1 ) 1 (1 )] [ (1 ) 1 (1 )]f i j a i a jλ β αγ ρ αγ λ β αγ ρ αγ= + + − + + + + − +l                         (1.3) 
 

The mean drift is given by 
 

, , 1 1{ ( ) ( )/ ( , , )}i j d d dx E f X f X X i j− −≡ − =l l                                                          (1.4) 
 

1 11 2 21

, , 1 2
1 11 2 21

1 2

(1 ) (1 ) 1, 1

(1 ) (1 ) 1 , 0i j

i
x

i
j

ρ αγ ρ αγ
λ λ

ρ αγ ρ αγ
λ λ θ

+ + + − ≥⎧
⎪= +⎨ + + + − + =⎪ + +⎩

l
                                             (1.5) 

 
[For detail see appendix A] 
 

Let 1 11 2 21(1 ) (1 ) 1ρ αγ ρ αγ+ + + <  then there exists a positive number ∈  such that  
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1 11 2 21 (1 ) (1

2
1 )ρ αγ ρ αγε − + − +

=                                  (1.6) 

 
For all states ( , , )i jl  with , we have 1i ≥
 

, , 2i jx ε ε= − < −l                                 (1.7) 
 

For , we get 0i =
 

1 2
, ,

1 2

2i jx
j

λ λ
ε ε

λ λ θ
+

= − + ≤ −
+ +l

                 (1.8) 

 
So that , ,i jx ε≤ −l  for all states except for a finite number, hence the chain is ergodic. 

This condition can also be evaluated by an alternate approach as used by Kernane and Aissani (2005) to obtain the stability 
condition of retrial queue with versatile retrial policy. 

 
4. QUEUE SIZE DISTRIBUTION 

Since service time and repair time distribution are not exponential, the process { }1 2( ), ( ), ( )Y t N t N t  is not Markovian. In 
such a case we introduce supplementary variables corresponding to elapsed service time and elapsed repair time to make it 
Markovian. Joint distributions of the server state and queue size in steady state are defined as 

 
{ }0. . 1 2lim Pr ( ) 0, ( ) , ( ) ,  0,  0i j t

P Y t N t i N t j i
→∞

= = = = ≥ j ≥  

 
{ }1, , 1 2( ) lim Pr ( ) 1, ( ) , ( ) , ( ) ,  0,  0i j t

P x dx Y t x t x dx N t i N t j i jξ
→∞

= = ≤ ≤ + = = ≥ ≥

≥

≥

 

 
{ }2, , 1 2( ) lim Pr ( ) 2, ( ) , ( ) , ( ) ,  0,  0i j t

P x dx Y t x t x dx N t i N t j i jξ
→∞

= = ≤ ≤ + = = ≥  

 
{ }1, , 1 2( , ) lim Pr ( ) 3, ( ) , ( ) , ( ) , ( ) ,  0,  0i j t

R x y dy Y t t x y t y dy N t i N t j i jξ ψ
→∞

= = = < ≤ + = = ≥  

 
{ }2, , 1 2( , ) lim Pr ( ) 4, ( ) , ( ) , ( ) , ( ) ,  0,  0i j t

R x y dy Y t t x y t y dy N t i N t j i jξ ψ
→∞

= = = < ≤ + = = ≥ ≥  

     
From the above-defined probabilities and using appropriate rates we can easily construct the following steady state 

equations: 
 

1 2 0,0, 1,0, 1 2,0, 2
0

( ) [ ( ) ( ) ( ) ( )] ,  j j j 1j P P x b x P x b x dx jλ λ θ
∞

+ + = + ≥∫                                             (2.1) 

 

1 2 1 1, , 1, , 1 1 1 1, , 2 2 1, ,
1 10

( ) ( ) ( , ) ( ) ( ) ( ), 0, 0
ji

i j i j k i k j k i j k
k k

d b x P x R x y g y dy C P x C P x i j
dx

λ λ α λ λ
∞

− −
= =

⎡ ⎤+ + + + = + + ≥ ≥⎢ ⎥⎣ ⎦
∑ ∑∫       (2.2) 

 

1 2 2 2, , 2, , 2 1 1 2, , 2 2 2, ,
1 10

( ) ( ) ( , ) ( ) ( ) ( ), 0, 0
ji

i j i j k i k j k i j k
k k

d b x P x R x y g y dy C P x C P x i j
dx

λ λ α λ λ
∞

− −
= =

⎡ ⎤+ + + + = + + ≥ ≥⎢ ⎥⎣ ⎦
∑ ∑∫      (2.3) 

 

1 2 1 1, , 1 1 1, , 2 2 1, ,
1 1

( ) ( , ) ( , ) ( , ), 0, 0
ji

i j k i k j k i j k
k k

g y R x y C R x y C R x y i j
y

λ λ λ λ− −
= =

⎡ ⎤∂
+ + + = + ≥ ≥⎢ ⎥∂⎣ ⎦

∑ ∑                    (2.4) 

