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Abstract⎯In this paper, we propose a model and a solution procedure to minimize the cost associated with mass 
customizing consumer products in the presence of  multivariate constraints. Three algorithms based on enumeration, 
steepest descent and Lagrange relaxation are used to solve the non-linear optimization problem and their performance is 
evaluated with numerical experiments. The sufficient and necessary conditions under which the optimal solution can be 
achieved are presented as well. 
Keywords⎯Mathematical model, Cost minimization, Nonlinear programming, Multivariate percentile, Anthropometric 
Design. 

 
 

1. INTRODUCTION 

Customer-centric enterprise is an important aspect for any business (Cox, 1998). As a result, manufacturers attempt to 
satisfy the different needs and preferences through a wide variety of products (Ishii, 1995). With the exponential growth of 
product variety today and the significant opportunities in e-commerce, the old paradigm of mass production has become 
extremely sluggish (Anderson, 2002), especially, with the change of business paradigm from producer-centered productivity 
to consumer-centered customization known today as mass customization (Anderson, 1997). Mass customization is an 
attempt to satisfy the varied individual customer needs with near mass production efficiency (Jiao, 1998). By breaking down 
the product features into components and offering those components to the consumer as choices, customization of the 
whole or part-product is possible (Kahn, 1998). However, the complexity of this process increases with the increasing 
number of variables. Consumer product design such as footwear and garments rely on attempting to satisfy one or two 
dimensions even though more than this number is necessary to get a customized fit (Choua, 2005, Kuo, 2005). 

Historically, there has been a trend to increase product variety to cater to varying consumer tastes and styles (Cox, 1998, 
Lancaster, 1998). For example, from 1970 to 1988, the number of running shoe models increased from 5 to over 285 (167 
men and 118 women) (Cox, 1998). In order to keep pace with ever changing customer tastes, thousands of new products 
are made annually and with each variation, manufacturers attempt to bring products closer to what the customer needs. 
Even though variety matters to consumers, each product “size” may have a differing performance function to different 
consumers (Lancaster, 1998). Finding the required item among a large assortment of sizes can be quite frustrating for any 
consumer. Hence, allowing a customer to choose one product from a “shelf” can be wasteful and can also constrain a 
customer’s ultimate satisfaction even though a store shelf may have great marketing appeal (Du, 2000). The difficulty of 
selecting the right pair of shoes in a shoe store is a classic example. In this case, product variety can be a hindrance rather 
than a benefit. Hence, the need satisfaction process should be attained not purely through more variety, but through the 
manufacture of the “right” products. There are two primary reasons for considering only one or two sizing variables to 
satisfy the needs in consumer products. The first being the size of inventory that a retailer may have to carry and the second 
being the increased cost associated with satisfying the many variables in the production of the item. Getting the right 
product that consumer’s need at the right cost is a necessary condition with the diminishing profit margins in a competitive 
business environment. This paper will focus on minimizing the cost with multivariate design parameters. 

The general multivariate design problems can be quite “challenging” especially when considering anthropometry. One 
approximate method is to treat the multivariate design as a series of univariate problems, ignoring the correlation of those 
variables. Since the univariate problem is analytically manageable (Pheasant, 1996), such a method is easy to implement even 
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though the actual percentage to which the product fits would be considerably smaller than expected, implying that such an 
approximation is too crude. A more accurate and alternative method is to generate smoothed percentile curves using a large 
sample of data (Chung, 2001, Ward, 2001). However, multivariate data collection can be rather expensive and thus the 
application of such a method is quite limited. Instead, the correlation coefficient and the summary statistics of the variables 
can be used to generate the percentile curves assuming that the multivariate variables are adequately represented as a 
multivariate normal distribution (Moroney, 1972). Polansky (2001) provides another method to generate 
computer-generated bivariate charts for anthropometric design with a further assumption that the target population 
dimensional requirements are met using identical percentile cutoffs and/or a complementary percentile cutoffs when setting 
design limits. Kreifeldt (1993) and Nah (1996) have taken the issues a step further by investigating the cost-benefit issues 
considering material, inventory, shipping and safety costs, and building them into an objective function while emphasizing 
the need to find a trade-off to minimize the total cost. However, they have not provided a suitable technique to solve the 
optimization problem in order to minimize the total cost. Even though mathematical models are common in many different 
applications (Choi, 2002, Grunwald, 1988, Weymann, 1995), they have had limited coverage in the anthropometric design 
arena (Karim, 2004). Hence this paper is an attempt to: 

1. Formulate a mathematical model for the cost minimization of the multivariate anthropometric design problem 
considering the optimality conditions. 

2. Provide an algorithm to obtain the optimal solution. 
3. Devise an efficient heuristic which can produce a solution faster without significantly affecting the solution quality. 
4. Provide an algorithm for the special case where the design variables are independent. 
5. Validate the algorithms through numerical experiments. 

Our methodology brings the researchers a new interpretation on the anthropometric design problem. A number of 
practical problems faced by the industrial participants can be directly formulated by our model and solved by our algorithms. 
Certainly, the researchers can also find a lot of extensions from the basic model. They deserve further investigation. 

