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Abstract—Support vector machines (SVM) was originally designed for binary classification. SVM has been recently applied
to solve multi-class problems. And there lies the unsolving research issues on developing 2-class SVM into multi-class SVM. In
this paper, five common multi-class SVMs have been reviewed and a new multi-class SVM "one-against-half method" has
been proposed along with the comparison between the performance of one-against-half method and the other five multi-class
SVMs. The experiments proved one- against-half method to be a qualified multi-class SVM.
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1. INTRODUCTION

The Support Vector Machines (SVM), based on Statistical Learning Theoty, 1s a new technique for solving a variety of
learning and function estimation problems. SVM has fairly extensive applications, such as image recognition, text
categorization, hand-written digit recognition, data mining, and bioinformatics. SVM was ornginally designed for binary
classification. It has been recently applied to solve multi-class problems. And there lies the unsolving research issues on
developing 2-class SVM into multi-class SVM.

Currently there are two types of approaches for multi-class SVM. One constructs a multi-class SVM by combining several
2-class SVMs, including “one-against-all” (Bottou, et al., 1994), “one-against-one” (Friedman [1996] and KreBel [1999]), and
“DAGSVM” (Platt, et al., 2000). The other one considers all classes at once, including “considering all data at once” (Vapnik,
1998) and “C&S method” (Crammer and Singer, 2000). The experiments of Chang (2000) indicate that none of the
above-mentioned methods is entirely better than the others. So how to effectively extend 2-class SVM for multi-class SVM 1s
still an on-going research issue. For solving A-class problems, “one-against-one” and “one-against-all” need to deal
kx(k—=1)/2 and k 2-class SVMs respectively. Under different multi-class problems, the amount of 2-class SVMs may
produce different performance and computational time. Thus, we argue that a more elastic method which constructs nx k
2-class SVMs may yield a better model under different multi-class problems. In this paper, we propose a new idea of
multi-class SVM: one-against-half method, which is a new method of solving multi-class problem. Although this method
constructs exactly 2k 2-class SVMs, people can extend it to nx k case easily.

In Section2, we first review 2-class SVM and multi-class SVMs. In the next Section, we give an introduction of
one-against-half method. Numerical experiments are in Section 4 where we compare one-against-half with the other
multi-class SVMs, and we also propose the improvement approach for one-against-half method when the accuracy rate 1s bad.
Finally we give the conclusion and future works in Section 5.

2. SUPPORT VECTOR MACHINE
2.1 2-Class SVM

We will start with the separable case (Burges [1998], Crstianini and Shawf-Taylor [2000], Scholkopf, et al. [1999], and
Vapnik [1998]). Label the training data{xl,yl} =10,y e{-1L1}, x, € R”. Suppose there are some hyperplane that
separates the positive from the negative examples. The points x which lie on the separating hyperplane satisfy w-x+5=0,
where wis normal to the hyperplane. Define the “margin” of a separating hyperplane to bed, +4_, whered, (d,)is the
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shortest distance from the separating hyperplane to the closest positive (negative) training data. In the separable case, all the
training data satisfy the following constraints:

x,ow+tbz+1 for y, =+1 (D

x,w+b<-1 for y =-1 )
These can be combined into one set of inequalities:

0, (x,  w+b)-120 Vi ©)
By constraints Eq.(1) and Eq.(2),d, =d_ = 1/||w|| and the margin 1s simplyZ/"w”. Thus we can find the separating

hyperplane which gives the maximum margin by rninimizingjr"u/"2 , subject to constraints Eq.(3). Using the Lagrange multiplier

technique, a positive Lagrange multiplierst, , 7 =1,...,/ , one for each of the inequality constraints Eq.(3) is introduced. This

gives Lagrangian:
/ /

min L, :%Hu/uz —206[}/[ (xl -u/+b)+2al 4
i=1 i=1

o, =20

In order to deal properly with nonlinear SVM, we transform L, into its dual problem:

max L, = Zal —%Zala]}/lj/xl X
v

i

@ 20 5)
Dy =0

In the case where the training data cannot be separated by a hyperplane without errors, Cortes and Vapnik (1995) propose
that introducing positive slack variables &,,7 = 1,...,/, the constraints become:

x, ow+b2+1-¢ for y =+1 (6)
x, ow+b<-1+¢  for y =-1 @)
20 ®

The goal is to construct hyperplane that makes the smallest number of errors. Hence the objection function becomes
minimize ||u/||2 /24+C (Zl ¢ ) , where C' 1s a parameter to be chosen by the user, alarger C corresponding to assigning a higher

penalty to errors. The optimization problem becomes:
1
max L, = Zal —EZala]}/lj/xl X
i ij
0<a <C )
Dy =0