 

1 2 2 2, , 1 1 2, , 2 2 2, ,
1 1

( ) ( , ) ( , ) ( , ), 0, 0
ji

i j k i k j k i j k
k k

g y R x y C R x y C R x y i j
y

λ λ λ λ− −
= =

⎡ ⎤∂
+ + + = + ≥ ≥⎢ ⎥∂⎣ ⎦

∑ ∑                    (2.5) 

 
These equations are to be solved under the following boundary conditions at x=0, y=0 
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1

1, , 1 1 0,0, 1 ,0 1, 1, 1 2, 1, 2
1 0 0

(0) ( ) ( ) ( ) ( )
i

i j k i k i i j i j
k

P C P P x b x dx P x b x dxλ δ
∞ ∞+

− + + +
=

= + +∑ ∫ ∫                                               (2.6) 

 

1
2, ,

2 2, 0,0, 1 0,0, 1
1

0 ,  1
(0)

( 1) ,  0
j

i j
k j k j

k

if i
P

C P j P if iλ θ
+

− + +
=

≥⎧
⎪= ⎨ + + =⎪
⎩
∑

                              (2.7) 

 
1, , 1, ,( , 0)= ( )i j i jR x P xα                                                                            (2.8) 

 
2, , 2, ,( , 0)= ( )i j i jR x P xα                                                                            (2.9) 
 
The normalizing condition is given by 
 

0,0, 1, , 2, , 1, , 2, ,
0 0 0 0 0 0 0 0

( ) ( ) ( , ) ( , ) 1j i j i j i j i j
i j

P P x dx P x dx R x y dx dy R x y dx dy
∞ ∞ ∞ ∞ ∞ ∞∞ ∞

= =

⎡ ⎤
+ + + +⎢ ⎥

⎣ ⎦
∑∑ ∫ ∫ ∫ ∫ ∫ ∫ =                         (3) 

 
Define the generating functions:   
 

0 1 2 0,0, 1 2
0 0

( , ) i j
j

i j
P z z P z z

∞ ∞

= =

= ∑∑ , 1 1 2 1, , 1 2
0 0

( , , ) ( ) i j
i j

i j
P z z x P x z z

∞ ∞

= =

= ∑∑ , 2 1 2 2, , 1 2
0 0

( , , ) ( ) i j
i j

i j
P z z x P x z z

∞ ∞

= =

= ∑∑ , 

 

1 1 2 1, , 1 2
0 0

( , , , ) ( , ) i j
i j

i j
R z z x y R x y z z

∞ ∞

= =

= ∑∑ ,  2 1 2 2, , 1 2
0 0

( , , , ) ( , ) i j
i j

i j
R z z x y R x y z z

∞ ∞

= =

= ∑∑ , 

 

1 1 1 1
1

( ) k
k

k

C z C z
∞

=

= ∑ ,    2 2 2 2
1

( ) k
k

k

C z C z
∞

=

= ∑       

 
Using generating functions, Eq. (2.1)-(2.9) become 
 

1 2 0 1 2 2 0 1 2 1 2 1 2 2 2
0

( ) ( , ) ( , ) [ (0, , ) ( ) (0, , ) ( )]P z z z P z z P z x b x P z x b x dxλ λ θ
∞

′+ + = +∫                                      (4.1) 

 

1 1 1 1 2 2 2 2 1 1 1 2 1 1 2 1
0

( ) ( ) ( ) ( , , ) ( , , , ) ( )C z C z b x P z z x R z z x y g y dy
x

λ λ λ λ α
∞∂⎡ ⎤+ − + − + + =⎢ ⎥∂⎣ ⎦ ∫                           (4.2) 

 

1 1 1 1 2 2 2 2 2 2 1 2 2 1 2 2
0

( ) ( ) ( ) ( , , ) ( , , , ) ( )C z C z b x P z z x R z z x y g y dy
x

λ λ λ λ α
∞∂⎡ ⎤+ − + − + + =⎢ ⎥∂⎣ ⎦ ∫                         (4.3) 

 

1 1 1 1 2 2 2 2 1 1 1 2( ) ( ) ( ) ( , , , ) 0C z C z g y R z z x y
y

λ λ λ λ
⎡ ⎤∂

+ − + − + =⎢∂⎣ ⎦
⎥                                   (4.4) 

 

1 1 1 1 2 2 2 2 2 2 1 2( ) ( ) ( ) ( , , , ) 0C z C z g y R z z x y
y

λ λ λ λ
⎡ ∂

+ − + − + =⎢∂⎣ ⎦

⎤
⎥                                   (4.5) 

 

1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2
0 0

( , , 0) ( ) [ ( , , ) (0, , )] ( ) [ ( , , ) (0, , )] ( )z P z z C z P z z x P z x b x dx P z z x P z x b x dxλ
∞ ∞

= + − + −∫ ∫               (4.6) 