Those algorithms are evaluated by numerical experiments in various settings. It has been shown that they have pretty nice 
performance in very practical settings. Moreover, we design an approach to implement those algorithms for practical cases 
in which the distributions are not multivariate normal distributed but can be characterized by given raw data-base. We test 
that approach on a real case from (Paquette, 1997). Again, the numerical study shows our algorithms’ superiority. 

The rest of this paper is organized as follows. In section 2, we give the definition of “multivariate percentile” and the 
model. In section 3, we analyze this problem and provide necessary and sufficient optimality conditions. In section 4, we 
show the numerical approaches of generating the design solution. In section 5 numerical experiments are conducted. 
Section 6 concludes this paper. 

 
2. MULTIVARIATE PERCENTILE DEFINITION 

The definition of univariate percentile has been well recognized and widely used in the literature (Eastman Kodak 
Company, 1983). The pth percentile of a set is a value such that p% data have a value less than that under consideration. If 
the data follows a normal distribution ( )μ σ,N , where μ  is the mean and σ  is the standard deviation, the 25th 
percentile is μ σ− 0.3849 , the 50th percentile is μ , 90th percentile is μ σ+1.2817 , 95th percentile is μ σ+1.6452 , and in 
general, the pth percentile is ( )μ σ%−+Φ 1 p , where the ( )Φ x−1  is the Cumulative Density Function(CDF) of standard 
normal distribution (Bagby, 1995). 

While the definition of univariate percentile is unambiguous, the definition of multivariate percentile is still unclear. We 
have adopted the following definitions for a multivariate percentile. 
Definition 1. Given  variables  which follow a joint distribution of n …1 2, , , nX X X ( )…1 2, , , nF X X X , we define the 

equation ( ) α≤ ≤ …2 2Pr ,X x X x ≤ =, %n nX x1 1 ,  as the “α -Percentage Constraint”. We call any  as 
“design level”. Specifically  is called as the design level of variable . 

…1 2, , , nx x x

ix iX
Definition 2. Given the targeted percentageα , let us define the percentile of  as the set of design levels 

 which satisfy the corresponding percentage constraint. 

…1 2, , , nX X X

({ …1 2, , , nx x x )}
For the univariate case we have only one variable X  and hence the solution of ( ) α≤ =Pr %X x  is unique. Thus the 

“percentile” can be regarded as a point. However, in the multivariate case, the solution of ( )≤ ≤…, , n nX x1 1Pr X x  may 
not be unique because it is possible that different design levels have the same cumulative density probability. Therefore, the 
set  actually forms a hypersurface. Figure 2 shows the CDF function of 

multivariate normal distribution of two random variables  and . Figure 2 shows the projected 70-percentile of these 
two variables. 

( ) ({ α≤ ≤… …1 2 1 1, , , : Pr , ,n nx x x X x X x ) = %n }
1X 2X
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Figure 1. An example of multivariate normal distribution. 

 

 

 
 

Figure 2. The 70-percentile of random variables characterized by Figure 2. 

 
As Figure 2 shows, the percentile of a multivariate distribution corresponds to a set of points rather than a single point. If 

the problem is one of minimizing cost, then the optimal point has to chosen from the feasible set. 
 
3. MATHEMATICAL MODELING 

This design problem can be formulated as given below. 
 

3.1 Problem formulation 

Assume that the total design cost is a general separable function of the design level [ ]= …1 2, , , nz z z z . The authors of 
(Kreifeldt, 1993) assume that the total cost is linear function of the design level, which is a special case of the cost function 
proposed in this paper. Let ( )C z  be the total cost:  

( ) ( ) ( ) ( )= + + +…1 1 2 2 n nC z c z c z c z                                                                  (1) 
In many cases, it is not the cost alone, but the quality of the product, or its performance, that form part of the objective. 

Therefore, the “cost” here is of a general sense, and to incorporate different measurements into one single objective, one 
can associate each measurement with a properly set weight. 

To meet a targeted α -percentage population, the design level must satisfy the α th  percentage constraint. With both 
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the objective function and the constraints, the problem can be formulated as follows: 
Problem (P). 

Minimize ( ) ( ) ( ) ( )= + + +…1 1 2 2 n nC z c z c z c z , 

Subject to . ( ) =F z p
where α= %p  is a constant and . < <0 1p
We assume that the decision variables, , are continous. This assumption allows us to derive the optimality conditions 

and design more analytical approaches. In some applications, the decision variables can be integers. For instance, the color 
of a shoe. Those approaches might not be able to provide exact solutions for the integer cases, but they may provide a good 
starting point. 

z

 
3.2 Optimality conditions 

Problem (P) is a classical nonlinear optimization problem that has been studied extensively and can be solved with 
Lagrangian relaxation (Jornsten, 1986, Guignard, 1987, Rangarajan, 1996, Monte, 2001). 