Now suppose that the data is mapped to some higher dimension space (feature space), using a mapping which is
called @ ( Boser, 1992):

®:R" > F (10)
Then of course the training algorithm would only depend on the data through dot products in F , i.e. on functions of the
form CD(xl ) . CD(x/) . Kernel function is the important concept of SVM, The definition of kernel 1s:

/e(xl,x/):(CD(xl)-d)(x/)) (11)

So the optimization problem of nonlinear SVM 1s:

1
max L, = Zal —EZala]J/J]/e(xl,x/)
i ij

0<a <C 12)
Yy =0

After solving this optimization problem, those points for which ¢, > 0 are called “support vectors”. Then they determine

w by Eq.(13). And b can be found by KKT (Fletcher, 1987) “complementarily” condition Eq.(14), where s are support

vectors and Ny is the number of support vectors.

w:ia/yjd)(f/) 13)
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o (5, (w05, )+#)-1) =0 (14)

Finally, the class of x 1s

sgn (w~x+b) = sgn[ a/}///e(xj,x) +b] 15)

Ns

7

2.2 Multi-class SVM

One-against-all method (Bottou, et al., 1994) is probably the earliest multi-class SVM. It constructs k SVM models where k
1s the number of classes. The 7 th SVM is trained with all of training data in the / th class with positive labels, and all other data

with negative labels. Given [ training data (xl,)/l),...,(x,,j,), where X, € R”, j=1,..,/and J, € {1,...,/e}is the class of
x, . Solving the following problem get the 7 th SVM:

| T !
min —(u/) w +CZ§][
2 =

T .
() ®(x))+0/ 218, if y =i (16)
T .
(w) q)(x])-f-b/ <—1+&0f g, #i
f/l 20,7 =1..,17
The unknown-class data x is in the class which has the largest value of the decision function:
dlass of x =argmax,_, , ((u/)T d)(x)-i-bl) W)

Another method is called one-against-one method (Friedman [1996] and KreBel [1999]). It constructs £(&—1)/2 SVM

models where each one 1s trained on data from two classes. One-against-one method uses voting strategy (Friedman, 1996) to
decide which class of x : if decision function says x is in the 7 th class, then the vote for the 7 th class i1s added by one. Then
we predict x 1s in the class with the largest vote.

The third method is the Directed Acyclic Graph Support Vector Machines (DAGSVM) (Platt, et al., 2000) which extends
from one-against-one method. Its training phase also constructs /e(/e—l)/ 2 SVM models, but DAGSVM use a directed

acyclic graph to predict the class of x in the testing phase. Its testing time is less than the one-against-one method.

The other two multi-class SVMs , “considering all data at once method” (Vapnik, 1998) and “C&S method” (Crammer and
Singer, 2000), directly consider all data in one optimization formulation. The difference between these methods is that C&S
method deceases the number of variables. These two multi-class SVMs are dissimilar to our new multi-class SVM; so we omit
the introduction of them.

3. ONE-AGAINST-HALF METHOD

“One-against-half method” constructs 2& SVM models where £ is the number of classes. Each class constructs two SVM
models (ex. ST'M"" and ST'M"*). STVM"' is trained on data from class 7 and the front half of all classes except class
4 ST/M " is trained on data from class 7 and the later half of all classes except class z Both they are in the /th class with positive

labels, and the others with negative labels. Thus given [ tramning date (Xl,jl), (XZ,}/Z),...,(X/,}//) ,
wherex, €R", j=1,..,/and y, € {1,...,/e}is the class of x,, the ST'M"" solves the following problem:

o1 ; ’
min E(u/ ’1)T w ’1-+-sz:§,’1

7, ((w“)T CD(x,)w“)z 1-£ 18)
EN>0,i=1,2,..k
The approach of constructing other SVM models is similar to ST/M " . After solving 2& optimization problems Eq.(18), we

will have 2£& decision functions. Adding every two “decision values”, then we can get & “sum of decision values”, D",..., D" :

() o) + (#) 9+ =D

(u/é’1 )T ¢ (x)+o" + (u/é’z )T #(x)+4"* =D*
We say x is in the class which has the largest value of the “sum of decision values™:

dass of x = argmax,_, , (Dl) 19)
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3.1 Example

We use “one-against-half method” to deal with the multi-class dataset: satimage (Blake and Merz, 1998), which contains 36
attributes. Note that for this problem, there is one missing class. That 1s, in the original application there is one more class but
in the data set no examples are with this class. Thus the goal is to classify the class of sazzzzage based on these 36 attributes. The
statistic of this problem 1s displayed in Table 1.