 
2 2 2 0 1 2 0 2

2 1 2
2 2

( ) ( , ) ( )
( , , 0)

C z P z z dP z
P z z

z z
λ

θ= +                               (4.7) 

1 1 2 1 1 2( , , , 0) ( , , )R z z x P z z xα=                                                                      (4.8) 
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2 1 2 2 1 2( , , , 0) ( , , )R z z x P z z xα=                                                                      (4.9) 

 

1 2
0 2 1 1 2 2 1 2 1 1 2 2 1 2, 1

0 0 0 0 0 0

lim ( ) ( , , ) ( , , ) ( , , , ) ( , , , ) 1
z z

P z P z z x dx P z z x dx R z z x y dx dy R z z x y dx dy
∞ ∞ ∞ ∞ ∞ ∞

→

⎡ ⎤
+ + + +⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫ ∫ ∫ =                      (5) 

 
In order to obtain probability generating function, we denote 

 
1 2( )z h z=  

 

1 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2( , ) {( ( ) ( )) ( ( ) ( ))}i i ik z z b C z C z g C z C zλ λ λ λ α λ λ λ λ
∗∗= − + − + − + −  

 
Here ki(z1,z2) denotes  Laplace Stieltjes transform for the completion time; the time interval from when the server begins to 

serve the arbitrary customer until the customer’s service ends, which includes the repair time. Further, h(z2) is defined as the 
generating function of the number of class two jobs that arrive during the busy period formed by class one jobs.  
 
Theorem 2: The probability generating functions for the idle state, busy state and under repair state of the server are given as 

 

2
2 2 2

1 2 1 1

0 2 1 11 2 21
21

( ) ( ( ), )[ ( ( ))1( ) [1 (1 ) (1 )]exp
[ ( ( ), ) ]

z
C u k h u uC h u

uP z du
k h u u u

λλ λ λ
ρ αγ ρ αγ

θ

⎧ ⎫+ − −⎪ ⎪
= − + − + ⎨ ⎬

−⎪ ⎪
⎩ ⎭

∫
]

                        (6.1) 

 

( )2 2 2 2 2 2
1 1 2 1 1 1 2 2 2 1 2 2

2

( ) ( ( ), )
( , , ) ( ( )) ( , )

C z k h z z
P z z x C h z k z z z

z
λ

λ λ λ
⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

         ( )2 2 2 2 1 2
1 1 1 1 2 2 2 2 2

2

( ) ( , )( ) ( ( ), )C z k z zC z k h z z z
z

λλ λ λ
⎧ ⎫⎛ ⎞⎪ ⎪− − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

         11 1 1 1 2 2 2 2 1 1 1 1 2 2 2 21exp{ [ ( ) ( ) ( ( ) ( ))] } ( )C z C z g C z C z x B xλ λ λ λ α λ λ λ λ
∗

× − − + − + − + −  

         ( )( ){ } 1
2 2 2 2 1 1 1 2 0 2( ( ), ) ( , ) ( )k h z z z z k z z P z

−
× − −                     (6.2) 

 
1 2 1 1 2 2 2 2

2 1 2 0 2
2 2 2 2

( ( )) ( )
( , , ) ( )

[ ( ( ), ]
C h z C zP z z x P z

k h z z z
λ λ λ λ+ − −

=
−

  

         21 1 1 1 2 2 2 2 1 1 1 1 2 2 2 22exp{ [ ( ) ( ) ( ( ) ( ))] } ( )C z C z g C z C z x B xλ λ λ λ α λ λ λ λ
∗

× − − + − + − + −                            (6.3) 
 

11 1 2 1 1 2 1 1 1 1 2 2 2 2( , , , ) ( , , )exp{ [ ( ) ( )] } ( )R z z x y P z z x C z C z y G yα λ λ λ λ= − − + −                                 (6.4) 
 

22 1 2 2 1 2 1 1 1 1 2 2 2 2( , , , ) ( , , )exp{ [ ( ) ( )] } ( )R z z x y P z z x C z C z y G yα λ λ λ λ= − − + −    (6.5) 
 
Proof: For proof see appendix B.              　 
 
Theorem 3: Queue size distribution under steady state is 1 2 0 2 1 1 2 2 1 2 1 1 2 1 2( , ) ( ) ( , ) ( , ) ( , ) ( , )z z P z P z z P z z R z z R z z= + + + +  
where  
            

( )2 2 2 2 2 2
1 1 2 1 1 1 2 2 2 1 2 2

2

( ) ( ( ), )
( , ) ( ( )) ( , )

C z k h z zP z z C h z k z z z
z

λ
λ λ λ

⎧ ⎫⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

( )2 2 2 2 1 2
1 1 1 1 2 2 2 2 2

2

( ) ( , )
( ) ( ( ), )

C z k z zC z k h z z z
z

λ
λ λ λ

⎧ ⎫⎛ ⎞⎪ ⎪− − + − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

1 1 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 21

1 ( , )