The necessary optimality condition can be stated as follows: 
Necessary optimality condition 

For the local minimum of problem (P), , there exists a scalar ∗z λ , called Lagrange multiplier, such that 

( ) ( )( )
λ

∗∗ ∂∂
+

∂ ∂
0

i i

F zC z
z z

=                                                                         (2) 

The above equation can be interpreted as the “gradient” of the Lagrange function: 

( ) ( )( )λ λ
=

= + −∑
1

,
n

i i
i

L z c z F z p  

The above conditions are only the necessary conditions. In other words, even with a feasible  satisfying Eq.(2), there is 

no guarantee that  is the local minimum. Optimality of 

z

z ∗z  requires ( )λ∗ ∗∇2 ,L z  to be positive definite (Bertsekas, 

2000). 
Sufficient optimality condition 

The feasible solution  is optimal if there exists a scalar ∗z λ  such that 

( ) ( )( )
λ

∗∗
∗
∂∂

+ =
∂ ∂

0
i i

F zC z
z z

 

and, ( )λ∗ ∗∇2 ,L z  is positive definite. 

Methods such as Lagrangian relaxation can be applied to solve this nonlinear optimization problem. However, it is 
difficult to directly use the optimality conditions with multivariate distributions as ( )F z , the cumulative density function 
cannot be evaluated in closed form. Hence the following numerical approaches are proposed. 
 
4. NUMERICAL APPROACHES 

Three algorithms are proposed with the first being enumerative wherein all candidates in the solution space (the 
hyperplane) are evaluated and the one with minimum cost is selected. The second algorithm is based on the method of 
steepest descent (Kirk, 1970) and the third is based on the Lagrange relaxation method for the special case where the design 
variables are independent of each other. A proof is also provided to show that the solution is exact with 
the Lagrange relaxation method. 
 
4.1 Approximation of multi-variant normal probabilities 

Our approaches rely on the efficiency of evaluating multivariant normal distribution functions. In general, 
 

4.2 Enumerative search algorithm 

A simplified approach to solve a multivariate design problem is to ignore the correlations among the different design 
variables and simply solve a series of univariate problems. This method is commonly adopted in anthropometric design. 
Even though such an approach is simple and used in practice, the actual percentage fitted by such a design is considerably 
smaller than the target values. Such issues can be overcome with a modified univariate approach as shown below. 

To meet a given percentile, , the designer can choose a percentile from a range for each design variable as follows p

( ) ( )β β⎡ ⎤∈ − + =⎣ ⎦ …1 , 1 , 1, 2,L U
ip p p i ,n  
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where β L  and βU  are two adjusting parameters between (0, 1). 

Let ( )i iz p  denote the design level for design variable  given the targeted percentile . Thus, for each combination i ip

( )…, , , n1 2p p p , we solve  univariate problems, obtaining the solutions n ( )= …1 2, ,z z z , nz . We can then evaluate the 

corresponding multivariate percentile, namely ( )F z , which might be less than the targeted level. After enumerating all 
possible combinations, the feasible solution with the minimal cost can be identified. A feasible combination may not exist in 
the given region if β L  and (or) βU  are too small. To achieve the optimal solution, one may have to set β L  and βU  
relatively large, thereby increasing the number of possible combinations. This approach might not work well for applications 
with many design variables. However, this method will be suitable for applications with a relatively smaller number of design 
variables. This algorithm can be stated as follows: 
Algorithm 1: Enumerative approach 
Step 1: Initialization 

Initialize parameters: step size , maximum steps , and solution qualify tolerance Δ K ε , β L , βU . Set 

 and compute z p  for all ( )β= −0 1 L
ip p ( 0

i )i { }…,∈ 0,1, 2,i . (Note that n ( )β βΔ = +L UK p .) 

Step 2: Solve univariate problems 
Solve the  univariate problems for ( )n ( )= + Δ + Δ + Δ… 0 0 0

1 2 1 1 2 2, , , , , ,n np p p p k p k p k… n  for all integers , 

where . 

…1 2, , , nk k k

{ }∈ …, 2, ,ik K0,1

Step 3: Evaluate  and ( )F z ( )C z  

Compute  and  for all ( )( )C z ( )F z ( ) ( )( ) ( )= + Δ + Δ + Δ… …0 0 0
1 2 1 1 1 2 2 2, , , , , ,n nz z z z p k z p k z p kn n  

Step 4: Search the minimum 

Find  such that  is the minimum and such that ∗z ( )∗C z ( ) ε∗ − <F z p . 

To obtain the “optimal solution”, the step size should be small so that the method approximates an exhaustive method, 
thereby examining almost all possible contenders to achieve the target percentile with minimum cost within a known 
tolerance. 
 
4.3 An efficient heuristic to solve Problem (P) 

The steepest descent method can be used to solve the above problem as well (Bertsekas, 2000, Kirk, 1970). An initial 
solution [ ]= …1 2, , , nz z z z  which may violate the percentage constraint is first used. Thereafter, the design level of one 
variable is adjusted along the direction of steepest descent in cost. If the approximate coordinate direction is: 

( ) ( )
( ) ( )

− + Δ
=

+ Δ −
… … … …1 1, , , , , , , ,i n i n

i
i i i i

F z z z F z z z
d

c z c z
                                                       (3) 

In each iteration, we can move along the direction which is { }= = …ˆ max : 1, 2, ,id d i n .  
The key steps of the heuristic are summarized below. 

Algorithm 2: Steepest descent Search 
Step 1: Initialization 

Input ε  and step size . Let . Find a starting point Δ = 0k ⎡ ⎤= ⎣ ⎦…1 2, , ,k k k k
nz z z z . One good choice is . =k

i iz u
Step 2: Solve univariate problems 

Set . Evaluate  for . Choose the largest value of . Let the variable is , update  with 
. 