Table 1. Multi-class problem: satimage

Description Training Data Test Data
1 red soil 1072(24.17%) 461 (23.05%)
2 cotton crop 479 (10.80%) 224 (11.20%)
3 grey soil 961 (21.67%) 397 (19.85%)
4 damp grey soil 415 (09.36%) 211 (10.55%)

5 soil with vegetation stubble 470 (10.60%) 237 (11.85%)
6 mixture class 0 0

7 very damp grey soil 1038(23.40%) 470 (23.50%)

First, we must group the training data in order to construct 12 (2x6) SVM models. Table 2 presents the result after
dividing into 12 groups. Next we decide kernel function: 7hfkemel and parameters: y =0.001,C =100, where rbf kernel 1s:

£ (xl WX ) =exp (—7/"xl -x, "2 ) (20)

Then we solve 12 SVM models by Eq.(18). For example, ST'M *>!is trained on data from three classes in the 3rd class with
positive labels, and the others with negative labels. After constructing 12 SVM models, we start testing phase. If randomly
select one example x and test it by these models, we will get 12 decision values. Adding every two “decision values”, then we
can get 6 “sum of decision values”. The resultis presented in Table 3. We easily find that the maximum sum of decision values
15 2.9097. So we say x is 1st class through Eq.(19). After testing 2000 testing data in the same models, 1844 data of all will be
predicted correct. So the accuracy rate 1s 92.2%. But it 1s unfair to use only one parameter set. Practically for any method
people find the best parameters by performing the model selection. Then the best parameter set is used for constructing the
model for future testing. Note that details of how we conduct the model selection will be discussed in section 4.

Table 2. The result of grouping
Class Label (+) Label (-) Models

1 1 23 N7
1 45,7 SvMm 2
2 1,3 SYM
2 2 4,57 SVM 22
3 1,2 SYM ™
3 3 45,7 SvM *?
4 1,2 SVM*
4 4 3,57 SvMm *?
5 1,2 SVM !
> 5 34,7 SVM *?
7 1,2 SVM ®
! 7 34,5 N7

Table 3. Sum of decision value
Class Models Decision Value Sum

13327
1 svM 2.9097
svM ? 1.5770

-1.1969
2 SvM -1.7065
SVM *? -0.5096
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12329

3 svMm 232 -1.8165
SVM *? -0.5836
-1.0806

4 SvMm -2.3986
SVM ** -1.3180
-1.5501

5 svMm -1.0287
SVM *? 0.5214
-1.0730

7 svMm -1.8449
SVM °* -0.7719

3.2 Discussions on “Sum of Decision Values”

We will discuss the characters of one-against-half method by the sum of decision value. Suppose 12 SVM models were
constructed by example 3.1. Now we use these models to predict one unknown-class data x , which 1s 1st class in reality.

+ Discussionon D! D' is the sum of decision value of ST'M "' and ST"M"*. Table 4 presents four kinds of the results of
D'. If both STVM"' and STM"? predict correct, the two decision values are positive numbers. Of course, D' is
positive. If only ST/M"* occurs fault, the decision value of ST’M""is negative. But x is 1st class in reality, the decision
value of ST/M"* will be very close to zero. Besides, the decision value of ST/M "' is still positive. So D' is positive in all
probability. The 3rd kind of the results 1s similar to the above-mentioned. In the 4th circumstance, both ST’M b oand

ST’M " predict faults. Even though D' is negative, it will be very close to zero, too. Because of the real class of x is 1st
class.

Table 4. Discussion on D'

Prediction Decision Value .
sym" sym*  symM™  svm'?
1 Correct Correct >0 >0 >0
2 Correct Incorrect >0 <0 Uncertain
3 Incorrect Correct <0 >0 Uncertain
4 Incorrect Incorrect <0 <0 <0

+ Discussionon I? D’ is the sum of decision value of ST/M> and ST’M™”. Table 5 presents two kinds of the results of
D*. If SVM* predicts correct, the decision value of SVM™" will be negative. However, ST/M*?is trained on data
from class 2 and class 4, 5, 7. It causes using S "M > to predict xis unstable; the decision value may be positive or negative.
Suppose the data from every class distribute similarly wide. In general, the probability that ST/M** predicts xis class 2 is
less than the other classes. So the expected value of the decision value of STM*” is negative, and getting negative D is a
strong probability. In the worst case, if SVM™ predicts incorrect, the decision value will be positive. Because x 1s 1st
class in reality, the decision value will be very closed to zero and D’ has more probability than first case to be positive.
When this situation occurs, one- against-half has more probability to predict faults. The discussions on D’,...D° are
similar to D”.