( ) ( ) ( ( ) ( ))

k z z

C z C z g C z C zλ λ λ λ α λ λ λ λ
∗

−
×

− + − + − + −
 

( )( ){ } 1
2 2 2 2 1 1 1 2 0 2( ( ), ) ( , ) ( )k h z z z z k z z P z

−
× − −                    (7.1) 
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1 2 1 1 2 2 2 2 2 1 2

2 1 2 0 2
2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 22

( ( )) ( ) 1 ( , )
( , ) ( )

[ ( ( ), ] ( ) ( ) ( ( ) ( ))

C h z C z k z zP z z P z
k h z z z C z C z g C z C z

λ λ λ λ

λ λ λ λ α λ λ λ λ
∗

+ − − −
= ×

− − + − + − + −
       (7.2) 

 
1 1 1 1 1 2 2 2 2

1 1 2 1 1 2
1 1 1 1 2 2 2 2

1 ( ( ) ( ))
( , ) ( , )

( ) ( )
g C z C zR z z P z z

C z C z
λ λ λ λ

α
λ λ λ λ

∗− − + −
=

− + −
                                                  (7.3) 

 
2 1 1 1 1 2 2 2 2

2 1 2 2 1 2
1 1 1 1 2 2 2 2

1 ( ( ) ( )
( , ) ( , )

( ) ( )
)g C z C zR z z P z z

C z C z
λ λ λ λ

α
λ λ λ λ

∗− − + −
=

− + −
                   (7.4) 

 
Proof: For proof see appendix C.                
 
5. PERFORMANCE CHARECTERISTICS 

In this section, we derive the expressions for some performance characteristics to predict the behaviour of system as 
follows. 

 
(I) The long run probabilities of the server states: 
• The long run probability that the server being idle is  
 
  1 11 2( ) 1 (1 ) (1 )P I 21ρ αγ ρ αγ= − + − +                              (8.1) 

 
• The long run probability that the server is rendering service to a priority subscriber is   
  
  1( )P B 1ρ=                        (8.2) 

 
• The long run probability that the server is rendering service to a non-priority subscriber is  
        

2( )P B 2ρ=                  (8.3) 
 

• The long run probability that the server is broken down and under repair while rendering service to the priority  
    subscriber is  

 
1 1( )P R 11ρ αγ=                                       (8.4) 

 
• The long run probability that the server is broken down and under repair while rendering service to the non-priority   

    subscriber is 
 

2 2( )P R 21ρ αγ=                                                                             (8.5) 
 

(II) Average queue length 
• Expected number of subscribers in the priority queue is 
 

2 ( 2 ) 2
2 2 1 1 22 21 1 11 1 1 11 12 1 1 11 1 1 2 22 1 12

1
1 11

(1 ) ( )(1 ) ( (1 )) (
( )

2[1 (1 )]
a a a a a aE N )λ λ β αγ λ β αγ β λ αγ αλ ρ γ ρ γ

ρ αγ
+ + − + + + + +

=
− +

        (8.6) 

 
• Expected number of subscribers in the non-priority queue is 

 
2 1 11 2 2 21 2 2 2

2
1 11 2 21 1 11 1 11 2 21

[ (1 ) (1 ) ] 1( )
[1 (1 ) (1 )] 2[1 (1 )][1 (1 ) (1 )]

aE N λ ρ αγ λ ρ αγ λ λ
θ ρ αγ ρ αγ ρ αγ ρ αγ ρ αγ
+ + + + −

= +
− + − + − + − + − +

 

         2 2 2
1 1 2 2 12 11 2 2 22 21 1 2 22 2 2 11[ (1 ) ( ) (1 ) 2 (1a a a a )λ λ β αγ λ β αγ α ρ ρ γ λ αγ× + + + + +  

         ( 2 ) 2 2 ( 2 )
1 1 1 2 2 11 11 2 21 2 2 21 1 11 2 2 22( ) (1 ) ( )(1 ){1 (1 )}a a a a aλ λ β αγ λ β αγ ρ αγ α λ ρ γ+ − + + − + − + +  

         2 2 2
2 2 22 1 2 11 2 2 22 1 2 11 21 2 2 12 1(1 ) (1 )(1 ) ]a a aα λ γ ρ ρ αγ α λ γ ρ ρ αγ αγ α λ γ ρ− + − + + −                          (8.7) 

 
(III) Expected Waiting Time 
   Using Little formula, we obtain the expected waiting time for priority and non- priority subscribers as 
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1

1
1 1

( )
( )

E NE W
aλ

=  and 2
2

2 2

( )
( )

E NE W
aλ

=                            (8.8) 

 
6. WAITING TIME DISTRIBUTION 

In this section, we derive LST of waiting time for an arbitrary subscriber in the priority and  
non-priority queue. 
 