= +1k k
−= + Δ1k k

m m

id = …1, 2, ,i n id m k
mz

z z

Step 3: Evaluate  and ( )kF z ( )kC z  

Update , evaluate . If kz ( )kF z ( ) ε− <kF z p . Stop. Otherwise, go to step 2. 

The efficiency of this heuristic will be examined with numerical experiments later. 
 

4.4 The special case when design variables are independent. 

In the special case where the decision variables are independent of each other and the cost structure is linear, the 
evaluation of  is relatively easier. ( )F z

( ) ( ) (
=

= ≤ ≤ = ≤∏…1 1
1

Pr , , Pr
n

n n i i
i

F z Z z Z z Z z )                                                       (4) 
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If ( )i iF z  denotes the function ( )≤Pr i iZ z , then for the special case we have the following properties. 

Property 1 If a design problem requires its percentile is greater than 50%, i.e., , then each variable must be greater than its mean value. > 0.5p
Proof. We prove it by contradiction. Suppose that there exists a  for a design level k ∗z  such that ∗ <kz zk . By Eq.(4), 
we have 

( ) ( ) ( ) ( ) ( )∗ ∗ ∗ ∗

= = ≠

= ≤ = ≤ ≤ < ≤ × <∏ ∏
1 1,

Pr Pr Pr Pr 1 0.5
n n

i i k k i i k k
i i i k

F z Z z Z z Z z Z z . 

On the other hand, the design requires that ( )∗ > 0.5F z . There exists a contradiction. Therefore, each variable must be 

greater than its mean value. QED. 
Let us recall the sufficient optimality condition. The first order condition implies that 

( )( )
( )

λ
∗

∗
∗

∂ ∂
= −

i i

i

F z z
p

F z c
. 

Note that the probability density function (PDF) for each variable is a monotonically decreasing function in the region 

 while  is monotonically increasing. We can conclude that )μ +∞⎡⎣ , ( )F z
( )( )
( )

∂ ∂i i i

i

F z z
F z c

 is monotonically decreasing. 

Since 
( ) ( )

( )
λ

∂ ∂
= +

∂
, i i i

i
i i

L z L F z z
c p

z F
∂

iz
 

and λ < 0 , it follows that 

Property 2 
( )λ∂
∂

,

i

L z
z

 is monotonically increasing with . iz

Property 3 For any solution , ∗z λ∗  satisfying the first order condition, ( )λ∗ ∗∇2 ,L z  is positive definite. 

According to property 3, 
( )λ∗ ∗∂

≥
∂

2

2

,
0

i

L z
z

, for any give . Because for any i ≠i j ,  is independent with , Z jZ

( )λ∗ ∗∂
=

∂ ∂

,
0

i j

L z
z z

. So the matrix ( )λ∗ ∗∇2 ,L z  is a dialogue matrix where the elements in the dialogue are positive, which 

implies ( )λ∗ ∗∇2 ,L z  is positive definite. 

With the optimality conditions and Property 3, it can be seen that the first order optimality condition is sufficient to 
guarantee optimality. Hence the optimal solution can be found by searching the optimal multiplier,  for which the 
first-order condition holds. The algorithm can be described as follows: 

∗λ

Algorithm 3: Lagrange relaxation method for the special case 
Step 1: Initialization 

Set λ0  and λΔ . 
Step 2: Solve the equations 

Set . = +1n n

Let λ λ= 0 . Solve the equations 
( )( )
( )

λ
∗

∂ ∂
= −i i i

i

F z z
p

F z c
 for all = …1, 2, ,i n . 

Step 3: Evaluate the percentile 
Evaluate . If ( )F z ( ) ε− <F z p . Stop. Otherwise, go to step 4. 

Step 4: Test for termination 
a) If ( ) ε> +F z p , reduce λ λ= − Δλ .  

b) If ( ) ε< −F z p , increase λ λ= + Δλ , Goto step 2. 
The critical aspect of Algorithm 3 is the equations in step 2, which is given in the appendix. The starting value for the 

lagrange multiplier is set according to the following rule: 
( )( )φ

λ
−=

=
1

1
0

1

Pr Z p
c p
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5. NUMERICAL EXPERIMENTS 

The efficiency of the algorithms is checked using a series of numerical experiments with the univariate approach 
(Algorithm 4) as the benchmark for evaluation. A high dimensional problem is then presented to validate the performance 
of the algorithms and thereafter an application of the suitability of the algorithms is provided for the case of bi-modal 
distributions. 

 
5.1 Benchmark approaches 

The simple univariate approach (Algorithm 4) is used as the benchmark for evaluation. 
Algorithm 4: Univariate based algorithm 
Step 1: Initialization 

Calculate = n
ip p , for all . { }∈ …1, 2, ,i n

Step 2: Evaluate univariate percentile 
Obtain ( )i iz p , that is, the , such that iz ( ) =i i iF z p , for all { }∈ …0,1, 2, ,i n . 

Step 3: Evaluate multivariate percentile 
Evaluate . ( )F z
The above Algorithm is based on the assumption that the variables are independent and hence the multivariate percentile 

is the product of all percentiles among all dimensions. Therefore, = n
ip p

)

 is supposed to provide a good estimate of the 
percentile in each variate. 