Table 5. Discussion on D?

Prediction Decision Value ,
svMm > svmM*  SvM*  svMm*? P
1  Correct - <0 - Uncertain
2 Incorrect - >0 - Uncertain

Combining the two points at previous issue, we will get one conclusion: in the generally cases, D' is positive
and D?,...,D° are negative. By Eq.(19), we easily say x 1s in the 1st class. In the last of this section, we randomly choose 100
testing data, which are 1st class in reality, to test them and observe the sum of decision values. Figure 1 illustrate that in

general D' are positive and D” are negative. Table 6 shows the expected value of “sum of decision values” and we find our
inference 1s sensible.
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Figure 1. The distritution of D'and D’

Table 6. Expected value of D'
Class  Models Exp (decision value)  Exp (D)

SVM ™ 1.1909

1 2.3438
SVM ' 1.1529

) SVM ! -1.1251 14400
SVM 22 -0.3149 '
SVM -1.1128

3 -1.4819
SVM *? -0.3691
SVM ! -1.0818

4 -2.1247
SVM ** -1.0429
SVM ! -1.1299

5 -1.0762
SVM 2 0.0537
SVM ! -1.0694

7 -1.7781
SVM ©* -0.7086

4. NUMERICAL EXPERIMENTS
4.1 Implement and result

In this section we present experimental results on 10 multi-class problems from UCI Repository (Blake and Merz, 1998)
and LIACC [4]. From UCI Repository we choose the multi-class datasets: 7725, wine, glass, and vowel. From LIACC we choose the
datasets: vebicle, segment, dna, satimage, letter, and shuttle. We give the statistics of the problems in Table 7. In the last column we
give the best accuracy rate listed in LIACC. Note that originally the problems g/ass and satimage both are 7-class problems, but
they are regarded as 6-class problems because in the dataset no examples are with one class. All experiments in this section
were done on a PentiumIV1500 with 384MB RAM. We implement one-against-half using MATLAB and every binary class
SVM is constructed by LIBSVM (Chang and Lin, 2001). For each problem we stop the optimization algorithm if the
constraints violation 1s less than 10-3.

We use the same kernel function: rbf kernel and different kernel parameters y and cost parameters C (y =[24,23,..., 271
and C =[212,211,.. . 22] ). So we try 225 combinations for every problem. We use holdout method to estimate the accuracy rates
of problems dna, satimage, letter, and shuttle, because they are divided into training data (70%) and testing data (30%). For the
other six smaller problems, we use 10-fold cross-validation (KKohavi, 1995) to estimate their accuracy rates.
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Table 7. Problem Statistics

Problem #class  #attributes #training data #testing data  statlog rate
iris 3 4 150 0
wine 3 13 178 0
glass 6 9 214 0
vowel 11 10 528 0
vehicle 4 18 846 0 78.3
segment 7 19 2310 0 96.9
dna 3 180 2000 1186 95.9
satimage 6 36 4435 2000 90.6
letter 26 16 15000 5000 93.6
shuttle 7 9 43500 14500 99.9

Table 8 is the result of comparing six multi-class SVMs. We present the optimal parameters (C,y ) and the corresponding

accuracy rates. The best rates of six methods are represented by bold-faced, and “*” indicates using improvement approach
(we will discuss itin 4.2). Note that we only estimate the accuracy rates by one-against-half method, and the other methods are
experimented by Chang, et al. (2000). However the design of our experiments is the same as Chang, et al. (2000). Therefore we
can compare one-against-half method with the other methods. Among the ten problems, one-against-half method obtains the
best accuracy rates on zzs, wine, vowel, and dna. For the other problems except zebicle, the accuracy rates are competitive with
other methods. Although the accuracy of zebicl 1s the worst among these multi-SVMs, it (82.98%) still better than earlier results
(78.3%0) listed in statlog (see Table 6). We also illustrate the result of comparing these methods with Figure 2.