Theorem 4: Waiting time distribution in the queue for an arbitrary priority subscriber is given by  
 

1 1

**
1 1 1

**
1 1 1

1 [ { ( )}
( ) ( )

[1 { ( )}]
q q

C b s g s
W s W s

a b s g s

α

α
+ − +

=
− +

* * ]                                (9.1) 

 
where

1
( )qW s∗+ is the Laplace Stieltjes transform of the distribution of queueing time for first subscriber of priority group ( + 

notation is used for ‘immediately after a departure of a subscriber’). 
 
Proof: Stationary distribution shows the long run behaviour of embedded Markov chain, which is defined as 

, , 1, 2,lim ( , )i j d d d dP Y N i N jπ →∞= = =l l, = .      

Let the joint generating function for the stationary distribution of the embedded Markov chain is defined as 
1 2 1 1 2 2 1 2( , ) ( , ) ( , )z z z z z zΨ = Ψ +Ψ where 1 1 2( , )z zΨ and 2 1 2( , )z zΨ are the generating functions corresponding to busy state 

of the server for priority and non-priority subscribers, respectively. The generating function corresponding to idle state of the 
server is denoted by 2( )zχ .  

Following Falin and Templeton (1997), we get 
 

1 1 1 2 1 1 2 1 1 1 2 1 2 2( , ) k (z , z )[ C (z ) (z )+ (z ,z ) - (0,z ) ]z z z λ χΨ = Ψ Ψ                           (9.2) 
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⎪ ⎪⎝ ⎠⎩ ⎭

× ( )( ){ } 1
2 1 1 1 2) ( , )z z k z z
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                   (9.4) 
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2 1 2 2 1 2 2
2 2 2 2

( ( )) ( )( , )= ( , ) ( )
[ ( ( ), ]

C h z C zz z k z z z
k h z z z

λ λ λ λ χ+ − −
Ψ

−
                           (9.5) 

 

2
2 2 2 2

1 2 1 1
1 11 2 21

2
1 1 2 2 21

( ) ( ( ), )[ ( ( ))1 (1 ) (1 ) 1( )= exp
[ ( ( ), ) ]

z
C z k h u uC h u
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λλ λ λρ αγ ρ αγ
χ

λ λ θ
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⎨ ⎬

+ −⎪ ⎪
⎩ ⎭

∫
]

                     (9.6) 

 
We identify a priority batch with a single priority subscriber, and then as its service time is the total service time of the 

subscribers constituting the batch, the Laplace transform of this service time is denoted by *
1 1 1( (.))= (.)C b b∗ + . Let us 

denote ( )
1

nN as the number of priority subscribers in the system at the time of nth departure. Waiting time of the first subscriber 
in his batch and completion time (i.e. service time including repair time) of the subscribers ahead of him in the batch, are 
independent to each other. It implies that 
 

1

1

( )
1 1 1 1 1 1 1 1 1 11{ } ( ) { ( )N n

q }E z W z b z g zλ λ λ λ α λ λ
∗∗+ ∗+= − − + −                                    (9.7) 
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where *
1 1 1 1 1 1 11{( ) ( )}b z gλ λ α λ λ

∗+ − + − z  is the Laplace Stieltjes transform of the distribution of completion time for the 
required subscriber. 

Now substituting z1=z, z2=1 and replacing C1(z) by z and *
1 1 1( (.)) (.)C b by b∗ +  in Eq. (9.4), we get 

 

{ } { }
{ } { }
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1 1 1 1 1 1 2 2 2 1 1 1 11 2
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1
1 1 2 2
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λ

λ λ
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+
                          (9.9) 

 

Under steady state 1 ( ) 1

1

( ,1)
{ }

(1,1)
N n z

E z
Ψ

=
Ψ

                    (9.10) 

Replacing  by ‘s’, Eq. (9.7) and (9.10) yield (1 1 zλ − )1

 

1

2 2 2 1 11 2 212

1 1 1 1 1

[1 { ( )}] {1 (1 ) (1 )}
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[ { ( )}]
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W s

s C b s g s

λ α ρ αγ ρ α
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γ                                    (9.11) 

 
Laplace Stieltjes transform of the distribution of queueing time for an arbitrary subscriber of priority group (cf. Takagi,1991 ) 
is given by 
 

1 1

**
1 1 1

**
1 1 1

1 [ { ( )}
( ) ( )

[1 { ( )}]
q q

C b s g s
W s W s

a b s g s

α

α
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=
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* * ]                       (9.12) 

 

Now 1

*

0

( )q

s

dW s
ds

=

− gives the result, which coincides with that of Eq. (8.8) of section 5. 