Moreover, Algorithm 1 is also used for comparison as it is expected to generate a nearoptimal solution. When the step 
size is small, the solution approaches the optimal one but, the computational time can be prohibitively large as the step size 
approaches 0. 

 
5.2 A Numerical example 

An example similar to the one in (Kreifeldt, 1993) is used to illustrate the efficiency of the algorithms, where a cover 
guard frame should be designed to prevent children’s fingers from contacting the rotating fan blades. The design variables 
are the grill diameter (D) and the distance (L) to the blade. The objective is to choose a pair of  such that a specified 
percentile (e.g., 95%) of the child population is protected while the total cost of manufacture is minimized. The total cost 
consists of the engineering cost and a human factor cost. Thus, 

( ,l d

Minimize  ( ) = +1 2,TC l d C l C d

Subject to  ( )≤ ≤ =Pr ,L l D d p

where the mean and covariance matrix of  are ( )= , TX D L

μ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.8
25

, 
ρ

ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0.01 0.6
0.6 36

Q . 

Note that standard deviations of  and  are 0.1 and 6, respectively, and the correlation coefficient between  
and  is 

D L D
L ρ . 

In this paper, we examine the three scenarios of positive, negative and no correlations. The ρ ’s in these three cases are 
5
6

, 0, and − 5
6

, respectively. Let  and =1 10C =2 200C . 

The results of Algorithm 4 (Univariate), Algorithm 1 (Enumerative search) and Algorithm 2 (Steepest Descent) are 
compared in terms of solution quality and computational time. In addition, for the case of independent variables where the 
correlation coefficient is 0, Algorithm 3 (Lagrange relaxation method) is presented as well. All the experiments were run on 
a PC with 2.5G CPU and 1G RAM. Algorithms 1, 2 and 4 were implemented in Mathematica 4 and Algorithm 3 was 
implemented in Matlab 7.0. The settings in the algorithms are as follows. 
• Algorithm 1: , , , and =0 0.8ip ∀i Δ = 0.001 = 180K . 
• Algorithm 2: , and Δ = 0.001 ε = 0.001 . 
• Algorithm 3: ε = 0.001 , and λΔ = 0.00001 . 

Tables 1 to 3 present the results of Algorithm 4, Algorithm 1 and Algorithm 2 in a positively correlated, non-correlated, 
and negatively correlated scenarios, respectively. In each table, the first column is the objective multivariate percentile, which 
ranges from 0.85 to 0.95. The second to tenth columns are separated into three blocks, corresponding to the results 
obtained when using Algorithm 4, Algorithm 3 and Algorithm 2, respectively. In each block, the first column is the 
percentile achieved, the second column is the objective cost of the output solution and the third column gives the 
computational time in seconds. The cost savings of Algorithm 2 over Algorithm 4 is given as a percentage in the last column 
of each table. 
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For the negatively correlated scenario, the computational time is much longer than the other two scenarios. This is due to 

the percentile evaluation process in Mathematica where the computation time significantly increases as the correlation 
approaches 1. As a result, the solution of Algorithm 1 (A1) cannot be obtained in 8 hours, implying the computational 
prohibitiveness of the enumerative search method for the negatively correlated situation. It can be seen that the 
computation time of Algorithm 4 is the shortest since it only evaluates one point, while Algorithm 1 (A1) takes the longest 
time as it enumerates many possible points while algorithm A2 takes sometime in-between the two. 

The results show that Algorithm 2 produces a mean cost saving of 5.97%, 5.96%, and 5.96% over Algorithm 4 in the 
positively correlated, non-correlated, negatively correlated scenarios, respectively. A closer look tells us that in the positively 
correlated scenario, Algorithm 4 results in a percentile that is over the target values, while in the negatively correlated 
scenario, Algorithm 4 produces under-qualified solutions whose corresponding percentiles are smaller than the target values 
implying that the percentage constraint is violated. Surprisingly, Algorithm 2 produces solutions that are slightly better, but 
similar to Algorithm 1, which is expected to generate a near optimal solution. Thus, Algorithm 2 appears to generate near 
optimal solutions as well. As stated before, Algorithm 1 produces an optimal solution when the step size approaches 0 given 
an unlimited amount of time. 

 
Table 1. Multivariate percentile solutions in positively correlated scenario. 