4.2 Improvement approach

We discuss the relation between “the standard deviation of every attribute(o ,)”and “the correlation coefficient of every

attribute and class (p, -)”. Then we will find it affects the value of decision values. First, we show the decision value of x:

N N5
D= o, y®(s,)D(x)+b= D, y,k(s,,x)+b 1)
i=1 i=1
Suppose x has # attributes, x = (x] ,x ,...,x"), and kernel function is rbf kernel. So the value of k(s,,x) 1s:

/e(fl ,x) =exp (—7/”;[ —x"z)

= eXpt—V(\/(f} —) (=N ﬂ (22)

According to Eq.(22), when “the standard deviation of the attribute a”(o,) is much greater than the other attributes, it

causes the variation of (Jf -x* ) 21s also much greater than the others. It means that “attribute a” has much more influence on
the decision values. If o, 1s much greater than others, the accuracy of one-against-half has two kinds of possibilities:
1. If o,1s much greater and p, . <0, the accuracy of one-against-half method is usually worse.

2. If o, 1s much greater and p, . >0, the accuracy of one-against-half method is usually better.
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Figure 2. Comparing six multi-class SVMs

Table 8. Comparing six multi-class SVMs
(* indicates using improvement approach, before using 121e:80.34%, vehicle:71.87%, segment: 96.49% )
One-agai One-agai DAG  One-agai Consideri C&S

nst-half  nst-one nst-all ng at
Problem  (C,7) <) <) <) once <C,7)
rate rate rate rate <) rate
rate

(2120 (21229 (21228 (2023  (2122%) (210,27
98.67 97.33 96.67 96.67 97.33 97.33
(25210 (21210)  (2629)  (2726)  (2022)  (212)

iris

e 99.44% 9944 9888 9883 9888 9888
lﬂ‘u (23’2- 1) (21 1,2—2) (212’2—3) (21 1,2—2) (29,2—4) (24,2—1)

& 7336 7150 7385 7196 7103 71.96
Wwd (21,20) (24,20) (22,22) (24,21) (23,20) (21,23)
99.05  99.05 9867 9849 9849 9867

i (26210)  (2023)  (21125)  (2124)  (21024) (29,29
8298% 8664 8605 8747 8700 8676

eoment (23’2- 10) (26,20) (21 1,2—3) (27,20) (25,20) (20,23)
& 96.93% 9740 9736 9753 9758  97.32
dnﬂ (24,2-6) (23,2—6) (23,2—6) (22,2—6) (24,2—6) (21,2—6)
95.87 9545 9545 9578 9562  95.87

. (24’2- 10) (24,20) (24,20) (22,21) (23,20) (22,22)
amage  gnn5 9130 9125 9170 9125  92.35
lgﬂm, (26,2-4) (24,22) (24,22) (22,22) (21,22) (23,22)
9776 9798 9798 9788 9776  97.68
A.b”ﬂlg (24’2- 10) (21 1’23) (21 1’23) (29,24) (29,24) (212’24)

99.83 99.92 99.92 99.91 99.91 99.94

When the first possibility occurs, our improvement approach is to reduce the influence of “attribute a”. In other words, 1t
lets every attribute be divided by its standard deviation. Then the standard deviation of every attribute is equal to one, and the
influence of “attribute a” is equal to others. For example, Table 9 presents “the standard deviation of every attribute” and “the
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correlation coefficient of every attribute and class ” of problem wzze. The attributes 5 and 13 occur first possibility, so the
accuracy rate of one-against-half is 80.34%. But after using the improvement approach, its accuracy rate improves to 99.44%.

Note that not every situation is suitable for using this approach. When second possibility occurs, this approach may reduce the
accuracy rates of one-against-half method.

Table 9. 0, and p, . of wine

1 2 3 4 5 6 7 8 9 10 11 12 13
o, 0811023314 06 1 010.6 2302 0.7 315

Py--0304-0105-0.2-0.7-0.905-050.3-0.6-0.8-0.6

5. CONCLUSIONS AND FUTURE WORK

From the results of our experiments (see Table 8), we find that none of these six methods is absolutely better than others

and one-against-half is also a good multi-class SVM. We also propose the improvement approach to modify one-against-half
method when the first possibility occurs. Thus, one-against-half method is the other selection when we deal with a multi-class
problem.

Finally, we simply discuss the extension of one-against-half: each class originally constructs two SVM models (total 2%

models), and we change it to construct three SVM models (total 32 models). This extension uses the similar idea of “the sum
of decision values”; every binary SVM is trained on data from 1/3 classes. In the future multi-class SVM research, we could
also consider the idea of this extension.
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