 
Theorem 5: Waiting time distribution in the queue for an arbitrary non-priority subscriber is given by  
 

2 2 2( ) 11 1 2 1 1

2 21

( , ) ( ( , ), )[ ( ( , )){ ( , )} 1exp
[ ( , ( , ), ) ] [ ( , ( , ), ) ]

g s m n

u

C s v k h s v vs C h s vh s u u u dv du
k s h s u u u k s h s v v v

λθ λ λ λ

θ θ

−
−

⎧ ⎫+ + + − −⎪ ⎪
= × ⎨ ⎬− −⎪ ⎪

⎩ ⎭

∫ ∫mnsT
Ee

]
                     (10) 

 
where g(s) is the root with the smallest absolute value of the equation ( )( )2 , , ,z k s h s z z= .  

 
Proof: In case of non-priority subscribers, we randomly select a tag subscriber from non-priority group and its waiting time is 
denoted by Tm n, when there are m priority subscribers and  non-priority subscribers in the system at the moment of 
departure of tagged subscriber.  

1n ≥

Now ( )
, , ( )d
i jE sl defines that dth served subscriber of class l  and at the time of the dth departure, there are  priority and 

 non-priority subscribers in the system that also involves the tagged subscriber. The analysis can be done in the similar 
manner as described in Falin and Templeton (1997); for detail see appendix D. 

i
1j ≥

 
7. COMPUTATIONAL RESULTS 

To illustrate the analytical results derived in the earlier sections, we provide numerical results for which program is coded in 
software MATLAB using Pentium IV. The effect of variation of various parameters on various performance indices are 
displayed in Tables 1-3 and Figures 1-4. The service time and repair time are general distributed therefore second moment of 
service time for the thl  ( l  = 1,2) class of subscribers and repair time of the server while rendering service to the thl  ( l  = 
1,2) class of subscribers for different distributions are taken as  
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(i) M/Ek(Ek)/1 model : ,2 2

( 1)k
k

β
μ
+

=l

l

, ,2 2

( 1)k
k

γ
+
γ

=l

l

                       (11.1) 

 

(ii) M/D(D)/1 model : ,2 2

1β
μ

=l

l

, ,2 2

1γ
γ

=l

l

      (taking , in Eq. (11.1))                        (11.2) k →∞

 

(iii) M/M(M)/1 model : ,2 2

2β
μ

=l

l

, ,2 2

2γ
γ

=l

l

      (taking 1k = , in Eq. (11.1))                         (11.3) 

 

(iv) M/E5(E5)/1 model : ,2 2

6
5

β
μ

=l

l

 , ,2 2

6
5

γ
γ

=l

l

      (taking 5k = , in Eq. (11.1))                  (11.4) 

 
Here μl  is the service rate for the thl  ( l  = 1,2) class of subscribers and k denotes the number of phases in service time 

and repair time. γ l  is the repair rate of the server when rendering service to the thl  ( l  = 1,2) class of subscribers. 
The impact of mean batch size on various performance indices is examined by assuming that the batch size follows a 

geometrical distribution with parameter p=.2; so that the mean batch size and second factorial moment of batch size are given 
as ai=q/p and ( 2)

ia = 2q2/p2, respectively, where q=1-p. The trends for the average queue length for priority and non priority 
subscribers have been shown by continuous and discrete lines, respectively in figs 1 and 2 for M/D/1, M/M/1 and M/E5/1 
models by varying arrival rates ( 1λ , 2λ ), mean batch sizes ( , ) of priority as well as non priority subscribers, failure rate (1a 2a α ) 
of the server and retrial rate (θ ) of non priority subscribers. The results for the expected waiting time have been shown 
through bar graphs in Figures 3 and 4 by varying number of phases (k) in service time and repair time distributions for different 
sets of 1λ , 2λ , , , 1a 2a α  and θ . For both tables and graphs, we choose the default parameters as 1 2 2λ λ= = , 1α = , 

3θ = , 1 2 3μ μ= = , 1 2 5γ γ= = . 
 
 
 

Table 1. Effect of service rate ( 1μ ) on the long run probabilities of server states. 

P(I) P(B1) P(B2) P(R1) P(R2) 

1μ  
1 2( , )λ λ  

(.1, .2)=  
1 2( , )λ λ  

(.3, .1)=  
1 2( , )λ λ  

(.1, .2)=  
1 2( , )λ λ
(.3, .1)=

1 2( , )λ λ
(.1, .2)=

1 2( , )λ λ
(.3, .1)=

1 2( , )λ λ
(.1, .2)=

1 2( , )λ λ  
(.3, .1)=  

1 2( , )λ λ  
(.1, .2)=  

1 2( , )λ λ
(.3, .1)=

2 0.440 0.120 0.200 0.600 0.267 0.133 0.040 0.120 0.053 0.027 

4 0.560 0.480 0.100 0.300 0.267 0.133 0.020 0.060 0.053 0.027 
6 0.600 0.600 0.067 0.200 0.267 0.133 0.013 0.040 0.053 0.027 

8 0.620 0.660 0.050 0.150 0.267 0.133 0.010 0.030 0.053 0.027 

10 0.632 0.696 0.040 0.120 0.267 0.133 0.008 0.024 0.053 0.027 

 
 
 

Table 2. Effect of service rate ( 2μ ) on the long run probabilities of server states. 