A4 A1 A2 
TP 

P Cost Time P Cost Time P Cost Time 

Savings of  A2 

over A4 

0.85 0.8889 6711 0.03 0.8500 6259 812.66 0.8500 6255 144.44 6.81% 

0.86 0.8961 6757 0.02 0.8600 6312 811.81 0.8601 6308 149.89 6.65% 

0.87 0.9033 6805 0.02 0.8701 6368 813.19 0.8700 6363 156.97 6.50% 

0.88 0.9105 6856 0.02 0.8801 6426 811.31 0.8801 6422 163.42 6.34% 

0.89 0.9178 6910 0.02 0.8900 6488 811.53 0.8902 6484 169.98 6.17% 

0.90 0.9250 6968 0.03 0.9001 6555 813.00 0.9001 6550 177.97 6.00% 

0.91 0.9323 7031 0.03 0.9101 6627 813.09 0.9101 6621 186.83 5.83% 

0.92 0.9396 7099 0.02 0.9201 6705 810.45 0.9201 6698 196.63 5.65% 

0.93 0.9469 7174 0.02 0.9302 6799 809.39 0.9301 6783 206.56 5.45% 

0.94 0.9542 7259 0.03 0.9400 6896 812.11 0.9400 6877 217.70 5.26% 

0.95 0.9616 7355 0.02 0.9502 7008 811.05 0.9500 6985 230.74 5.03% 

 
Table 2. Multivariate percentile solutions in non-correlated scenario. 
A4 A1 A2 

TP 
P Cost Time P Cost Time P Cost Time 

Savings of  A2 

over A4 

0.85 0.8500 6711 0.00* 0.8504 6301 111.59 0.8500 6256 16.88 6.79% 

0.86 0.8600 6757 0.02 0.8603 6356 111.61 0.8601 6309 17.50 6.63% 

0.87 0.8700 6805 0.00 0.8702 6414 111.63 0.8700 6364 18.14 6.49% 

0.88 0.8800 6856 0.02 0.8801 6476 111.74 0.8801 6423 18.83 6.32% 

0.89 0.8900 6910 0.00 0.8900 6541 111.66 0.8901 6485 19.64 6.16% 

0.90 0.9000 6968 0.00 0.9009 6619 112.03 0.9001 6551 20.39 5.99% 

0.91 0.9100 7031 0.02 0.9108 6696 112.13 0.9101 6622 21.38 5.82% 

0.92 0.9200 7099 0.00 0.9207 6781 112.08 0.9201 6699 22.50 5.64% 

0.93 0.9300 7174 0.00 0.9306 6876 112.09 0.9301 6784 23.63 5.44% 

0.94 0.9400 7259 0.00 0.9405 6984 111.74 0.9400 6878 24.91 5.24% 

0.95 0.9500 7355 0.00 0.9504 7111 111.67 0.9501 6987 26.22 5.01% 

 *: “0.00” means the computational time is less than 0.01 second. 
 

The non-correlated scenario was used to understand the performance of Algorithm 3 (Table 4). It is evident that a mean 
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cost saving of 5.40% exists with Algorithm 3 when compared with Algorithm 4. Even though the cost is slightly higher than 
those output by Algorithm 2, in most case Algorithm 3 takes shorter time than Algorithm 2. The computational merit is 
more significant with more variables and when they are independent. 

In summary, Algorithm 2 produces near optimal solutions with a cost savings of, on average, more than 5% over 
Algorithm 4. Moreover, when compared with Algorithm 1, Algorithm 2 produces similar results but takes much shorter 
computational time. Hence, considering both effectiveness and efficiency, Algorithm 2 is quite promising. When the 
variables are independent of each other, Algorithm 3 takes less time having a solution quality similar to Algorithm 2. 

 
Table 3. Multivariate percentile solutions in negatively correlated scenario. 

A4 A1 A2 
TP 

P Cost Time P Cost Time P Cost Time 

Savings of  A2 

over A4 

0.85 0.8439 6711 2.48 -* - - 0.8500 6256 12783.50 6.79% 

0.86 0.8547 6757 2.53 - - - 0.8601 6309 13277.70 6.63% 

0.87 0.8655 6805 1.27 - - - 0.8700 6364 13792.60 6.49% 

0.88 0.8762 6856 2.52 - - - 0.8801 6423 14282.90 6.32% 

0.89 0.8868 6910 1.27 - - - 0.8901 6485 14830.30 6.16% 

0.90 0.8974 6968 2.53 - - - 0.9001 6551 15263.80 5.99% 

0.91 0.9079 7031 2.55 - - - 0.9101 6622 15920.30 5.82% 

0.92 0.9183 7099 1.28 - - - 0.9201 6699 16640.80 5.64% 

0.93 0.9287 7174 1.30 - - - 0.9301 6784 17437.90 5.44% 

0.94 0.9391 7259 2.63 - - - 0.9400 6878 18319.50 5.24% 

0.95 0.9494 7355 2.63 - - - 0.9501 6987 19241.70 5.01% 

 *: “-” implies that solutions can not be obtained in 8 hours. 
 

Table 4. Solutions from Algorithm 3. 
A4 A3 

TP 
P Cost Time P Cost Time 

Savings of  A3 

over A4 

0.85 0.8500 6711 0.00 0.8494 6343 20.12 5.50% 

0.86 0.8600 6757 0.02 0.8601 6398 15.23 5.32% 

0.87 0.8700 6805 0.00 0.8700 6454 15.34 5.16% 

0.88 0.8800 6856 0.02 0.8801 6510 10.12 5.05% 

0.89 0.8900 6910 0.00 0.8902 6562 4.34 5.05% 

0.90 0.9000 6968 0.00 0.9001 6607 2.33 5.18% 

0.91 0.9100 7031 0.02 0.9100 6649 2.67 5.43% 

0.92 0.9200 7099 0.00 0.9201 6679 2.89 5.91% 

0.93 0.9300 7174 0.00 0.9301 6706 2.23 6.53% 

0.94 0.9400 7259 0.00 0.9400 6906 10.19 4.85% 

0.95 0.9500 7355 0.00 0.9500 6954 11.35 5.46% 

 
5.3 Random generated cases 

We further create 10 random generated cases for a comprehensive comparison between these algorithms. All cases are of 
three dimentions and of multi-normal distributions. More specifically, each case is generated by 

μ
μ μ

μ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3
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σ σ σ ρ ρ σ σ ρ ρ

σ σ ρ ρ σ σ σ ρ ρ
σ σ ρ ρ σ σ ρ ρ σ

⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦
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The cost vector is 

( )= 1 2 3, , Tc c c c , 

where  denotes the transpose. ( ). T

The parameters are randomly generated in this way: 
1. Let , and the ratio =3 1c ( )1 2log c c , ( 2 3log c c )  is uniformly distributed in [−1, 1]. 

2. Let μ =3 1 , and the ratio ( )μ μ1 2log , ( )μ μ2 3log  is uniformly distributed in [−1, 1]. 
3. Let σ μ=1 1 10 , σ μ=2 2 10  and σ μ=3 3 10 . 
4. The ratio ρ1 , ρ2  and ρ3  are uniformly distributed in [−0.9, 0.9]. 

Table 5 illustrates the parameters of those random cases, and the results can be found in Table 6. 
 

Table 5. Test Problems Characteristics. 
Problem 1 2c c  2 3c c  μ μ1 2  μ μ2 3  ρ1  ρ2  ρ3  

P1 8.01 2.86 9.54 6.68 -0.89 0.92 -0.84 

P2 0.26 4.69 9.83 0.57 0.37 -0.32 -0.47 

P3 5.15 0.82 7.70 0.14 0.98 0.23 -0.78 

P4 0.44 0.54 2.77 3.13 -0.56 0.70 -0.07 

P5 0.24 4.26 5.82 2.80 -0.24 0.26 -0.22 

P6 1.18 1.20 0.43 0.25 0.47 -0.40 -0.72 

P7 1.96 0.90 3.27 4.13 0.61 -0.82 -0.02 

P8 2.56 1.00 0.99 1.50 -0.33 0.84 -0.38 

P9 0.16 0.18 0.50 0.21 -0.65 -0.61 0.69 

P10 6.98 4.05 8.57 3.64 -0.33 -0.84 0.95 

 
Table 6. Computational Results for Random Cases. 

A4 A1 A2 
Problem 

P Cost Time P Cost Time P Cost Time 

Savings of  A2 

over A1 

P1 0.5955 475.1 0.03 0.8500 -* -* 0.8500 477.2 125.0 -* 

P3 0.6173 9.2 0.02 0.8504 9.9 15049.8 0.8505 9.6 47.0 2.81% 

P4 0.8500 21.6 0.02 0.8503 21.2 11524.7 0.8503 22.6 32.0 9.83% 

P5 0.6000 3.6 0.02 0.8504 3.8 9776.2 0.8505 3.8 27.0 0.00% 

P6 0.6141 18.7 0.02 0.8502 20.6 6901.1 0.8502 19.4 194 5.97% 

P6 0.6075 1.9 0.02 0.8500 2.0 3648.8 0.8502 2.0 13.0 0.00% 

P7 0.6044 15.7 0.03 0.8500 16.4 11528.3 0.8503 16.2 48.0 1.41% 

P8 0.6337 6.3 0.03 0.8503 6.6 5761.5 0.8504 6.9 18.0 4.55% 

P9 0.6331 1.2 0.02 0.8501 1.2 2382.4 0.8502 1.3 7.0 5.44% 

P10 0.6448 357.5 0.02 0.8502 -* -* 0.8502 343.2 72.1 -* 

 
The results clearly show that the A1 cannot guarantee a feasible solution. Among 10 cases, there is only one feasible 

solution of all solutions generated by A1. Though A2 can guarantee a feasible solution, the computational times are 
extremely higher that A2 (There are two cases in which the solver cannot obtain satisfactory result in 8 hours). Meanwhile, 
in some cases, A4 can even get better solution than A2. In summary, A4 outperforms the other two algorithms. 

 
5.4 Computational performance with high dimensions 

To evaluate computational performance, a 5-variable example with the following distribution was used: 
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μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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1
2
3
4
15

, 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0.01 0.016 0.024 0.032 0.4
0.01 0.04 0.048 0.064 0.8

0.024 0.048 0.09 0.096 1.2
0.032 0.064 0.096 0.16 1.6
0.4 0.8 1.2 1.6 25

Q . 

The cost vector is 
( )= 10, 20, 30, 40,150 Tc , 

where  denotes the transpose. ( ). T

When the targeted percentile is 0.9, the results of Algorithm 4 and Algorithm 2 are given in Table 7.  
 

Table 7. Multivariate percentile solutions in 5-variate case. 
A4 A2 

TP 
P Cost Time P Cost Time 

Savings of  A2 

over A4 

0.9 0.9458 4138 0.05 0.9001 3591 1093.19 13.22% 

 
Algorithm 1 could not generate a solution within 8 hours. Table 5 shows that Algorithm 2 gives a cost saving of 13.22% 

over Algorithm 4. More importantly, Algorithm 2 in this case is usable with a computation time of less than 20 minutes 
whereas the time of Algorithm 1 is excessively prohibitive. 