P(I) P(B1) P(B2) P(R1) P(R2) 

2μ  
1 2( , )λ λ  

(.1, .2)=  
1 2( , )λ λ  

(.3, .1)=  
1 2( , )λ λ  

(.1, .2)=  
1 2( , )λ λ
(.3, .1)=

1 2( , )λ λ
(.1, .2)=

1 2( , )λ λ
(.3, .1)=

1 2( , )λ λ
(.1, .2)=

1 2( , )λ λ  
(.3, .1)=  

1 2( , )λ λ  
(.1, .2)=  

1 2( , )λ λ
(.3, .1)=

2 0.360 0.280 0.133 0.400 0.400 0.200 0.027 0.080 0.080 0.040 

4 0.600 0.400 0.133 0.400 0.200 0.100 0.027 0.080 0.040 0.020 
6 0.680 0.440 0.133 0.400 0.133 0.067 0.027 0.080 0.027 0.013 

8 0.720 0.460 0.133 0.400 0.100 0.050 0.027 0.080 0.020 0.010 

10 0.744 0.472 0.133 0.400 0.080 0.040 0.027 0.080 0.016 0.008 
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Table 3. Effect of failure rate (α ) on the long run probabilities of server states. 

P(I) P(B1) P(B2) P(R1) P(R2) 

α  
1 2( , )a a

(1, 3)=  

1 2( , )a a

(4, 2)=  

1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=

1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=  
1 2( , )a a

(4, 2)=

0 0.733 0.600 0.067 0.267 0.200 0.133 0.000 0.000 0.000 0.000 

1 0.680 0.520 0.067 0.267 0.200 0.133 0.013 0.053 0.040 0.027 

2 0.627 0.440 0.067 0.267 0.200 0.133 0.027 0.107 0.080 0.053 

3 0.573 0.360 0.067 0.267 0.200 0.133 0.040 0.160 0.120 0.080 

4 0.520 0.280 0.067 0.267 0.200 0.133 0.053 0.213 0.160 0.107 

5 0.467 0.200 0.067 0.267 0.200 0.133 0.067 0.267 0.200 0.133 
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Figure 3. Effect of different sets of (a) 1λ (b)                Figure 4. Effect of different sets of (a)1a 2λ (b)                   

                 (c)
2a

α  on E(W) by varying k                             (c)θ  on E(W) by varying k 
 
Tables 1 and 2 demonstrate the effect of service rates 1μ  and 2μ  respectively on the long run probabilities of server 

states for different sets of arrival rates ( 1λ , 2λ ) of priority and non priority subscribers. From Table 1, we observe that as 1μ  
increases, P(I) increases, P(B1) & P(R1) decrease while P(B2) and P(R2) remain almost constant. Table 2 demonstrates that P(I) 
increases, P(B1) and P(R1) remain constant whereas at the same time P(B2) and P(R2) decrease with the increase in 2μ .The 
variation of the failure rate (α ) of the server on the long run probabilities of the server states for different sets of mean batch 
sizes ( ) has been summarized in Table 3. On increasing 1 2,a a α , we see that P(I) decreases, P(B1) and P(B2) remain almost 
constant whereas P(R1) and P(R2) increase. 

In Figures 1(a) and 1(b), we examine the effect of arrival rate ( 1λ ) and mean batch size ( ) of priority subscribers on the 
average queue length E(N), respectively. Initially E(N) for both priority and non-priority subscribers increases gradually and 
then after increases sharply. Figures 2(a) and 2(b) reveal almost linearly increment in case of average queue length E(N1) for 
priority subscribers as we increase 

1a

2λ  and  , respectively; however there is a sharp increment in the average queue length 
E(N2) for non priority subscribers. Figure. 1(c) exhibits the trend for average queue length E(N) by varying failure rate (

2a
α ) of 

the server. We notice that there is prominent increasing trend of E(N) with the increase in α . Figure. 2(c) illustrates the effect 
of retrial rate (θ ) on the average queue length E(N2) for non priority subscribers; initially decreasing trend is quite visible with 
the increase in θ , however after some time it becomes almost constant. 

In Figures 3 and 4, we note that there is a decreasing trend in the expected waiting time for priority as well as non-priority 
subscribers with increasing value of k which is what we expect in real world situations. Similar trend has been found for E(W) 
as observed in Figures 1(a-c) and 2(a-c) with E(N) when we vary 1λ , 2λ , , , 1a 2a α  and θ .  

From the tables and graphs, overall we conclude that: 
 The average number of subscribers and expected waiting time in priority and non priority queue increase as arrival rates 

( 1λ , 2λ ), mean batch sizes ( 1a , 2a ) of priority as well as non priority subscribers and failure rate (α ) of the server increase. 
 On increasing retrial rate (θ ), the average queue length and expected waiting time both decrease. 
 By increasing the phases ( k ) of the service time and the repair time distributions, the average queue length and the 

expected waiting time for both priority and non priority subscribers, decrease which is in agreement with the physical 
situation. 