 
5.5 Experiments: using a database as an evaluation function 

In some applications, it may be difficult to compute the distributions of the design variables because neither the exact 
functions nor the approximation functions may be available. In such cases, a database of a large sample set can be utilized to 
determine a solution. Suppose there are sufficient number of samples, given any ( )…1 2, , , nx x x , an approximation of 

( )…1 2, , , nF x x x  can be obtained by probing the database. 
Consider the situation of two design variables, “Heel Ankle Circumference” (HAC) and “Heel Breadth” (HB) each 

having a bi-modal distribution. The summary statistics data for the females and the males can be obtained from (Paquette, 
1997), and are given in Table 8. 

 
Table 8: Summary Statistics of the heel ankle circumference and heel breadth for US marine corps. 

Male Female 

HAC (mm) HB (mm) HAC (mm) HB (mm) 

Mean SD Mean SD Mean SD Mean SD 

339.0 15.8 69.0 4.9 304.0 14.5 62.0 4.5 

 
The correlation of the two variables for both male and female are assumed to be: 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

1 0.8
0.8 1

Q . 

If one product is designed to suit both males and females, one needs to consider a design problem where the distributions 
of HAC and HB are bi-modal. Suppose there  samples in the database, N ( )…1 2, , , nF x x x  can be evaluated as given 
below 
Evaluate ( )…1 2, , , nF x x x  with the database 

Step 1: Initialization 
Let the counter , . = 0i = 0j

Step 2: Compare with one sample 
For the sample , i ( )…1 2, , , nz z z , examine whether  for >kx zk = …1, ,k n . If yes, stop. Otherwise,  and 

repeat this step. 
= +1j j

Step 3: Evaluate the multivariate percentile 
( )…1 2, , , nF x x x  can be computed as j N . 

In this way, the algorithm A2 can be applied. The cost vector is 
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( )= 10,1 Tc . 
The result is shown in Table 9: 
Even after using the approximation to the real distributions, the proposed algorithms provide a better solution than the 

benchmark. 
 

Table 9. Results for a bi-modal example. 
A2 A4 

TP 
P Cost Time P Cost Time 

Savings of  A2 

over A4 

0.9 0.9001 3612.0 0.1 0.9001 3624.5 0.0 0.3% 

 
5.6 Implementation issues 

Implementation of the proposed approach is rather straightforward if the multivariate distribution and the cost function 
is available. The algorithms are easy to code. 

 
6. CONCLUSIONS AND DISCUSSIONS 

This paper examined the cost minimization in the presence of many variables. Three algorithms were proposed to solve 
this problem with the first being an enumerative approach based on standard univariate methods. The strength of this 
algorithm is its simplicity of implementation and the guarantee of optimality. However, the time to attain a solution may be 
relatively high with many variables. The second algorithm is based on a standard search technique in nonlinear optimization 
theory. Numerical experiments showed that a solution can be achieved relatively fast without loss of solution quality. The 
third algorithm is solely for the case of independent design variables and is extremely efficient. The numerical experiments 
have shown the merits of the different algorithms and the value of using the approaches over the commonly used univariate 
method. 

Several extensions of this problem deserve in-depth research. One extension is the cost minimization problem with 
constraints which represent the restrictions due to human factor concerns. For example, in the design of a workstation, the 
relationships among the design variables such as length, height etc, can be formulated as a group of linear constraints 
(Gupta, 2004). Using the mathematical models, state-of-art decision support tools that implement optimization techniques 
can be developed to support decision making. 

Another extension is the design problem with more complex objective functions. In this paper, the objective is simply the 
“cost” minimization and the “cost” has a relatively simple structure. However, the cost structure could be quite complex 
(Zhang, 2007). On the other hand, besides costs, the social goals, such as the concern on the environment, are also 
important issues (Dula, 2004). It is interesting to model and analyze the impact of those issues with mathematical models. 
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APPENDIX: THE METHOD OF SOLVING EQUATIONS IN STEP 2 IN ALGORITHM 2. 

Without loss of generality, we assume that the distribution of  is standard normal distribution. To solve the equations 
in step 2, we first obtain the relationships between  and . Observe that, 

iZ

iz 1z

( )( )
( )

( )( )
( )∗ ∗
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= 1
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( )( ) ( )( )∂ ∂ ∂

= 1 1
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It follows that, 
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We can obtain the relationship between  and  as, iz 1z
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We evaluate  using the approximation of ( )F z ( )≤Pr i iZ z  given in (Bagby, 1995): 
Approximation 1. 

( ) ( ) ( )π− −− −⎛ ⎞≤ ≈ + − + + + ⋅⎜ ⎟
⎝ ⎠

22 22 2 22 2 21Pr 1 2 1 2 1 7 16 7 0.25 2
30

ii i
zz z

i i iZ z e e e z   ≥ 0iz

Together with (5), we can get an approximation of ( )F z  which is a function of  only. Then, solving the equation 
(using a some standard solver), 

1z

( )( )
( )

λ
∗
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= −1 1 1

i

F z z
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F z c
 

We will get the value of , then all the  as well as 1z iz ( )F z . 
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