 
8. CONCLUSION 

The performance analysis of bulk arrival retrial queue with random service interruption under non-preemptive priority rule 
is studied. Such system is frequently encountered in practice and in particular, in service oriented operations. PGF of queue 
size distribution at an arbitrary time is obtained. Explicit formulae for the queue length and expected waiting time have been 
found for both priority and non-priority subscribers, which can be computed easily as shown by numerical illustration. The 
LST of waiting time distribution has also been obtained. Through numerical experiments, we have exhibited the impact of bulk 
size, retrial rate, failure rate, variation of service time and repair time distribution on the system behaviour. The model 
developed incorporates many features simultaneously including (i) bulk input (ii) retrial (iii) unreliable server and (iv) priority, 
which makes our results applicable to more versatile congestion situations encountered in computer and communication 
systems, distribution and service sectors, production and manufacturing systems, etc.. 
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APPENDIX A 

Proof of Theorem 1: 
We know that expected number of subscribers who arrives in the system during completion time i.e. service time that 

includes repair time also. Thus 
 

, 1( ) (1 ); 1,dE 2ν ρ αγ= + =l l l l     
                          

Let , then for Yd=1, we have  1i ≥
 

( ) (1, 1 11/ 1 1d dE v Y )ρ αγ= = +                                                                      A.1 

 
( ) ( )2, 2 11 11/ 1 2 1a

d dE v Y λ β αγ= = +                                                                  A.2 

 
Now 

 
, , 2 2 11 11 2 21 1,

1 1 21 21 1 11 2,

1 11 2 21

[ (1 ) 1 (1 )][ 1 ( / 1

       [ (1 ) 1 (1 )][ ( / 1)]
       (1 ) (1 ) 1

i j d d

d d

x a E Y
a E

))]

Y
λ β αγ ρ αγ ν

λ β αγ ρ αγ ν
ρ αγ ρ αγ

= + + − + − + =

+ + + − + =

= + + + −

l

                                          A.3 

 
For , we obtain 0i =

 
1, 1,dN v= d

d

                                                                                     A.4 
 

2, 2, 1 2 ,d d dN N B v−= − +                                                                          A.5 
 

Now  
 

( ) 1 2
1, 1, 1 2, 1 1 1 11 11 1 1 21 21

1 2 1 2

/ 0, (1 ) (1d d d
jE v N N j a a

j j
)

λ λ θ
λ β αγ λ β αγ

λ λ θ λ λ θ− −

+
= = = + + +

+ + + +
                      A.6 

 

( )1, 1 2, 1
1 2

/ 0,d d d
jE B N N j

j
θ

λ λ θ− −= = =
+ +

                                                          A.7 

 

( ) 1 2
2, 1, 1 2, 1 2 2 11 11 2 2 21 21

1 2 1 2

/ 0, (1 ) (1d d d
jE v N N j a a

j j
)

λ λ θ
λ β αγ λ β αγ

λ λ θ λ λ θ− −

+
= = = + + +

+ + + +
                       A.8 

 
, , 2 2 11 11 2 21 1, 1, 1 2, 1

1 1 21 21 1 11 1, 1 2, 1

2, 1, 1 2, 1

[ (1 ) 1 (1 )] ( / 0,

       [ (1 ) 1 (1 )][ ( / 0, )
       ( / 0, )]

i j d d d

d d d

d d d

x a E N N
a E B N

E N N j

)]j
N j

λ β αγ ρ αγ ν

λ β αγ ρ αγ
ν

− −

− −

− −

= + + − + = =

+ + + − + − = =

+ = =

l

                                        A.9 

 
In particular, we get 
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APPENDIX B 

Proof of Theorem 2: 
On solving Eqs (4.4) and (4.5) and using Eqs (4.8) and (4.9), we get 
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On solving Eqs (4.2) and (4.3) and using Eqs (B.1) and (B.2), we find 
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After some algebraic manipulation, Eq. (4.6) becomes  
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function  can be thought of as the generating function of the number of class two jobs that arrive during the busy 
period formed by class one jobs. 
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Solution of Eq. (B.5) using Eq. (B.6) gives Eq. (6.1). 
 

APPENDIX C 

Proof of Theorem 3: 
Using 
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These Eqs are used to establish results given in Eq. (8.1)-(8.7) 
 

APPENDIX D 

Proof of theorem 5: 
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where dτ  denotes time instant of the dth departure customer 
 

( )
2, , 1, 2, .( ) { 2, , , }d

i j d d d m n dE s Y N i N j T τ= = = = >                D.6 
 
The equation and its solution for the above-defined generating functions can be written as [cf. Falin and Templeton, 1997] 
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Laplace transform of the waiting time in queue of tagged subscriber is obtained as 
 

( ,1)sθ− = ΨmnsT
Ee . 


